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Estimating the Effect of Vigorous Physical
Activity on Mortality in the Elderly Based on

Realistic Individualized Treatment and
Intention-to-Treat Rules

Oliver Bembom and Mark J. van der Laan

Abstract

The effect of vigorous physical activity on mortality in the elderly is difficult to
estimate using conventional approaches to causal inference that define this effect
by comparing the mortality risks corresponding to hypothetical scenarios in which
all subjects in the target population engage in a given level of vigorous physical
activity. A causal effect defined on the basis of such a static treatment intervention
can only be identified from observed data if all subjects in the target population
have a positive probability of selecting each of the candidate treatment options,
an assumption that is highly unrealistic in this case since subjects with serious
health problems will not be able to engage in higher levels of vigorous physical
activity. This problem can be addressed by focusing instead on causal effects that
are defined on the basis of realistic individualized treatment rules and intention-
to-treat rules that explicitly take into account the set of treatment options that are
available to each subject. We present a data analysis to illustrate that estimators of
static causal effects in fact tend to overestimate the beneficial impact of high lev-
els of vigorous physical activity while corresponding estimators based on realistic
individualized treatment rules and intention-to-treat rules can yield unbiased es-
timates. We emphasize that the problems encountered in estimating static causal
effects are not restricted to the IPTW estimator, but are also observed with the
G-computation estimator, the DR-IPTW estimator, and the targeted MLE. Our
analyses based on realistic individualized treatment rules and intention-to-treat
rules suggest that high levels of vigorous physical activity may confer reductions
in mortality risk on the order of 15-30%, although in most cases the evidence for
such an effect does not quite reach the 0.05 level of significance.



1 Introduction

A substantial body of epidemiologic research indicates that recent and current physical activity in the elderly
are associated with reductions in cardiovascular morbidity and mortality and improvement in or prevention
of metabolic abnormalities that place elderly people at risk for these outcomes (CDC, 1989; van Dam et al.,
2002; Lee et al., 2003; Esposito et al., 2003; Rosano et al., 2005). Based on these findings, the CDC currently
recommends that elderly people engage in moderate-intensity physical activities such as bicycling on level
terrain for 30 minutes or more at least five times a week in order to maintain their health (CDC, 1996).

While epidemiologic studies have produced compelling evidence for the health benefits provided by such
moderate-intensity physical activities, it remains a largely open question to what extent more vigorous
physical activities can offer additional benefits to the elderly. One of the main reasons for why this question
has proven difficult to investigate lies in the lack of adequate statistical methods for estimating causal effects
in this context. Current approaches in causal inference would define the causal effect of vigorous physical
activity on a health outcome of interest by comparing the distribution of that outcome under the hypothetical
scenario in which all subjects in the target population exercise at a given activity level to the corresponding
distribution under the reference scenario in which all subjects abstain from vigorous physical activity. In order
to estimate such treatment-specific counterfactual outcome distributions from observational data, however,
one has to assume not only that the investigator has recorded all relevant confounding factors, but also that
all subjects in the target population have a positive probability of selecting each of the treatment levels
under consideration. Intuitively, this latter assumption of experimental treatment assignment (ETA) makes
sense since we should not be able to estimate the counterfactual outcome distribution corresponding to a
given treatment level if there exists a subgroup of the target population that in reality is never observed
at that treatment level. In the context of studying the benefits of vigorous physical activity in the elderly,
this assumption appears highly unrealistic since it can be expected that health problems would prevent
a considerable proportion of subjects from participating in all but the lowest levels of vigorous physical
activity. From a philosophical standpoint, it therefore does not even make sense to talk about the outcome
distribution we would observe if all subjects were assigned to higher levels of vigorous physical activity.
From a more practical standpoint, an analysis based on this approach would lead to an overestimate of the
beneficial impact of higher levels of vigorous exercise since any estimate of the corresponding counterfactual
distribution would be based solely on those subjects who are healthy enough to exercise at those levels.

van der Laan and Petersen (2007) recently proposed estimators of two kinds of causal effects that are
defined on the basis of more realistic hypothetical scenarios. The first definition is based on realistic indi-
vidualized treatment rules that, in contrast to the static rules described above, take into account a given
subject’s characteristics in order to assign a treatment level that is as close as possible to a specified target
level while still remaining a realistic option for that subject. In the context of physical activity, for instance,
we might consider hypothetical scenarios in which subjects are assigned to the highest vigorous activity level
not exceeding a specified target level that they are still realistically capable of. The causal effect of vigorous
physical activity could then be defined by comparing the outcome distribution we would observe for different
target levels to the corresponding distribution we would observe under no vigorous physical activity. The sec-
ond definition of causal effects is based on intention-to-treat rules that, like realistic individualized treatment
rules, attempt to assign subjects to a specified target level, but allow subjects for whom this target level is not
realistic to follow their self-selected treatment level rather than assigning them to the next highest realistic
level. Causal effect estimates based on such rules thus aim to produce the results of an intention-to-treat
analysis of a randomized trial in which a proportion of subjects fail to comply with treatment assignment and
instead select their own treatment level. From a philosophical standpoint, causal effects defined on the basis
of such realistic individualized treatment rules or intention-to-treat rules are appealing since the necessary
counterfactual distributions are always well-defined. From a practical standpoint, analyses based on such
rules offer the advantage of being protected from the bias that an analysis based on static treatment rules
would be subject to if the ETA assumption is violated.

In this article, we present a data analysis examining the potential benefits of vigorous-intensity physical
activity that compares the results obtained through a conventional analysis to those obtained by using the
estimators developed in van der Laan and Petersen (2007). Our analysis illustrates that a conventional
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analysis based on static treatment rules yields severely biased results that dramatically overestimate the true
effect of higher levels of vigorous physical activity. At the same time, we show that causal effects based
on realistic individualized treatment rules and intention-to-treat rules can be estimated without bias. The
remainder of the article is organized as follows. After describing our data source, we briefly review the
counterfactual framework for causal inference and describe the various estimators that have been proposed
for estimating causal effects. We then present the details of our data analysis and close with a brief discussion
of our results.

