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Flexible covariate-adjusted exact tests for randomized studies

Alisa J. Stephens, Eric J. Tchetgen Tchetgen, and Victor De Gruttola

Abstract

Incorporating auxiliary covariates in the analysis of randomized trials can increase power, but

questions remain about how to preserve type I error when incorporating such covariates in a flex-

ible way, particularly in small samples. This paper investigates properties of covariate-adjusted

tests for both independent and multivariate outcomes. Through simulation, we evaluate several

covariate-adjusted tests of intervention effects when baseline covariates are selected adaptively

and the number of randomized units is small. We demonstrate that randomization inference

preserves type I error under model selection while tests based on asymptotic theory break down.

We also demonstrate that covariate adjustment generally increases power, except at extremely

small sample sizes using liberal selection procedures. Methods are illustrated by application to

data on the Young Citizens study, a cluster randomized trial of behavioral HIV intervention.

1 Introduction

In randomized trials the primary goal is to compare the effects of different interventions on

some outcome of interest. In addition to the treatment assignment and outcome, data on

baseline covariates, such as demographics or biomarkers, are typically collected. To protect

type I error, methods for including baseline covariates in analyses, whether as stratification

factors or in regression models, are generally precisely defined. Recently, methods have been

developed to allow for more flexible model selection without loss of protection of type error, at

least asymptotically (Tsiatis et al. (2008); Zhang et al. (2008); Stephens et al. (2012a)). Several

studies have demonstrated that new methods permitting flexible use of baseline correlates of

the outcome in analysis improve power and efficiency in treatment effect estimation (Tsiatis
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et al. (2008); Zhang et al. (2008); Stephens et al. (2012a)). Nonetheless, in small samples,

additional variability introduced by flexible model selection may fail to preserve type I error

and also result in loss of power and efficiency compared to unadjusted analyses. In this paper,

we evaluate several flexible covariate adjustment methods for studies with small numbers of

randomized units. We examine the validity of adjusted tests through investigation of type I

error and measure improvement over unadjusted tests by comparing power.

Consider a randomized trial in which n independent and identically distributed units Oi =

(Yi, Ai,Xi) are sampled from a population, where Yi denotes the outcome of interest, Ai the

random treatment assignment such that Ai=1, ...,K, and Xi the set of baseline covariates. For

cluster-randomized or longitudinal trials, Yi represents a multivariate outcome vector for indi-

viduals within the same randomized group or repeated measurements on a single randomized

subject. In the context of multivariate outcomes, we consider settings where the treatment

assignment is a scalar shared by measurements within the same cluster or subject. The primary

analysis for most randomized trials compares outcomes Yi among subjects assigned to differ-

ent levels of treatment Ai. For scalar outcomes, tests comparing some feature of fa∗(Y ), the

distribution of Y under treatment a∗, are used to assess the statistical significance of observed

differences in outcomes across treatment groups. The two-sample t-test, Wilcoxon test, and

their extensions for more than two groups are examples of commonly used methods. When

outcomes are multivariate, modified versions of these tests are available to adjust standard er-

rors for correlation among multiple measurements within the same randomized unit (Klar and

Donner (2000)).

Regression analysis may also be used to evaluate treatment effects. The effect of a binary

treatment on the marginal mean of Y may be assessed through assuming the generalized linear

model

E[Yi|Xi, Ai] = g(β0 + β1Ai), (1)

where g−1 is a link function, and β is estimated through semiparametric estimating equations or

fully parametric maximum likelihood inference. The effect of treatment on the marginal mean

outcome E[Yi|Ai = a] is evaluated through testing H0 : β1 = 0. Under randomization, this

2

http://biostats.bepress.com/harvardbiostat/paper150



test is equivalent to testing for no average causal effect of treatment on Yi. When outcomes are

multivariate, Yi in (1) is replaced by Yij , denoting the jth outcome of the ith randomized unit

for i = 1, 2, ..., n and j = 1, ...mi, where M =
n∑

i=1

mi is the total number of observations. For a

semiparametric approach, generalized estimating equations (GEE) that account for correlation

in responses may be used to obtain consistent parameter and standard error estimates. Regres-

sion methods naturally incorporate baseline covariates by assuming the adjusted mean model

(AMM)

E[Yi|Xi, Ai] = g(β0 + β∗1Ai + βTXXi). (2)

When g is the identity link and the true model does not contain any treatment-covariate

interactions, independence of Ai and Xi, which results from randomization, guarantees that the

adjusted estimator β̂∗1 is a consistent estimator of β1. Moreover, it can be shown that var(β̂∗1) ≤

var(β̂1), where β̂1 is the unadjusted estimator, even under misspecification of the exact form

of βTXXi in (2) (?Tsiatis08)). For other link functions β̂∗1 is not consistent for β1, nor does the

addition of baseline covariates to the assumed mean model guarantee efficiency improvement.

To address this concern when estimating β in marginal model (1), Zhang et al. (2008) advocate

using a class of augmented estimators. Augmented estimators are derived from semiparametric

theory and involve augmenting standard estimating functions by subtracting their Hilbert space

projection onto the span of the scores of the treatment mechanism. Semiparametric theory

provides theoretical justification for efficiency improvement of augmented estimators in large

samples irrespective of the link function g and only assuming model (1) holds. Stephens et al.

(2012a) demonstrated how augmentation may be used for clustered or longitudinal data by

augmenting generalized estimating equations. The same authors also presented the locally

efficient augmented estimator under model (1) (Stephens et al. (2012b)). Augmented inference

relies on asymptotic theory and therefore requires a fairly large number of randomized units. In

large samples, model selection variability for baseline covariates is small provided the number of

covariates is not large; in small samples, however, flexible covariate selection induces additional

variability that may lead to variance underestimation and loss of efficiency.

3

Hosted by The Berkeley Electronic Press



To avoid reliance on asymptotic theory, Rosenbaum (2002) extended the randomization

theory of Fisher (1935) to propose an exact covariate-adjusted test that does not assume a

particular distribution for outcomes or that the observed data are a random sample from some

unobserved population of independent units. Randomization inference considers the potential

outcomes yai under each treatment level, where the observed outcome Yi for a subject assigned

to treatment Ai = a is that subject’s potential outcome yai . The lowercase notation emphasizes

that potential outcomes yai are fixed. Under the sharp null H0 : ya = y∗ for all a, and thus

Yi = y∗i , resulting in independent units Õi = (yi, Ai,xi), where only the treatment assignment Ai

is random. Rosenbaum (2002) discussed the potential outcomes framework in detail. The null

distribution of the test statistic is obtained through permutation of Ai. The test proposed by

Gail et al. (1988) approximates the exact test by standardizing the observed test statistic by its

randomization-based variance and comparing to the standard normal distribution. Post model-

selection inference based on the Gail et al. and Rosenbaum approaches has not been investigated;

below, we consider settings where model selection is used to determine covariates that explain

variability in yi. Adaptive selection of baseline covariates may be particularly useful when xi

is high-dimensional or prior knowledge is not available to inform covariate adjustment. Further

improvement in small-sample inference may be possible from higher order approximations of the

distribution of a class of randomization test statistics (Bickel and Zwet (1978)), but this theory

has not yet been evaluated in practice.

Details of the four covariate-adjusted tests: I) Adjusted mean models (AMM), II) Augmented

marginal model, III) Approximate exact, and IV) Exact (permutation) are discussed in Section

2. Inference for independent and correlated outcomes is presented. In Section 3, the small

sample properties of covariate-adjusted tests are evaluated through simulation. Methods are

illustrated through application to the Young Citizens study in Section 4. Finally, we summarize

our results and provide recommendations for practical use in Section 5.
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2 Methods

We consider four methods of covariate-adjusted hypothesis testing: I) Wald test of β∗1 in the ad-

justed mean model (2), II) Wald test of β1 in marginal model (1), in which estimating equations

are augmented to include baseline covariates, III) approximate exact test, and IV) the exact

test. This list is not comprehensive, but does include widely-recognized classical and modern

methods. Each test is first presented for independent outcomes and followed by generalizations

for dependent data.

2.1 Independent Outcomes

Method Ia: Wald test of β∗1 in model (2)

Assuming model (2) holds, parameters β and respective standard errors are estimated via

maximum likelihood or semiparametric estimating equations. The null hypothesis H0 : β∗1 = 0

is evaluated through the test statistic Tc =
β̂1

∗

SE(β̂1
∗
)
.

Method IIa: Wald test of β1 in model (1) with augmented estimating equations (Tsiatis

et al. (2008); Zhang et al. (2008); van der Laan and Robins (2003))

Unlike inference based on the AMM, the augmentation method assumes model (1). Pre-

dicted values from a working model for the conditional mean E[Yi|Xi, Ai] are incorporated in

estimating equations that are solved to estimate β. Consistent estimates of β1 are obtained even

if E[Yi|X,Ai] is misspecified, demonstrating a special case of double robustness (van der Laan

and Robins (2003)).

