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Data-adaptive selection of the truncation level
for Inverse-Probability-of-Treatment-Weighted

estimators

Oliver Bembom and Mark J. van der Laan

Abstract

Inverse-Probability-of-Treatment-Weighted (IPTW) estimators are becoming a pop-
ular analysis tool in causal inference. It is well known that these estimators suffer
from high variability if some treatment probabilities are estimated to be close to
zero. While it is a common recommendation for such situations to truncate the
weights in order to reduce the mean squared error of the estimator, the current
literature gives little guidance on how to select an appropriate truncation level.
In this article, we develop a closed-form estimate for the mean squared error of
a truncated IPTW estimator that can be used to select this truncation level data-
adaptively. While the resulting estimator requires an estimate of an additional
nuisance parameter, we show that its consistency does not rely on a consistent
estimate of that nuisance parameter. For the case of a binary treatment variable,
we present an approach for obtaining an estimate of this nuisance parameter that
does not require the user to specify an appropriate parametric model.

We illustrate the practical performance of the proposed estimator in a number of
simulation studies that show consistent gains in efficiency relative to more ad-hoc
truncation approaches currently in use, with typical gains lying in the range from
1 to 15%. In fact, the estimator is seen to perform on par with an infeasible bench-
mark estimator that relies on knowledge of the true data-generating distribution.
In an applied data analysis, the proposed methodology is estimated to achieve a
7% gain in efficiency relative to the non-truncated IPTW estimator, with trunca-
tion resulting in a non-significant finding becoming statistically significant. The
methodology presented here has been implemented in an R package called tIPTW
that can be downloaded at http://www.stat.berkeley.edu/∼laan/Software/.



1 Introduction

Many applications in epidemiology and clinical research center on estimating the causal effect of a treatment
variable on an outcome of interest from observational data. Marginal structural models (MSMs) offer a
powerful approach to this problem and are rapidly becoming a standard tool in causal inference (Robins,
1999; Robins et al., 2000; Robins, 2000). Among several estimators that have been proposed for such models,
the Inverse-Probability-of-Treatment-Weighted (IPTW) estimator has become a particularly popular choice,
due in large part to its straightforward implementation and intuitive interpretation (Robins et al., 2000). By
weighting subjects by the inverse of the conditional probability of having selected their observed treatment,
given available confounders, this estimator essentially works by creating a new sample in which treatment
assignment is independent of the measured confounders.

This approach depends critically on the treatment probabilities used to weight observations. The as-
sumption of experimental treatment assignment (ETA) requires that there exist no values of the confound-
ing factors for which some treatment options have zero probability of being selected. If this assumption is
violated, the new sample created by weighting observations fails to be representative of a target population
in which treatment has been randomized, causing the IPTW estimator to become inconsistent. Recent work
by Neugebauer and van der Laan (2005) has shown that the performance of the IPTW estimator can also
be severely compromised if the ETA assumption is satisfied, but some treatment probabilities are very close
to zero. First, such a practical violation of the ETA assumption can lead to bias in finite samples. Sec-
ond, observations with very small treatment probabilities and corresponding large weights can dominate the
remainder of the sample so that the estimator can also become highly variable.

Since the latter problem is generally the more pronounced one, one might hope to reduce the mean
squared error of the estimator by using truncated weights that, at the price of a slight increase in bias,
could lead to a dramatic reduction in variability. While this is a common recommendation for dealing
with a practical violation of the ETA assumption, the literature currently gives little guidance on how to
select an appropriate truncation level. The most common approach appears to consist of always truncating
weights at a fixed level such as 10 or 20, regardless of the particular data set at hand. This seems highly
unsatisfactory since the optimal bias-variance trade-off is strongly affected by sample size, with larger data
sets in general requiring less truncation than smaller ones. This observation is taken into account by an
alternative approach according to which weights are truncated at a level corresponding to, say, 10 or 20%
of the sample size. While this is a step in the right direction, the optimal bias-variance trade-off can be
expected to depend on a number of additional factors beyond sample size, such as the strength of the ETA
violation or the amount of noise encountered in the data.

Wang et al. (2006) recently suggested a more systematic approach to examining the behavior of IPTW
estimators that relies on parametric bootstrap samples. First, an estimate of the data-generating distribu-
tion is obtained that allows one to simulate realizations of the observed data structure. For this estimated
data-generating distribution, the true value of the parameter of interest can be computed by G-computation
(Robins, 1986, 1987). The sampling distribution of IPTW estimates obtained by applying the IPTW esti-
mator to a large number of parametric bootstrap samples can therefore be used to compute estimates of the
variance, bias, and mean squared error of this estimator. While Wang et al. propose this approach primarily
as a tool for diagnosing bias due to a violation of the ETA assumption, they also illustrate its use for quan-
tifying the effects of different choices of truncation levels on the mean squared error of the estimator. The
authors stop short, however, of recommending this approach as a formal method for data-adaptive selection
of the truncation level, based primarily on the argument that the mean squared error estimates obtained in
this manner require a number of additional assumptions beyond those needed for consistency of the IPTW
estimator. Specifically, the IPTW estimator only relies on a correct model for the treatment mechanism,
i.e. the conditional probability of selecting a treatment option given measured confounders; the parametric
bootstrap, however, requires a consistent estimate of the entire data-generating distribution. An additional
limitation in selecting the truncation level based on this parametric bootstrap approach lies in its reliance on
a large number of simulated data sets. First, such simulations can be computationally intensive so that the
approach would not scale well to larger data sets or to applications in which a number of marginal structural
models are investigated simultaneously. Second, unless an enormous number of data sets are simulated, the
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mean squared error estimates can be expected to be quite sensitive to the exact number of simulated data
sets used.

In this article, we develop a methodology for data-adaptively selecting the truncation level that addresses
these limitations. The approach is based on mean squared-error estimates that are obtained in closed
form, thus avoiding the implementational problems associated with relying on the parametric bootstrap.
In addition, the proposed data-adaptive estimator is shown to be consistent under the same conditions
required for consistency of the conventional IPTW estimator. Specifically, while the methodology requires
an estimate of an additional nuisance parameter beyond the treatment mechanism needed by the IPTW
estimator, we show that the data-adaptive estimator converges to the conventional non-truncated estimator
even if this nuisance parameter is mis-specified. In addition, we present an approach for avoiding reliance
on a parametric model for this nuisance parameter that can be employed if the treatment variable is binary.
The remainder of the article is organized as follows: After introducing the methodology in section 2, we
illustrate its finite-sample performance in a set of simulation studies. In section 4, we apply the proposed
methodology in a data analysis aimed at estimating the causal effect of recent leisure-time physical activity
on mortality in the elderly. We then close with a brief discussion of possible extensions to the methodology
described here.

