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Modeling sleep fragmentation in populations of
sleep hypnograms

Bruce J. Swihart, Naresh M. Punjabi, Ciprian M. Crainiceanu

August 6, 2012

Abstract

We introduce methods for the analysis of large populations of sleep ar-
chitectures (hypnograms) that respect the 5-state 20-transition-type structure
defined by the American Academy of Sleep Medicine. By applying these meth-
ods to the hypnograms of 5598 subjects from the Sleep Heart Health Study
we: 1) provide the first analysis of sleep hypnogram data of such size and com-
plexity in a community cohort with a 4-level comorbidity; 2) compare 5-state
20-transition-type sleep to 3-state 6-transition-type sleep for a check of feasibil-
ity and information-loss; 3) extend current approaches to multivariate survival
data analysis to populations of time-to-transition processes; and 4) provide
scalable solutions for data analyses required by the case study. This allows us
to provide detailed new insights into the association between sleep apnea and
sleep architecture. Supporting R as well as SAS code and data are included in
the online supplementary materials.

Keywords: Competing risks, Multi-state, Recurrent event, Sleep-disordered breath-

ing, Stratified.
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1 Introduction

There is a wide and personal familiarity with sleep. Everyone has firsthand experience

sleeping or facing the day with a lack thereof. Far less familiarity exists with sleep

science, medicine, and epidemiology. Sleep science is the study and measurement

of the sleep process itself: what biological and physiological happenings within an

organism define sleep. Sleep medicine harnesses sleep science so that sleep-related

conditions may be diagnosed and subsequently treated at an individual-level. At a

population-level building upon the work of sleep medicine, sleep epidemiology studies

associations of sleep-related conditions (i.e., insomnia, sleep-disordered breathing,

sleep-deprivation, etc), not necessarily the sleep process itself, with non-sleep-related

health outcomes, such as hypertension or all-cause mortality.

Sleep science conceptualizes an individual’s sleep as a hypnogram, a discrete-

state discrete-time stochastic process (Figure 1). Currently, the field of sleep science

broadly generalizes a typical sleep progression after falling asleep from Wake (W, on

the hypnogram axis) being Stage 1 (1) to Stage 2 (2) to Stage Slow-wave (S) back to

Stage 2 and then Rapid Eye Movement (R). The progression makes up one sleep cycle,

which lasts approximately 60-90 minutes and repeats through the night. Judging

from the three examples of Figure 1, sleep does not evolve so straightforwardly in

reality. The top panel fits the generalization well, but the other two do not, with

many detours and interruptions to the charted course of a “typical” sleep: the middle

panel has more alternations between Stage 2 and Stage Slow-wave; while the bottom

panel has a duration in Wake before leaving Stage 1 and a much more fragmented

Stage Slow-wave portion. Given that every 30 seconds the trajectory can change to

any other of the four states or remain in the current state makes for a very diverse

functional space for one hour snippets of three individuals, let alone for a typical

overall sleep time of approximately 7 hours for thousands of individuals in sleep
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Figure 1: The first hour of sleep for three individuals, visualized by discrete-time
discrete-state spaghetti plots known as sleep hypnograms. The vertical axis displays
the five stages of sleep: Wake, Rapid-Eye Movement (REM), Stage 1, Stage 2, and
Stage Slow-wave labeled “W”, “R”, “1”, “2”, “S”, respectively. The horizontal axis
denotes time from sleep onset in 30-second epochs for 60 minutes.
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epidemiology investigations. In modeling and comparing group-defined populations

of sleep hypnograms through relative metrics of transition-type specific rates, we

can learn how the sleep process differs as a function of the group-defining metric.

Making the group-defining condition a sleep-related one enhances sleep epidemiology

by providing associations of the sleep process itself with a sleep-related condition,

complementing the current widespread practice of associations of non-sleep related

morbid conditions with sleep-related conditions. We consider the 4-levels of severity

in sleep-disordered breathing as a group-defining condition.

1.1 Background: sleep-disordered breathing

Sleep-disordered breathing (SDB) is characterized by recurrent collapse of the upper

airway and is associated with recurrent episodes of intermittent hypoxemia (low levels

of oxygen saturation in arterial blood) and arousals from sleep (abruptly moving from

“deep” sleep to “lighter” sleep, yet not necessarily awakening). The characterizations

are thought to be largely sequential and indicative of the work of the sympathetic

nervous system: during sleep, the muscle tone in the upper airway relaxes, obstruc-

tion (full or partial) to the airflow ensues, the obstruction lowers oxygen levels in the

blood prompting the sympathetic nervous system’s “fight-or-flight” survival mecha-

nism involving a central nervous system jolt, resulting in some stress on the heart and

brain, and thus the arousal from deep to lighter sleep. The upper airway obstruction

from sleep-disordered breathing has a range of consequences, from the nuisance and

embarrassment of snoring to the ultimate adverse health outcome of death. Approxi-

mately 9% of women and 24% of men in the general population have sleep-disordered

breathing and approximately 75% of those affected remain undiagnosed (Young et al.,