Tests of H0 : β1 = 0 are based on the test statistic Ta = β̂1

ŜE(β̂1)
, where β̂1 is the solution of

the augmented estimating equations

n∑
i=1

ψa(Oi;β) =

n∑
i=1

[
h(Ai;β){Yi − g(Ai;β)}−

K∑
a=1

{I(Ai = a)− πa}{h(a;β)(E[Yi|Xi, Ai = a]− g(a;β))}

]
= 0,

and πa denotes P (Ai = a). In practice ψa is evaluated by ψ̂a, where the true regression

5
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E[Yi|Xi, Ai = a] is approximated by the working model E[Yi|Xi, Ai = a] = d(Xi; ηa) eval-

uated under an estimate η̂a. As implied by the subscript a, the regression for augmented

estimators conditions on the treatment assignment. Alternatively, E[Yi|Xi, A = a] may be

estimated separately in each treatment arm, resulting in K regression models that do not con-

tain indicators for treatment. The variance of β̂1 is estimated by the sandwich variance esti-

mator ˆV ar(β̂1) = C

( n∑
i=1

dh(Ai;β)

dβT
Di

)−1 n∑
i=1

[
ψa(Oi;β)

⊗
2
]( n∑

i=1

dh(Ai;β)

dβT
Di

)−1
 , where

Di =
dg(Ai;β)

dβT , and C = {(n0−p0−1)−1+(n1−p1−1)−1}/{(n0−1)−1+(n1−1)−1} is incorpo-

rated to account for finite-sample variability attributable to augmenting. In C, na is the sample

size in treatment arm a and pa is the dimension of ηa for the working covariate-adjustment model.

Method IIIa: Approximation of the Exact Test

The approximation of the exact test considers the H0 : ya = y∗ for all a. To test H0 we

construct the test statistic

Ts =
S√

V ar(S|y,x)
, where S =

n∑
i=1

(Ai − π)wi,

and V ar(S|y,x) is shown in (3). Baseline covariates are incorporated by setting wi = ε̂i =

yi − d(xi; η̂), the residual from the working mean model d(xi; η̂), which estimates the true

regression model E[yi|xi] = f(xi; η) under the sharp null. For unadjusted analysis, wi=yi. We

intentionally omit the subscript a on the regression function as a reminder that under the sharp

null, yi cannot depend on treatment, so Ai is excluded from the proposed working model. The

variance of S is calculated by

V ar(S|y,x) = π(1− π)
n∑

i=1

w2
i +

(Q)︷ ︸︸ ︷(
π
n/2− 1

n− 1
− π2

)∑
i̸=i′

wiwi′ , (3)

and significance is determined by comparing |Ta| to the standard normal distribution.

Term Q in V ar(S|y,x) is nonzero when the total number of subjects assigned to each

treatment is fixed. This typically applies in trials with small samples, where matching and

blocked randomization strategies are employed to prevent imbalances in treatment allocation
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that may occur with unrestricted random assignment. Under such randomization, the vec-

tor A = (A1, A2, ..., An) follows a hypergeometric distribution, where the probability of being

assigned to treatment for a particular subject is affected by the other subjects’ treatment as-

signments. When wi is the residual from a working model for E[yi|xi], Q ≈ 0, as E[εi|xi]=0,

and εi ⊥ εi′ . If considering the unadjusted outcomes Yi, failure to include Q may result in gross

variance overestimation and extremely conservative testing for small n. In large samples, Q ≈ 0

for wi = ε̂i or wi = yi.

For the class of statistics defined by T =
n∑

i=1

Aici, where ci is a score, Bickel and Zwet (1978)

determined a higher-order approximation for the distribution of the standardized statistic T ∗,

given by

P (T ∗ < t) = Φ(t)− ϕ(t)

π(1− π)

[
π(1− π)

2n
H1(t) +

√
π(1− π)(1− 2π)

6

n∑
i=1

(c− c·)
3

{
n∑

i=1

(c− c·)
2

}3/2
H2(t)+


1− 6π + 6π2

24

n∑
i=1

(c− c·)
4

{
n∑

i=1

(c− c·)
2

}2 − (1− 2π)2

8n


H3(t) +

(1− 2π)2

72

{
n∑

i=1

(c− c·)
3

}2

{
n∑

i=1

(c− c·)
2

}3H5(t)

]

The expansion suggests that a higher order accurate quantile of the distribution of the test

statistic may be found by solving for Z∗
α such that P (T < Z∗

α) = 1− α/2 for two-sided tests.

Method IVa: Exact Test

The exact test also applies to the hypothesis H0 : ya = y∗ for all a; the null distribution

of Tp = S is calculated by permuting the treatment assignment Ai among subjects. For each

permutation, the test statistic Tp is calculated under the permuted treatment assignment Ab,

resulting in distribution of statistics Tp(Ab). The exact null distribution is often estimated by

conducting B permutations for large B, and a p-value is obtained by pB = 1
B =

B∑
b=1

I(|Tp(Ab)| >

|Tp|). For a level α test, we reject the sharp null of no treatment effect when pB < α.
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2.2 Dependent Outcomes

For clustered outcomes, we consider modifications of the univariate tests that accommodate

correlation in responses.

Method Ib: Wald test of β∗1 in model (2) using GEE (Liang and Zeger (1986))

To accommodate correlation in outcomes within a cluster, generalized estimating equations

may be constructed assuming model (2) holds. The adjusted treatment effect β∗1 is estimated

by solving the generalized estimating equations

n∑
i=1

DiV
−1
i [Yi − g(Ai,X;β)] = 0, (4)

where Di =
dg(Ai,X;β))

dβT ,Vi = Vi(ϕ)
1/2RVi(ϕ)

1/2. The working covariance Vi is determined

by the mi ×mi correlation matrix R and diagonal variance matrix Vi(ϕ). The variance of β̂ is

calculated by the sandwich variance estimator,

ˆvar(β̂) =

(
n∑

i=1

DiV
−1
i Di

)−1( n∑
i=1

[
DiV

−1
i {Y − g(Ai,X;β)}

]⊗ 2

)(
n∑

i=1

DiV
−1
i Di

)−1

, (5)

and Tc is calculated to evaluate H0 : E[Yi|Xi, Ai = 1] = E[Yi|Xi, Ai = 0].

Method IIb: Wald test of β1 in model (1) using augmented GEE {Stephens et al. (2012a)}

Assuming marginal model (1), augmented estimating equations are formed by

n∑
i=1

ψa(Oi;β, η) =

n∑
i=1

{
DiV

−1
i {Yi − g(Ai;β)}−

K∑
a=1

{I(Ai = a)− πa}[Di(a)V
−1
i (a){d{Xi; ηa)− g(a;β)}]

}
= 0,

where d(Xi; ηa) is an estimate of E[Yi|Ai = a,Xi]. To estimate var(β̂), the standard

estimating function is replaced with the augmented estimating function ψa in the middle

term of (5).

Method IIIb: Approximation to the Exact Test (Multivariate)

8
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Although responses yij and covariates xij are considered fixed for randomization infer-

ence, the calculated covariance among yij in the ith cluster incorporates information on

the difference in the between versus within sum of squares, which may increase power in

testing. A working covariance Vi as for GEE is incorporated into the test statistic given

by

SD =
n∑

i=1

(Ai − π)1V−1
i wi, (6)

where wi is the residual vector wi = (wi1, wi2, ..., wimi
)T determined by wij = ε̂ij = yij −

d(xij; η̂) and 1 is the mi−dimensional vector of 1s. To estimate correlation parameters,

the method of moments is used. We consider the moment estimating equations

n∑
i=1

∑
j<j′

{wijwij′

τ
− r(γ)

}
,

where τ =
n∑

i=1

mi∑
j=1

w2
ij. The weight matrix Vi is given by Vi = L1/2UL1/2, where L is an

mi ×mi diagonal matrix with τ along the diagonal, and U is a correlation matrix, where

Qj,j′ = r(γ). For vector-valued outcomes Yi, the variance is

V ar(S|yi,xi) = π(1−π)
n∑

i=1

(1V−1
i wi)

⊗
2+

(
π
n/2− 1

n− 1
− π2

) Q∗︷ ︸︸ ︷∑
i̸=i′

(1V−1
i wi)(1V

−1
i′ wi′)

T,

(7)

where Q∗ is the small-sample correction for fixed treatment allocation. Bickel and Zwet

(1978) may be applied to dependent outcomes as well to ensure nominal type I error levels

in small samples.