2 Methods

2.1 IPTW estimators in causal inference

We consider the common point-treatment data structure consisting of n i.i.d. copies of O = (W,A, Y ), where
W denotes the collection of measured confounders, A gives the treatment variable, and Y is the outcome of
interest. Within the counterfactual framework for causal inference, as first introduced by Neyman (1923) and
further developed by Rubin (1978) and Robins (1986, 1987), this observed data structure O is viewed as a
coarsened version of a hypothetical full data structure X = (W, (Ya : a ∈ A)) that contains the counterfactual
outcome Ya we would have observed on a given subject had she been assigned to treatment a for all a in the
collection A of candidate treatments.

We are frequently interested in parameters of the distribution FX generating the full data structure X.
Examples of such parameters include the mean of a counterfactual outcome such as E[Ya], representing the
mean outcome we would observe if every member of our target population were assigned to treatment A = a;
the marginal variable importance E[Ya−Y0] of treatment A on Y , representing the additive effect on the mean
outcome corresponding to changing the treatment assignment of each subject from a reference level A = 0
to A = a (van der Laan, 2006); or the parameters of a marginal structural model E[Ya | V ] = m(a, V | β)
that models the mean counterfactual outcome E[Ya] as a function of a within strata defined by a subset V
of the baseline covariates W (Robins, 1999; Robins et al., 2000; Robins, 2000).

The observed data O are derived from the full data X through the treatment mechanism g = g(a |
X) ≡ P (A = a | X) that selects for each subject a single counterfactual outcome YA corresponding to the
observed treatment A: O = (W,A, YA). The observed data-generating distribution P0 is thus defined by
FX and g. Parameters of the full data structure X are identifiable from the observed data if g satisfies the
randomization assumption

g(a | X) = g(a | W ) (1)

and the assumption of experimental treatment assignment (ETA)

g(a | W ) > 0 for all a FW -a.e.. (2)

The first assumption requires that there are no unmeasured confounders of the relationship between A and Y .
According to the second assumption, the confounders W cannot take on values for which certain treatments
have zero probability of being selected. If this is not true, the ETA assumption is said to be theoretically
violated. If there exist values a of A and w of W such that g(a | w) is very close to zero, the ETA assumption
is said to be practically violated (Neugebauer and van der Laan, 2005).
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Within the general estimating function methodology described in van der Laan and Robins (2003),
estimators of a parameter β of FX can be obtained in two steps. First, an unbiased estimating function
DFull(X | FX) of the full data is found, i.e. a function satisfying

E0D
Full(X | FX,0) = 0. (3)

This function is then mapped into an observed-data estimating function D(O | P ) that is unbiased under
the true data-generating distribution P0:

E0D(O | P0) = 0. (4)

A popular mapping is given by the IPTW mapping that produces estimating functions DIPTW (O | g, β) of
the observed data that are indexed by the parameter of interest β and the treatment mechanism g. If the
parameter of interest is defined as the mean counterfactual outcome E[Ya], for example, the full-data and
IPTW estimating functions are given by

DFull(X | FX) = Ya − β (5)

DIPTW (O | g, β) =
I(A = a)
g(A | W )

(
Y − β

)
. (6)

If the parameter of interest is defined through a marginal structural model E[Ya | V ] = m(a, V | β), we have

DFull(X | FX) =
∑
a∈A

h(a, V )
∂

∂β
m(a, V | β)

(
Ya −m(a, V | β)

)
(7)

DIPTW (O | g, β) =
h(A, V )
g(A | W )

∂

∂β
m(A, V | β)

(
Y −m(A, V | β)

)
, (8)

where h is a user-supplied weight function.
If the true treatment mechanism g0 is known to the investigator, the IPTW estimator is given by the

solution of the estimating equation

0 =
1
n

n∑
i=1

DIPTW (Oi | g0, β). (9)

In the more typical scenario of an unknown treatment mechanism, we obtain the estimator as the solution
of

0 =
1
n

n∑
i=1

DIPTW (Oi | gn, β), (10)

where gn is an estimate of g0. This estimator is consistent if gn is a consistent estimate of g0.

2.2 Truncated IPTW estimators

IPTW estimators work by assigning each subject a weight wt(A,W ) that is inversely proportional to the
conditional probability of having selected their observed treatment, given available confounders. In the case
of estimating a mean counterfactual outcome, for example, the estimator relies on weights

wt(A,W ) =
I(A = a)
g(A | W )

. (11)

For marginal structural models, the weights are given by

wt(A,W ) =
h(A, V )
g(A | W )

, (12)
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with h(A, V ) commonly chosen as h(A, V ) = g(A | V ) = P (A | V ) to obtain so-called stabilized weights
(Robins et al., 2000). Down-weighting observations that were likely to have received their observed treatment
and up-weighting those that were instead unlikely to have been observed with the treatment we recorded for
them, the IPTW approach essentially creates a new sample in which treatment assignment is independent
of the baseline covariates, making it straightforward to estimate the causal parameter of interest.

If some treatment probabilities g(A | W ) are close to zero, a few observations with correspondingly large
weights wt(A,W ) may dominate the remainder of the sample and cause the estimator to become highly
variable. We are therefore interested in studying IPTW estimators that rely on weights wtM (A,W ) ≡
min(wt(A,W ),M) that are truncated at a given constant M . We denote the resulting IPTW estimating
functions by DIPTW

M (O | g, β); depending on whether or not g0 is known to the investigator, the corresponding
estimators are denoted by βM,n(g0) or βM,n(gn). Our goal is to obtain an estimate of the mean squared error
of such estimators as a function of M , which would then allow us to define a data-adaptive IPTW estimator
based on the truncation constant corresponding to the minimal estimated mean squared error. Since the
mean squared error of an estimator can be decomposed into its variance and the square of its bias, it suffices
to obtain estimates of these latter two quantities.

The variance of an asymptotically linear estimator can be estimated in a straightforward manner from
its influence curve. We will use this approach to estimate the variance of the truncated IPTW estimator
βM,n(g0), for which the influence curve is easy to derive. The influence curve of βM,n(gn) is given by
the projection of the influence curve for βM,n(g0) onto the orthogonal complement of the tangent space
corresponding to the model used for estimating the treatment mechanism (van der Laan and Robins, 2003).
Since it therefore depends on the particular model used for estimating the treatment mechanism, this influence
curve cannot be derived in general. We will instead estimate the variance of βM,n(gn) based on the influence
curve for βM,n(g0). In finite samples, the variance of βM,n(gn) tends to be somewhat smaller than that of
βM,n(g0) (van der Laan and Robins, 2003); intuitively, the former estimator can be thought of as adjusting
for additional empirical confounding that is not captured by the latter estimator. By using the influence
curve of the latter estimator, we will therefore tend to overestimate the variance of the former estimator to
some extent.

