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Some Observations on the Wilcoxon Rank Sum Test

Scott S. Emerson, M.D., Ph.D.

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA

Abstract

This manuscript presents some general comments about the Wilcoxon rank sum test. Even the most
casual reader will gather that I am not too impressed with the scientific usefulness of the Wilcoxon test.
However, the actual motivation is more to illustrate differences between parametric, semiparametric,
and nonparametric (distribution-free) inference, and to use this example to illustrate how many miscon-
ceptions have been propagated through a focus on (semi)parametric probability models as the basis for
evaluating commonly used statistical analysis models. The document itself arose as a teaching tool for
courses aimed at graduate students in biostatistics and statistics, with parts of the document originally
written for applied biostatistics classes and parts written for a course in mathematical statistics. Hence,
some of the material is also meant to provide an illustration of common methods of deriving moments
of distributions, etc.

1 Introduction

The Wilcoxon rank sum test was defined to compare the probability distributions for measurements taken
from two independent samples. This document describes

1. A general notation that applies to all two sample problems.

2. A definition of parametric, semiparametric, and nonparametric probability models that might be used
in the two sample setting.

3. A characterization of the null hypotheses commonly tested in the two sample setting.

4. The transformation of the data used in the definition of the Wilcoxon rank sum test.

5. The formulation of the Wilcoxon rank sum statistic, including its relationship to the Mann-Whitney
U statistic.

6. The sampling distribution of the Wilcoxon rank sum statistic under the various choices for the null
and alternative hypotheses, and the formulation of hypothesis tests and test statistics.

7. The interpretation of the statistic with respect to common summary measures of probability distribu-
tions.

8. The intransitivity of the functional Pr(X ≥ Y ).

9. Some results about the relative efficiency of the Wilcoxon rank sum test.

10. Relevance of the above comments to other parametric and semiparametric testing/estimation settings.
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2 General Notation

We consider a scientific question that is to be statistically addressed by comparing the distribution of some
random variable across two populations. Without loss of generality, we adopt the nomenclature from the
setting of a randomized clinical trial in which we have a “treated” population and a “control” population.
For notational convenience we denote the random variable by X when measured on the “treated” group and
by Y when measured on the “control” group.

We thus consider the two sample problem in which we have:

• independent, identically distributed observations Xi ∼ F (x) = Pr(Xi ≤ x) for i = 1, . . . , n, and

• independent, identically distributed observations Yi ∼ G(y) = Pr(Yi ≤ y) for i = 1, . . . ,m.

We further assume that Xi and Yj are independent for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

3 Probability Models for the Two Sample Problem

3.1 Parametric Probability Models

By a parametric probability model, we assume that there exists a finite p dimensional parameter ~ω and a
known probability distribution function F0 depending on ~ω such that F (x) = F0(x; ~ω = ~ωX) and G(y) =
F0(y; ~ω = ~ωY ) for two specific values ~ωX and ~ωY . Typically, a statistical problem involves the estimation
and testing of some θ = h(~ωX , ~ωY ).

Estimation of ~ωX amd ~ωY will typically proceed using parametric likelihood theory or parametric methods
of moments estimation. Estimation of F and G will then use the parametric estimates F̂ (x) = F0(x; ~̂ωX)

and Ĝ(y) = F0(y; ~̂ωY ). Estimation of other functionals of those distributions will then be based on the
parametric estimates derived from F̂ (x) and Ĝ(y).

Examples of commonly used parametric probability models include

• Normal: A continuous probability model having parameter ~ω = (µ, σ2) with −∞ < µ < ∞ and
0 < σ <∞.

F0(x; ~ω = (µ, σ2)) = Φ ((x− µ)/σ) ,

where

Φ(x) =

∫ x

−∞

1√
2π
e−u

2/2 du

is the standard normal cumulative distribution function. Most often our statistical question of interest
relates to the difference of means θ = µX − µY .

• Exponential: A continuous probability model having parameter ~ω = λ with 0 < λ <∞.

F0(x; ~ω = λ) = (1− e−λx)1(0,∞)(x)

In this setting we might consider statistical questions based on the difference of means θ = 1/λX−1/λY
or the hazard ratio θ = λX/λY .

• Poisson: A discrete probability model having parameter ~ω = λ with 0 < λ <∞, and, for some known
measure t of time and space,

F0(x; ~ω = λ) =

bxc∑
k=0

e−λt(λt)k

k!
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In this setting we might consider statistical questions based on the difference of mean rates θ = λX−λY
or the ratio of mean rates θ = λX/λY .

3.2 Semiparametric Probability Models

The following definition of semiparametric probability models is a bit more restrictive than those used by some
otherauthors. This definition is used because 1) it is satisfied by the most commonly used semiparametric
statistical analysis models, and 2) there are some important common issues that arise in all semiparametric
models that satisfy this definition.

By a semiparametric probability model, we assume that there exists a finite p dimensional parameter ~ω
and an unknown probability distribution function F0 depending on ~ω such that F (x) = F0(x; ~ω = ~ωX) and
G(y) = F0(y; ~ω = ~ωY ) for some specific values ~ωX and ~ωY . The unknown, infinite dimensional F0(x; ~ω0)
for some “standard” choice of ~ω0 is generally just regarded as a nuisance parameter. For identifiability it is
sometimes convenient to put constraints on the moments of F0(x; ~ω0) for the “standard” choice of ~ω0. In
other settings, it is convenient to choose F0(x; ~ω0) = G(x), the distribution in some control population.

The salient feature of a semiparametric model (under this definition) is the existence of some θ =
h(~ωX , ~ωY ) that allows the transformation of F to G, and estimation and testing of θ can typically be
performed without appealing directly to estimation of ~ωX and ~ωY . We do note that in many cases the
semiparametric model also specifies a way in which θ can be used to transform the individual Xi’s in such
a way that the transformed variables, say Wi = ψ(Xi, θ) are distributed according to G. In such cases

one could imagine an estimation approach that finds the choice θ̂ such that Wi = ψ(Xi, θ̂) would have an
empirical distribution function F̂W that was closest (in some sense) to the empirical distribution function Ĝ
of the Yj ’s.