2 Data source

Tager et al. (1998) followed a group of people aged 55 years and older living in and around Sonoma, CA,
over a time period of about ten years as part of a community-based longitudinal study of physical activity
and fitness (Study of Physical Performance and Age Related Changes in Sonomans - SPPARCS). Our goal
in analyzing the data that were collected as part of this study is to examine the effect of vigorous LTPA as
recorded at the baseline interview on subsequent five-year all-cause mortality.

Our measure of vigorous LTPA is defined based on a questionnaire in which participants were asked how
many hours during the past seven days they had participated in twelve common vigorous physical activities
such as jogging, swimming, bicycling on hills, or racquetball. Activities were assigned standard intensity
values in metabolic equivalents (METs) (Ainsworth et al., 1993); one MET approximately equals the oxygen
consumption required for sitting quietly. A continuous summary score was obtained by multiplying these
intensity values by the number of hours engaged in the various activities and summing up over all activities
considered here. The treatment variable A was then defined as a categorical version of this summary LTPA
score:

A =



0 if LTPA = 0 METs
1 if 0 METs < LTPA ≤ 10 METs
2 if 10 METs < LTPA ≤ 20 METs
3 if 20 METs < LTPA ≤ 40 METs
4 if 40 METs < LTPA ≤ 60 METs
5 if 60 METs < LTPA

(1)

To compare, the current CDC recommendation for engaging in moderate-intensity physical activity for 30
minutes at least five times a week corresponds to an energy expenditure of 22.5 METs.

Apart from sex and age, the primary confounding factor of the relationship between LTPA and all-cause
mortality is likely to be given by a subject’s underlying level of general health. Healthier subjects will not
only tend to experience lower mortality risks, but are also more likely to engage in higher levels of vigorous
physical activity. To control for this source of confounding, our analysis adjusts for a number of covariates
that are intended to capture a subject’s underlying level of health. Participants were asked, for instance, to
rate their health as excellent, good, fair, or poor. Self-reported physical functioning was defined from a series
of questions, originally developed by Nagi (1976) and Rosow and Breslau (1966), that assessed the degree of
difficulty a participant experienced in various activities of daily living. On the basis of this questionnaire, we
classified a participant’s level of physical functioning as excellent, moderately impaired, or severely impaired.
In addition, participants were asked about the previous occurrence of cardiac events such as myocardial
infarctions, the presence of a number of chronic health conditions, their smoking status, as well as a possible
decline in physical activity compared to 5 or 10 years earlier. Table 1 summarizes the definition of the
covariates we adjust for as potential confounding factors.

Of the 2092 participants enrolled in the SPPARCS study, 15 did not answer all the questions needed to
define their level of vigorous physical activity; an additional 26 were missing information about at a least
one of the confounding factors described above. Our analysis is based on the remaining 2051 participants.
We note that the outcome of interest, five-year survival status, was available for all study participants so
that we do not have to adjust for right censoring.

2

http://biostats.bepress.com/ucbbiostat/paper217



Table 1: Definition of indicator variables that are considered as potential confounders.

Variable Definition
FEMALE Female
AGE.1 ≤ 60 years old
AGE.2 60-70 years old
AGE.4 80-90 years old
AGE.5 90-100 years old
HTL.EX Excellent self-rated health
HLT.FAIR Fair self-rated health
HLT.POOR Poor self-rated health
NRB.FAIR Moderately impaired physical functioning (0.5 ≤ NRB score < 1.0)
NRB.POOR Severely impaired physical functioning (NRB score < 0.5)
CARD Previous occurrence of any of the following cardiac events: Angina,

myocardial infarction, congestive heart failure, coronary by-pass
surgery, and coronary angioplasty

CHRON Presence of any of the following chronic health conditions: stroke,
cancer, liver disease, kidney disease, Parkinson’s disease, and
diabetes mellitus

SMK.CURR Current smoker
SMK.EX Former smoker
DECLINE Activity decline compared to 5 or 10 years earlier

3 Methods

The observed data are given by n i.i.d. copies of O = (W,A, Y ), whereW denotes the collection of adjustment
variables, A gives the categorical physical activity level, and Y is an indicator for death in the five years
following the baseline interview. Within the counterfactual framework for causal inference, as first introduced
by Neyman (1923) and further developed by Rubin (1978) and Robins (1986, 1987), this observed data
structure O is viewed as a censored version of a hypothetical full data structure X = (Ya : a ∈ A) that
contains the outcome Ya we would have observed on this subject had she been assigned to treatment level a
for all a in the collection A = {0, 1, . . . , 5} of possible treatment levels. The causal effect of vigorous physical
activity on all-cause mortality could now be defined by comparing the mortality risk E[Ya] we would observe
if all subjects in the target population exercised at a given level a > 0 to the corresponding mortality risk
E[Y0] we would observe if all subjects abstained from vigorous physical activity.

As mentioned previously, such mean counterfactual outcomes can only be estimated from the observed
data if the investigator has recorded all relevant confounding factors and if all subjects in the target population
have positive probability of selecting each of the treatment levels. This latter assumption of experimental
treatment assignment can be formalized by requiring that for all candidate static treatment interventions
a = 0, 1, . . . , 5, we have with probability 1.0 that

g(a |W ) ≡ P (A = a |W ) > 0. (2)

In fact, it has been shown that estimation of mean counterfactual outcomes becomes problematic even if
there exist values of a and W for which the treatment assignment probabilities g(a | W ) are not identically
equal to zero, but very close to zero (Neugebauer and van der Laan, 2005). To avoid problems due to such
a practical violation of the ETA assumption, we may hence require in practice that, for a = 0, 1, . . . , 5, we
have g(a |W ) > α with probability 1.0, with α = 0.05, for instance.