2002). These prevalence estimates grow with the obesity epidemic, because the obese

tend to have less muscle tone and more adipose tissue in the throat area, enabling
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Figure 2: An instance of airflow obstruction in sleep-disordered breathing, illustrated.
Without medical intervention, such recurrent obstructions are rectified through iter-
ative sympathetic nervous system activation. Sympathetic nervous activation can
produce arousal events in sleep. Such arousals may or may not be represented in the
hypnogram. Courtesy of Johns Hopkins Sleep lab.

more often and severe upper airway obstructions.

Estimates of the increased likelihood of all-cause mortality due to SDB inde-

pendent of other prevalent conditions and adjusted for demographic factors range

from 1.3 - 3.8 times that of those without sleep-disordered breathing. For death by

cardiac-event, the estimates jump to a factor of 5.2 (Young et al., 2002). The alarm-

ing circumstances of high and growing prevalence, high undiagnosed proportion of

those affected, and the notable risk of death involved motivated the investigation of

the SDB and mortality association.

SDB severity is measured by a composite measure known as the respiratory dis-

turbance index at 4% oxygen desaturation (rdi4p). The composition is such that

both the hypoxemia and arousals of SDB are taken into account, and the rdi4p has

the units of events per hour of sleep. Didactically, suppose one slept for 10 hours

and had 50 apneas (full obstructions), 50 hyponeas (partial obstructions), and 25
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arousals. Say 33 of those apneas and 2 of the hypopneas caused a 4% or greater

oxygen desaturation. Then the rdi4p is (33+2+25)/10 = 6 events / hr.

In turn, rdi4p is often categorized into four diagnostic groups of increasing SDB

severity: absent, mild, moderate, and severe. Although the association between SDB

and mortality has been established and the causal pathway suspected to be through

the heart, the effect of SDB on sleep and whether the effects of sleep itself have any

contribution to mortality has remained largely uninvestigated, probably due to a lack

of accessible methods for modeling sleep at the population level.

1.2 Relations to other approaches

Our approach is motivated by epidemilogic studies, which constitute two important

features: 1) thousands of subjects; and 2) group-defined populations of comparative

interest. Hypnogram data have been the topic of previous analytic frameworks and

data applications distinct from the one in current consideration, as many have been

demonstrated on substantially smaller sample sizes of homogenous groups or 2-level

groups. For example, an important (clinical) goal was to relate time-varying hormone

levels to the sleep process modeled as a reduced set of transition-types for the number

of states considered (for S states, a full and flat model paradigm would be all S×(S−1)

pairwise transition-types). To remove potential confusion about the novelty of our

approach, we provide an itemized list of publications related to our problem together

with the problems that were addressed.

• Fahrmeir and Klinger (1998) relate time-varying binary cortisol levels to the

propensity of making a transition in a 3-state 4-transition-type hierarchy for

1 homogenous group of 30 males using a nonparametric multiplicative hazard

model for event history analysis.
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• Yassouridis et al. (1999) relate time-varying binary cortisol levels to the propen-

sity of making a transition in a 4-state 6-transition-type hierarchy for 1 homoge-

nous group of 30 males using a nonparametric multiplicative hazard model for

event history analysis.

• Aalen et al. (2004) illustratively uses 27 individuals for 1 homogenous group

in a 2-state 1-transition-type conceptualization with counting processes using

dynamic covariates to model time-varying cortisol levels.

• Norman et al. (2006) use 30 individuals, 10 each from 3 different group-defined

populations of disease severity in a sleep-runs analysis (which is a 2-state 1-

transition-formulation with no intra-subject repeated events clustering).

• Kneib and Hennerfeind (2008) extend the work of Fahrmeir and Klinger (1998)

relating time-varying cortisol levels to the propensity of making a transition in

a 3-state 4-transition-type hierarchy for 1 homogenous group of 70 individuals

using a counting process representation of a semiparametric multi-state model

implemented with full and empirical Bayesian methods.

• Swihart et al. (2008) use a matched group of 60 pairings of healthy to diseased

subjects in a flat 3-state 6 transition-type paradigm with log-linear models for

relative transition counts and multi-state survival models for relative transition

rates.

• Kalus et al. (2009) use 47 healthy subjects of different sexes and ages to relate

11-transition-types (some hierarchical) to three distinct time-varying hormones

using semiparametric multinomial logit models.

• Swihart et al. (2012) use a matched group of 51 pairings of healthy to diseased

subjects in a flat 3-state 6 transition-type paradigm with a Bayesian implemen-
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tation of a Poisson regression incorporating temporal and frequency transition

information that was equivalent to a multi-state model and an instance of a

strutured additive regression model. An analysis on 5614 subjects was also

conducted as a time trial test for scalability.