An analytic estimate for the bias of a truncated IPTW estimator is difficult to obtain in finite samples.
We will therefore restrict ourselves to the asymptotic bias of the estimator, ignoring any additional finite-
sample bias that may be present as well. Since the two estimators βM,n(g0) and βM,n(gn) are asymptotically
equivalent, we only need to derive a single bias estimate. By focusing on asymptotic bias, we will tend to
underestimate the bias of the estimator somewhat. Since we will also tend to overestimate the variance of
βM,n(gn) slightly, one might hope that these two opposing biases might neutralize each other to some extent
in estimating the mean squared error of this estimator. Since g0 is rarely known to the investigator, this
estimator is more frequently encountered in practice than βM,n(g0).

2.3 Estimating the bias of a truncated IPTW estimator

In order to obtain an estimate of the asymptotic bias of a truncated IPTW estimator, we will first derive
the limit βM (P ) of this estimator under a given data-generating distribution P . The asymptotic bias of the
estimator under P is then given by the difference between βM (P ) and the corresponding value β(P ) of the
parameter of interest under P . Finally, we estimate the asymptotic bias under P0 by the plug-in estimate
Bn(M) ≡ βM (Pn)− β(Pn), where Pn is an estimate of P0.

The limit βM (P ) of the estimator βM,n(g0) under P is given by the solution of

0 = EP DIPTW
M (O | g0, β). (13)

Assuming that gn is a consistent estimate of g0, this also defines the limit of the estimator βM,n(gn) under
P . We propose to compute βM (P ) by applying the Newton-Raphson algorithm to the function

φM : β → φM (β) ≡ EP DIPTW
M (O | g0, β), (14)
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using as starting value β0 = β(P ). Given a current estimate βk
M , this iterative algorithm defines the update

βk+1 = βk −
[ ∂

∂β
φM (β)

∣∣∣
β=βk

]−1

φM (βk). (15)

This update step is carried out until the algorithm converges. If the mapping φ is linear, this occurs in a
single step so that the asymptotic bias under P can be written as

βM (P )− β(P ) = −
[ ∂

∂β
φM (β)

∣∣∣
β=β(P )

]−1

φM (β(P )). (16)

Parameters of interest for which this is the case include the mean counterfactual outcome, the marginal
variable importance in a non-parametric model, and the parameters of a linear marginal structural model.

Three ingredients are required to compute the asymptotic bias in this manner. First, given a data-
generating distribution P , we need to identify the value β(P ) of the parameter of interest. Second, we need
to be able to compute the expectation of the IPTW estimating function at a given β and a given truncation
level M . Third, we need to find the inverse of the derivative of φ with respect to β. We will now illustrate these
steps for parameters of interest defined on the basis of a marginal structural model E[Ya | V ] = m(a, V | β).
In this case, the value of the parameter of interest β(P ) at a particular data-generating distribution P can
be obtained as the solution to

0 = EDFull(X | β)

= E
∑
a∈A

h(a, V )
∂

∂β
m(a, V | β)

(
Ya −m(a, V | β)

)
= EW

∑
a∈A

h(a, V )
∂

∂β
m(a, V | β)

(
Q(a,W )−m(a, V | β)

)
, (17)

where Q(A,W ) ≡ E[Y | A,W ] and all expectations are under P . Equivalently, we have that

β(P ) = arg min
β

E
∑
a∈A

h(a, V )
(
Ya −m(a, V | β)

)2

= arg min
β

EW

∑
a∈A

h(a, V )
(
Q(a,W )−m(a, V | β)

)2

. (18)

The expectation of DIPTW
M (O | g0, β) at βk is given by

φM (βk) = E

[
wtM (A,W )

∂

∂β
m(A, V | β)

∣∣∣
β=βk

(
Y −m(A, V | βk)

)]
= EEY |A,W

[
wtM (A,W )

∂

∂β
m(A, V | β)

∣∣∣
β=βk

(
Y −m(A, V | βk)

)∣∣∣A,W

]
= EW EA|W

[
wtM (A,W )

∂

∂β
m(A, V | β)

∣∣∣
β=βk

(
Q(A,W )−m(A, V | βk)

)∣∣∣W]

= EW

 ∑
a∈A(W )

wtM (a,W )
∂

∂β
m(a, V | β)

∣∣∣
β=βk

(
Q(a,W )−m(a, V | βk)

)
g(a | W )

 , (19)
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where A(W ) ≡ {a ∈ A : g(a | W ) > 0}. The derivative of φM with respect to β at βk is given by

∂

∂β
φM (β)

∣∣∣
β=βk

= E
∂

∂β

[
wtM (A,W )

∂

∂β
m(A, V | β)

(
Y −m(A, V | β)

)] ∣∣∣
β=βk

= E

[
wtM (A,W )

∂2

∂βT ∂β
m(A, V | β)

∣∣∣
β=βk

(
Y −m(A, V | βk)

)]
−

E

[
wtM (A,W )

∂

∂β
m(A, V | β)

∣∣∣
β=βk

∂

∂βT
m(A, V | β)

∣∣∣
β=βk

]
= −E

[
wtM (A,W )

∂

∂β
m(A, V | β)

∣∣∣
β=βk

∂

∂βT
m(A, V | β)

∣∣∣
β=βk

]

= −EW

 ∑
a∈A(W )

wtM (a,W )
∂

∂β
m(a, V | β)

∣∣∣
β=βk

∂

∂βT
m(a, V | β)

∣∣∣
β=βk

g(a | W )

(20)

To obtain an estimate of the asymptotic bias of βM,n(g0), consider now an estimate Pn of the true data-
generating distribution P0 that estimates the marginal distribution of W by its empirical distribution in the
sample, the treatment mechanism by gn, and the regression Q(A,W ) by Qn(A,W ). According to (18), the
parameter of interest β(Pn) under Pn can then be obtained by creating a new data set that for each subject
contains one line for each treatment a ∈ A and then regressing the estimated expected outcomes Qn(a,Wi)
under those treatments on the model m(a, V | β) using weights h(a, Vi). The quantities (19) and (20) can
likewise be obtained by plugging in gn and Qn for g and Q, respectively, and replacing the expectation over
W by the empirical mean over W in the sample.