When it is of interest to do so, the nuisance parameter F0(x; ~ω0) is estimated by using the parameter

estimate θ̂, and then to perform suitable transformations of the Xi’s or their empirical distribution function
F̂ to an estimate F̂0 based on the entire sample.

Examples of commonly used semi-parametric probability models include

• Location shift: A continuous probability model having parameter ω = µ with baseline probability
distribution F0(x;ω = 0) typically chosen to have mean 0. Then

F (x) = F0(x;ω = µX) = F0(x− µX ;ω = 0)

and

G(y) = F0(y;ω = µY ) = F0(y − µY ;ω = 0).

This then also ensures that G(y) = F (y+ (µX −µY )), and E(X) = E(Y ) + (µX −µY ). Hence, in this
setting, we typically consider statistical questions based on the difference θ = µX − µY , although that
same number represents the difference of any quantile, as well. Note that under this model X − θ and
Y are distributed according to G, so F (x) = G(x− θ) and G(y) = F (y + θ).

• Shift-scale: A continuous probability model having parameter ~ω = (µ, σ) and “baseline” distribution
F0(x; ~ω0) typically chosen such that ~ω = (0, 1) or such that G(y) = F0(y; ~ω0) . Then

F (x) = F0(x; ~ω = ~ωX) = F0

(
(x− µX)

σX
; ~ω = ~ω0

)
and

G(y) = F0(y; ~ω = ~ωY ) = F0

(
(y − µY )

σY
; ~ω = ~ω0

)
.
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This then also ensures that

σX
σY

(Y − µY ) + µX ∼ X and
σY
σX

(X − µX) + µY ∼ Y

and

F (x) = G

(
σY
σX

x−
(
σY
σX

µX − µY
))

and G(y) = F

(
σX
σY

y −
(
σX
σY

µY − µX
))

.

In this setting, we could consider statistical questions based on two dimensional parameter

~θ =

(
µX −

σX
σY

µY ,
σX
σY

)
,

where (X−θ1)/θ2 and Y are distributed according to G. However, more typically inference is based on
the unscaled difference in means µX − µY , with the scale parameters treated as nuisance parameters.

• Accelerated failure time: A nonnegative random variable has a continuous probability distribution
defined by parameter ~ω = λ and some “baseline” distribution F0(x; ~ω = λ0). Then

F (x) = F0(x; ~ω = λX) = F0(λXx; ~ω = λ0)

and

G(y) = F0(y; ~ω = λY ) = F0(λY y; ~ω = λ0).

This then ensures that λXX/λY ∼ Y , λY Y/λX ∼ X,

F (x) = G

(
x
λX
λY

)
and G(y) = F

(
y
λY
λX

)
.

In this setting we might consider statistical questions based on θ = λY /λX , which can be shown to be
the ratio of any quantile of the distribution of X to the corresponding quantile of the distribution of
Y . Under this model, X/θ and Y are both distributed according to G, hence the accelerated failure
time model is a subset of a larger semiparametric scale family (which larger family might allow random
variables that could also take on negative values).

• Proportional hazards: A nonnegative random variable has a continuous probability distribution defined
by parameter ~ω = λ and some “baseline” distribution F0(x; ~ω = λ0). Then

F (x) = F0(x; ~ω = λX) = 1− [1− F0(x; ~ω = λ0)]
λX

and

G(y) = F0(y; ~ω = λY ) = 1− [1− F0(y; ~ω = λ0)]
λY .

This then ensures that

F (x) = 1− [1−G(x)]
λX
λY and G(y) = 1− [1− F (y)]

λY
λX .

In this setting we might consider statistical questions based on θ = λX/λY , which can be shown to be
the ratio of the hazard function for the distribution of X to that of the distribution of Y . In its general
form, there is no specific transformation of X that would lead to the transformed variable having the
same distribution as Y . However, any monotonic transformation of both X and Y will lead to the same
relationship between the distribution of the transformed X and the distribution of the transformed Y .

http://biostats.bepress.com/uwbiostat/paper380
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3.3 Nonparametric Probability Models

By a nonparametric probability model, we assume that the distribution functions F and G are unknown
with no pre-specified relationship between them.

Typically, a statistical problem involves the estimation and testing of some θ = d(F (x), G(y)), where
d(·, ·) measures some difference between two distribution functions.

Common choices for θ might be contrasts (differences or ratios) of univariate functionals (e.g., means,
geometric means, medians):

• difference of means: θ =
∫
x dF (x)−

∫
y dG(y)

• ratio of geometric means: θ = exp
[∫

log(x) dF (x)−
∫

log(y) dG(y)
]

• difference of medians: θ = F−1(0.5)−G−1(0.5)

• difference of the probability of exceeding some threshold c: θ = G(c)− F (c)

At times θ is defined based on a bivariate functional:

• median difference: θ = F−1
X−Y (0.5)

• maximal difference between cumulative distribution functions: θ = max |F (x)−G(x)|

• probability that a randomly chosen value of X exceeds a randomly chosen value of Y : θ = Pr(X > Y )

4 Characterization of null hypotheses

In two sample tests, we are often interested in inference about general tendencies for measurements in the
treatment group (X ∼ F ) to be larger than measurements in the control group (Y ∼ G). The null
hypothesis to be disproved is generally one of some tendency for measurements to be similar in the two
populations. As noted above, we generally define some estimand θ that contrasts the distributions F and G.

We thus find it of interest to consider two distinct levels of null hypothesis.

• The “Strong” null hypothesis: H0 : F (x) = G(x)∀x

• The “Weak” null hypothesis: H0 : θ = θ0 where θ0 is typically chosen to be the value of θ when the
strong null is true.

There are two main distinctions that need to be made between these hypotheses:

First, scientifically, if we have chosen the form of θ to capture scientifically important differences in the
distribution, then we might only want to detect differences between the distributions that do affect θ. It is
of course possible that a treatment might modify aspects of a probability distribution in a way that θ is not
affected. For instance, if θ is measuring the difference in medians, a treatment that only modifies the upper
10% of the probability distribution will have θ = θ0. Hence, the strong null would be false, but the weak
null would be true.

Second, statistically, if our true goal is to make statements about whether the weak null is true or not,
calculating the variance of our test statistic under the strong null can lead to tests of the wrong statistical
level (the type I error might be wrong as a test of the weak null). When this is true, we can only interpret
our results as rejecting the strong null hypothesis and cannot make a statistically valid statement about the
weak null unless we use a different variance estimate.