Estimators of causal effects defined on the basis of the realistic individualized treatment rules discussed
in van der Laan and Petersen (2007) do not rely on the ETA assumption. Given a target treatment level a
and a subject’s baseline covariates W , such rules assign the highest treatment level not exceeding a that the
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subject is still realistically capable of. Specifically, let

D(W ) = {a ∈ A : g(a |W ) ≥ α} (3)

denote the set of treatment options that, given baseline covariates W , are realistic for a particular subject
in the sense that she would select any one of those treatment options with a probability of at least α. A
realistic individualized treatment rule can then be defined as

d(a,W ) = max{a∗ ∈ D(W ) : a∗ ≤ a}. (4)

As with static treatment regimens, we use the notation Yd(a,W ) to denote the outcome we would have observed
on the subject had she followed the individualized rule d(a,W ), i.e. Yd(a,W ) ≡ Yã where ã = d(a,W ). A
realistic causal effect of vigorous physical activity on all-cause mortality can now be defined by comparing
the mortality risk E[Yd(a,W )] we would observe if all subjects in the target population followed a given rule
d(a,W ), a > 0, to the corresponding mortality risk E[Yd(0,W )] = E[Y0] we would observe if all subjects
abstained from vigorous physical activity. By the definition of d(a,W ), we have, for a = 0, 1, . . . , 5, that
g(d(a,W ) | W ) > α with probability 1.0, demonstrating that the equivalent of assumption (2) is trivially
satisfied in estimating the corresponding causal effects.

Under an intention-to-treat rule d(a,A,W ), subjects are assigned to a specified target treatment level
a if that treatment level represents a realistic option for them, but are allowed to follow their self-selected
treatment A otherwise:

d(a,A,W ) = I(a ∈ D(W ))a+ I(a /∈ D(W ))A. (5)

An intention-to-treat causal effect of vigorous physical activity on all-cause mortality can now be defined by
comparing the counterfactual mortality risks E[Yd(a,A,W )], a > 0, and E[Yd(0,A,W )] = E[Y0]. Note that we
have

E[Yd(a,A,W )] = E
[
YaI(a ∈ D(W ))

]
+ E

[
Y I(a /∈ D(W ))

]
. (6)

The second quantity is trivially identified by the observed data, and a ∈ D(W ) guarantees that g(a |W ) > α
with probability 1.0, ensuring identifiability of the second quantity, so that the equivalent of assumption (2)
is guaranteed to hold in the estimation of intention-to-treat causal effects. We note that the true treatment
mechanism g and therefore also the set D(W ) of realistic treatment options will generally be unknown. In
practice, it will therefore usually be necessary to substitute a given estimate g∗ of the treatment mechanism
g in the definition of D(W ).

Four different classes of estimators have been proposed for estimating mean counterfactual outcomes
corresponding to static treatment rules: G-computation estimators (Robins, 1986), inverse-probability-
of-treatment-weighted (IPTW) estimators (Robins, 2000), double robust IPTW (DR-IPTW) estimators
(van der Laan and Robins, 2003), and targeted maximum-likelihood estimators (van der Laan and Rubin,
2006), with natural analogues of all of these estimators in the context of realistic individualized treatment
rules and intention-to-treat rules. While it is well-known that the IPTW estimator can suffer from con-
siderable bias if the ETA assumption is violated, the remaining three estimators are in fact also severely
compromised in such situations in that they now have to rely fully on model assumptions that cannot be
tested from the data (Neugebauer and van der Laan, 2005). Since this latter phenomenon is rarely discussed
in the literature, we will provide a practical illustration by comparing the estimates obtained by each of
these four estimators for the three different causal effects defined above. We next review the definition and
implementation of these four estimators in order to be able to discuss their behavior in more detail.

We begin with estimators of the mean counterfactual outcome ψ = E[Yd(a,W )] for a given realistic
individualized treatment rule d(a,W ). Note that the mean counterfactual outcome E[Ya] for a given static
treatment rule corresponds to the special case of setting α = 0 in the definition of D(W ). The G-computation
estimator of ψ is based on the observation that under the assumption of no unmeasured confounders, this
parameter is identified by the observed data as

ψ = E[Yd(a,W )] = EW

[
E[Y | A = a,W ]

]
. (7)
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This immediately implies a substitution estimator based on estimates of the marginal distribution of W ,
P (W ), and the conditional distribution of Y given A and W , P (Y | A,W ). The first distribution can be
estimated non-parametrically by the empirical distribution ofW in our sample, but estimation of P (Y | A,W )
will generally require specification of a parametric model. In the case of a binary outcome Y , an estimate
Qn of the regression Q(A,W ) = E[Y | A,W ] based on an appropriate logistic regression model completely
defines an estimate of the conditional distribution P (Y | A,W ). The corresponding substitution estimator
for ψ is then given by

ψG−compn =
1
n

n∑
i=1

Qn(d(a,Wi),Wi). (8)

This estimator gives a consistent estimate of ψ if the model for Q(A,W ) is correctly specified.
The IPTW and DR-IPTW estimators are based on the general estimating function methodology described

in van der Laan and Robins (2003) that is based on the following three steps. First, estimating functions for
ψ are obtained assuming that we have access to the full data structure X. These estimating functions are
then mapped into functions of the observed data structure by applying an IPTW mapping. Lastly, a class
of more robust and efficient estimating functions is obtained by subtracting from these IPTW estimating
functions their projection onto the tangent space for the treatment mechanism in the model that only makes
the assumption of no unmeasured confounders. In a non-parametric model, the only unbiased full-data
estimating function for ψ is given by

DFull(X | ψ) = Yd(a,W ) − ψ. (9)

A corresponding IPTW estimating function is given by

DIPTW (O | g, ψ) =
I(A = d(a,W ))

g(A |W )
Y − ψ. (10)

The IPTW estimator ψIPTWn is defined as the solution of the estimating equation

0 =
1
n

n∑
i=1

DIPTW (Oi | gn, ψ), (11)

where gn is an estimate of g that may, for example, be obtained as the maximum-likelihood estimate of g in
an appropriately specified parametric model. Specifically, this estimator is given by

ψIPTWn =
1
n

n∑
i=1

I(Ai = d(a,Wi))
gn(Ai |Wi)

Yi. (12)

It gives a consistent estimate of ψ if the model for the treatment mechanism g is correctly specified.
The projection of DIPTW onto the nuisance tangent space TNUC corresponding to the treatment mech-

anism under the assumption of no unmeasured confounders can be computed as

Π[DIPTW | TNUC ] = E[DIPTW | A,W ]− E[DIPTW |W ]

=
I(A = d(a,W ))

g(A |W )
Q(A,W )−Q(d(a,W ),W )

so that the DR-IPTW estimating function is given by

DDR(O | g,Q, ψ) =
I(A = d(a,W ))

g(A |W )

[
Y −Q(A,W )

]
+Q(d(a,W ),W )− ψ. (13)

The corresponding DR-IPTW estimator ψDRn is defined as the solution of the estimating equation

0 =
1
n

n∑
i=1

DDR(Oi | gn, Qn, ψ). (14)
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Specifically,

ψDRn =
1
n

n∑
i=1

I(Ai = d(a,Wi))
gn(Ai |Wi)

[
Yi −Qn(Ai,Wi)

]
+Qn(d(a,Wi),Wi). (15)

This estimator gives a consistent estimate of ψ if the model for either g or Q is correctly specified. It is also
locally efficient in the sense that correct specification of both models yields an efficient estimator.