As an example, consider a linear marginal structural model of the form m(a, V | β) = Zaβ, where β is a
d-dimensional column vector and Za is a d-dimensional row vector, e.g. Za = (1, a, V ). Then

∂

∂β
m(a, V | β)

∣∣∣
β=βk

= ZT
a (21)

so that we have

φM (βk) = EW

 ∑
a∈A(W )

wtM (a,W )ZT
a

(
Q(a,W )− Zaβk

)
g(a | W )

 (22)

and
∂

∂β
φM (β)

∣∣∣
β=βk

= −EW

∑
a∈A(W )

wtM (a,W )ZT
a Zag(a | W ). (23)

2.4 Estimating the variance of a truncated IPTW estimator

If the treatment mechanism is known, the IPTW estimating function lies in the orthogonal complement of
the nuisance tangent space, so that the corresponding estimator is asymptotically linear,

√
n(βM,n(g0)− βM (P0)) =

1√
n

n∑
i=1

ICIPTW
M (Oi | g0, βM (P0)) + op(1), (24)

with influence curve ICIPTW
M equal to an appropriately standardized version of the estimating function itself

(Bickel et al., 1993):
ICIPTW

M (O | g0, βM (P0)) = c−1DIPTW
M (O | g0, βM (P0)), (25)

where

c =
∂

∂β
EDIPTW

M (O | g0, β)
∣∣∣
β=βM (P0)

=
∂

∂β
φM (β)

∣∣∣
β=βM (P0)

. (26)
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Let cn be an estimate of c that can be obtained as above by plugging in an estimate Pn of the true data-
generating distribution P0 in (26). The variance of the truncated IPTW estimator βM,n(g0) can then be
estimated by 1/n times the empirical variance of the estimated influence curve

ICIPTW
M,n (O | g0, βM,n(g0)) = c−1

n DIPTW
M (O | g0, βM,n(g0)). (27)

As described above, we will estimate the variance of the estimator βM,n(gn) based on the corresponding
estimated influence curve

ICIPTW
M,n (O | gn, βM,n(gn)) = c−1

n DIPTW
M (O | gn, βM,n(gn)). (28)

Denote the resulting variance estimate by Vn(M).

2.5 A data-adaptively truncated IPTW estimator

Let
MSEn(M) = Vn(M) + B2

n(M) (29)

denote the estimated mean squared error of an IPTW estimator using a truncation level M . We now define
a data-adaptively truncated IPTW estimator based on the truncation level Mn that is estimated to lead to a
minimal mean squared error. To simplify arguments regarding the consistency of this estimator, the precise
definition of Mn relies on the quantity

MSEε,n(M) = max(MSEn(M), ε), (30)

for a small positive ε such as ε = 10−16, that can be viewed as a version of MSEn(M) as stored by a
computer that is unable represent numbers smaller than ε. The selected truncation level Mn is then defined
as

Mn = max
{

M > 1 : MSEε,n(M) = min
M

MSEε,n(M)
}

. (31)

If MSEn(M) > ε for M > 1, (31) simply selects the minimizer of MSEn(M). If MSEn(M) ≤ ε for some
values of M , however, we will select the largest values of M > 1 for which this is the case, which may not
necessarily be the true minimizer of MSEn(M).

While the variance estimate Vn(M) only requires a consistent estimate of the treatment mechanism, as
also needed by the IPTW estimator itself, the bias estimate Bn(M) depends in addition on an estimate Qn

of the regression Q. One might therefore be concerned that the data-adaptively truncated estimator defined
here could be inconsistent in situations in which the conventional non-truncated IPTW is consistent, namely
if the model for g is correctly specified while Q is estimated inconsistently. To show that the consistency of
the estimator does in fact not depend on a consistent estimate of the additional nuisance parameter Q, note
first that Bn(∞) = 0 as long as gn satisfies the ETA assumption, regardless of the estimate Qn of Q. This
is true since the non-truncated IPTW estimator is consistent and therefore asymptotically unbiased if the
randomization assumption and ETA assumption hold and g is estimated consistently. The asymptotic bias
estimate Bn(M) is obtained under an estimated data-generating distribution Pn for which the randomization
assumption is trivially satisfied; in addition, the derivation of Bn(M) incorporates explicitly the assumption
that g is estimated consistently. It follows therefore, that Bn(∞) = 0 as long as the estimated treatment
mechanism satisfies the ETA assumption. Since Vn(M) → 0 at

√
n-rate, it follows then that the same

condition implies MSEn(∞) → 0. This in turn guarantees that Mn → ∞ so that the data-adaptively
truncated estimator introduced here converges to the conventional non-truncated IPTW estimator as n →∞.
Since this convergence does not depend on the estimate Qn for Q, the data-adaptively truncated estimator is
consistent as long as the randomization assumption and ETA assumption hold and g is estimated consistently,
i.e. under precisely the same conditions that ensure consistency of the conventional IPTW estimator.

In spite of this consistency result, the finite-sample performance of the data-adaptively truncated IPTW
estimator cannot be expected to be impervious to grossly inconsistent estimates Qn. For this reason, it would
be appealing to obtain these estimates in a manner that does not require the user to specify a parametric
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model for Q. A particularly straightforward approach to this problem exists for the important special case
of a binary treatment variable A. In that case, we may obtain an estimate of Q by regressing Y not on A
and W , but instead on A and the estimated propensity score gn(1 | W ). The propensity score represents a
univariate summary measure of the potentially high-dimensional collection of confounders W that captures
all the information necessary to adjust for confounding by W (Rosenbaum and Rubin, 1983). Since gn(1 | W )
is a one-dimensional covariate, it is considerably easier to obtain a flexible data-adaptive fit for a regression
of Y on A and gn(1 | W ) than for a regression of Y on A and W . Specifically, we propose to use a generalized
additive model (Hastie and Tibshirani, 1990) for this purpose that simply includes an indicator variable for
A and a smoothing spline with four degrees of freedom for the logit of the estimated propensity score. We
denote the resulting data-adaptively truncated IPTW estimator by βn(g0) or βn(gn) depending on whether
the treatment mechanism is known or not. Alternatively, the user may supply a parametric model for Q to
obtain an estimator βn(g0, Qn) or βn(gn, Qn).

3 Simulation study

In this section, we present simulation studies aimed at examining the finite-sample performance of the data-
adaptively truncated estimators βn(gn, Qn) and βn(gn).

3.1 Data generating distribution and parameter of interest

We consider a point-treatment data structure O = (W,A, Y ), with W = (W1,W2,W3,W4) containing four
potential confounding factors, A denoting a binary treatment variable, and Y representing a continuous
outcome of interest. Given a treatment mechanism g0(A | W ) and the regression function Q0(A,W ), the
observed data structure was generated as follows:

1. Generate W1, W2, W3, and W4 as independent random uniform variables over the interval [0, 1].

2. Generate the observed treatment variable A from the conditional distribution of A given W , g0(A | W ).

3. Generate the observed outcome Y as Y = Q0(A,W ) + ε with ε ∼ N(0, 1).

We consider the two different treatment mechanism

logit
(
g1,0(A | W )

)
= −1 + 2W1 − 2W2 + W3W4 (32)

and
logit

(
g2,0(A | W )

)
= −1 + 2W1 − 4W2 + W3W4. (33)

As described in section 2, the analytic bias estimate introduced here tends to underestimate the true bias of
the estimator somewhat by focusing entirely on its asymptotic bias. This might be expected to pose a problem
in situations in which the ETA assumption is practically violated, which can lead to considerable finite-sample
bias that is not taken into account by the approach described here. The treatment mechanism g1,0 is used
to examine the behavior of the data-adaptive estimator in situations in which treatment probabilities are
clearly bounded away from zero so that the finite-sample bias of the estimator should be negligible. The
treatment mechanism g2,0, on the other hand, is intended to represent a strong practical violation of the
ETA assumption.