Method IVb: Exact Test (Multivariate)

The null distribution of test statistic (6) is determined by permuting the cluster-

level treatment assignment Ai. Because outcomes and covariates are fixed, the residuals

9
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ε̂ij = yij −d(xij; η̂) and working covariance Vi do not depend on the permuted treatment

assignment under H0. Working covariance parameters therefore only need to be estimated

once, and Vi is equal for all permutations Ab. Testing is conducted as in section 2.1.

2.3 Model Selection for Baseline Covariates

When the set of baseline covariates is high dimensional relative to sample size, adjusting

for all available covariates may be inefficient. Prior knowledge may suggest the inclusion of

some covariates; among other covariates whose impact on Yi is not well understood model

selection may help to determine which covariates to include. Adjusted mean models and

augmented estimation require the conditional mean model E[Y |X, A], whereas random-

ization inference requires an estimate of E[Y |X]. Current literature provides a wide array

of methods for selection of baseline covariates, particularly for univariate outcomes. Step-

wise selection procedures based on some entry criterion may be used. Methods based on

penalized likelihoods such as LASSO (Tibshirani (1996)), adaptive LASSO (Zou (2006)),

SCAD (Fan and Li (2001)), and MC+ (Zhang (2010)) are all applicable. Model selection

for multivariate outcomes is less developed, but extensions of available methods are pre-

sented and discussed in Sofer et al. (2012). We consider two popular approaches, forward

selection by AIC or BIC, and adaptive LASSO, (Zou (2006)) where the tuning parameter

is selected by cross validation.

Forward selection is an example of a greedy algorithm, defined as an algorithm that

makes the locally optimal choice at each stage in search of a global optimum (Black

(2005)). To find the best predictive model, forward selection starts with a generalized

linear model containing the intercept and at each step enters a single covariate according

to a prespecified criterion. Examples of entry criteria include minimizing p-values or an

information criterion such as AIC, or maximizing adjusted r2.

10
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Model selection by penalized regression is derived by minimizing an objective function

Ω(β) =
n∑

i=1

L{Yi, g(Ai,X; β)}+ Pλ(β), (8)

which consists of a loss function L{Yi, g(Ai,X; β)} and a penalty Pλ(β), where Pλ(β)

is indexed by a nonnegative tuning parameter λ. The form of Pλ(β) defines various

regularized regression methods; for adaptive LASSO Pλ(β) = λ

p∑
k=1

ŵk|βk| with weights

ŵk = 1/|β̂γ
k | derived from an initial fit of β. We consider an adaptive LASSO-hybrid

implementation motivated by the LASSO-OLS hybrid (Efron et al. (2004)), in which

LASSO is used to determine the covariates for which βk ̸= 0, and the selected model is

subsequently fit by OLS.

When outcomes are multivariate Sofer et al. (2012) suggest that accounting for cor-

relation improves the efficiency of penalized regression estimates. In small samples, it

is especially desirable to reduce the variability in penalized regression since the number

of units may not be sufficient to achieve consistency despite estimation under a mis-

specified independence correlation structure. The authors recommend scaling outcomes

and covariates by Λ1/2, where Λ=V−1
i is a working precision matrix based on an initial

estimate of the coefficient vector. The initial estimate may be determined by a model

selection method that assumes independence. For validation-based penalized regression,

estimation proceeds as in the univariate case on the scaled outcomes Ỹi = Λ1/2Yi and co-

variates X̃i = Λ1/2Xi. We also consider forward selection of Ỹi on X̃i to evaluate possible

improvements in model selection and resulting power for testing treatment effects.
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3 Simulation Study

3.1 Univariate

We first consider scalar outcomes Yi. For each simulated dataset 25 baseline covariates

Xi1 , ..., Xi25 were generated from the multivariate lognormal distribution by exponentiat-

ing draws from the multivariate normal distribution with mean µ = (0, 0, ..., 0) and covari-

ance Σ, where Σ was defined such that corr(log(Xik),log(Xik′ )) = 0.5 for k, k′ = 1, ..., 10,

corr(log(Xik),log(Xik′ )) = 0.2 for k = 1, ..., 10, k′ = 11, ..., 20, corr(log(Xik),log(Xik′ ) = 0

for k = 1, ..., 20, k′ = 2, ..., 25, and var(log(Xik)) = 1 for k = 1, ..., 25. Treatment Ai was

binary and simulated with a fixed, equal number of subjects assigned to treatment or con-

trol. Outcomes were generated from the model Yi = η0 + η1Ai + η2Xi1 + η3Xi2 + η4Xi10 +

η5Xi11η6Xi12 + εi with log(εi) ∼ N(0, 1.9), η′ = (1, 0, 1, 1, 0.2, 0.2, 0.2) under the null and

η′ = (1, 4, 1, 1, 0.2, 0.2, 0.2) under the alternative. Sample sizes of na = 10, 15, 25, 50, 100

in each treatment arm were considered. Under this design, baseline covariates accounted

for roughly 30% of the variability in Yi|Ai.

All four covariate-adjusted methods were applied to each dataset, and various adaptive

procedures were used to select among the 25 baseline covariates. Several variations for

each covariate-adjusted test were considered, with each variation defined by a different

regression model. For adaptive approaches, selection of regression models was based on

three different methods: forward selection minimizing AIC, forward selection minimizing

BIC, and the adaptive LASSO-OLS hybrid. The adaptive LASSO tuning parameter was

selected by l-fold cross validation, where l = n/10. For Method Ia, inference was per-

formed by OLS on the model including Ai and covariates suggested by the adaptive model

selection procedure. Adaptively selected models were compared to two fixed models: the

data generating model, which serves as a benchmark for the largest possible improvement

in power, and an incorrect model, E[Yi|Xi, Ai] = η0+η1Xi1+η2Xi3+η3X10+η4Xi13+η5Xi21 ,

including two predictive covariates and 3 noisy covariates. Finally, each method was also

12

http://biostats.bepress.com/harvardbiostat/paper150



applied to the unadjusted outcomes Yi to assess whether incorporating baseline covariates

improved power compared to no adjustment. Treatment was forced into the regression

model for Methods Ia and IIa. In investigation of Methods IIIa and IVa, treatment was

omitted from covariate selection, as the sharp null excludes any estimated effect of treat-

ment, even if not significant. In addition to assessing type I error and power when the

true data-generating model was contained in the set of candidate models, we also as-

sessed power when important transformations for baseline covariates were not included.

We modified the data generating mechanism to include squared terms for Xi1 and Xi10

and changed the coefficient of Xi1 to η1 = 0.50. As in the previous setting, model fitting

algorithms for determining predictive covariates only considered linear terms.

Results for type I error are shown below in Figures 1a-1b and Table 1. Method Ia

performed poorly for small sample sizes with model selection, leading to type I error

rates as large as α=0.2. For fixed models chosen apriori, testing β∗
1 preserves type I

error, and is even slightly conservative as a result of the skewness in the covariates and

outcomes (α=0.0311-0.043). The performance of asymptotically equivalent Method IIa

varies over the choice of model selection procedure. For adaptive LASSO, the augmented

test resulted in type I errors roughly twice the nominal level at na = 10. Adaptive

selection of covariates by AIC or BIC had even larger type I error inflation (α=0.40 for

na=10). Type I error was still not preserved when augmenting with fixed models (0.12

for na=10). By contrast, Methods IIIa and IVa maintained type I error at all sample sizes

considered. The approximate exact test remained slightly conservative due to skewness in

the data, while the exact test achieved nominal type I error levels. There are noteworthy

differences in the behavior of the various model selection procedures. As expected, BIC

favored more parsimonious models than AIC: AIC-based selection resulted in models

with 5 to 7 baseline covariates on average; BIC, with 3 to 4 covariates. Adaptive LASSO

was the most conservative model selection procedure, and included 1 to 4 covariates on

average, with the number of covariates selected increasing with the sample size.

13
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Table 2 provides simulation results demonstrating the impact of model selection pro-

cedures on power. For na ≤ 50, covariate adjustment based on AIC and BIC resulted

in larger power than did the correct covariate adjustment model for Methods Ia and IIa

(Power=0.68-0.91 for AIC and BIC, Power=0.58-0.90 for the correct model), suggesting

that the former led to overfitting of the regression. The power of adjustment with adap-

tive LASSO did not exceed the power of adjustment under the correct model for any

covariate-adjusted test statistic considered. In general, Methods IIIa and IVa had lower

power than Methods Ia and IIa, reflecting the fact that the randomization-based tests pre-

serve type I error whereas adding covariates to the mean model and augmentation tests do

not. For very small sample sizes (na ≤ 15), covariate adjustment by AIC resulted in lower

power than the unadjusted test (Approx. Exact AIC = 0.36-0.46 , Approx. Exact Unad-

justed 0.41-0.52 ; Exact AIC = 0.49-0.57, Exact Unadjusted = 0.59-0.64 ). For na ≥ 25,

AIC-based adjustment improved power compared to no adjustment. Model selection by

BIC and adaptive LASSO, which penalize more severely for model complexity than AIC,

improved power over unadjusted test statistics across all simulated sample sizes. Method

IVa had higher power than Method IIIa, with the difference in power increasing inversely

with sample size. Across all settings considered, Bickel’s adjustment for the distribution

of the approximate exact test had little impact on resulting inferences, suggesting that

even higher order terms may be necessary to recover nominal type I error.