Like the G-computation estimator, the targeted MLE of ψ is a substitution estimator based on estimates
of the components P (W ) and P (Y | A,W ) of the observed data density. In order to avoid relying on an a
priori specified parametric model for the latter component, we may often want to employ a data-adaptive
model selection approach such as the Deletion/Substituion/Addition algorithm (Sinisi and van der Laan,
2004) or Least Angle Regression (Efron et al., 2004) for the purposes of estimating this conditional density.
This is somewhat problematic, however, since such algorithms will select an appropriate model based on a
criterion that is aimed at estimating the nuisance parameter P (Y | A,W ) efficiently, which in general does
not lead to an efficient estimator of the parameter of interest ψ. The targeted MLE therefore first updates
the initial estimate of the observed-data density that would be used by the G-computation estimator in a way
that targets estimation of this density at the parameter of interest and makes the corresponding substitution
estimator double robust and locally efficient. Specifically, this is achieved by formulating a parametric model
indexed by a Euclidean parameter ε through the initial estimate of the observed-data density at ε = 0 whose
scores include the components of the efficient influence curve of ψ at the initial density estimate, obtaining
a maximum-likelihood estimate of ε in this model, and updating the original density estimate accordingly.

Since this targeted maximum-likelihood approach was only recently developed by van der Laan and Rubin
(2006), we will illustrate it here in the context of estimating the parameter of interest ψ. For this purpose,
let P 0

n be an initial estimator of the observed-data density that estimates the marginal distribution of W
by the empirical distribution of W , the treatment mechanism g by an estimate g(P 0

n), and the conditional
distribution of Y given A and W by an initial fit Q(P 0

n) that can be represented in the form of the logistic
function

Q(P 0
n)(A,W ) =

1
1 + exp(−m0

n(A,W ))
. (16)

We then need to formulate a parametric fluctuation through this initial density estimate whose scores at the
initial estimate include the components of the efficient influence curve for ψ. This efficient influence curve,
given by the influence curve D(P ) of the DR-IPTW estimator

D(P ) =
I(A = d(a,W ))

g(A |W )

[
Y −Q(A,W )

]
+Q(d(a,W ),W )− ψ, (17)

can be decomposed as

D(P ) = D(P )− E[D(P ) | A,W ] +
E[D(P ) | A,W ]− E[D(P ) |W ] +
E[D(P ) |W ]− E[D(P )], (18)

corresponding to scores for P (Y | A,W ), P (A |W ), and P (W ), respectively. Specifically, we have that

D1(P ) = D(P )− E[D(P ) | A,W ]

=
I(A = d(a,W ))

g(A |W )

[
Y −Q(A,W )

]
(19)

D2(P ) = E[D(P ) | A,W ]− E[D(P ) |W ]
= 0 (20)

D3(P ) = E[D(P ) |W ]− E[D(P )]
= Q(d(a,W ),W )− ψa. (21)

Since the empirical distribution of W is a non-parametric maximum-likelihood estimator of P (W ), it in
particular equals the MLE of P (W ) in any parametric fluctuation through this initial estimate so that we

6

http://biostats.bepress.com/ucbbiostat/paper217



do not need to concern ourselves with updating this component of the observed-data density. Since the
parameter of interest is orthogonal to the treatment mechanism g so that D2(P ) = 0, we also do not need
to obtain an update of an initial estimate of g. As a submodel through P 0

n(Y | A,W ), we will consider a
logistic regression model that is identical to the initial fit Q(P 0

n) except for an added covariate h(P 0
n)(A,W ):

Q(P 0
n)(ε)(A,W ) =

1
1 + exp(−m0

n(A,W )− εh(P 0
n)(A,W ))

(22)

The covariate h(P 0
n)(A,W ) needs to be chosen such that the score of this submodel at ε = 0 is equal to

D1(P 0
n), the component of the efficient influence curve corresponding to P (Y | A,W ) at the initial density

estimate. The score of the selected submodel at ε = 0 is given by

S(0) = h(P 0
n)(A,W )

(
Y −Q(P 0

n)(A,W )
)
. (23)

Solving for h such that

S(0) = D1(P 0
n)

=
I(A = d(a,W ))
g(P 0

n)(A |W )

[
Y −Q(P 0

n)(A,W )
]

(24)

yields the solution

h(P 0
n)(A,W ) =

I(A = d(a,W ))
g(P 0

n)(A |W )
. (25)

Let εn denote the MLE of ε in Q(P 0
n)(ε), which can be obtained by simply regressing Y on h(P 0

n)(A,W )
according to a logistic regression model with offset equal to m0

n(A,W ). The targeted MLE of ψ is then given
by the substitution estimator based on the updated estimate

Q1
n(A,W ) =

1
1 + exp(−m0

n(A,W )− εnh(P 0
n)(A,W ))

(26)

of the regression Q(A,W ). Specifically, we have that

ψtMLE
n =

1
n

n∑
i=1

Q1
n(d(a,Wi),Wi). (27)

To summarize, implementing this estimator thus requires initial estimates of the regression Q and the treat-
ment mechanism g as they would also be used by the three estimators described above, updating the estimate
for Q in a simple univariate logistic regression, and then computing the corresponding substitution estimator
of ψ. The resulting targeted MLE solves the double robust estimating equation based on Q1

n(A,W ) and gn,
i.e.