We consider the two regression functions

Q1,0(A,W ) = −1 + A + W1 −W2 + 2AW1 + W3W4 (34)

and
Q2,0(A,W ) = −1 + A + 5W1 −W2 + 2AW1 + W3W4. (35)
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The analytic variance estimate can be biased high for an IPTW estimator that is based on an estimated treat-
ment mechanism. This might be expected to pose a problem particularly in situations in which confounders
are highly predictive of the outcome of interest so that adjusting for additional empirical confounding could
lead to a considerable reduction in variability. Under the regression function Q1,0, the confounders W are
moderately predictive of Y . The regression function Q2,0, on the other hand, is intended to examine the
potential impact of overestimating the true variance of the estimator in situations in which W is highly
predictive of Y .

The causal parameter of interest is defined through the simple marginal structural model

E[Ya] = β0 + β1a. (36)

For the regression function Q1,0, the true marginal structural model is given by

E[Ya] = EW [Q1,0(a,W )]
= EW [−1 + a + W1 −W2 + 2aW1 + W3W4]
= −0.75 + 2a. (37)

The regression function Q2,0 corresponds to the true marginal structural model

E[Ya] = EW [Q2,0(a,W )]
= EW [−1 + a + 5W1 −W2 + 2aW1 + W3W4]
= 1.25 + 2a. (38)

The true value of the main parameter of interest, β1, is thus given by β1,0 = 2 in both cases.

3.2 Relying on a parametric model for Q

We first consider an estimator βn(gn, Qn) that is based on a correctly specified logistic regression model for the
treatment mechanism and a correctly specified linear regression model for Q. We compare the performance
of this estimator to that of the non-truncated IPTW estimator as well as that of the simpler truncated
IPTW estimators described in the introduction that always truncate weights at 10 or 20, or, alternatively,
at a point corresponding to 10 or 20% of the sample size. Table 1 summarizes the relative efficiencies of
βn(gn, Qn) as compared to the other candidate IPTW estimators for three different sample sizes and the
four different data-generating distributions (g1,0, Q1,0), (g2,0, Q1,0), (g1,0, Q2,0), and (g2,0, Q2,0). Column 1
of the table shows that βn(gn, Qn) can achieve considerable gains in efficiency relative to the non-truncated
estimator, with particularly strong gains, ranging from 19 to 47%, for data-generating distributions under
which the ETA assumption is practically violated. Considering the four simpler truncated estimators, we
note that no single estimator consistently outperforms the other three for all data-generating distributions
and sample sizes considered here, underscoring the limitations of truncation schemes that do not respond to
any factors beyond sample size. The estimator βn(gn, Qn), on the other hand, is seen to consistently achieve
smaller mean squared errors than all four reference truncation schemes, with typical gains in efficiency in
the range of 5 to 20%.

We next examine the behavior of βn(gn, Qn) if the model for g is correctly specified, but the model for Q
is mis-specified. The data are generated according to the distribution (g2,0, Q2,0). We consider the following
four different mis-specified models for Q:

Q(A,W ) = γ0 + γ1A + γ2W1 + γ3W2 + γ4AW1 (39)
Q(A,W ) = γ0 + γ1A + γ2W1 + γ3W2 (40)
Q(A,W ) = γ0 + γ1A + γ2W1 (41)
Q(A,W ) = γ0 + γ1A + γ2W3 (42)

Recall that the correct model would be given by Q(A,W ) = γ0 + γ1A + γ2W1 + γ3W2 + γ4AW1 + γ5W3W4.
Table 2 summarizes the observed relative efficiencies of βn(gn, Qn) as compared to the other candidate IPTW
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Table 1: Finite-sample performance of βn(gn, Qn) if Q estimated consistently. This table summarizes the
relative efficiencies of βn(gn, Qn) as compared to the non-truncated IPTW estimator as well as a number
of simpler truncated IPTW estimators for three different sample sizes and the four different data-generating
distributions (g1,0, Q1,0), (g2,0, Q1,0), (g1,0, Q2,0), and (g2,0, Q2,0).

M = ∞ M = 10.0 M = 20.0 M = 0.1n M = 0.2n
g1,0,Q1,0

n=100 1.13 1.00 1.06 1.00 1.06
n=500 1.11 1.04 1.10 1.11 1.11
n=2500 1.05 1.06 1.05 1.05 1.05

g2,0,Q1,0

n=100 1.37 1.00 1.00 1.00 1.00
n=500 1.39 1.72 1.09 1.15 1.31
n=2500 1.19 5.71 2.06 1.19 1.19

g1,0,Q2,0

n=100 1.23 1.04 1.10 1.04 1.10
n=500 1.17 1.11 1.15 1.17 1.17
n=2500 1.08 1.22 1.08 1.08 1.08

g2,0,Q2,0

n=100 1.47 1.08 1.01 1.08 1.01
n=500 1.48 2.19 1.20 1.15 1.37
n=2500 1.25 8.04 2.78 1.25 1.25

estimators. Rows 1 through 6 of the table show that omission of the interaction terms AW1 and W3W4 from
the model for Q(A,W ) appears to have only a minor impact on the performance of the estimator, with
βn(gn, Qn) based on model (39) or (40) still achieving smaller mean squared errors than any of the other
estimators. If the model for Q(A,W ) in addition fails to include the important confounding factor W2,
βn(gn, Qn) performs favorably at large sample sizes, but tends to be outperformed at smaller sample sizes.
Omission of both major confounding factors W1 and W2 is seen to severely compromise the performance of
the estimator, with all other candidate estimators now consistently achieving smaller mean squared errors
than βn(gn, Qn). These simulation results suggest that βn(gn, Qn) behaves quite well as long as the model
for Q is reasonably well specified, but that gross mis-specification of that model can have a serious impact
on its finite-sample performance.