The issues that arise in common practice are that:
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• Use of a parametric or semiparametric probability model might suggest (for reasons of efficiency) the
testing and estimation of a particular choice of θ. Such a choice might directly address the scientific
question at hand, or it might be used to derive tests and estimates of some function scientifically
important ψ(θ) using a parametric or semiparametric estimator ψ(θ̂).

• In a distribution free setting, ψ(θ̂) may not be consistent for the scientifically important functional.
For instance, the parametric estimator of the median in a lognormal model is not consistent for the
median of an exponential model. If the estimation of the median was the scientifically important task,
then the use of the wrong assumption about the shape of the distribution might make the analysis
scientifically invalid.

• Even if the parametric or semiparametric estimator can be shown to be consistent in the distribution
free setting, the use of the parametric or semiparametric model to estimate the variability of the
estimator might lead to invalid statistical inference. For instance, in a Poisson probability model,
the efficient estimator of the rate is the sample mean, and the parametric estimator of the standard
error is also based on the sample mean due to the known mean-variance relationship of the Poisson
distribution. However, should the count data not be Poisson distributed, that estimated standard error
may be smaller than or larger than the true standard error for the sample mean.

• Even if the parametric or semiparametric estimator of the standard error can be shown to be consistent
for the true standard error under the null hypothesis of the parametric or semiparametric model, that
null hypothesis most often corresponds to the strong null hypothesis. Hence, under the weak null
hypothesis (which may be scientifically more relevant), the statistical test is possibly of the wrong size.

• The statistical efficiency of a parametric or semiparametric estimator might be substantially affected by
even small (statistically undetectable) departures from the parametric and semiparametric probability
model.

There are settings in which there is no distinction between the strong null and the weak null. For instance,
in the setting of independent binary data, the strong and weak null are identical: The measurements have to
follow the one parameter Bernoulli family, differences in the proportion are synonymous with differences in
the distribution. Similarly, in the setting of any ordered random variable when defining θ = max |F (x)−G(x)|
as the maximum difference between the cumulative distribution functions, if θ = 0, the strong null has to be
true and vice versa. (This is the functional tested in the Kolmogorov-Smirnov test.)

The distinctions between the strong and weak null hypothesis will be illustrated below with the Wilcoxon
rank sum statistic.

5 Transformation of the data

The Wilcoxon rank sum test can be thought of as a transformation of the original data to their ranks. That
is, given a sample of independent, identically distributed Xi, i = 1, . . . , n, and a sample of independent,
identically distributed Yi, i = 1, . . . ,m, we transform all of the random variables from the scale they were
originally measured on to their ranks. When there are no ties, this can be written as

R∗i =
n∑
j=1

1[Xj≤Xi] +
m∑
j=1

1[Yj≤Xi]

S∗i =
n∑
j=1

1[Xj≤Yi] +
m∑
j=1

1[Yj≤Yi]

http://biostats.bepress.com/uwbiostat/paper380
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where the indicator function 1A is 1 if A is true and 0 otherwise. Under the above notation, the observation
with the lowest value in the combined sample will have rank 1, the observation with the highest value will
have rank m+ n.

In the presence of ties in the sample, we modify the ranks to use the midrank among the tied observations:

Ri = rank(Xi) = R∗i − (
n∑
j=1

1[Xj=Xi] +
m∑
j=1

1[Yj=Xi] − 1)/2

Si = rank(Yi) = S∗i − (
n∑
j=1

1[Xj=Yi] +
m∑
j=1

1[Yj=Yi] − 1)/2

It should be noted that in the absence of ties, R∗i = Ri and S∗i = Si, so these latter definitions are taken to
be the defining transformation.

6 Definition of the statistic

6.1 Formulation as the rank sum

The Wilcoxon rank sum test statistic is then (as its name implies) based on the sum of the ranks for each
group

R =

n∑
i=1

Ri

S =

m∑
i=1

Si

Note that considering just one of R or S is sufficient because

R+ S =

m+n∑
i=1

i =
(m+ n)(m+ n+ 1)

2

where we make use of the result
∑N
i=1 i = N(N + 1)/2. This identity can be established by noting that∑N

i=1 i =
∑N
i=1(N − i+ 1), thus

N∑
i=1

i =
1

2

(
N∑
i=1

i+
N∑
i=1

(N − i+ 1)

)

=
1

2

N∑
i=1

(i+N − i+ 1)

=
1

2

N∑
i=1

(N + 1)

=
1

2
N(N + 1)

(Though this was of course known to others, Gauss derived this result on his own in about first grade when
his teacher gave his class the busy work of adding the numbers 1 to 100.)

The intuitive motivation for such a statistic is obvious: If X tends toward larger values than Y , it stands
to reason that the measurements of X will correspond to the larger ranks. We could look at the average
rank or the sum of the ranks, it does not really matter.
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6.2 Formulation as a U-statistic

There is an alternative form of the Wilcoxon rank sum test, the Mann-Whitney U statistic, that is perhaps
a more useful derivation of the test, because it provides more insight into what scientific quantity is being
tested and a useful structure for similar methods to other settings. In the Mann-Whitney U statistic, we
are interested in the probability that a randomly chosen X will be greater than a randomly chosen Y . We
estimate this by

U =
n∑
i=1

m∑
j=1

[
1[Xi>Yj ] + 0.5× 1[Xi=Yj ]

]
.

From our definition of Ri and R, we find that

R− U =
n∑
i=1

n∑
i=1

1[Xi≥Xj ] =
n(n+ 1)

2
,

which, for a given sampling scheme, is constant. Thus the sampling distribution for R and the sampling
distribution for U just differ by that constant, and tests based on R are equivalent to tests based on U .

7 Null sampling distribution

The null hypothesis considered by the Wilcoxon rank sum test (and, equivalently, the Mann-Whitney U
statistic) is the strong null hypothesis that the Xi’s and the Yi’s have the same probability distribution. The
test does not make any assumptions about that common probability distribution.

In the derivations given below, we assume that there are no ties in the data. In the presence of ties,
some modifications must be made to the variance of the null sampling distribution. Interested readers can
see Lehmann’s Nonparametric Statistics.