Our approach uses 5598 subjects with 5-state 20-transition-type sleep and focuses

on analyses that investigate many covariates of different types and their association

with the transition process. We were unable to use or adapt the methods described

above to reasonably analyze our data set. Thus, the goal of our paper is to provide

statistical models that: 1) are not more complex than necessary for comparing (more

than 2) populations; 2) characterize transition-type-specific features of the frequency

and rate behaviors observed in Figure 1; and 3) do not over-simplify the sleep state

transition process, as done by the currently accepted characterization of sleep cy-

cles. Characterizing sleep itself in terms of well known statistical models fitted with

widely accessible and established methods to largely generalizable populations is the

case study presented herein. The chief contribution of this paper is the application

of the statistical models to population sleep data, a result of appropriately acknowl-

edging and handling the intertwining of hypnogram resolution (the number of states

and transition-types considered), data size, computational feasibility, and modeling

paradigm.

The remainder of the article is organized as follows. In Section 2 we explicitly

define the outcome process, group definitions, and the models to estimate the asso-

ciation between the two. Application to the Sleep Heart Health Study data occurs

in Section 4, with some pre-application considerations highlighted in Section 3. In

Section 5 we provide further insight into our modeling strategy and Section 6 ends

the article with a discussion. The scientific findings indicate SDB severity affects dis-

tinct transition types differently and that collapsing from 5-state to 3-state can have
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undesirable consequences when trends in the analogue set are in opposite directions.

Thus, 5-state analyses might be preferred, underscoring the importance of having the

accessible methods herein to handle the increase in data complexity.

2 Data Description and Methods

2.1 Data Origination and Manipulation

A brief overview of the science and measuring of sleep starts with polysomnography.

Polysomnography is a multi-faceted monitoring process that produces polysomno-

grams. A polysomnogram is a collection of simultaneous time series which are

the measured biosignals intrinsic to defining sleep. The biosignals that comprise a

polysomnogram include the electroencephalogram (EEG), electro-oculogram (EOG),

electromyogram (EMG), electrocardiogram (ECG), airflow, chest and abdominal ef-

fort, oxyhemoglobin saturation, and body position. The juxtaposition of these time

series is the lens through which we see one’s sleep. The data of a polysomnogram

is voluminous and complex. The field of sleep traditionally summarizes the simul-

taneous time series of a polysomnogram into five stages of sleep known as the R

and K system, as put forth by Rechtschaffen and Kales in 1968 and updated by the

American Academy of Sleep Medicine (AASM) in 2007 (Rechtschaffen and Kales,

1968). Extensively, computer algorithms have supplanted sleep physicians for the

task of translating the simultaneous curves of the polysomnogram into the five stages

of sleep (Penzel and Conradt, 2000). The summarization occurs dually over time and

across signals: 1) continuous time is discretized into sequential bins called epochs

and 2) within each epoch the information across all time series is combined to declare

one of the five stages of sleep: Wake, Stage 1, Stage 2, Stage Slow-wave, and Rapid

Eye Movement (REM). A sleeper passes through these states in a recurrent fashion

many times throughout the night. The R and K system facilitates a tremendous data
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reduction, producing one discrete-time discrete-state process, the hypnogram, from

many continuous-time and continuous-state time series.

The polysomnogram data is supplied by the Sleep Heart Health Study (Quan et al.,

1997). The result of processing the polysomnogram into a discrete-time discrete-

state hypnogram was an ASCII file of one line, displaying a symbol to represent the

occupied state for sequential and mutually exclusive 30-second epochs. For example,

RRRR22121W could be the 10 epoch tail-end of a string, where one R is 30-seconds

of REM sleep, 2 is Stage 2, 1 is Stage 1, and W is wake (Figure 3). A transition

occurs whenever there is a change of symbol adjacent to one another. There are 5

transitions in this string, chronologically: a REM-Stage 2 (labeled R2) transition,

Stage 2-Stage 1 (labeled 21) transition, Stage 1-Stage 2 (labeled 12) transition, Stage

2-Stage 1 (labeled 21) transition, and a Stage 1-Wake (labeled 1W) transition. The

time at risk (interchangeably, duration in state, transition time, survival time, failure

time, or time-to-event) for R2 was 2 minutes, transition-type 21 had a time at risk of

1 minute, transition-type 12 had a time at risk of 0.5 minutes, the second occurrence

of transition-type 21 had a time at risk of 0.5 minutes, 1W had 0.5 minutes, and no

transition out was recorded of the final Wake epoch.

The stages of sleep are collapsable, yielding hypnograms of fewer states. The

collapsability is biologically motivated. For instance, to go from a 5-state to 3-state

hypnogram, Stage 1, Stage 2 and Stage Slow-wave are combined into Non-REM

(NREM) sleep stage. In our example, RRRR22121W becomes RRRRNNNNNW.