3.3 Modelling Q based on the propensity score

In this section, we examine the finite-sample performance of an estimator βn(gn) that avoids relying on a
parametric model for Q by making use of the estimated propensity score. As before, the logistic regression
model for the treatment mechanism is correctly specified. Table 3 summarizes the relative efficiencies of
βn(gn) as compared to the other candidate IPTW estimators for three different sample sizes and the four
different data-generating distributions (g1,0, Q1,0), (g2,0, Q1,0), (g1,0, Q2,0), and (g2,0, Q2,0). The results show
that, while βn(gn) tends to be slightly less efficient than βn(gn, Qn) based on a correctly specified model
for Q, the estimator still performs favorably as compared to the non-truncated IPTW estimators as well
as the simpler truncation schemes. Under data-generating distributions that practically violate the ETA
assumption, βn(gn, Qn) achieves gains in efficiency relative to the non-truncated estimator ranging from 5 to
46%. For small sample sizes, some of the reference truncation schemes occasionally achieve slightly smaller
mean squared errors than does βn(gn), but for sufficiently large sample sizes, the latter estimator consistently
outperforms all of them, with typical gains in efficiency in the range of 1 to 15%. Since the simulation studies
discussed above illustrate that mis-specification of the model for Q(A,W ) can have a serious impact on the
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Table 2: Finite-sample performance of βn(gn, Qn) if Q estimated inconsistently. This table summarizes the
relative efficiencies of βn(gn, Qn) as compared to the non-truncated IPTW estimator as well as a number of
simpler truncated IPTW estimators for three different sample sizes and four different mis-specified models
for Q. The correct model for Q is given by Y ∼ A + W1 + W2 + AW1 + W3W4

M = ∞ M = 10.0 M = 20.0 M = 0.1n M = 0.2n
Y ∼ A + W1 + W2 + AW1

n=100 1.48 1.08 1.01 1.08 1.01
n=500 1.48 2.17 1.19 1.15 1.36
n=2500 1.24 8.01 2.77 1.24 1.24

Y ∼ A + W1 + W2

n=100 1.44 1.06 0.99 1.06 0.99
n=500 1.41 2.08 1.14 1.10 1.30
n=2500 1.21 7.81 2.70 1.21 1.21

Y ∼ A + W1

n=100 1.36 0.99 0.93 0.99 0.93
n=500 1.17 1.72 0.94 0.91 1.07
n=2500 1.11 7.16 2.48 1.11 1.11

Y ∼ A + W3

n=100 0.86 0.63 0.59 0.63 0.59
n=500 0.24 0.35 0.19 0.19 0.22
n=2500 0.05 0.31 0.11 0.05 0.05

performance of the estimator βn(gn, Qn), we recommend that it may be preferable in practice to settle for
the slightly smaller gains in efficiency afforded by the estimator βn(gn) whose finite-sample performance does
not depend on a correctly specified model for an additional nuisance parameter.

3.4 Comparison of data-adaptively truncated estimators

The previous sections have illustrated that βn(gn, Qn) and βn(gn) can achieve considerable gains in efficiency
relative to the non-truncated IPTW estimator as well as to the simple truncation schemes currently in use.
In this section, we compare these gains in efficiency to those achieved by two benchmark estimators that
βn(gn, Qn) and βn(gn) might be hoped to approximate.

The first of these two estimators, denoted by β#
n (gn, Qn), selects the truncation constant by minimizing

an estimate of the mean squared error based on the parametric bootstrap approach described by Wang et al.
(2006). As described previously, the closed-form bias estimate developed here ignores the finite-sample bias
that an IPTW estimator may be subject to if the ETA assumption is practically violated; a bias estimate
based on the parametric bootstrap, on the other hand, would capture this additional source of bias. Similarly,
a bootstrap-based variance estimate does not have to rely on a conservative approximation that ignores the
reduction in variability that may be achieved by estimating the treatment mechanism. It is therefore of
interest to evaluate to what extent a data-adaptively truncated estimator based on the proposal by Wang
et al. may offer additional improvements in performance beyond those afforded by βn(gn, Qn) and βn(gn).
Due to the increased computational complexity of this approach, we were only able to consider an estimator
that employs a fairly small number of 25 bootstrap samples for the purpose of estimating the mean squared
error of the candidate truncated estimators βM,n(gn). The second benchmark estimator, denoted by β0

n, is
based on the true mean squared error for each of the candidate estimators βM,n(gn) and is thus infeasible
in practice. For each data-generating distribution, it simply selects the truncation level that leads to the
smallest mean squared error.

Figure 1 shows the true mean squared error for the set of candidate estimators βM,n(gn) along with
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Table 3: Finite-sample performance of βn(gn). This table summarizes the relative efficiencies of βn(gn) as
compared to the non-truncated IPTW estimator as well as a number of simpler truncated IPTW estimators for
three different sample sizes and and the four different data-generating distributions (g1,0, Q1,0), (g2,0, Q1,0),
(g1,0, Q2,0), and (g2,0, Q2,0).

M = ∞ M = 10.0 M = 20.0 M = 0.1n M = 0.2n
g1,0,Q1,0

n=100 1.07 0.95 1.01 0.95 1.01
n=500 1.07 1.01 1.06 1.07 1.07
n=2500 1.01 1.03 1.01 1.01 1.01

g2,0,Q1,0

n=100 1.33 0.97 0.97 0.97 0.97
n=500 1.28 1.59 1.01 1.06 1.21
n=2500 1.05 5.05 1.82 1.05 1.05

g1,0,Q2,0

n=100 1.18 1.00 1.05 1.00 1.05
n=500 1.13 1.08 1.12 1.13 1.13
n=2500 1.06 1.19 1.06 1.06 1.06

g2,0,Q2,0

n=100 1.46 1.07 1.00 1.07 1.00
n=500 1.42 2.09 1.15 1.11 1.31
n=2500 1.21 7.79 2.70 1.21 1.21

the mean squared errors achieved by βn(gn), βn(gn, Qn), and β#
n (gn, Qn) where the latter two estimators

employ a correctly specified model for the additional nuisance parameter Q(A,W ). Table 4 summarizes the
relative efficiencies of the four data-adaptively truncated estimators as compared to the non-truncated IPTW
estimator. These results show that βn(gn, Qn) and βn(gn) typically perform on par with β0

n, with βn(gn, Qn)
in fact tending to achieve slightly higher gains in efficiency relative to the non-truncated estimator. In
addition, we note that use of the parametric bootstrap approach developed by Wang et al. does not appear
to provide significant improvements in performance over the closed-form approximation introduced here, at
least at the fairly small number of 25 bootstrap samples. The performance of the former estimator can likely
be improved by using a larger number of bootstrap samples, but as mentioned earlier this will make the
estimator too computationally intensive for a number of applications.

4 Data analysis

In this section, we illustrate the data-adaptively truncated IPTW estimator βn(gn) in an applied data
analysis aimed at estimating the causal effect of vigorous leisure-time physical activity (LTPA) on all-cause
mortality in the elderly. The data we analyze were collected as part of a community-based longitudinal
study of physical activity and fitness (Study of Physical Performance and Age Related Changes in Sonomans
- SPPARCS), in which Tager et al. (1998) followed a group of people aged 55 years and older living in and
around Sonoma, CA, over a time period of about ten years.