7.1 Derivation of moments using the Wilcoxon rank sum

Under the null hypothesis, the sampling distribution of R is the same as that of the sum of n numbers chosen
at random without replacement from the set of numbers {1, 2, . . . ,m+n}. We can find the moments of this
sampling distribution of R as follows.

The expectation of R is

E[R] = E

[
n∑
i=1

Ri

]

=
n∑
i=1

E[Ri]

= nE[R1]

where the last step follows by the fact that all the Ri’s are identically distributed (but not independent due
to the sampling without replacement). Because each of the m + n ranks are equally likely to be chosen for
Ri under the null hypothesis, it follows that

E[Ri] =
1

m+ n

m+n∑
i=1

i

=
1

m+ n

(m+ n)(m+ n+ 1)

2
=

(m+ n+ 1)

2

http://biostats.bepress.com/uwbiostat/paper380
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which yields

E[R] =
n(m+ n+ 1)

2
.

The variance of R is

V ar(R) = E
[
(R− E[R])

2
]

= E
[
R2
]
− E2[R]

and

E
[
R2
]

= E

( n∑
i=1

Ri

)2


= E

 n∑
i=1

n∑
j=1

RiRj


= E

 n∑
i=1

R2
i + 2

n∑
i=1

i−1∑
j=1

RiRj


=

n∑
i=1

E[R2
i ] + 2

n∑
i=1

i−1∑
j=1

E[RiRj ]

= nE[R2
1] + n(n− 1)E[R1R2]

where, again, the last step follows by the fact that all the Ri’s are identically distributed and the joint
distribution of (Ri, Rj) is the same for all values i = 1, . . . , n, j = 1, . . . , n, and i 6= j. Now

E[R2
1] =

1

m+ n

m+n∑
i=1

i2

and because i2 =
∑i
j=1(2j − 1) we can find

N∑
i=1

i2 =
N∑
i=1

i∑
j=1

(2j − 1)

=
N∑
j=1

N∑
i=j

(2j − 1) (reversing order of summation)

=
N∑
j=1

(N − j + 1)(2j − 1) (summand does not depend on i)

= (2N + 3)
N∑
j=1

j − 2
N∑
j=1

j2 −
N∑
j=1

(N + 1)

3
N∑
i=1

i2 = (2N + 3)
N(N + 1)

2
−N(N + 1) (moving sum of j2 to LHS)

N∑
i=1

i2 =
(2N + 1)N(N + 1)

6
(simplifying terms)
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Therefore we have

E[R2
1] =

1

m+ n

(2(m+ n) + 1)(m+ n)(m+ n+ 1)

6
=

(2(m+ n) + 1)(m+ n+ 1)

6
.

Similarly, the joint distribution for (R1, R2) is just the distribution of choosing two numbers without re-
placement from {1, 2, . . . ,m+ n}, so

E[R1R2] =
1

(m+ n)(m+ n− 1)

m+n∑
i=1

∑
j 6=i

ij

=
1

(m+ n)(m+ n− 1)

m+n∑
i=1

m+n∑
j=1

ij −
m+n∑
i=1

i2


=

1

(m+ n)(m+ n− 1)

[
(m+ n)(m+ n+ 1)

2

(m+ n)(m+ n+ 1)

2
−

(2(m+ n) + 1)(m+ n)(m+ n+ 1)

6

]
=

[
(m+ n)(m+ n+ 1)2

4(m+ n− 1)
− (2(m+ n) + 1)(m+ n+ 1)

6(m+ n− 1)

]
=

(3(m+ n) + 2)(m+ n+ 1)

12

and

V ar(R) = nE[R2
1] + n(n− 1)E[R1R2]− E2[R]

= n
(2(m+ n) + 1)(m+ n+ 1)

6
+ n(n− 1)

(3(m+ n) + 2)(m+ n+ 1)

12
−

n2(m+ n+ 1)2

4

=
mn(m+ n+ 1)

12

7.2 Derivation of moments using the Mann-Whitney U statistic

Note that in its Mann-Whitney form, finding the moments of U directly is fairly straightforward. The mean
of the sampling distribution for U under any hypothesis is easily found to be

E[U ] = E

 n∑
i=1

m∑
j=1

1[Xi≥Yj ]


=

n∑
i=1

m∑
j=1

E
[
1[Xi≥Yj ]

]
= mnE

[
1[X1≥Y1]

]
= mnPr(X ≥ Y )

where we use the fact that the Xi’s are identically distributed and the Yi’s are identically distributed, as well
as the fact that the expectation of a binary indicator variable is just the probability that the event measured
by the indicator variable occurs. Under the strong null hypothesis that X and Y have the same distribution,
Pr(X ≥ Y ) is just the probability that the larger of two randomly sampled independent measurements from
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the same population would have the first measurement larger than the second. So Pr(X ≥ Y ) = 0.5 under
the null hypothesis, and

E[U ] =
mn

2
.

To find V ar[U ], we would again use V ar[U ] = E[U2]− E2[U ]. And

U2 =
n∑
i=1

m∑
j=1

n∑
k=1

m∑
`=1

1[Xi≥Yj ]1[Xk≥Y`].

This can be most easily solved by considering cases where i = k and j = `, where i = k but j 6= `, where
i 6= k but j = `, and where i 6= k and j 6= `. So

U2 =
n∑
i=1

m∑
j=1

∑
k=i

∑
`=j

1[Xi≥Yj ]1[Xk≥Y`] +
n∑
i=1

m∑
j=1

∑
k=i

∑
`6=j

1[Xi≥Yj ]1[Xk≥Y`]

+
n∑
i=1

m∑
j=1

∑
k 6=i

∑
`=j

1[Xi≥Yj ]1[Xk≥Y`] +
n∑
i=1

m∑
j=1

∑
k 6=i

∑
`6=j

1[Xi≥Yj ]1[Xk≥Y`]

=

n∑
i=1

m∑
j=1

(1[Xi≥Yj ])
2 +

n∑
i=1

m∑
j=1

∑
`6=j

1[Xi≥Yj ]1[Xi≥Y`]

+
n∑
i=1

m∑
j=1

∑
k 6=i

∑
`=j

1[Xi≥Yj ]1[Xk≥Yj ] +
n∑
i=1

m∑
j=1

n∑
k 6=i

m∑
`6=j

1[Xi≥Yj ]1[Xk≥Y`]

Now, the square of an indicator function is just the indicator function, so the expectation of the first term is

E

 n∑
i=1

m∑
j=1

(1[Xi≥Yj ])
2

 = E

 n∑
i=1

m∑
j=1

1[Xi≥Yj ]

 = E[U ] =
mn

2
.