Continuing in this vein, both NREM and REM sleep stages of 3-state sleep can be col-

lapsed into an “Asleep” stage, making sleep a 2-state process, where RRRRNNNNNW

becomes AAAAAAAAAW.

For each hypnogram resolution (5-,3-, or 2-stage), two well-known modeling con-

ceptualizations are available, each requiring a different data format: survival analysis
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and Poisson regression. A time-to-event survival analysis requires a format detailing

chronologically each possible transition per row, whether the transition was observed,

and the time to transition (Figure 3). Poisson regression requires transition-type spe-

cific total counts of occurrence and total time at risk (tar) for those counts, which is

straightforwardly borne of summing the observed (obs) and time-to-event (tte) vari-

ables of the properly constructed survival analysis format, respectively, by transition-

type (shift).

time

S
2

1
R

W

1 5 9

5-stage sleep:

RRRR22121W

time

 
 

N
R

W

1 5 9

3-stage sleep:

RRRRNNNNNW

 
 

A
 

W

1 5 9

2-stage sleep:

AAAAAAAAAW

resolution order shift obs tte resolution type shift count tar

5-stage 1 R2 1 2.0 5-stage 1 1R 0 1.0

1 R1 0 2.0 2 2R 0 1.5

1 RS 0 2.0 3 SR 0 0.0

1 RW 0 2.0 4 1W 1 1.0

2 21 1 1.0 5 2W 0 1.5

2 2R 0 1.0 6 SW 0 0.0

2 2S 0 1.0 7 R1 0 2.0

2 2W 0 1.0 8 R2 1 2.0

3 12 1 0.5 9 RS 0 2.0

3 1R 0 0.5 10 RW 0 2.0

3 1S 0 0.5 11 W1 0 0.5

3 1W 0 0.5 12 W2 0 0.5

4 21 1 0.5 13 WS 0 0.5

4 2R 0 0.5 14 WR 0 0.5

4 2S 0 0.5 15 S1 0 0.0

4 2W 0 0.5 16 S2 0 0.0

5 1W 1 0.5 17 12 1 1.0

5 12 0 0.5 18 1S 0 1.0

5 1R 0 0.5 19 21 2 1.5

5 1S 0 0.5 20 2S 0 1.5

6 W1 0 0.5

6 W2 0 0.5

6 WR 0 0.5

6 WS 0 0.5

3-stage 1 RN 1 2.0 3-stage 1 NR 0 2.5

1 RW 0 2.0 2 NW 1 2.5

2 NW 1 2.5 3 RN 1 2.0

2 NR 0 2.5 4 RW 0 2.0

3 WN 0 0.5 5 WN 0 0.5

3 WR 0 0.5 6 WR 0 0.5

2-stage 1 AW 1 4.5 2-stage 1 AW 1 4.5

2 WA 0 0.5 2 WA 0 0.5

Competing Risks format Poisson format

Figure 3: Sleep hypnograms of the same sleep trajectory as represented in 5-stage,
3-stage, and 2-stage sleep resolution with accompanying Poisson and survival analysis
data formats.

Figure 3 depicts three hypnogram resolutions for one subject’s 10-epoch portion
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of sleep, visualized with spaghetti plots. For populations of sleep hypnograms, visu-

alizing several hypnogram trajectories in a spaghetti plot is prone to over-plotting.

A lasagna plot, by contrast, is a heat map of a matrix where element Sij is the state

occupied by the ith subject at the jth epoch (Swihart et al., 2010). Therefore, a

lasagna plot is a heatmap that displays clustered longitudinal data, with clusters in

the rows and time in the columns and eliminates the overlapping of trajectories that

plagues spaghetti plots. In addition, lasagna plots are capable of dynamic sorting.

Figure 4 displays three lasagna plots for each of three different state resolutions for

5598 subjects over 1218 epochs (10 hours, 9 minutes). The top panel for a given

resolution is unsorted with respect to subjects. The middle panel shows the same

lasagna plot where subjects are organized into the four SDB groups (in descending

order of severity) and within SDB group by total sleep time. The bottom panel is

a within-column within-SDB-group sorting of the lasagna plot in the middle panel,

which shows group-level temporal behavior. Note, as the legends of Figure 4 col-

lapse (from left to right) how much information is lost: Stage Slow-wave has well

defined peaks that alternate with REM across disease severity, and the prevalence of

each group being in Stage 1 in the first epoch of sleep onset is decidedly over 50%,

decreasing drastically and then stabilizing over the night.

2.2 Collapsing States and Information Mapping

The hypnogram is a 5-state stochastic process, comprising of Wake and 4 distinct

stages of sleep. However, a 2-state stochastic process can be rendered by collapsing

all the non-Wake stages into an “Asleep” state. With the 2-state rendering, there

are only two transition types to consider: Wake to Asleep (WA) and Asleep to Wake

(AW). The transitions can recur through the night and there are no competing risks

– i.e., when in the Asleep stage, the only transition that can occur is the one to Wake.