In the second set of power simulations, the data-generating model contained quadratic

terms that were not considered in covariate adjustment. Results are shown in Figures

3a-3b and Table 3. The relative performance of adaptive procedures remained the same.

At small samples sizes, exact inference AIC resulted in less power improvement than

the other adjustment methods. At na = 10, exact inference based on the AIC-selected

model mirrored unadjusted exact inference (Method IVa AIC = 0.27, Method IVa Unad-

justed=0.25). Considering Method IIIA, AIC-based inference increased power relative to

not adjusting, but gains were limited compared to BIC selection, adaptive LASSO, and
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the prespecified incorrect model (AIC =0.245, Unadjusted= 0.18, BIC=0.3166, adaptive

LASSO=0.3541, Prespecified=0.3044). Increasing the sample size per arm to na = 25,

power for AIC-selected adjustment was more similar to the BIC and adaptive LASSO. At

na ≥ 50, all adaptive procedures resulted in similar power, while the incorrect prespecified

model had lower power (Prespecified=0.49-0.75, Adaptive Methods = 0.54-0.84).

3.2 Multivariate

To evaluate clustered outcome data, values for covariates Xij1 , ..., Xij25 were generated,

withXijk = Xik for k = 1, ..., 10. For each cluster, (log(Xi1), ..., log(Xi10)) ∼MVN(0,Σ2),

where Σ2 was defined such that corr(log(Xik),log(Xik′
)) = 0.5 for k = 1, ..., 5, k′ = 1, ..., 5

and k = 6, ..., 10, k′ = 6, ..., 10, corr(log(Xik),log(Xik′ )) = 0.2 for k = 1, ..., 5, k′ = 6, ..., 10.

Each covariate Xijk for k = 11, ..., 20 was simulated from the multivariate lognormal

distribution with corr(log(Xijk), log(Xij′k))=0.2 independently across k. Finally, for

k = 21, ..., 25, log(Xijk) ∼ N(0, 25) with independence between and within clusters.

Binary treatment Ai was generated with P (A = 1) = 0.5, with the total number of clus-

ters assigned to each treatment level fixed accordingly. To induce unexplained correlation

within clusters, random cluster effects bi were simulated, with log(bi) ∼ N(0, ρσ2), where

ρ was varied to induce high or low intracluster correlation. Outcomes Yij were generated

from the model Yij = η0 + η1Ai + η2Xi1 + η3Xij11 + η4Xi3 + η5Xij12η6Xij15 + bi + εij, with

log(εij) ∼ N(0, σ2 = 1.9). We set the coefficient vector η = (1, 0, 1.25, 1.25, 0.2, 0.2, 0.2)

under the null hypothesis of no treatment effect, and η = (1, 2.2, 1.25, 1.25, 0.2, 0.2, 0.2)

under the alternative. Monte Carlo datasets consisted of n = 10, 15, 25 clusters of size

mi = 20, 30 or n = 25, 50, 100 clusters of size mi = 4, 6, 8 per treatment arm. Values of

ρ considered were ρ = 7/19 under the null, and ρ = 7/19, 1 under the alternative, corre-

sponding to corr(Yij, Yij′ |Xi, Ai)=5% and 50%, respectively. At ρ = 7/19, the correlation

between Yij and baseline covariates was 0.28, whereas ρ = 1 reduced corr(Yij,Xij|Ai) to

0.17.
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We first adaptively determined predictive models for the mean outcome conditional

on baseline covariates without consideration of correlation among outcomes within a

cluster. We then compared these results to the Monte Carlo power of adjusted tests

when model selection did account for correlation in responses (Section 2.3). Selection

of baseline covariates for adjustment included forward selection by AIC, two modifica-

tions of BIC for multivariate data, and adaptive LASSO. All regression models were

ultimately fit by OLS. For BIC, two regression models were selected, the first consider-

ing the number of clusters in the penalty for model complexity(BICn), and the second

calculating BIC based on the total number of individual-level observations(BICm). In

deriving BIC for mixed models, Pauler (1998) showed that for a random intercept model

the true penalty is of the form Ωh =

p∑
k=1

log(N∗
k ), where h indexes candidate models,

k indexes the p covariates in the hth model, N∗
k = n for between-cluster effects, and

N∗
k = M for within-cluster effects. BICm and BICn therefore correspond to models

containing only cluster-level covariates or individual-level covariates, respectively. Eval-

uating the true BIC for models including both types of covariates requires calculating

Ωh for each candidate model in the stepwise procedure by observing its cluster-level

and individual-level covariates. To ease computation, BICm and BICn were used. The

adaptive LASSO tuning parameter was selected based on five-fold cross validation. The

two fixed regression models included the data generating model and an incorrect model,

E[Yij|Xij, Ai] = η0 + η1Xi1 + η2Xi2 + η3Xi10 + η4Xij13 + η5Xij21 , including two predictive

covariates and 3 noisy covariates. For Methods Ib and IIb, treatment was forced into

the regression model; model selection and prespecified models for the randomization tests

omitted treatment. The null distribution of the observed test statistic under the exact

test was determined by permuting the treatment assignment across clusters b = 1000

times. Unadjusted tests were also performed for each method and compared to covariate-

adjusted tests. The impact of incorporating the covariance structure on randomization

tests was evaluated by conducting each test under both independence and exchangeable
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correlation structures for each adjustment model. Specification of a covariance structure

for standard GEE and augmented GEE methods have been evaluated elsewhere (Wang

and Carey (2003),Stephens et al. (2012a)).

Type I error for each method is presented in Tables 5-7. In small samples (na ≤ 25)

GEE methods fail to control type I error for all covariate-adjusted analyses. Inflation of

type I error reflects bias in variance estimation of the sandwich estimator in small samples

as well as additional variance induced by model selection. Under model selection, type

I error was as large as α = 0.24 for Method Ib and α = 0.31 for Methods IIb. When

the number of clusters was large (na ≥ 50), nominal type I error levels of α = 0.05 were

achieved when covariates were not selected adaptively. Type I error was still inflated under

model selection for the large n considered (α = 0.05 − 0.068 for na ≤ 25), but inflation

was slight compared to that observed for small n (α=0.07-0.31). For testing treatment

effects, model selection by AIC resulted in the largest type I error, followed by the BIC

methods; the adaptive LASSO had the least type I error inflation. For the randomization

tests, the approximate exact test was generally conservative across all outcomes. The

Bickel adjustment for defining the rejection region increased type I error levels of the

approximate exact test closer to the nominal level. The exact test had nominal type I

error across selected and prespecified covariate-adjusted models.

Plots 4a-6b and Tables 8-13 compare power across covariate-adjusted tests for depen-

dent outcomes. In most cases, covariate adjustment improved power compared to the

corresponding unadjusted approaches, regardless of the method of model selection used.

Precision matrix scaling seemed to reduce overfitting in model selection; adaptive meth-

ods tended to select fewer covariates when outcomes and covariates were scaled prior

to adjustment in the setting where outcomes were highly correlated (Table 14). Post-

selection randomization tests also had larger power when outcomes and covariates were

scaled before selection versus not scaled.

Method IVb at na = 10 AIC and BICn selection strategies had lower power than

17

Hosted by The Berkeley Electronic Press



did strategies that did not adjust for baseline covariates when the exchangeable working

covariance was used and precision matrix scaling was not done prior to model selection

(Unadjusted 0.2170, AIC 0.1894, BICn 0.2014). Upon scaling outcomes and covariates

prior to model selection, post-selection by AIC or BICn tests were more powerful than

unadjusted tests (AIC 0.229, BICn 0.250). Of the adaptive methods considered, forward

selection by BICm resulted in the largest power for both levels of intracluster correlation.

Exchangeable working covariance specification improved power over working indepen-

dence only for randomization tests of the unadjusted outcomes yi.

4 Application

Covariate-adjusted tests were applied to data from the Young Citizens study. Young

Citizens was a cluster-randomized intervention trial designed to evaluate the effectiveness

of a behavioral intervention in training adolescents to be peer educators about HIV. Thirty

communities were randomized to intervention or control, resulting in 15 communities

per arm. Residents in participating communities were surveyed regarding the degree to

which they believed adolescents could effectively communicate to their families and peers

about HIV transmission dynamics. The outcome Yij was a child empowerment score from

responses given by individuals within each randomized community. Additional covariates

characterizing the communities and households of survey respondents were measured.