1
n

n∑
i=1

I(Ai = d(a,Wi))
g(P 0

n)(Ai |Wi)

[
Yi −Q1

n(Ai,Wi)
]

+Q1
n(d(a,Wi),Wi)− ψtMLE

n = 0, (28)

so that it is in fact equivalent to the DR-IPTW estimator given in (15) with Q1
n(A,W ) substituted for

Qn(A,W ). Like the DR-IPTW estimator, the targeted MLE is therefore consistent if at least one of the
two nuisance parameters g and Q is estimated consistently. Similarly, the estimator is locally efficient in the
sense that it is efficient if both of these nuisance parameters are estimated consistently.

As mentioned previously, estimation of the mean counterfactual outcome E[Ya] corresponding to a static
treatment intervention represents a special case of the realistic individualized treatment rules considered here.
G-computation, IPTW, and DR-IPTW estimators of the mean counterfactual outcome φ ≡ E[Yd(a,A,W )]
corresponding to an intention-to-treat rule are straightforward to derive and are presented in van der Laan
and Petersen (2007). In order to obtain a targeted MLE of φ, we can use that by (6) the efficient influence
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curve of φ in a non-parametric model can be written as the sum of the efficient influence curve of a non-
parametric estimator of φ1 = E[Y I(a /∈ D)] and the efficient influence curve of a non-parametric estimator
of φ2 = E[YaI(a ∈ D)]. These are given by

D1(P ) = I(a /∈ D)Y − φ1 (29)

and

D2(P ) = I(a ∈ D)
{
I(A = a)
g(A |W )

[
Y −Q(A,W )

]
+Q(a,W )

}
− φ2, (30)

respectively, yielding

D(P ) = I(a /∈ D)Y + I(a ∈ D)
{
I(A = a)
g(A |W )

[
Y −Q(A,W )

]
+Q(a,W )

}
− φ (31)

as the efficient influence curve for φ. The component of this influence curve corresponding to the score for
P (Y | A,W ) is given by

D(P )− E[D(P ) | A,W ] = I(a /∈ D)
[
Y −Q(A,W )

]
+ I(a ∈ D)

{
I(A = a)
g(A |W )

[
Y −Q(A,W )

]}
=

{
I(a /∈ D) + I(a ∈ D)

I(A = a)
g(A |W )

} [
Y −Q(A,W )

]
. (32)

The covariate h(P 0
n)(A,W ) needed for the univariate regression to update the initial fit for Q is thus given

by

h(P 0
n)(A,W ) = I(a /∈ D) + I(a ∈ D)

I(A = a)
g(P 0

n)(A |W )
. (33)

The problems arising if the ETA assumption is violated are most clearly seen in the case of the IPTW
estimator. By downweighting observations that were likely to have received their observed treatment and
upweighting those that were instead unlikely to have received their observed treatment, this estimator essen-
tially works by creating a new sample in which treatment assignment is independent of the baseline covariates.
This approach breaks down if a subgroup of the target population never selects some of candidate treatment
levels. If older, less healthy subjects, for example, are never observed to participate in high levels of vigorous
physical activity, none of the subjects in the corresponding re-weighted sample will be older and less healthy,
leading to an underestimate of the corresponding counterfactual mortality risk under high levels of vigorous
physical activity.

In the same situation, the G-computation estimator has to rely entirely on model assumptions that
cannot be tested from the observed data. Since older, less healthy subjects are never observed at higher
levels of vigorous physical activity, their conditional mean outcome E[Y | A,W ] for these exercise levels is
undefined. A corresponding estimate can never be obtained from the observed data unless one is willing to
extrapolate from the conditional mean outcomes estimated for other values of A and W . To illustrate this
point, consider the simplified example in which A is a binary indicator for a high level of vigorous physical
activity and W is an indicator for poor health. Then none of the subjects in our target population might
fall in the group with W = 1 and A = 1 so that E[Y | A = 1,W = 1] is undefined. In order to still obtain
an estimate of this quantity, we would be forced to assume an additive model for Q according to which
Q(A,W ) = β0 +β1A+β2W . Since the non-parametric model Q(A,W ) = β0 +β1A+β2W +β3A×W is not
identifiable, this assumption of no interaction between A and W cannot be tested from the observed data.

Like the G-computation estimator, the DR-IPTW estimator and the targeted MLE rely entirely on
extrapolation through Q if the ETA assumption is violated. To complicate matters, however, they also
require that the estimate of g is based on a model for the treatment mechanism that satisfies the ETA
assumption, i.e. the model for g must in fact be mis-specified (van der Laan and Robins, 2003). In summary,
all four estimators of causal effects are thus severely compromised if the ETA assumption does not hold,
illustrating that the solution in such cases does not lie in turning to the G-computation or DR-IPTW
estimators for which the resulting problems are not as immediately apparent as for the IPTW estimator, but
in focusing on realistically defined causal effects that are guaranteed to be identified from the observed data.
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4 Results

The treatment mechanism was estimated by a multinomial regression model that included main-effect terms
for all indicator variables defined in table 1. The regression E[Y | A,W ] was similarly estimated by a logistic
regression model that included these same main-effect terms as well as indicator variables for the treatment
categories 1 through 5. We evaluated the goodness-of-fit of this latter model using the Hosmer-Le Cessie
test introduced by Hosmer et al. (1997) as an improvement of the Hosmer-Lemeshow test (Hosmer and
Lemeshow, 1980). This test yielded a p-value of 0.10, providing little evidence against the assumption that
this model adequately describes the data. To evaluate the fit of our treatment model, we followed the advise
of Hosmer and Lemeshow (2000) and treated this model as a set of independent binary logistic regression
models of each treatment category against the remaining categories. Applying the Hosmer-Le Cessie test to
each of these binary logistic regression models, we obtained p-values of 0.51, 0.54, 0.33, 0.27, 0.78, and 0.94,
suggesting that the treatment model fits the data quite well.

Tables 2 and 3 summarize the fits we obtained for g and Q, respectively. The treatment fit reveals a
clear violation of the ETA assumption: No subjects in the oldest age group (90-100 years) are observed at
the treatment levels A = 3 and A = 5. Likewise, no subjects with poor self-rated health are observed at the
treatment levels A = 4 and A = 5. In addition, subjects with severely impaired physical functioning are very
unlikely to follow treatments A = 4 and A = 5. The fit we obtained for Q indicates that these three groups
of subjects are at considerably increased risks of mortality, suggesting that estimates of the counterfactual
mortality risks for the higher three treatment categories will be biased low. Since the DR-IPTW estimator
and the targeted MLE both require an estimate of the treatment mechanism that satisfies the ETA assump-
tion, fitted treatment assignment probabilities below 0.05 were set to 0.05.