12

http://biostats.bepress.com/jhubiostat/paper243



5− state 3− state 2− state

Figure 4: Lasagna plots for 5-state, 3-state, and 2-state sleep. Each lasagna plot has
5598 rows (subjects) and 1218 columns (epochs). The top row of lasagna plots display
subjects in no particular order. The second row shows subjects grouped into SDB
severity group (absent to severe; top to bottom within the plot) and ranked by total
sleep time within severity group. The bottom row of lasagna plots are those of the
middle row sorted within columns within severity group, highlighting the group-level
temporal dynamics of Stage Slow-wave in dark purple.
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A less aggressive summary of the 5-state is the 3-state hypnogram, where Stage 1,

Stage 2, and Stage Slow-wave are condensed into Non-REM sleep (NREM) whereas

REM along with Wake is left as-is. The 3-state hypnogram has a maximum of 6

pairwise transition-types: NREM to REM (NR), NREM to Wake (NW), REM to

NREM (RN), REM to Wake (RW), Wake to NREM (WN), Wake to REM (WR).

Unlike the 2-state process, the 3-state process has competing risks. For example,

whilst in Wake, a sleeper is simultaneously at risk for WN and WR. With 5 states,

there are 20 different transition-types. The collapsing scheme of the states dictates

that NR of 3-state has its information mapped to the analogue set of {1R, 2R, SR}

in 5-state, and likewise NW has {1W, 2W, SW}, RN has {R1, R2, RS}, RW has

{RW}, WN has {W1, W2, WS}, and WR has {WR}. The remaining transitions are

intra-NREM and have no analogue in 3-state: {S1, S2, 12, 1S, 21, 2S}.

Regardless of resolution, the key features of hypnogram fragmentation are repre-

sented in terms of all pairwise state transitions and their frequency, as well as the time

at risk for the observed and potentially observed transition-types for each observed

transition. These features of the hypnogram represent the stability of a sleep state:

fewer counts along with more time at risk for transition-types originating in the same

state indicate fewer exits of and longer durations in that state. Contrariwise, more

counts in less time at risk indicates less state stability.

2.3 Group definitions

The task is to model the outcome of a relative measure of sleep stage transitioning

as a function of group membership. In order to get transition-type specific group

comparisons, the interaction between design variables representing group membership

and transition-type are necessitated. For G groups and H transition-types, a model

will produce (G− 1)×H estimates of interest. For each transition-type h, the G− 1
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group comparisons can be seen as a “dose-response” or “trend” pattern relating the

association of the underlying group defining characteristic and the stability of the

starting state with respect to transition-type h.

2.4 Statistical Analysis

The estimates of focus are relative transition-type specific transition rates among

the group-defined populations, which necessitate the inclusion of interactions of bi-

nary indicator variables for the transition-types and non-reference groups. In each

of the following two models discussed, main effects play a different role. In a multi-

state survival model stratified on transition-type, the interaction between group and

transition-type essentially becomes the group indicator in that stratum, rendering

the inclusion of the group main effect unnecessary, as well of course the main effect

for transition-type. The baseline hazard acts as the referent group. However, in the

log-linear analysis, the model is not stratified and thus the main effects of group

and transition-type are included to provide backing for the interaction terms. For

instance, if the main-effects were omitted in the log-linear analysis, the effect for the

design variable for g : h would be the transition rate for group g of transition-type h

compared to all other transition-types {1, . . . , h − 1, h + 1, . . . , H} for the reference

group. That is, without stratification to restrict the comparison, the effect is not fully

transition-type specific.

2.4.1 Multi-state survival models

For a survival analysis yielding a transition-type specific log-hazard αh(t) and effect

βg:h, the Cox regression model is stratified on transition type h and regressed upon

the interaction term involving h:

αh(t) = αh0(t) + g : h,

15
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where g : h represents the interaction terms sans the main effects, as discussed in

Therneau and Grambsch (2000). Sleep viewed as a transitory multi-state system

requires a stratified, recurrent event, competing risks proportional hazards model.

Ultimately, the proportional hazards assumption is precariously situated by giving

each transition-type a hazard and there being potentially many transition-types. A

violation of this assumption can be tested. Such a test involves testing for the inclusion

of variables that are the interaction of log(t)× (g : h). If the test suggests the global

inclusion is significant, then inclusion is the remedy for the violation.

2.4.2 Log-linear GEE model

The mean of a Poisson process can be modeled log-linearly with a log-offset of the

total time at risk (tar),

log λ(gh) = g + h+ g : h+ offset{log(tarh)}.