Predictive models for baseline covariates were first determined by AIC, BICn, BICm,

and adaptive LASSO. Covariates selected by AIC include employment status (employ-

ment), age of the head of household (age), whether or not the household had a flushing

toilet (flushing toilet), number of relatives in the neighborhood (relatives), religion, com-

munity population density (density), transportation ownership (transportation), home

ownership (home), and interactions of treatment with relatives and density. BICn se-

lected the same covariates as AIC except for transportation and home, which it did not
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enter into the model. BIC penalized by the number of total observations (BICm) chose

employment, age, and flushing toilet. Finally, adaptive LASSO picked flushing toilet,

religion, employment, age, and interactions with treatment and density, relatives, and

number of kids in the house. For randomization tests, the AIC-based model contained

employment, flushing toilet, age, religion, relatives, home, and wealth deviance for each

family from the mean community wealth. BICn selected employment, flushing toilet,

age, religion and relatives. Selection by BICm and adaptive LASSO chose employment,

flushing toilet, and age.

Table 15 presents results from the Young Citizens analysis. Adjusted and augmented

GEE methods were associated with highly significant treatment effects (p < 0.0001) across

covariate-adjusted and unadjusted tests. For the approximate exact tests, all covariate-

adjusted methods yielded a significant intervention effect. When unadjusted, however,

only the test using exchangeable covariance resulted in significantly different child em-

powerment between intervention groups (p = 0.0233 for exchangeable working covariance,

p = 0.10 under independence). Applying Bickel’s small-sample adjustment to obtain tail

probabilities resulted in p-values that were slightly larger than those based on the stan-

dard normal distribution. Among permutation tests, significant intervention effects were

detected under covariate-adjustment, but not in the absence of such adjustment for ei-

ther working covariance structure. The data provide sufficient evidence that children who

participated in the intervention were significantly more equipped to educate their peers

about HIV. The results underscore the importance of using appropriate methodology and

utilizing baseline covariate information. Unadjusted tests based on GEE methods were

highly significant, but as shown in the simulation studies of Section 3, the validity of

such methods is not guaranteed with a fairly small number of clusters. Randomization

tests, with guaranteed validity in small samples, showed similar results with covariate

adjustment, but conclusions of unadjusted tests were inconsistent.
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5 Discussion

We have investigated the dangers and merits of several procedures that allow for flexi-

ble covariate adjustment when applied to small samples. Simulation studies showed, as

expected, that AMM and augmented methods break down in small samples when the

number of baseline covariates is large relative to the sample size. Alternatively, ran-

domization methods, which exploit the fact that outcomes and baseline covariates are

regarded as fixed, provide valid tests for treatment effects while flexibly incorporating

baseline covariates. Model selection may be used to identify the set of baseline covariates

that explain the greatest amount of variability in the outcome while preserving the type I

error of the primary test. The central conclusion is that for randomization tests, adjust-

ment models need not be prespecified to preserve the nominal type I error. Furthermore,

adjustment generally increases the power of testing for treatment effects over unadjusted

methods, with the caveat that in extremely small samples of independent outcomes, such

as na = 10, 15, model selection approaches must be sufficiently conservative. Model se-

lection by BIC and adaptive LASSO, which have stronger penalties and therefore favor

more parsimonious models than AIC, resulted in improved power at the smallest sam-

ple sizes considered. Further research is needed to formally characterize the power of

covariate-adjusted tests under misspecified covariate adjustment and adaptive covariate

selection.

Our work has focused on hypothesis testing for evaluating treatment effects. For confi-

dence interval estimation, hypothesis tests may be inverted. When inverting randomization-

based hypothesis tests, it is important to note that for each potential value of the treat-

ment effect considered, model selection needs to be repeated, since conditional mean

models are estimated by pooling across treated and untreated subjects. Interval esti-

mation may be simplified by a slight modification of the testing procedure. Under the

sharp null, the conditional mean model may be estimated using data only for untreated

subjects. The model may then be applied to all subjects in conducting the test. Not
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pooling the data when estimating the conditional mean model removes the need for its

re-estimation with each treatment effect value considered. For small-sample univariate

data, it may not be feasible to perform model selection on one treatment group, but for

a small number of moderately sized clusters such a strategy may be more reasonable.
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Figure 1: Type I Error and Power of Univariate AMM and Augmented Tests. Adaptive
regression model selection: AIC, BIC, Adaptive LASSO. Prespecified models: Correct, Incorrect.
’Unadjusted’ denotes the test statistic that does not incorporate baseline covariates.
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Figure 2: Power of Univariate Approx. Exact and Exact Tests when the correct model is
a candidate model. Adaptive regression model selection: AIC, BIC, Adaptive LASSO. Prespecified
models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate baseline
covariates.
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Figure 3: Power of Univariate Approx. Exact and Exact Tests when the correct model
is not a candidate model. Adaptive model selection: AIC, BIC, Adaptive LASSO. Prespecified
models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate baseline
covariates.
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Figure 4: Type I Error and Power of Multivariate AMM and Augmented Tests. Adaptive
regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (Lasso).
Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incor-
porate baseline covariates.

(a) AMM

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Subjects per arm

Ty
p
e
 I
 E

rr
o
r/

P
o
w

e
r

Correct
BICn
BICm
Lasso
AIC
Incorrect
Unadjusted

(b) Augmented

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Subjects per arm

Ty
p
e
 I
 E

rr
o
r/

P
o
w

e
r

Correct
BICn
BICm
Lasso
AIC
Incorrect
Unadjusted

27

Hosted by The Berkeley Electronic Press



Figure 5: Power of Multivariate Approx. Exact and Exact Tests: low correlation. Adaptive
regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (Lasso).
Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incor-
porate baseline covariates.
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Figure 6: Power of Multivariate Approx. Exact and Exact Tests: high correlation. Adap-
tive regression model selection: AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (Lasso).
Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incor-
porate baseline covariates.
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Table 1: Type I Error of Univariate Covariate-adjusted Tests. Adjusted mean model (AMM),
Augmented, Approx. Exact (without Bickel adjustment), Approx. Exact (Sm) (with Bickel ad-
justment) and Exact tests. Adaptive regression model selection: AIC, BIC, Adaptive LASSO (A.
LASSO). Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does
not incorporate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0384 0.2089 0.1744 0.0505 0.0381 0.0311
15 0.0379 0.2224 0.1488 0.0526 0.037 0.0333
25 0.0414 0.1102 0.0792 0.0465 0.04 0.0344
50 0.0444 0.0679 0.055 0.0464 0.0407 0.0409
100 0.0445 0.053 0.0486 0.044 0.043 0.0425

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0384 0.4005 0.2874 0.0936 0.1228 0.1116
15 0.0379 0.3595 0.2143 0.0801 0.0846 0.0788
25 0.0414 0.1551 0.1036 0.0652 0.0645 0.0588
50 0.0444 0.082 0.0649 0.0559 0.0524 0.0493
100 0.0445 0.0585 0.051 0.0462 0.0486 0.0466

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0346 0.0368 0.0383 0.0356 0.0368 0.0356
15 0.0354 0.0446 0.0406 0.0375 0.0347 0.0375
25 0.0398 0.0375 0.0388 0.039 0.0389 0.039
50 0.0438 0.0415 0.0423 0.0417 0.0398 0.0417
100 0.0442 0.0421 0.0438 0.0418 0.043 0.0418

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.033 0.035 0.036 0.034 0.0347 0.034
15 0.0354 0.0442 0.0396 0.037 0.0345 0.037
25 0.0412 0.0384 0.0398 0.0403 0.0394 0.0403
50 0.0456 0.0433 0.0443 0.0432 0.0424 0.0432
100 0.0454 0.0432 0.0453 0.0433 0.0442 0.0433

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0498 0.0487 0.0491 0.0489 0.0519 0.0486
15 0.0499 0.0543 0.0511 0.0491 0.0481 0.0495
25 0.0518 0.0456 0.0491 0.0492 0.0509 0.0494
50 0.0515 0.0517 0.0529 0.0541 0.0524 0.0546
100 0.0505 0.0483 0.0524 0.0489 0.0513 0.0504
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Table 2: Power of Univariate Covariate-adjusted Tests when the correct model is a can-
didate model. Adjusted mean model (AMM), Augmented, Approx. Exact (without Bickel ad-
justment), Approx. Exact (Sm) (with Bickel adjustment) and Exact tests. Adaptive regression
model selection: AIC, BIC, Adaptive LASSO (A. LASSO). Prespecified models: Correct, Incorrect.
’Unadjusted’ denotes the test statistic that does not incorporate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4204 0.6883 0.7182 0.5805 0.4999 0.5843
15 0.5224 0.7647 0.7758 0.6796 0.6226 0.6871
25 0.6532 0.8329 0.8362 0.791 0.7532 0.7912
50 0.8343 0.9139 0.9144 0.9035 0.8874 0.9029
100 0.9549 0.9706 0.971 0.9692 0.9658 0.9687