Then, owing to the exchangeability of the Xi’s and Yj ’s, we find the expectation of the second term is

E

 n∑
i=1

m∑
j=1

∑
`6=j

1[Xi≥Yj ]1[Xi≥Y`]

 =
n∑
i=1

m∑
j=1

∑
`6=j

E
[
1[Xi≥Yj ]1[Xi≥Y`]

]
= mn(m− 1)E

[
1[X1≥Y1]1[X1≥Y2]

]
,

with
E
[
1[X1≥Y1]1[X1≥Y2]

]
= Pr(X1 ≥ Y1, X1 ≥ Y2).

Now under the null hypothesis that X and Y have the same distribution and the independence of X1,
Y1, and Y2, this is just equal to the probability that the largest of three randomly chosen measurements
would be the first measurement chosen. That is easily computed by considering all permutations of three
distinct numbers. Each permutation should be equally likely. There are 6 such permutations, and 2 of those
permutations have the largest value first, so

E

 n∑
i=1

m∑
j=1

∑
`6=j

1[Xi≥Yj ]1[Xi≥Y`]

 =
nm(m− 1)

3
.

Similarly, the expectation of the third term is

E

 n∑
i=1

∑
j = 1m

∑
k 6=i

1[Xi≥Yj ]1[Xk≥Yj ]

 =
nm(n− 1)

3
.

Hosted by The Berkeley Electronic Press



Some Observations on the Wilcoxon Rank Sum Test Emerson, Page 12

Owing to the exchangeability of the Xi’s and Yj ’s, we find the expectation of the fourth term is

E

 n∑
i=1

m∑
j=1

n∑
k 6=i

m∑
`6=j

1[Xi≥Yj ]1[Xk≥Y`]

 =
n∑
i=1

m∑
j=1

n∑
k 6=i

m∑
`6=j

E
[
1[Xi≥Yj ]1[Xk≥Y`]

]
= mn(n− 1)(m− 1)E

[
1[X1≥Y1]1[X2≥Y2]

]
,

and the independence of X1, Y1, X2, and Y2 yields

E

 n∑
i=1

m∑
j=1

n∑
k 6=i

m∑
`6=j

1[Xi≥Yj ]1[Xk≥Y`]

 = mn(m− 1)(n− 1)E
[
1[X1≥Y1]

]
E
[
1[X2≥Y2]

]
= mn(m− 1)(n− 1) [Pr(X ≥ Y )]

2

=
mn(m− 1)(n− 1)

4
.

We thus have

E[U2] =
mn

2
+
mn(m− 1)

3
+
mn(n− 1)

3
+
mn(m− 1)(n− 1)

4

=
6mn+ 4m2n− 4mn+ 4mn2 − 4mn+ 3m2n2 − 3mn2 − 3m2n+ 3mn

12

=
3m2n2 +mn2 +m2n+mn

12
,

so

V ar(U) = E[U2]− E2[U ] =
3m2n2 +mn2 +m2n+mn

12
− m2n2

4
=
mn(m+ n+ 1)

12
.

An alternative approach could have used the results from the rank sum null distribution. Then from the
relationship between U = R− n(n+ 1)/2 we can find the moments for the distribution of U under the null
hypothesis as (recall for random variable X and constant c, E[X+c] = E[X]+c and V ar(X+c) = V ar(X))

E[U ] = E[R]− n(n+ 1)

2
=
n(m+ n+ 1)

2
− n(n+ 1)

2
=
mn

2

V ar[U ] = V ar(R) =
mn(m+ n+ 1)

12
.

7.3 Exact distribution and permutation tests

In small samples (i.e., when either m or n is small), we can find the distribution of R exactly by brute
force: We can consider all the combinations of choosing n numbers out of the integers 1, 2, . . . ,m + n,
summing the numbers for each of those combinations, and then finding the percentiles by noting that each
such combination is equally likely. In the absence of ties, the number of such combinations is known to be
(m+n)!/(m!n!), which can get big pretty quickly. Thus an alternative approach is by Monte Carlo methods.
It should be obvious that the Wilcoxon rank sum test is nothing more than a permutation test based on the
ranks. Hence the following S-plus (or R) function simWilcoxonP() given below would estimate the quantiles
of the sampling distribution for R for data vectors x and y. I also had it estimate the upper one-sided P value
for the test. Note that this case handles ties, because it permutes the possibly tied ranks of the observed
data.
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simWilcoxonP <- function (x, y, Nsim=10000,

prob=c(.01,.025,.05,.1,.25,.5,.75,.9,.95,.975,.99)){

x <- x[!is.na(x)]

y <- y[!is.na(y)]

n <- length(x)

ranks <- rank(c(x,y))

R <- sum(ranks[1:n])

N <- length(ranks)

indx <- runif(Nsim*N)

study <- rep(1:Nsim, rep(N, Nsim))

indx <- as.vector(rep(1, n) %*%

matrix(rep(ranks, Nsim)[order(study, indx)], N)[1:n,])

list(RankSum=R, Pval=sum(indx >= R)/Nsim,

Pctile=quantile(indx, prob), Nsim=Nsim)

}

7.4 Large sample approximation to the sampling distribution under the strong
null

Now, having the first two moments of the null sampling distribution for R is sufficient knowledge to construct
hypothesis tests if R has a normal distribution. While R is the sum of identically distributed random
variables, it is not the sum of independent random variables, and thus the usual central limit theorem will
not work here. Instead, we would need to use the central limit theorem for sampling without replacement
from a finite population (there does exist such a thing), which says that providing the number sampled n
is sufficiently larger than 0 but sufficiently small relative to the size m + n of the population, the sample
average is approximately normally distributed. This in turn suggests that the sum of the ranks will tend to
be normally distributed providing neither m nor n are too small. In that case, we expect

R ∼̇N
(
n(m+ n+ 1)

2
,
mn(m+ n+ 1)

12

)
and a test statistic

T =
R− n(m+n+1)

2√
mn(m+n+1)

12

will tend to have the standard normal distribution under the null hypothesis that the distributions of X and
Y are the same. Thus a test could be constructed by comparing T to the percentiles of the standard normal
distribution.