The quantity λ(gh) is the rate for group g and type h and will yield relative rates (rr)

of the overall counts between groups for transition-type h.

Noting that each individual has the same number of rows and that each (or-

dered) row within individual corresponds to the same attribute (transition-type),

these log-linear models are well-suited for fitting with generalized estimating equa-

tions (GEEs). The method of GEE modeling is widely used, computationally fast,

and can potentially model correlation structure. The H ×H correlation matrix con-

veys the correlation of the time-adjusted frequencies of a transition-type occurring.

Intuitively, negative correlations could be expected due to the competing risks na-

ture of transition-types sharing the same starting state; whereas positive correlation

could be anticipated for transition-types that share the same state as their ending and

starting state. Common structures (“exchangeable” or “AR-1”) do not admit both

negative and positive correlations, and the unstructured specification is computation-
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ally difficult. The realization that correlation is a nuisance in the GEE framework

and that the analytic goals are point estimates and confidence intervals gives moti-

vation to initially take an independent structure. Consistent estimates are produced

regardless of correlation structure, and the possibility of bootstrapping subjects to

correct confidence intervals is explored. Further discussion on this approach is found

in section 5.

3 Pre-application considerations

3.1 Statistical challenges and solutions

The modeling task is to quantify transition-type-specific transition rates as a function

of the group defining condition. To anchor the task in the display of Figure 4, consider

the middle panel lasagna plot, which is organized into four SDB severity groups.

We wish to quantify all rates of one color changing to another for each group and

have inference for whether the rates differ between the groups. Prima facie, the

task of modeling population-level transition-rates as a function of group status seems

straightforward and well established, however there are nuances and subtleties that

warrant special consideration in this case study. While one may be tempted to proceed

by choosing a resolution, data format, and format-corresponding model – the science

of sleep, data size, and computational feasibility add some twists and turns to the

analysis path.

3.1.1 Hypnogram resolution and the science of sleep

Hypnogram resolution of the analytic dataset is not a convenience of choice. A higher

resolution reveals a finer structure of sleep. The associations of a finer level may not

persist to the coarser level, due to the combining of transition-types when states col-

lapse as well as the complete loss of information for transitions within the collapsed
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state. Figure 3 highlights some key observations: higher resolution hypnograms po-

tentially contain more information. Comparing the higher resolution 5-stage to the

lower resolution 3-stage hypnogram in Figure 3 demonstrates the correspondence of

transition-types in different resolutions. The states {1,2,S} are collapsed into {N},

and thus transition-types {1R, 2R, SR} are combined into {NR} (compare the first

three rows of the Poisson format at 5-stage to 3-stage resolution). Likewise, {1W,

2W, SW} are combined into {NW}, {R1, R2, RS} are combined into {RN}, and

{W1, W2, WS} are combined into {WN}. Exhaustively, {RW} and {WR} remain

unaffected, diametrically opposite of the intra-NREM 5-state transition-types {S1,

S2, 12, 1S, 21, 2S} which have no analogue in 3-state sleep. Rooting the concept in

the hypnograms of Figure 3, the intra-NREM information lost to the lower resolution

includes the time at risk and the occurence of the two {21} transitions and the {12}

transition.

Figure 4 demonstrates a similar loss of information at the population and group-

level when states are aggregated. The bottom panel lasagna plot displays group-level

temporal information, highlighting slow-wave sleep temporal dynamics for 5-state

resolution. The first two peaks (dark purple) are very distinct across SDB groups and

are completely lost at lower resolutions. The resolution-level stands to be impactful

on the associations being modeled by virtue of the combining of states and subsequent

loss of transition information. Thus, choosing an analytic resolution should not be

done a priori but rather as a result from comparing the associations of different

resolutions and determining how compatibly the underlying process is represented.

3.1.2 Data format and data size

Hypnogram resolution is a determining factor in data size and affects the two data

formats differentially. As put forth in the previous section, lowering the resolution
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is not an option for data reduction prior to an analysis as a full analysis of these

data encompasses the analyses of varying levels of resolution. The size of population

hypnogram data does not depend on the number of subjects alone, but grows as more

states and thus more transition-types are considered. The higher the resolution, the

larger the survival analysis dataset becomes per individual, involving greater numbers

of competing risks for each observed transition. Contrastingly, the Poisson format’s

size is robust to the number of observed transitions and stays fixed at the number of

transition-types.

Treating the data as repeated measures count data in the Poisson format, the

growth is straightforward because the number of rows per individual is the number

of transition-types considered. A data set of N subjects having a S-state hypnogram

will have N × H rows, where H = S(S − 1) transition-types. Considering the size

of the data set when the hypnogram data is modeled with a multistate survival

model is a little more complex, as it is a function for each individual of how many of

each transition-type was observed, C
(h)
i , and how many transitions-types were at-risk,

(S − 1). Thus, the total number of rows in a multistate survival analysis would be

(S − 1)
N∑
i=1

H∑
h=1

C
(h)
i .