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4204 0.7991 0.7786 0.643 0.6448 0.7018
15 0.5224 0.8244 0.8095 0.7188 0.7012 0.7476
25 0.6532 0.8573 0.8523 0.8091 0.7911 0.82
50 0.8343 0.9206 0.9188 0.9102 0.8971 0.9096
100 0.9549 0.9722 0.9722 0.97 0.9679 0.9705

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4091 0.365 0.4649 0.5136 0.4761 0.5586
15 0.515 0.4567 0.6038 0.6316 0.6116 0.6793
25 0.6494 0.7351 0.7819 0.7718 0.7486 0.7891
50 0.8339 0.8957 0.9034 0.8983 0.8868 0.9029
100 0.9547 0.9683 0.9686 0.9682 0.9657 0.9686

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4051 0.3567 0.4552 0.5056 0.4681 0.5549
15 0.5139 0.4528 0.5996 0.6297 0.6107 0.6807
25 0.6516 0.7366 0.7831 0.7741 0.7515 0.7922
50 0.8358 0.898 0.9055 0.9014 0.8901 0.9054
100 0.9562 0.9695 0.971 0.9696 0.9676 0.97

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4594 0.393 0.4951 0.5486 0.5104 0.5934
15 0.5529 0.4753 0.6198 0.6594 0.6409 0.7074
25 0.6781 0.752 0.7973 0.7955 0.7734 0.8151
50 0.8465 0.9059 0.914 0.9126 0.8998 0.9171
100 0.9618 0.9747 0.9752 0.9752 0.9734 0.9759
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Table 3: Power of Univariate Covariate-adjusted Tests when the correct model is not
a candidate model. Adjusted mean model (AMM), Augmented, Approx. Exact (without Bickel
adjustment), Approx. Exact (Sm) (with Bickel adjustment) and Exact tests. Adaptive regression
model selection: AIC, BIC, Adaptive LASSO (A. LASSO). Prespecified models: Correct, Incorrect.
’Unadjusted’ denotes the test statistic that does not incorporate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1880 0.5805 0.6094 0.4500 0.5883 0.3231
15 0.2132 0.6545 0.6557 0.5359 0.6894 0.3947
25 0.2544 0.6809 0.6692 0.6150 0.7919 0.4793
50 0.3305 0.7613 0.7554 0.7343 0.9030 0.6154
100 0.4413 0.8417 0.8412 0.8295 0.9714 0.7419

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1880 0.7467 0.7057 0.5427 0.6054 0.4729
15 0.2132 0.7556 0.7143 0.6067 0.6397 0.4889
25 0.2544 0.7297 0.7078 0.6588 0.7134 0.5329
50 0.3305 0.7820 0.7701 0.7508 0.8196 0.6386
100 0.4413 0.8480 0.8476 0.8367 0.9071 0.7512

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1815 0.2450 0.3166 0.3541 0.5680 0.3044
15 0.2075 0.3053 0.4161 0.4501 0.6800 0.3847
25 0.2512 0.5292 0.5724 0.5673 0.7884 0.4746
50 0.3290 0.7069 0.7204 0.7142 0.9025 0.6133
100 0.4401 0.8269 0.8322 0.8238 0.9710 0.7409

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1792 0.2380 0.3101 0.3452 0.5629 0.2995
15 0.2088 0.3020 0.4114 0.4479 0.6820 0.3829
25 0.2569 0.5284 0.5719 0.5676 0.7915 0.4760
50 0.3360 0.7075 0.7219 0.7153 0.9059 0.6166
100 0.4499 0.8289 0.8328 0.8250 0.9726 0.7442

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.2669 0.3412 0.3803 0.6056 0.3329 0.2551
15 0.3212 0.4298 0.4700 0.7127 0.4092 0.2793
25 0.5436 0.5866 0.5810 0.8157 0.4973 0.3135
50 0.7135 0.7263 0.7238 0.9165 0.6301 0.3824
100 0.8324 0.8367 0.8299 0.9788 0.7551 0.4882
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Table 4: Average Number of Baseline Covariates selected by AIC, BIC, and Adaptive LASSO
by sample size when candidate models include the correct model. First entry - number of baseline
covariates selected when treatment was forced into the model. Second entry - number of baseline
covariates when treatment was omitted from the model.

na AIC BIC A. LASSO
10 6.45 3.93 1.84

5.75 3.60 1.61
15 8.65 4.14 2.63

7.96 3.93 2.26
25 6.13 3.19 3.11

5.95 3.15 2.87
50 5.46 2.94 3.69

5.41 2.93 3.57
100 5.49 3.01 3.92

5.48 3.00 3.82

Table 5: Type I Error of Multivariate AMM and Augmented tests. Adaptive regression
model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO). Pre-
specified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate
baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0692 0.2382 0.2100 0.1544 0.1566 0.0970 0.0958
15 0.0596 0.1504 0.1306 0.1052 0.1040 0.0688 0.0664
25 0.0548 0.1012 0.0946 0.0846 0.0904 0.0650 0.0676

Small mi 25 0.0589 0.1014 0.0831 0.0779 0.0747 0.0627 0.0639
50 0.0466 0.0642 0.0562 0.0526 0.0550 0.0470 0.0522
100 0.0483 0.0659 0.0601 0.0607 0.0601 0.0586 0.0556

Augmented
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0692 0.3076 0.2636 0.1824 0.1982 0.1204 0.1196
15 0.0596 0.1984 0.1650 0.1236 0.1394 0.0836 0.0838
25 0.0548 0.1244 0.1114 0.0964 0.1128 0.0752 0.0738

Small mi 25 0.0589 0.1234 0.0923 0.0817 0.0827 0.0710 0.0734
50 0.0466 0.0734 0.0620 0.0578 0.0602 0.0538 0.0560
100 0.0483 0.0665 0.0586 0.0580 0.0601 0.0601 0.0559
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Table 6: Type I Error of (Multivariate) Approximate Exact Tests. Results based on Bickel’s
adjusted cdf are indicated by (Sm). Adaptive regression model selection: AIC, BIC by n (BICn), BIC
byM ,(BICm), Adaptive LASSO (A. LASSO). Prespecified models: Correct, Incorrect. ’Unadjusted’
denotes the test statistic that does not incorporate baseline covariates.

Approximate Exact (Ind)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0406 0.0426 0.0384 0.0418 0.0380 0.0400 0.0438
15 0.0460 0.0378 0.0404 0.0406 0.0392 0.0382 0.0378
25 0.0430 0.0524 0.0514 0.0500 0.0496 0.0444 0.0484

Small mi 25 0.0443 0.0469 0.0443 0.0451 0.0471 0.0439 0.0413
50 0.0432 0.0408 0.0392 0.0404 0.0396 0.0386 0.0434
100 0.0428 0.0501 0.0516 0.0531 0.0528 0.0531 0.0492

Approximate Exact (Ind-Sm)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0412 0.0436 0.0400 0.0434 0.0392 0.0428 0.0454
15 0.0478 0.0400 0.0416 0.0432 0.0416 0.0392 0.0390
25 0.0444 0.0532 0.0522 0.0512 0.0516 0.0468 0.0496

Small mi 25 0.0453 0.0479 0.0473 0.0475 0.0488 0.0455 0.0429
50 0.0444 0.0422 0.0406 0.0414 0.0414 0.0400 0.0458
100 0.0431 0.0519 0.0537 0.0543 0.0549 0.0549 0.0507

Approximate Exact (Exch)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0392 0.0394 0.0384 0.0430 0.0384 0.0402 0.0434
15 0.0432 0.0396 0.0418 0.0412 0.0402 0.0384 0.0384
25 0.0430 0.0522 0.0518 0.0510 0.0510 0.0478 0.0480

Small mi 25 0.0439 0.0463 0.0455 0.0453 0.0477 0.0447 0.0447
50 0.0406 0.0412 0.0392 0.0404 0.0394 0.0390 0.0458
100 0.0434 0.0486 0.0525 0.0525 0.0528 0.0534 0.0495

Approximate Exact (Exch-Sm)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0394 0.0418 0.0404 0.0448 0.0402 0.0430 0.0456
15 0.0446 0.0406 0.0430 0.0428 0.0414 0.0402 0.0390
25 0.0440 0.0538 0.0530 0.0526 0.0528 0.0486 0.0490

Small mi 25 0.0451 0.0481 0.0475 0.0475 0.0496 0.0467 0.0461
50 0.0410 0.0430 0.0408 0.0418 0.0422 0.0410 0.0470
100 0.0443 0.0504 0.0528 0.0525 0.0534 0.0537 0.0510
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Table 7: Type I Error of Multivariate Exact Tests. Adaptive regression model selection: AIC,
BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO). Prespecified models: Correct,
Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate baseline covariates.