Using the Mann-Whitney formulation, we can also provide some intuitive motivation for the asymptotic
distribution of U . First, the mean of the sampling distribution for U under any hypothesis is easily found
to be

E[U ] = E

 n∑
i=1

m∑
j=1

1[Xi≥Yj ]


=

n∑
i=1

m∑
j=1

E
[
1[Xi≥Yj ]

]
= mnE

[
1[X1≥Y1]

]
= mnPr(X ≥ Y )
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where we use the fact that the Xi’s are identically distributed and the Yi’s are identically distributed, as well
as the fact that the expectation of a binary indicator variable is just the probability that the event measured
by the indicator variable occurs.

It is clear that we can estimate Pr(X > Y ) using

U∗ =
1

min(n,m)

min(n,m)∑
i=1

1[Xi>Yi]

which is clearly based on independent Bernoulli random variables Wi = 1Xi>Yi ∼ B(1, P r(X ≥ Y )). We
know that the sample mean W = U∗ has an asymptotically normal distribution

W ∼̇N
(
Pr(X ≥ Y ),

P r(X ≥ Y ) (1− Pr(X ≥ Y ))

min(n,m)

)
.

Then, because U = U/(nm) makes more efficient use of all of the data than W and weights all observations
equally (thereby avoiding undue influence from any single observation), it seems reasonable that the U will
be approximately normally distributed some tighter variance V

U ∼̇N (mnPr(X ≥ Y ), V ) .

In particular, V = mn(m+ n+ 1)/12 ≤ mn/4 under the strong null hypothesis.

The quantiles of the null distribution for U are thus

1

2
+ zp

√
(m+ n+ 1)

12mn
.

Thus to perform a level α two-sided test for equality of the distributions of X and Y (the strong null
hypothesis), we might choose p = 1− α/2 and reject the null hypothesis when

U <
1

2
− zp

√
(m+ n+ 1)

12mn
or U >

1

2
+ zp

√
(m+ n+ 1)

12mn
.

(Recall that for the standard normal distribution, zp = −z1−p.) This is equivalent to using the test statistic

T =
U − mn

2√
mn(m+n+1)

12

,

which is equivalent to the statistic defined above for the rank sum and can be compared to the quantiles of
a standard normal distribution.

7.5 Large sample approximation to the sampling distribution under alternatives

More generally, we might want to use U to compute confidence intervals for θ = Pr(X ≥ Y ). Our first
temptation might be to use the asymptotic distribution under the strong null to compute a 100(1 − α)%
confidence interval for θ as

U ± zα/2

√
(m+ n+ 1)

12mn

The above formula assumes that the variance V of U does not change markedly as θ varies and that the
sampling distribution under the strong null is relevant. However, as U is a sum of binary variables used to
estimate a probability, we might expect that V will be of the general form

V =
θ(1− θ)
h(n,m, θ)
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for some function h that will depend upon the exact shape of F and G under each possible value of θ. In
fact, it is easy to show that V = 0 as θ approaches 0 or 1.

It is therefore also of interest to explicitly consider the variance of the sampling distribution for U under
alternatives to the strong null hypothesis, i.e., under hypotheses in which the distributions for X and Y
differ.

In our derivation of the variance of the Mann-Whitney U statistic, we found that the variance could be
expressed in terms of the distribution of independent X1, X2 ∼ F , Y1, Y2 ∼ G. This can then be used to
express the variance of U as

V ar(U) =
1

mn
Pr(X1 ≥ Y1) +

(m− 1)

mn
Pr(X1 ≥ Y1, X1 ≥ Y2)

+
(n− 1)

mn
Pr(X1 ≥ Y1, X2 ≥ Y1)− (m+ n− 1)

mn
[Pr(X1 ≥ Y1)]

2
.

We thus see that we would need to know for each such alternative θ = Pr(X1 ≥ Y1) the probability that a
randomly chosen X might exceed the maximum of two independent observations of Y and the probability
that the minimum of two independent observations of X might exceed a randomly chosen Y . Without
knowing more about the shapes of the distributions, this will be difficult to express in general terms.

As suggested above, it is possible to estimate the variance of U under the true distributions for X and
Y (which may or may not be the same distribution) using bootstrapping within each group separately (as
opposed to using a permutation distribution). We will still be faced with the problem of knowing how the
variance of U might change under different alternatives. This is necessary in order to construct confidence
intervals.

We can put an upper bound on V ar(U) by noting that

Pr(X1 ≥ Y1) ≥ Pr(X1 ≥ Y1, X1 ≥ Y2) and Pr(X1 ≥ Y1) ≥ Pr(X1 ≥ Y1, X2 ≥ Y1).

Hence

V ar(U) ≤ 1

mn
θ +

(m− 1)

mn
θ +

(n− 1)

mn
θ − (m+ n− 1)

mn
θ2 =

m+ n− 1

mn
θ(1− θ).

One particularly interesting alternative to the strong null is the case where the weak null might be true,
but the strong null is not. In this case, θ = 0.5, so the upper bound on the variance is

V ar(U) ≤ m+ n− 1

4mn
=

1

4n
+

1

4m
− 1

4mn
.

So then the question is whether any choices of F and G will attain the upper bound.

Consider, then, the distribution in which

Y ∼ G(y) = y1[0<y<1] + 1[y≥1]

X ∼ F (x) = (x+ 0.5)1[−0.5<x<0] + (x− 0.5)1[1<x<1.5] + 1[x≥1.5].