For the SHHS, 6369 polysomnograms were processed into 5-state hypnograms.

The Poisson format dataset has 6369 × 20 = 127, 380 rows and the survival for-

mat 3,075,248 rows, which brings the average observed number of transitions to

3, 075, 248/(6369 ∗ (5 − 1)) ≈ 121. Lowering the resolution by collapsing to a 3-

state hypnogram yields smaller datasets, 6369 × 6 = 38, 214 and 839, 154 rows for

the Poisson and survival formats, respectively. Consequently, the average number of

transitions observed in 3-state sleep is 839, 154/(6369 ∗ (3− 1)) ≈ 66.
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3.1.3 Computational feasibility and model choice

A method of analysis is proposed for each data format: Generalized Estimating Equa-

tions (GEE) for the Poisson format and a proportional hazards survival model for

the time-to-event format. Each are widely available, accessible and shovel-ready with

respect to the corresponding dataset. Fitting GEEs is much more computationally

feasible than multi-state survival models and give strikingly similar results. This ad-

vantage of GEEs is largely due to the more compact data size of the Poisson format,

robustness properties, and fewer modeling assumptions. Prudent software and hard-

ware choices are explored (in SAS and R) and can facilitate the fitting of both models

to the full data, rendering population-level associations.

4 Application to the SHHS data

A two-model analysis is conducted each on 3-state and 5-state resolution data. The

two models are competitors, in a sense: the stratified, recurrent event, competing

risks multi-state survival analysis stands to honor the sleep process better, but may be

more computationally intensive and/or fickle in terms of algorithm convergence. The

application will show GEE gives computationally faster yet similar results. The two

resolutions are competitors as well. If the 3-state analogues of the 5-state estimates

reflect direction, magnitude, and significance of results then consideration could be

given to using the 3-state resolution of sleep, as collapsing states did not obscure

finer-level effects. In addition to comparing the analogues, the 5-state resolution

transition-types with no 3-state analogue must also be analyzed for effects when

deciding to use exclusively a lower resolution.

The subjects are standardized for each model-resolution combination. In the Sleep

Heart Health Study, 6369 subjects had polysomnograms, and 5639 had polysomno-
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grams of high enough quality to be reliably processed into 5-state hypnograms. Of

the 5639, 5598 had complete demographic and covariate information (age, race, rdi4p,

sex, and smoking status). For the 5-state resolution, all 20 possible transition-types

were formulated into a Poisson format dataset (111,960 rows) and a survival for-

mat (2,716,188 rows). For the 3-state resolution, all 6 possible transition-types were

formulated into a Poisson format (33,588 rows) and a survival format (728,966 rows).

Each model will be adjusted for the covariate information of age, sex, race and

smoking status as well as model the association between sleep structure and increasing

SDB severity. SDB typically is categorized into 4 bins of rdi4p events/hr: [0,5), [5,15),

[15, 30), [30, ∞), with [0,5) (SDB-absent) serving as the reference group.

For each transition-type, the three groups’ 95% confidence intervals and point

estimates of the relative rate ratios (RR) for the GEE models and Hazard Ratios

(HR) for the survival models can be clustered as three vertical lines, left-to-right

increasing in terms of SDB severity. Those clusters by transition-type can then be

organized in plots with other clusters to give view of the modeled relationship of SDB

on sleep itself. As given by the two models, these dose response clusters are visualized

in Figure 5, using an entering-exiting state arrangement for the 5-state resolution. An

entering-exiting state arrangement gathers all the transition-types involving one state.

For instance, the top left panel of Figure 5 displays the three group comparisons for

each of the 4 transition-types entering Wake and the 4 transition-types exiting Wake

in the same plot. Looking at the information from a state-centric point of view

helps give a sense for what SDB severity is doing to the sleep process. For instance,

in the middle plot displaying the entering-exiting transition-types for Stage 2, SDB

severity increases the rate of exiting Stage 2 to lighter stages of sleep (Wake and

Stage 1, increasing clusters in green) and concurrently decreases the exiting from

Stage 2 to REM and Stage Slow-wave (decreasing in green). A 3-state resolution
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would completely omit the relationship seen for intra-NREM transitions of type 21

and 2S. Given they visually show such a strong trend gives weight to analyzing the 5-

state as opposed to the 3-state. The two columns of plots look very similar, indicating

that using a GEE approach with independence working correlation will give similar

results to the multi-state survival approach.

To explore the connection between resolutions, analogue plots can be made. Fig-

ure 6 shows the 1 member set to 3 member set mappings for the 3-state and 5-state

models. In the top left panel, we see that for most severe SDB groups, there is a

discordance of significant findings in 5-state sleep (1R and SR are significantly higher

rates in severe SDB relative to SDB-free; 2R is significantly lower) and they “cancel”

out in 3-state sleep as seen by the NR insignificance across SDB severities. As for the

other plots, we see similar shapes between the resolutions, possibly indicating that

1W and 2W are drivers of NW; R1 of RN; and W1 and W2 of NW.