Table 2: Treatment model fit. The entries in the first column give the factor by which the relative risk of
falling in category A=1 rather than A=0 changes when the covariate under consideration is changed from 0
to 1. Entries in the remaining columns are interpreted accordingly.

A=1 A=2 A=3 A=4 A=5
AGE.1 1.16 1.57 1.37 1.32 1.44
AGE.2 1.37 1.57 1.47 1.32 1.37
AGE.4 0.74 0.94 0.83 0.83 1.02
AGE.5 0.24 1.03 0.00 1.04 0.00
HLT.EX 1.09 1.10 1.46 1.29 1.67
HLT.FAIR 0.56 0.58 0.47 0.39 0.45
HLT.POOR 0.50 0.43 0.33 0.00 0.00
NRB.POOR 0.55 0.40 0.29 0.07 0.17
NRB.FAIR 0.78 0.82 0.70 0.99 0.53
SMOKE.CURR 0.65 0.43 0.32 0.61 0.33
SMOKE.EX 1.00 1.23 1.09 1.25 1.20
CARD 0.90 1.29 1.18 0.89 1.46
CHRONIC 1.19 1.14 1.13 1.11 0.93
FEMALE 0.94 0.86 0.82 0.89 0.55
DECLINE 0.67 0.39 0.52 0.37 0.33

Tables 4 and 5 summarize the realistic indvidualized treatment rule and the intention-to-treat rule. Both
tables show that only about 50% of all subjects are estimated to be capable of engaging in the highest level
of vigorous physical activity. Likewise, only about 75% of all subjects are estimated to be capable of the
second highest level. These observations further underscore the severity of the ETA violation encountered
in this data set. In comparing tables 4 and 5, we note that the intention-to-treat causal effects of high
levels of vigorous physical activity are likely to be smaller than the corresponding realistic causal effects.
Under the intention-to-treat rule d(5, A,W ), close to 25% of all subjects are assigned to the lowest treatment
level A = 0 while the corresponding realistic individualized treatment rule d(5,W ) assigns no subjects to
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Table 3: Fit for Q. Estimated odds ratios for mortality along with 95% confidence intervals and p-values.

OR 95% CI p-value
AGE.1 0.12 (0.05, 0.31) <10e-4
AGE.2 0.43 (0.29, 0.64) <10e-4
AGE.4 3.41 (2.34, 4.96) <10e-4
AGE.5 5.74 (2.07, 15.91) <10e-4
HLT.EX 0.76 (0.50, 1.16) 0.2039
HLT.FAIR 2.01 (1.39, 2.93) <10e-4
HLT.POOR 2.84 (1.51, 5.34) 0.0012
NRB.POOR 1.94 (1.21, 3.13) 0.0063
NRB.FAIR 0.89 (0.61, 1.29) 0.5279
SMOKE.CURR 3.73 (2.22, 6.29) <10e-4
SMOKE.EX 1.38 (0.99, 1.94) 0.0584
CARD 1.60 (1.13, 2.26) 0.0080
CHRONIC 1.44 (1.06, 1.95) 0.0204
FEMALE 0.52 (0.37, 0.72) <10e-4
DECLINE 1.46 (1.05, 2.05) 0.0266
A=1 0.86 (0.55, 1.34) 0.5072
A=2 0.81 (0.51, 1.29) 0.3849
A=3 0.78 (0.47, 1.29) 0.3360
A=4 0.45 (0.18, 1.09) 0.0770
A=5 0.80 (0.37, 1.76) 0.5866

A = 0. In general, the realistic individualized treatment rule results in treatment assignments closer to
the specified target level than those obtained from the intention-to-treat rule. In addition, the latter rule
produces a few cases in which subjects are assigned to treatment levels that exceed the given target level. For
the sake of estimating the causal effect of vigorous physical activity, these observations would seem to make
the realistic individualized treatment rule a somewhat more appealing option than the intention-to-treat rule.

Table 4: The realistic individualized treatment rule. A given row shows the treatment levels ã ≡ d(a,W )
that subjects were actually assigned to when the target level was set at a.

ã = 0 ã = 1 ã = 2 ã = 3 ã = 4 ã = 5
a = 0 2051 0 0 0 0 0
a = 1 11 2040 0 0 0 0
a = 2 0 41 2010 0 0 0
a = 3 0 41 97 1913 0 0
a = 4 0 41 91 441 1478 0
a = 5 0 41 91 381 454 1084

As argued above, the lack of non-parametric identifiability of causal parameters under a violation of the
ETA assumption is most easily seen in the case of the IPTW estimator which is likely to suffer from consid-
erable bias. Wang et al. (2006) propose the following simulation-based approach for obtaining an estimate
of this bias: Given estimates of P (W ), g, and Q, we can simulate realizations of the observed data structure.
For this estimated data-generating distribution, the true parameter values for the parameters of interest can
be computed through G-computation. At the same time, we can obtain a sampling distribution of IPTW
estimates by applying the IPTW estimator to a large number of simulated realizations of the observed data
structure. Since the assumption of no unmeasured confounders is trivially satisfied in this simulation study,
any discrepancy between the mean of these estimates and the true parameter value must reflect a violation
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Table 5: The intention-to-treat treatment rule. A given row shows the treatment levels ã ≡ d(a,A,W ) that
subjects were actually assigned to when the target level was set at a.