(So Y is uniformly distributed between 0 and 1, and X is with probability 0.5 uniformly distributed between
-0.5 and 1 and with probability 0.5 uniformly distributed between 1 and 1.5.) Under these probability
distributions, the event [X1 > Y1] is exactly the same as the event [X1 > 1]. Hence

Pr(X1 ≥ Y1) = Pr(X1 > 1) = 0.5

Pr(X1 ≥ Y1, X1 ≥ Y2) = Pr(X1 > 1) = 0.5

Pr(X1 ≥ Y1, X2 ≥ Y1) = Pr(X1 > 1, X2 > 1) = 0.25
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In this setting, then,

V ar(U) =
1

mn
Pr(X1 ≥ Y1) +

(m− 1)

mn
Pr(X1 ≥ Y1, X1 ≥ Y2)

+
(n− 1)

mn
Pr(X1 ≥ Y1, X2 ≥ Y1)− (m+ n− 1)

mn
[Pr(X1 ≥ Y1)]

2

=
1

2mn
+

(m− 1)

2mn
+

(n− 1)

4mn
− (m+ n− 1)

4mn

=
1

4n

Note that as min(m,n) → ∞ with m/n = r large, the upper bound on the variance of U under the weak
null can be arbitrarily close to 1/(4n), so the upper bound on V ar(U) given above is a tight upper bound
in general, though it may not be tight for arbitrary values of r.

7.6 Statistical properties of tests based on the Mann-Whitney U statistic

From the above results about the moments and sampling distribution we know

• U is an unbiased distribution-free (nonparametric) estimator of θ = Pr(X ≥ Y ).

• A test of the strong null H0 : F (x) = G(x), ∀x based on

reject H0 ⇔ T =
U − 0.5√
m+n+1
12mn

> z1−α,

where z1−α is the upper α quantile of the standard normal distribution, is a one-sided level α test as
min(m,n)→∞.

• The above test based on T is not an unbiased test of the strong null hypothesis. (An unbiased test
would always have Pr(reject H0 |F,G 6∈ H0) > Pr(reject H0 |F,G 6∈ H0).) To see this, consider the
setting described in the previous section in which

Y ∼ G(y) = y1[0<y<1] + 1[y≥1]

X ∼ F (x) = (x+ 0.5)1[−0.5<x<0] + (x− 0.5)1[1<x<1.5] + 1[x≥1.5].

Clearly, these distributions do not satisfy the strong null distribution, because F (x) 6= G(x) ∀x 6= 0.5.
In the previous section, we found that under these distributions U ∼̇N (θ, 1/(4n)) as n → ∞. Hence,
under these distributions with

Pr(T > z1−α) = Pr

 U − 0.5√
m+n+1
12mn

> z1−α

 = Pr

U − 0.5√
1

4n

>

√
m+ n− 1

3m
z1−α


= 1− Φ

(√
m+ n− 1

3m
z1−α

)
.

If n > 2m+ 1, the probability of rejecting the null hypothesis is less than α. Hence, there exist some
alternatives (and settings) for which the probability of rejecting the null is less than α.

• The above test based on T is not a consistent test of the strong null hypothesis. (A consistent test
would have Pr(reject H0 |F,G 6∈ H0)→ 1 as min(m,n)→∞.) To see this, consider again the setting

http://biostats.bepress.com/uwbiostat/paper380



Some Observations on the Wilcoxon Rank Sum Test Emerson, Page 17

described in the previous section in which F 6= G and

Pr(T > z1−α) = 1− Φ

(√
m+ n− 1

3m
z1−α

)
.

If n = 2m+1, the probability of rejecting the null hypothesis is α < 1, regardless of how large min(m,n)
becomes. Hence, there exist some alternatives for which the probability of rejecting the null does not
approach 1 asymptotically.

• The above test based on T is not a level α test of the weak null hypothesis H0 : θ = 0.5. To see this,
consider again the setting described in the previous section in which θ = 0.5 and

Pr(T > z1−α) = 1− Φ

(√
m+ n− 1

3m
z1−α

)
.

If n 6= 2m + 1, the probability of rejecting the null hypothesis is not α. Note that the test is anti-
conservative (has a type I error greater than α) if n < 2m+ 1, and it is conservative (has a type I error
less than α if n > 2m+ 1.

• The above test based on T is a consistent test of the weak null hypothesis H0 : θ = 0.5 versus an upper
alternative H1 : θ > 0.5. To see this, note that as min(m,n)→∞, U ∼̇N (θ, V ) with

V ≤ Vbound =
1

mn
θ +

(m− 1)

mn
θ +

(n− 1)

mn
θ − (m+ n− 1)

mn
θ2 =

m+ n− 1

mn
θ(1− θ).

So, as min(m,n)→∞, Vbound → 0, and thus V → 0. Hence,

Pr(T > z1−α) = Pr

 U − 0.5√
m+n+1
12mn

> z1−α


= Pr

(
U − θ√
V

>

√
m+ n+ 1

12mnV
z1−α −

θ − 0.5√
V

)

=̇ 1− Φ

(√
m+ n+ 1

12mnV
z1−α −

θ − 0.5√
V

)

≤ 1− Φ

(√
m+ n+ 1

12mnVbound
z1−α −

θ − 0.5√
V

)
= 1− Φ

(√
m+ n+ 1

12(m+ n− 1)θ(1− θ)
z1−α −

θ − 0.5√
V

)
→ 1 as V → 0,

where Φ(x) is the cumulative distribution function for the standard normal.

8 Interpretation of test in terms of marginal distributions of X

and Y

Many people are under the erroneous impression that the Wilcoxon rank sum test is somehow a nonpara-
metric test of the median. This is not the case. Nor is it a nonparametric test of the mean. Instead for
a two sample test of random variables X and Y , it is, as the Mann-Whitney form would suggest, a test of
whether the Pr(X > Y ) > .5 for independent randomly sampled X and Y . Note:
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1. This will be true if X is “stochastically larger” than Y . X is “stochastically larger” than Y if Pr(X >
c) > Pr(Y > c) for all c. In such a setting we will also have that E[X] > E[Y ] and mdn(X) > mdn(Y ).