Exact (Ind)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0494 0.0496 0.0454 0.0480 0.0428 0.0490 0.0478
15 0.0526 0.0450 0.0450 0.0466 0.0434 0.0464 0.0434
25 0.0474 0.0568 0.0556 0.0528 0.0574 0.0510 0.0510

Small mi 25 0.0486 0.0512 0.0492 0.0500 0.0524 0.0488 0.0498
50 0.0466 0.0446 0.0396 0.0408 0.0420 0.0452 0.0474
100 0.0416 0.0553 0.0543 0.0556 0.0586 0.0562 0.0522

Exact (Exch)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0482 0.0460 0.0454 0.0486 0.0444 0.0494 0.0512
15 0.0500 0.0470 0.0474 0.0456 0.0456 0.0464 0.0436
25 0.0484 0.0558 0.0564 0.0560 0.0570 0.0530 0.0502

Small mi 25 0.0481 0.0520 0.0494 0.0492 0.0522 0.0518 0.0510
50 0.0444 0.0436 0.0408 0.0416 0.0432 0.0446 0.0476
100 0.0464 0.0534 0.0556 0.0556 0.0580 0.0565 0.0522
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Table 8: Power of Multivariate AMM and Augmented Tests: low correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). (*) indicates
model selection on precision matrix-transformed covariates and outcomes. Adaptive regression model
selection: AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models:
Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not incorporate
baseline covariates.

Adjusted Mean Model
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.422 0.834 0.832 0.837 0.832 0.837 0.829 0.803 0.797 0.802 0.684
15 0.515 0.899 0.901 0.901 0.903 0.905 0.905 0.889 0.884 0.895 0.818
25 0.640 0.960 0.962 0.963 0.965 0.966 0.967 0.957 0.954 0.964 0.922
25 0.505 0.829 0.830 0.825 0.826 0.823 0.822 0.806 0.806 0.813 0.721
50 0.758 0.953 0.950 0.953 0.952 0.953 0.952 0.949 0.948 0.949 0.917
100 0.945 0.993 0.994 0.993 0.993 0.993 0.993 0.992 0.993 0.994 0.993

Augmented
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.422 0.869 0.863 0.863 0.858 0.854 0.847 0.836 0.833 0.829 0.724
15 0.515 0.915 0.914 0.914 0.915 0.914 0.912 0.904 0.905 0.907 0.836
25 0.640 0.970 0.969 0.970 0.970 0.969 0.968 0.968 0.965 0.967 0.928
25 0.505 0.836 0.837 0.832 0.832 0.827 0.824 0.813 0.812 0.822 0.736
50 0.758 0.953 0.952 0.950 0.949 0.950 0.950 0.948 0.947 0.948 0.915
100 0.945 0.994 0.994 0.993 0.994 0.993 0.994 0.993 0.994 0.993 0.993
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Table 9: Power of Multivariate Approximate Exact Tests: low correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). (*) indicates
model selection on precision matrix-transformed covariates and outcomes. Results based on Bickel’s
adjusted CDF are indicated by (Sm). Adaptive regression model selection: AIC, BIC by n (BICn),
BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models: Correct (Corr.), Incorrect (Inco.).
’Unadj.’ denotes the test statistic that does not incorporate baseline covariates.

Approximate Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.221 0.453 0.482 0.496 0.530 0.566 0.604 0.495 0.494 0.686 0.529
15 0.325 0.740 0.777 0.769 0.806 0.802 0.829 0.759 0.762 0.853 0.738
25 0.465 0.923 0.935 0.930 0.943 0.939 0.948 0.925 0.927 0.952 0.897
25 0.322 0.725 0.735 0.754 0.760 0.763 0.766 0.748 0.748 0.769 0.671
50 0.564 0.933 0.935 0.938 0.939 0.939 0.939 0.935 0.937 0.941 0.905
100 0.827 0.992 0.993 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.992

Approximate Exact (Ind-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.226 0.460 0.491 0.503 0.539 0.574 0.612 0.501 0.500 0.692 0.536
15 0.328 0.744 0.780 0.773 0.810 0.807 0.833 0.764 0.768 0.856 0.743
25 0.467 0.925 0.937 0.931 0.944 0.940 0.949 0.926 0.928 0.953 0.901
25 0.326 0.730 0.741 0.759 0.767 0.769 0.772 0.753 0.752 0.776 0.675
50 0.568 0.936 0.938 0.941 0.942 0.943 0.942 0.938 0.940 0.943 0.907
100 0.831 0.993 0.994 0.993 0.994 0.993 0.994 0.994 0.994 0.994 0.992

Approximate Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.315 0.450 0.484 0.493 0.531 0.568 0.606 0.493 0.495 0.690 0.536
15 0.445 0.739 0.777 0.769 0.809 0.806 0.832 0.760 0.763 0.855 0.748
25 0.602 0.925 0.938 0.930 0.944 0.940 0.950 0.927 0.927 0.955 0.898
25 0.425 0.726 0.733 0.753 0.760 0.762 0.766 0.746 0.747 0.771 0.674
50 0.712 0.935 0.936 0.937 0.939 0.939 0.940 0.937 0.937 0.942 0.906
100 0.930 0.992 0.994 0.993 0.994 0.993 0.994 0.993 0.994 0.993 0.992

Approximate Exact (Exch-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Incorr.
10 0.319 0.458 0.489 0.500 0.539 0.577 0.613 0.501 0.502 0.696 0.540
15 0.449 0.744 0.781 0.774 0.812 0.810 0.837 0.764 0.768 0.858 0.751
25 0.604 0.927 0.940 0.932 0.946 0.941 0.951 0.928 0.929 0.956 0.901
25 0.430 0.730 0.739 0.758 0.766 0.768 0.772 0.751 0.752 0.777 0.678
50 0.714 0.937 0.938 0.940 0.941 0.942 0.942 0.941 0.940 0.945 0.908
100 0.931 0.993 0.994 0.993 0.994 0.994 0.994 0.994 0.994 0.993 0.993
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Table 10: Power of Multivariate Exact Tests: low correlation. Rows 1-3 contain results
for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). Adaptive regression model
selection: AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models:
Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not incorporate
baseline covariates.

Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.246 0.472 0.502 0.512 0.548 0.587 0.622 0.510 0.513 0.705 0.550
15 0.338 0.751 0.785 0.776 0.815 0.811 0.836 0.767 0.770 0.862 0.751
25 0.473 0.927 0.938 0.934 0.945 0.940 0.950 0.929 0.929 0.956 0.902
25 0.335 0.735 0.744 0.763 0.771 0.773 0.776 0.759 0.759 0.785 0.681
50 0.570 0.940 0.940 0.943 0.944 0.944 0.944 0.942 0.943 0.948 0.909
100 0.830 0.994 0.995 0.994 0.995 0.995 0.995 0.995 0.995 0.994 0.992

Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.347 0.470 0.504 0.512 0.550 0.587 0.622 0.512 0.515 0.709 0.553
15 0.465 0.750 0.785 0.780 0.817 0.813 0.837 0.769 0.772 0.861 0.756
25 0.614 0.929 0.940 0.935 0.948 0.943 0.953 0.931 0.931 0.957 0.902
25 0.443 0.737 0.744 0.761 0.771 0.771 0.774 0.758 0.758 0.784 0.684
50 0.717 0.941 0.941 0.944 0.945 0.946 0.946 0.943 0.943 0.949 0.911
100 0.930 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.994 0.993
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Table 11: Power of Multivariate AMM and Augmented tests: high correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). (*) indicates
model selection on precision matrix-transformed covariates and outcomes. Adaptive regression model
selection: AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models:
Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not incorporate
baseline covariates.

Adjusted Mean Model
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.252 0.524 0.482 0.527 0.477 0.519 0.467 0.503 0.487 0.409 0.356
15 0.297 0.511 0.486 0.515 0.485 0.514 0.479 0.498 0.491 0.449 0.412
25 0.350 0.544 0.532 0.547 0.531 0.549 0.526 0.537 0.527 0.504 0.477
25 0.308 0.487 0.470 0.477 0.462 0.468 0.455 0.459 0.448 0.431 0.395
50 0.466 0.611 0.606 0.605 0.603 0.604 0.603 0.600 0.599 0.590 0.558
100 0.663 0.768 0.769 0.771 0.766 0.770 0.766 0.769 0.761 0.765 0.742

Augmented
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.252 0.630 0.547 0.527 0.459 0.493 0.434 0.607 0.566 0.449 0.401
15 0.297 0.591 0.523 0.507 0.481 0.491 0.465 0.575 0.544 0.479 0.442
25 0.350 0.583 0.551 0.539 0.533 0.532 0.523 0.578 0.557 0.524 0.488
25 0.308 0.515 0.486 0.470 0.463 0.462 0.455 0.487 0.467 0.453 0.414
50 0.466 0.623 0.608 0.602 0.603 0.602 0.601 0.613 0.605 0.598 0.563
100 0.663 0.771 0.767 0.766 0.769 0.763 0.767 0.770 0.766 0.764 0.745
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Table 12: Power of Multivariate Approximate Exact Tests: high correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). (*) indicates
model selection on precision matrix-transformed covariates and outcomes. Results based on Bickel’s
adjusted CDF are indicated by (Sm). Adaptive regression model selection: AIC, BIC by n (BICn),
BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models: Correct (Corr.), Incorrect (Inco.).
’Unadj.’ denotes the test statistic that does not incorporate baseline covariates.