Our measure of vigorous LTPA is defined based on a questionnaire in which participants were asked how
many hours during the past seven days they had participated in twelve common vigorous physical activities
such as jogging, swimming, bicycling on hills, or racquetball. Activities were assigned standard intensity
values in metabolic equivalents (METs) (Ainsworth et al., 1993); one MET approximately equals the oxygen
consumption required for sitting quietly. A continuous summary score was obtained by multiplying these
intensity values by the number of hours engaged in the various activities and summing up over all activities

12

http://biostats.bepress.com/ucbbiostat/paper230



0.
07

0.
09

0.
11

n = 100

M

M
S

E

●

4 10 25 100 500 Inf

0.
02

0.
03

0.
04

0.
05

n = 500

M

M
S

E

●

4 10 25 100 500 Inf

0.
00

5
0.

01
5

0.
02

5
0.

03
5

n = 2500

M

M
S

E

●

4 10 25 100 500 Inf

0.
15

0.
20

0.
25

0.
30

n = 100

M

M
S

E ●

4 10 25 100 500 Inf

0.
05

0.
10

0.
15

0.
20

n = 500

M

M
S

E

●

4 10 25 100 500 Inf

0.
05

0.
10

0.
15

n = 2500

M

M
S

E

●

4 10 25 100 500 Inf

0.
10

0.
15

0.
20

0.
25

0.
30

n = 100

M

M
S

E

●

4 10 25 100 500 Inf

0.
05

0.
10

0.
15

n = 500

M

M
S

E

●

4 10 25 100 500 Inf

0.
00

0.
05

0.
10

0.
15

n = 2500

M

M
S

E

●

4 10 25 100 500 Inf

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

n = 100

M

M
S

E

●

4 10 25 100 500 Inf

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n = 500

M

M
S

E

●

4 10 25 100 500 Inf

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 2500

M

M
S

E

●

4 10 25 100 500 Inf

Figure 1: Mean squared error comparison. These plots show the mean squared error for β1 for truncated
estimators βM,n(gn) using a fixed value of M (solid green line), βn(gn, Qn) (solid blue line), βn(gn) (dashed
blue line), and β#

n (gn, Qn) (dotted blue line). The four rows of plots correspond to the four different data-
generating distributions (g1,0, Q1,0), (g2,0, Q1,0),(g1,0, Q2,0), and (g2,0, Q2,0), respectively.
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Table 4: Comparison of candidate data-adaptively truncated estimators. This table summarizes the relative
efficiencies of the two data-adaptively truncated estimators proposed here along with those of two benchmark
estimators relative to the non-truncated IPTW estimators. For the estimator β0

n, the corresponding optimal
truncation level is given in parentheses.

βn(gn) βn(gn, Qn) β#
n (gn, Qn) β0

n

g1,0,Q1,0

n=100 1.07 1.13 1.08 1.13 (M=10)
n=500 1.07 1.11 1.06 1.06 (M=10)
n=2500 1.01 1.05 1.02 1.03 (M=12)

g2,0,Q1,0

n=100 1.33 1.37 1.33 1.41 (M=14)
n=500 1.28 1.39 1.28 1.33 (M=29)
n=2500 1.05 1.19 1.21 1.13 (M=50)

g1,0,Q2,0

n=100 1.18 1.23 1.17 1.20 (M=12)
n=500 1.13 1.17 1.06 1.07 (M=11)
n=2500 1.06 1.08 1.06 1.04 (M=12)

g2,0,Q2,0

n=100 1.46 1.47 1.53 1.49 (M=17)
n=500 1.42 1.48 1.40 1.39 (M=33)
n=2500 1.21 1.25 1.33 1.17 (M=50)

considered here. The CDC currently recommends that elderly people engage in physical activity for 30
minutes at least five times a week, corresponding to an energy expenditure of 22.5 METs (CDC, 1996).
The treatment variable A was therefore defined as the following dichotomous version of our summary LTPA
score:

A =

{
0 if LTPA < 22.5 METs
1 if LTPA ≥ 22.5 METs

(43)

Apart from sex and age, the primary confounding factor of the relationship between LTPA and all-cause
mortality is likely to be given by a subject’s underlying level of general health. Healthier subjects will not
only tend to experience lower mortality risks, but are also more likely to engage in higher levels of vigorous
physical activity. To control for this source of confounding, our analysis adjusts for a number of covariates
that are intended to capture a subject’s underlying level of health. Participants were asked, for instance, to
rate their health as excellent, good, fair, or poor. Self-reported physical functioning was defined from a series
of questions, originally developed by Nagi (1976) and Rosow and Breslau (1966), that assessed the degree of
difficulty a participant experienced in various activities of daily living. On the basis of this questionnaire, we
classified a participant’s level of physical functioning as excellent, moderately impaired, or severely impaired.
In addition, participants were asked about the previous occurrence of cardiac events such as myocardial
infarctions, the presence of a number of chronic health conditions, their smoking status, as well as a possible
decline in physical activity compared to five or ten years earlier. Table 5 summarizes the definition of the
covariates W we adjust for as potential confounding factors.

The outcome of interest Y was defined as an indicator for death within five years of the baseline interview.
We note that Y was observed for all study participants so that we do not have to adjust for right censoring.
Of the 2092 participants enrolled in the SPPARCS study, 15 did not answer all the questions needed to
define their level of vigorous physical activity; an additional 26 were missing information about at least one
of the confounding factors described above. Our analysis is based on the remaining 2051 participants.

14

http://biostats.bepress.com/ucbbiostat/paper230



Table 5: Definition of indicator variables that are considered as potential confounders.

Variable Definition
FEMALE Female
AGE.1 ≤ 60 years old
AGE.2 60-70 years old
AGE.4 80-90 years old
AGE.5 90-100 years old
HTL.EX Excellent self-rated health
HLT.FAIR Fair self-rated health
HLT.POOR Poor self-rated health
NRB.FAIR Moderately impaired physical functioning (0.5 ≤ NRB score < 1.0)
NRB.POOR Severely impaired physical functioning (NRB score < 0.5)
CARD Previous occurrence of any of the following cardiac events: Angina,

myocardial infarction, congestive heart failure, coronary by-pass
surgery, and coronary angioplasty

CHRON Presence of any of the following chronic health conditions: stroke,
cancer, liver disease, kidney disease, Parkinson’s disease, and
diabetes mellitus

SMK.CURR Current smoker
SMK.EX Former smoker
DECLINE Activity decline compared to five or ten years earlier

The parameter of interest is defined based on the logistic marginal structural model

logit
(
P (Ya)

)
= β0 + β1a, (44)

with β1 identifying the causal log odds ratio for mortality comparing a = 1 to a = 0. The treatment
mechanism was estimated by a logistic regression model that included main-effect terms for all indicator
variables defined in table 5. According to the fit we obtained, summarized in table 6, subjects were more
likely to engage in a higher level of physical activity if they were under the age of 70 or rated their own health
as excellent. Likewise, subjects were estimated to be less likely to engage in higher levels of physical activity
if they rated their own health as fair or poor, suffered from moderate or severe functional impairment, were
female or currently smoking, or reported a decline in physical activity over the past five to ten years. We
evaluated the goodness-of-fit of this model using the Hosmer-Le Cessie test introduced by Hosmer et al.
(1997) as an improvement of the Hosmer-Lemeshow test (Hosmer and Lemeshow, 1980). This test yielded
a p-value of 0.75, providing little evidence against the assumption that this model adequately describes the
data. The non-truncated weights wt(A,W ) obtained on the basis of this estimated treatment mechanism
range up to 33.