ã = 0 ã = 1 ã = 2 ã = 3 ã = 4 ã = 5
a = 0 2051 0 0 0 0 0
a = 1 11 2040 0 0 0 0
a = 2 35 3 2011 1 1 0
a = 3 108 16 7 1918 2 0
a = 4 338 88 66 56 1491 12
a = 5 492 161 134 110 45 1109

of the ETA assumption. Table 6 summarizes the estimated bias of the IPTW estimator of the counterfac-
tual mortality risk for each of the three different kinds of causal effects. The table shows that the IPTW
estimator dramatically underestimates the counterfactual mortality risk for static treatment interventions at
the highest two activity levels, with considerable problems even for the third highest level of activity. These
observations are in agreement with our earlier arguments according which a lack of older and less healthy
subjects among the higher activity levels should lead to an underestimate of the corresponding mortality
risks. In contrast, table 6 shows only a negligible bias for estimating such risks on the basis of realistic
individualized treatment rules and intention-to-treat rules. We stress that this diagnostic simulation should
be interpreted to give not only an estimate of the bias seen in the IPTW estimator, but, more generally, a
sense of the extent to which an ETA violation makes the causal parameters of interest non-parametrically
non-identifiable. In the present case, for instance, we would therefore also want to treat any estimates of
static causal effects offered by the G-computation, DR-IPTW, and targeted maximum-likelihood estimators
as unreliable and potentially misleading.

Table 6: Estimated ETA bias for the IPTW estimator of the counterfactual mortality risk as a percentage
of the true parameter value.

Static Realistic ITT
A=0 -0.23% -0.23% -0.23%
A=1 -2.63% 0.05% -0.03%
A=2 -4.94% 0.04% 0.13%
A=3 -14.45% 0.22% 0.20%
A=4 -48.75% 1.16% 1.05%
A=5 -50.54% -0.18% 0.11%

Given the counterfactual mortality risk estimators described in section 3, estimators of the relative risk
(relative to A = 0) are straightforward to obtain for the G-computation, IPTW, and DR-IPTW estimators
by simply dividing the corresponding two mortality risk estimators. Since the targeted MLE is always aimed
at a particular parameter of interest, this simple approach does not work for obtaining a targeted MLE of
the relative risk of mortality. Section A in the appendix shows that this task is still fairly straightforward,
however, given the work we have already done in section 3. Table 7 summarizes the relative risk estimates
for the three different kinds of causal effects obtained by the four different estimators.

In the analysis based on static treatment interventions, the IPTW estimator appears to provide strong
evidence for a protective effect of vigorous physical activity at the highest two levels, with an estimated
4-fold reduction in risk for the second-highest level. The realistic and intention-to-treat analysis, however,
provide much weaker evidence for such a protective effect. As expected, the intention-to-treat causal effect
estimates tend to be closer to the null value than the corresponding realistic estimates. Given the results
of the simulation study summarized in table 6, we are led to conclude that the IPTW estimates based on
static treatment interventions dramatically overstate the beneficial impact of high levels of vigorous physical
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activity.
The remaining three estimators likewise tend to estimate stronger reductions in risk in the static analysis

than in the realistic and intention-to-treat analyses, with both the DR-IPTW estimator and the targeted
MLE indicating a significant protective effect for A = 4 in the static analysis that becomes non-significant in
the realistic and intention-to-treat analyses. Interestingly, the G-computation estimator also yields a smaller
estimated reduction in risk for A = 4 in the latter two analyses than in the former one, but tighter confi-
dence intervals for the realistic and intention-to-treat analyses actually make the corresponding causal effect
estimates significant while this is not the case in the static analysis. We speculate that the greater sampling
variability observed in the static analysis is likely a result of the extrapolation that is required to estimate the
expected mortality outcome for a large number of subjects that are never observed at the highest two treat-
ment levels. For all four estimators, the static analysis suggest a markedly greater mortality risk for A = 5
than for A = 4, a finding that would be quite hard to interpret. The remaining two analyses, in contrast,
provide much more compatible estimates for these two activity levels. These observations lend credence to
the idea that the static effect estimates not only of the IPTW estimator, but also of the G-computation,
DR-IPTW, and targeted maximum-likelihood estimator ought to be treated as unreliable and potentially
misleading. On the basis of the more trustworthy realistic and intention-to-treat analyses, the data suggest
that high levels of vigorous physical activity may confer reductions in mortality risk on the order of 15-30%,
although in most cases the evidence for such an effect does not quite reach the 0.05 level of significance.

Table 7: Estimates of the relative risk of mortality (relative to A = 0) along with 95% confidence intervals
based on the bootstrap.

G-comp IPTW DR-IPTW tMLE
Static

A=1 0.90 (0.65, 1.20) 0.97 (0.68, 1.29) 0.96 (0.69, 1.28) 0.96 (0.69, 1.28)
A=2 0.91 (0.64, 1.23) 0.90 (0.60, 1.22) 0.92 (0.63, 1.27) 0.93 (0.63, 1.30)
A=3 0.88 (0.59, 1.21) 0.77 (0.44, 1.07) 0.84 (0.56, 1.14) 0.87 (0.58, 1.18)
A=4 0.59 (0.22, 1.01) 0.23 (0.06, 0.43) 0.52 (0.20, 0.92) 0.48 (0.15, 0.88)
A=5 0.86 (0.43, 1.35) 0.55 (0.21, 0.90) 0.97 (0.48, 1.50) 1.05 (0.53, 1.60)

Realistic
A=1 0.91 (0.66, 1.19) 1.00 (0.72, 1.32) 0.95 (0.70, 1.28) 0.95 (0.70, 1.28)
A=2 0.87 (0.63, 1.17) 0.97 (0.67, 1.34) 0.99 (0.66, 1.30) 1.00 (0.66, 1.32)
A=3 0.85 (0.62, 1.13) 0.81 (0.50, 1.22) 0.91 (0.59, 1.22) 0.91 (0.58, 1.23)
A=4 0.73 (0.53, 0.97) 0.58 (0.34, 1.06) 0.69 (0.40, 1.05) 0.69 (0.41, 1.05)
A=5 0.81 (0.60, 1.06) 0.66 (0.38, 1.19) 0.78 (0.47, 1.17) 0.78 (0.46, 1.20)

ITT
A=1 0.91 (0.66, 1.19) 0.99 (0.72, 1.33) 0.95 (0.70, 1.28) 0.95 (0.69, 1.28)
A=2 0.88 (0.64, 1.17) 0.98 (0.69, 1.31) 0.98 (0.67, 1.29) 0.98 (0.66, 1.30)
A=3 0.87 (0.64, 1.13) 0.85 (0.59, 1.17) 0.87 (0.61, 1.15) 0.83 (0.60, 1.14)
A=4 0.78 (0.62, 0.97) 0.85 (0.64, 1.08) 0.84 (0.63, 1.04) 0.85 (0.63, 1.10)
A=5 0.91 (0.75, 1.11) 0.96 (0.73, 1.23) 0.99 (0.73, 1.23) 1.01 (0.73, 1.30)