5 Modeling insights

To fit the survival analysis model, prudent software and hardware choices are sug-

gested. Regardless of OS platform, 64-bit SAS and R are recommended. To remedy

a violation of proportional hazards with log(t) interactions requires R version 2.13 or

later of coxph() for its implementation of tt(). Running 64-bit SAS in Windows

utilizing a 3.40 GHz quad-core processor with 16 GB of RAM, the 5-state resolution

GEE with independent working correlation structure of the previous section took

13 seconds compared to 8.5 hours for the multistate model (13 hours for log(time)

interactions proportional hazards correction). Given the GEE gave similar results,

the GEE can be used quickly and repeatedly as an exploratory tool for an investiga-

tion, and when a final model is suspected then fit the corresponding survival model

or bootstrap subjects for corrected GEE intervals (bootstrapping 1000 times was on
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Figure 5: On the left, Relative Rates as a function of sleep disordered breathing. On
the right, Hazard Ratios. Each of the 5 plots in a column is made displaying the 8
transition-types involving the entering and exiting of a state (top to bottom: Wake,
Stage 1, Stage 2, Slow-wave, REM). Comparing plots within rows demonstrates how
similar the estimates are between the modeling approaches.
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Figure 6: Compare the estimated trends of 3-state resolution (in black) to the corre-
sponding 5-state analogues.

par computationally with fitting the survival model) (Sherman and le Cessie, 1997).

Modeling of the correlation can be attempted, but proves challenging. The unstruc-

tured working correlation structure has many parameters and the specifiable common

structures struggle to reflect the competing risks nature of the process. If estimating

the unstructured correlation specification is prohibitive, a sample correlation matrix

(or, an appropriately found nearest positive definite matrix to that data-based calcu-

lation) can be “user-specified”.

Matching has the benefit of reducing the data size thereby easing computational

burden, however matching changes the generalizability of the results. Data reduction

via fewer subjects is not a guaranteed gain in computational feasibility. The plenti-

tude of subjects in the full sample eases the problem of rare transition-types in this

transition-type specific analysis. Not all transition-types occur equally, and the dis-

crepancy is exacerbated at higher resolutions, which is where data reduction via fewer

subjects would be most helpful in terms of computational feasibility. For instance,
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transitioning from REM-Slow-wave (RS) is so rare that only 80 subjects experienced

at least one and no one experienced more than 6 in their sleep (distribution: 0-6269,

1-66, 2-10, 3-2, 4-1, 5-0, 6-1). From 5-state to lower resolution 3-state sleep, {RS}

is combined with more common transitions {R1, R2} to render {RN}, which has

only 671 individuals experiencing 0. In addition, matching for groups of more than

two levels is involved, and often diagnostic groupings are of more than two-levels. If

matching is desired in a two-group situation, one can use propensity score methods

(Ho et al., 2011).

The survival model parameterization requires no linear combinations, however,

PROC PHREG requires that interaction variables be manually coded. The log-linear

GEE predictor requires linear combinations of the group main effect and interaction

terms (see web appendix). Handling multiple groups in the group-defining condition

and several transition-types for when comparing resolutions takes organizational care.

We advocate keeping rows of different resolutions analogous to one another for ease

of comparison among the resolutions as well as making entering-exiting state plots

for learning the “story” of the data analysis.

For situations that could be of interest to model counts without the temporal

information as a function of group status, a third model could be fitted. The mean

of a Poisson process can be modeled without the log-offset term:

log λ
(gh)
rf = g + h+ g : h,

can easily be considered and gives only relative count information exclusive of any

temporal information.
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6 Discussion

The equivalence between a log-linear GLMM with log(time at risk) and multistate

survival modeling assuming exponential survival times and piecewise constant hazards

is well known. Thus, middle ground exists between the GEE and survival models put

forth, but implementation is not as straightforward (Swihart et al., 2012). The im-

plementation is computationally more feasible than the proportional hazards model,

but requires extensive data manipulation and must be manually coded in WinBUGS.

The methods put forth stand to aid the investigation of sleep itself with sleep-

related and non-sleep-related health outcomes. In the application we analyzed SDB

predicting changes in sleep stage structure. Future work would be to continue down

hypothesized causal pathways and connect the transition-type-specific count, time at

risk, and rate features of sleep and predict a non-sleep related outcome, say, heart

rate variability. Another direction of research would be to account for the longitu-

dinal aspects of SHHS, as the sleep-EEG feature extraction work has (Crainiceanu

et al., 2009). Doing so may ultimately provide better diagnostic tools and further our

understanding of how sleep interacts with our health.
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