Figure 2 summarizes the IPTW estimates of β1 for the different candidate truncated estimators βM,n(gn)
as well as the data-adaptively truncated estimator βn(gn). The non-truncated IPTW estimator yields an
odds-ratio estimate of 0.72 (95% CI: 0.43 to 1.06). The data-adaptively truncated estimator, selecting a
truncation level of M = 20, yields an odds-ratio estimate of 0.67 (95% CI: 0.40 to 0.94). The selected
truncation level is estimated to lead to a 7% increase in efficiency relative to the non-truncated IPTW
estimator. An IPTW estimator based on the fixed truncation level M = 20 yields an odd-ratio estimate
of 0.67 (95% CI: 0.41 to 0.93), showing that the data-adaptively truncated estimator is only slightly more
variable than this reference estimator.
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Table 6: Logistic regression fit for the treatment mechanism.

OR 95% CI p-value
AGE.1 1.14 (0.84, 1.56) 0.3929
AGE.2 1.17 (0.92, 1.50) 0.1976
AGE.4 1.01 (0.68, 1.49) 0.9751
AGE.5 0.32 (0.04, 2.50) 0.2771
HLT.EX 1.37 (1.09, 1.71) 0.0059
HLT.FAIR 0.65 (0.45, 0.94) 0.0232
HLT.POOR 0.30 (0.09, 1.01) 0.0522
NRB.POOR 0.32 (0.18, 0.57) <10e-4
NRB.FAIR 0.80 (0.64, 1.01) 0.0660
SMOKE.CURR 0.53 (0.34, 0.83) 0.0058
SMOKE.EX 1.08 (0.87, 1.34) 0.4937
CARD 1.05 (0.78, 1.41) 0.7657
CHRONIC 1.02 (0.82, 1.25) 0.8827
FEMALE 0.81 (0.65, 1.01) 0.0590
DECLINE 0.59 (0.46, 0.75) <10e-4
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Figure 2: Log(OR) estimates. The solid line shows estimates of β1 as obtained by βM,n(gn) for different
truncation levels M along with pointwise 95% bootstrap confidence intervals (dashed lines). The estimate
obtained by βn(gn), shown in red, is based on a truncation level of 20.
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5 Discussion

In this article, we develop an approach for addressing an important open problem in the popular methodology
of IPTW estimation, namely the high variability of such estimators in situations in which the ETA assumption
is practically violated. We introduce an estimator that data-adaptively selects an appropriate truncation
constant for the Inverse-Probability-of-Treatment weights based on the goal of minimizing the mean squared
error of the estimator. While the resulting estimator requires an estimate of an additional nuisance parameter,
we show that its consistency does not rely on a consistent estimate of that nuisance parameter. For the case of
a binary treatment variable A, we describe an approach for obtaining an estimate of this nuisance parameter
that makes use of the estimated propensity score and does not require the user to specify an appropriate
parametric model. The simulation studies we present demonstrate that the methodology developed here can
lead to considerable gains in efficiency over more ad-hoc truncation approaches currently in use. In fact,
the proposed data-adaptively truncated estimator is seen to perform on par with an infeasible benchmark
estimator that relies on knowledge of the true data-generating distribution. In an applied data analysis,
the estimator is estimated to achieve a 7% gain in efficiency relative to the non-truncated estimator, with
truncation resulting in a non-significant finding becoming statistically significant.

The marginal structural model used in our simulation studies is very simple and was selected deliberately
in order to allow us to focus on a single one-dimensional parameter of interest. The methodology could,
however, be extended to more complex marginal structural models that stratify on a subset V of the baseline
covariates and also include interaction terms between a and V . In such cases, the mean squared error to be
minimized could be defined more generally as a user-supplied weighted average of the mean squared errors
of the individual coefficients of the model.

While this article focuses primarily on the estimation of marginal structural model parameters in the
context of a point-treatment study, the approach can be extended in a straightforward way to a number of
other parameters of interest. One particular class of parameters we would like to highlight consists of the
variable importance measures described by van der Laan (2006) that are designed to capture the impact
of an input variable on an outcome of interest. Such parameters have wide applications in contemporary
problems in computational biology that investigate a large number of candidate input variables in the hope of
identifying a subset for which there is strong evidence of an impact on an outcome of interest. This problem
arises frequently, for instance, in the area of biomarker discovery. In such high-dimensional problems, the
simulation-based approach developed by Wang et al. (2006) becomes computationally infeasible so that
approximate analytic methods like the one introduced here become even more attractive.

Inverse-Probability-of-Censoring-Weighted (IPCW) estimators represent another area to which the ap-
proach presented here can be applied. Such estimators have become a popular tool in survival analysis and
run into similar problems as IPTW estimators when censoring probabilities are estimated to be close to
zero. In addition, it can be hoped that a similar approach can be developed for IPTW estimators in the
longitudinal setting in which treatments are assigned at multiple time points. In this context, practical vio-
lations of the ETA assumption are even more common than in the point-treatment setting since the required
weights consist of a product of time-specific weights that can therefore more easily become very large for
some observations.

Another possible application of the approach described here lies in the selection of the set of confounding
factors that are to be included in the model for the treatment mechanism. A data set may, for example,
contain a covariate that is a very strong predictor of the treatment variable, but only a weak predictor of
the outcome of interest. Such a covariate will often be only a weak confounder of the relationship between
treatment and outcome, but can cause a serious practical ETA violation. Omitting it from the model for
the treatment model could thus, at the price of a slight increase in bias, offer a considerable reduction in
variability, thus leading to an overall reduction in mean squared error.

We propose to base inference for the data-adaptively truncated IPTW estimator on the bootstrap. Al-
ternatively, one might attempt to use the conservative influence curve (25) for the IPTW estimator with g
known for this purpose, in the hope that the downward bias caused by ignoring the additional variability
due to the data-adaptive selection of the truncation constant would be offset to some extent by the upward
bias caused by ignoring the reduction in variability achieved by estimating the treatment mechanism. Fu-
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ture research will be needed to investigate the performance of this approach which would further reduce the
computational demands of the estimator.

The data-adaptively truncated IPTW estimator developed here has been implemented in an R package
called tIPTW that can be downloaded at http://www.stat.berkeley.edu/~laan/Software/. Currently,
the package supports the data-adaptive selection of a truncation constant for IPTW estimators in linear as
well as logistic marginal structural models. Future work will be dedicated to adding some of the possible
extensions discussed in this section.
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