5 Discussion

The data analysis presented in this article illustrates the problems encountered in attempting to estimate
the causal effect of a static treatment intervention if the ETA assumption is violated. While it is fairly
well-known that such a violation can cause strong bias in the IPTW estimator, its effects on other estimators
of static causal effects have received little attention in the literature. With the G-computation estimator, the
DR-IPTW estimator, and the targeted MLE all relying on extrapolation from a correctly specified model
for Q and the latter two estimators in addition requiring a mis-specified model for the treatment mechanism
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that satisfies the ETA assumption, we argue that the results offered by these three estimators must also
be treated with great caution. Since, strictly speaking, static causal effects cannot be identified from the
observed data if the ETA assumption is violated, it should in fact make sense that the appropriate response
to this problem does not lie in turning to approaches that aim to estimate such parameters by relying on
untestable modelling assumptions, but rather in adapting the definition of the parameter of interest in a way
that makes the parameter identifiable.

This becomes particularly obvious in cases in which static causal effects are not even well-defined. In the
context of studying the causal effect of vigorous physical activity on mortality in the elderly, for instance, it
makes little sense to talk about the counterfactual outcome distribution we would observe if all subjects were
assigned to high levels of activity since serious health problems would prevent a considerable proportion of
subjects from complying with such an assignment. Causal effects defined on the basis of realistic individual-
ized treatment rules and intention-to-treat rules address this problem by explicitly taking into account the
set of treatment options that are realistically available to each subject. Such effects are therefore well-defined
and identifiable even if the full set of treatment options is not available to some subjects. The estimates
of such effects reported here suggest that high levels of vigorous physical activity may confer reductions
in mortality risk on the order of 15-30%, although in most cases the evidence for such an effect does not
quite reach the 0.05 level of significance. Estimates of static causal effects, in contrast, suggest a statistically
significant reduction in mortality risk on the order of 50-75%, a finding that given the estimated bias of the
IPTW estimator, must be viewed as highly suspect.

A possible extension to the analysis we present here consists of data-adaptively selecting the value for α in
definition (3) of the set of realistic treatment options, arbitrarily set by us as α = 0.05. For very small values
of α, estimators of causal effects based on realistic individualized treatment rules and intention-to-treat rules
may still be affected by a practical violation of the ETA assumption. As the value for α is increased, on the
other hand, the corresponding causal effects become more and more different from the static causal effect
that they are in some sense intended to approximate. A more sophisticated analysis might thus attempt to
use the approach introduced by Wang et al. (2006) in order to find the smallest value of α for which the ETA
bias of the ITPW estimator is estimated to be negligible. Future research will be required to investigate this
approach further.
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A Targeted MLE of the causal relative risk

Let ψa = E[Yd(a,W )] and consider the parameter

θ =
E[Yd(a,W )]
E[Yd(0,W )]

=
ψa
ψ0
. (34)

Since we have already derived the efficient influence curve of ψa as

Dψa(P ) =
I(A = d(a,W ))

g(A |W )

[
Y −Q(A,W )

]
+Q(d(a,W ),W )− ψa, (35)

we can use the δ-method to find the efficient influence curve for θ. Specifically, we have that

θ = f(ψa, ψ0) =
ψa
ψ0

(36)

and
Df = (1/ψ0,−ψa/ψ2

0) (37)

so that the efficient influence curve for θ is given by

D(P ) = Df(Dψa(P ), Dψ0(P ))T

=
1
ψ0

{
I(A = d(a,W ))

g(A |W )

[
Y −Q(A,W )

]
+Q(d(a,W ),W )− ψa

}
−

ψa
ψ2

0

{
I(A = d(0,W ))

g(A |W )

[
Y −Q(A,W )

]
+Q(d(0,W ),W )− ψ0

}
=

1
ψ0

[
I(A = d(a,W ))− θI(A = d(0,W ))

]Y −Q(A,W )
g(A |W )

+

1
ψ0

[
Q(d(a,W ),W )− θQ(d(0,W ),W )

]
. (38)

The component of this influence curve corresponding to the score for P (Y | A,W ) is given by

D(P )− E[D(P ) | A,W ] =
1
ψ0

[
I(A = d(a,W ))− θI(A = d(0,W ))

]Y −Q(A,W )
g(A |W )

. (39)

The covariate h(P 0
n)(A,W ) needed for the univariate regression to update the initial fit for Q is thus given

by

h(P 0
n)(A,W ) =

I(A = d(a,W ))− θI(A = d(0,W ))
g(P 0

n)(A |W )ψ0

=
I(A = d(a,W ))− ψa/ψ0I(A = d(0,W ))

g(P 0
n)(A |W )ψ0

. (40)
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To obtain a feasible h(P 0
n)(A,W ), we substitute

ψa,n =
1
n

n∑
i=1

Q(P 0
n)(d(a,Wi),Wi) (41)

and

ψ0,n =
1
n

n∑
i=1

Q(P 0
n)(d(0,Wi),Wi) (42)

for ψa and ψ0, respectively. Let εn denote the MLE of ε in Q(P 0
n)(ε) and let

Q1
n(A,W ) =

1
1 + exp(−m0

n(W )− εnh(P 0
n)(A,W ))

. (43)

Iterate this process k times until εn has become sufficiently small. Then the targeted MLE of θ is given by

θtMLE
n =

∑n
i=1Q

k
n(d(a,Wi),Wi)∑n

i=1Q
k
n(d(0,Wi),Wi)

. (44)

The covariate h(P 0
n)(A,W ) for the corresponding intention-to-treat relative risk parameter can similarly be

derived as

h(P 0
n)(A,W ) = I(a ∈ D)

[
1
ψ0

− ψa
ψ2

0

]
+

I(a /∈ D)
[
I(A = d(a,W ))− ψa/ψ0I(A = d(0,W ))

g0
n(A |W )ψ0

]
. (45)
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