Approximate Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.140 0.170 0.200 0.181 0.217 0.211 0.248 0.181 0.191 0.278 0.232
15 0.197 0.270 0.316 0.280 0.328 0.306 0.340 0.279 0.299 0.355 0.322
25 0.268 0.411 0.438 0.414 0.453 0.421 0.458 0.412 0.422 0.463 0.430
25 0.213 0.328 0.351 0.342 0.365 0.352 0.367 0.340 0.344 0.375 0.342
50 0.355 0.532 0.545 0.541 0.554 0.547 0.557 0.536 0.542 0.554 0.522
100 0.557 0.733 0.744 0.740 0.749 0.743 0.749 0.734 0.736 0.744 0.717

Approximate Exact (Ind-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.142 0.173 0.205 0.185 0.223 0.216 0.252 0.185 0.194 0.284 0.235
15 0.197 0.274 0.320 0.284 0.333 0.310 0.344 0.281 0.303 0.359 0.324
25 0.270 0.413 0.441 0.417 0.454 0.423 0.460 0.415 0.425 0.466 0.432
25 0.215 0.332 0.354 0.345 0.369 0.356 0.371 0.344 0.349 0.379 0.344
50 0.357 0.535 0.549 0.546 0.558 0.550 0.561 0.540 0.548 0.558 0.525
100 0.559 0.734 0.746 0.740 0.751 0.744 0.751 0.736 0.738 0.746 0.719

Approximate Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.174 0.172 0.198 0.183 0.215 0.212 0.247 0.181 0.191 0.281 0.234
15 0.239 0.274 0.320 0.287 0.333 0.311 0.345 0.283 0.300 0.359 0.322
25 0.321 0.413 0.443 0.416 0.453 0.423 0.458 0.413 0.427 0.466 0.430
25 0.266 0.334 0.356 0.348 0.371 0.360 0.374 0.341 0.350 0.380 0.346
50 0.442 0.538 0.553 0.550 0.562 0.556 0.563 0.546 0.548 0.561 0.526
100 0.649 0.740 0.748 0.748 0.751 0.754 0.752 0.742 0.742 0.753 0.732

Approximate Exact (Exch-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.176 0.177 0.201 0.187 0.219 0.215 0.252 0.184 0.193 0.284 0.237
15 0.240 0.278 0.323 0.291 0.337 0.313 0.348 0.286 0.304 0.363 0.325
25 0.323 0.415 0.445 0.419 0.456 0.426 0.459 0.415 0.430 0.467 0.431
25 0.268 0.339 0.360 0.353 0.374 0.365 0.377 0.346 0.354 0.385 0.349
50 0.443 0.542 0.558 0.554 0.565 0.559 0.566 0.550 0.552 0.565 0.528
100 0.650 0.743 0.751 0.750 0.752 0.755 0.754 0.744 0.746 0.755 0.733
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Table 13: Power of Multivariate Exact Tests: high correlation. Rows 1-3 contain results
for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). Adaptive regression model
selection: AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (A. L.). Prespecified models:
Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not incorporate
baseline covariates.

Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.175 0.188 0.231 0.200 0.250 0.234 0.283 0.199 0.215 0.330 0.275
15 0.222 0.294 0.347 0.304 0.367 0.331 0.380 0.302 0.330 0.410 0.366
25 0.295 0.436 0.472 0.442 0.483 0.450 0.487 0.437 0.451 0.505 0.463
25 0.231 0.351 0.379 0.365 0.392 0.378 0.398 0.367 0.374 0.409 0.370
50 0.369 0.552 0.571 0.566 0.579 0.569 0.578 0.556 0.565 0.583 0.546
100 0.571 0.748 0.758 0.754 0.762 0.759 0.761 0.752 0.752 0.761 0.732

Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.217 0.189 0.229 0.201 0.250 0.234 0.284 0.199 0.215 0.330 0.277
15 0.274 0.302 0.355 0.310 0.372 0.334 0.385 0.305 0.329 0.412 0.369
25 0.343 0.438 0.474 0.442 0.483 0.450 0.490 0.439 0.457 0.503 0.467
25 0.291 0.356 0.384 0.373 0.398 0.386 0.399 0.370 0.380 0.415 0.377
50 0.461 0.558 0.574 0.572 0.585 0.577 0.587 0.564 0.572 0.589 0.553
100 0.661 0.755 0.762 0.764 0.768 0.769 0.768 0.758 0.758 0.770 0.749
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Table 14: Average Number of Baseline Covariates selected by AIC, BIC by n (BICn), BIC by
M ,(BICm), Adaptive LASSO (A. LASSO) by sample size when outcomes were multivariate. Rows
1-3 contain results for cluster size mi = (20, 30); rows 4-6 for mi = (4, 6, 8). Results are shown for
estimating E[Yi|Xi] considering untransformed (U) and transformed (T) covariates and outcomes.

Low Correlation
AIC BICn BICm A. LASSO

na U T U T U T U T
10 8.61 9.55 6.65 7.67 3.95 5.12 7.66 8.57
15 9.02 9.33 6.48 7.05 4.10 4.98 8.22 8.79
25 9.45 9.62 6.37 7.01 4.29 5.31 8.77 9.51
25 6.84 7.65 4.11 5.08 3.13 4.15 4.51 5.28
50 7.27 7.96 3.98 4.98 3.22 4.28 4.86 5.52
100 7.82 8.49 4.23 5.28 3.55 4.67 5.93 6.50

High Correlation
Aic BICn BICm Adap Lasso

na U T U T U T U T
10 10.93 9.70 8.95 7.79 5.84 5.24 11.52 9.87
15 11.30 9.44 8.76 7.28 5.99 5.26 12.34 9.65
25 11.69 9.69 8.53 7.30 6.06 5.70 13.01 9.74
25 8.06 7.81 4.99 5.35 3.70 4.41 6.81 5.70
50 8.51 8.61 4.72 5.73 3.72 4.92 7.31 5.94
100 8.86 9.67 4.66 6.46 3.80 5.75 7.94 6.43
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Table 15: Analysis of the Young Citizens study. Covariate-adjusted method (Method), regression
(OR) {AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO)}, test statistic
(T) and p-value (p), with each test statistic evaluated under independence (Ind) and exchangeable
(Exch) working covariance. P-values for Approx. Exact tests are calculated under Bickel’s cdf for
randomization test statistics. ’Unadjusted’ denotes the unadjusted test.

Ind Exch
Method OR Test Stat P Test Stat P
Adjusted AIC 58.7003 < 0.0001 53.5700 < 0.0001

BICm 59.9557 < 0.0001 54.5695 < 0.0001
BICm 4.5046 < 0.0001 4.6231 < 0.0001

A. LASSO 112.0423 < 0.0001 103.4147 < 0.0001
Unadjusted 4.1415 < 0.0001 4.3186 < 0.0001

Augmented AIC 5.1136 < 0.0001 5.2477 < 0.0001
BICM 5.1845 < 0.0001 5.2321 < 0.0001
BICN 4.6400 < 0.0001 4.6565 < 0.0001

Adaptive LASSO 5.3805 < 0.0001 5.3756 < 0.0001
Approx. Exact AIC 3.1326 0.0017 3.3316 0.0009

BICm 3.1431 0.0017 3.3836 0.0007
BICn 3.1223 0.0018 3.3280 0.0009

A. LASSO 3.1223 0.0018 3.3280 0.0009
Unadjusted 1.6172 0.1058 2.2682 0.0233

Approx. Exact (Sm) AIC 3.1326 0.0017 3.3316 0.0008
BICm 3.1431 0.0017 3.3836 0.0007
BICn 3.1223 0.0018 3.3280 0.0009

A. LASSO 3.1223 0.0018 3.3280 0.0009
Unadjusted 1.6170 0.1060 2.2682 0.0233

Exact AIC 89.8329 0.0003 37.0575 0.0003
BICm 91.9124 0.0007 36.5084 0.0003
BICn 88.8094 0.0007 36.5876 0.0007

A. LASSO 88.8094 0.0007 26.5876 0.0007
Unadjusted 434.8410 0.1043 71.4085 0.1200
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