2. This can be true when X is not stochastically larger than Y . For instance, suppose Y ∼ U(0, 1) a
uniform random variable and X ∼ N (1, 1) a normally distributed random variable. Then

• Pr(X > 0) = .84 is less than Pr(Y > 0) = 1,

• but

Pr(X > Y ) =

∫ 1

0

Pr(X > Y |Y = u) du

=

∫ 1

0

∫ ∞
u

1√
2π

exp

{
− (x− 1)2

2

}
dx du

=

∫ 1

0

∫ ∞
u−1

1√
2π

exp

{
−x

2

2

}
dx du

=

∫ 1

0

∫ 0

u−1

1√
2π

exp

{
−x

2

2

}
dx du+ 0.5

=

∫ 0

−1

1√
2π

exp

{
−x

2

2

}∫ x+1

0

du dx+ 0.5

=

∫ 0

−1

(x+ 1)
1√
2π

exp

{
−x

2

2

}
dx+ 0.5

=

∫ 0

−1

x
1√
2π

exp

{
−x

2

2

}
dx+ 0.8413

=
1√
2π

(−1 + e−0.5) + 0.8413 = 0.6844

3. This can be true when the median of X is less than the median of Y . For instance, suppose that for
some a < b < c < d

Pr(Y < y) = py1[0≤y≤1] + p1y>1] + (y − 2)(1− p)1[2≤y≤3] + (1− p)1[y>3]

Pr(X < x) = r
(x− a)

(b− a)
1[a≤x≤b] + r1x>b] + (x− c)(1− r)1[c≤x≤d] + (1− r)1[x>d]

These distributions correspond to Y being uniformly distributed between 0 and 1 with probability p
and uniformly distributed between 2 and 3 with probability 1− p, and X being uniformly distributed
between a and b with probability r and uniformly distributed between c and d with probability 1− r.

• The mean of Y is easily found to be E[Y ] = 0.5p + 2.5(1 − p) = 2.5 − 2p, and the mean of X is
E[X] = r(a+ b)/2 + (1− r)(c+ d)/2.

• The median of Y is mdn(Y ) = 0.5/p if p > 0.5 and mdn(Y ) = 2+(0.5−p)/(1−p) if p < 0.5. The
median of X is mdn(X) = a+ (0.5/r)(b− a) if r > 0.5 and mdn(X) = c+ (0.5− r)(d− c)/(1− r)
if r < 0.5.

Now suppose that we take 1 ≤ a < b ≤ 2 and 3 ≤ c and p = 0.4 and r = 0.7. Then

• Neither X nor Y is stochastically larger than the other, because Pr(X > 1) = 1 > Pr(Y > 1) =
1− p = .6, but Pr(X > 2) = 1− r = .3 < Pr(Y > 2) = .6.

• With a sufficiently large sample size, the Wilcoxon test would suggest that X tends to be larger
than Y , because

Pr(X > Y ) = Pr(X > 1)Pr(Y < 1) + Pr(X > 3)Pr(Y > 2) = p+ (1− r)(1− p) = 1− r + rp,

which for choices p = 0.4 and r = 0.7 yields Pr(Y > X) = 0.58
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• The median of Y is mdn(Y ) = 2.167. Then, for appropriate choices of 1 ≤ a < b ≤ 2, we can
make mdn(X) arbitrarily close to any number between 1 and 2. In particular, if we choose a = 1
and b = 2, mdn(X) = 1.714. So with a sufficiently large sample size, using the differences in
medians would tend to suggest that Y tends to be larger than X, because mdn(Y ) = 2.167 >
mdn(X) = 1.714.

• The mean of Y is E[Y ] = 1.7. For the choices r = 0.7, a = 1, b = 2, and c ≥ 3, E[X] =
1.05 + 0.3 × (c + d)/2 > 1.95. So with a sufficiently large sample size, using the differences in
means would tend to suggest that X tends to be larger than Y .

So clearly the Wilcoxon test cannot in general be interpreted as evidence about the medians.

4. The Wilcoxon can also tend to suggest that X tends to be larger than Y when E[X] < E[Y ]. We use
the same distribution as above, with r = 0.7, p = 0.4, a = 1, b = 1.01, c = 3, and d = 3.01. Then

• Neither X nor Y is stochastically larger than the other, because Pr(X > 1) = 1 > Pr(Y > 1) =
1− p = .6, but Pr(X > 2) = 1− r = .3 < Pr(Y > 2) = .6.

• With a sufficiently large sample size, the Wilcoxon test would suggest that X tends to be larger
than Y , because

Pr(X > Y ) = Pr(X > 1)Pr(Y < 1) + Pr(X > 3)Pr(Y > 2) = p+ (1− r)(1− p) = 1− r + rp,

which for choices p = 0.4 and r = 0.7 yields Pr(Y > X) = 0.58

• The median of Y is mdn(Y ) = 2.167, and the median of X is mdn(X) = 1.007. So with a
sufficiently large sample size, using the differences in medians would tend to suggest that Y tends
to be larger than X, because mdn(Y ) = 2.167 > mdn(X) = 1.007.

• The mean of Y is E[Y ] = 1.7, and E[X] = 1.605. So with a sufficiently large sample size, using
the differences in means would tend to suggest that Y tends to be larger than X.

So clearly the Wilcoxon test cannot in general be interpreted as evidence about the means.

5. It should be noted that it is possible to also find settings in which Pr(X ≥ Y ) > 0.5, mdn(X) >
mdn(Y ), and E(X) < E(Y ). That is, it is possible to find distributions that match any pattern
of concordance or discordance among these three functionals with respect to the implied ordering of
distributions.

9 Intransitivity of Pr(X ≥ Y )

The bivariate functional θ = Pr(X ≥ Y ) can be shown to be intransitive. That is, given X ∼ F , Y ∼ G,
and W ∼ H, defined by

Y ∼ G(y) = y1[0<y<1] + 1[y≥1]

X ∼ F (x) = (x+ 2)1[−2<x<−1.6] + (x− 0.6)1[1<x<1.6] + 1[x≥1.6]

W ∼ H(w) = (w + 1.6)1[−1.6<w<−1] + (w − 1)1[1.6<w<2] + 1[w≥2].

Then we have that

• Pr(X ≥ Y ) = 0.6 > 0.5 (implying X tends to be larger than Y )

• Pr(Y ≥W ) = 0.6 > 0.5 (implying Y tends to be larger than W )

• Pr(W ≥ X) = 0.64 > 0.5 (implying W tends to be larger than X)
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10 Some results on relative efficiency of the Wilcoxon rank sum
and t tests

Many authors have reported on the efficiency of the Wilcoxon rank sum test relative to efficiency of the t test.
Unfortunately, these results are almost always presented within the context of a parametric or semiparametric
probability model. What makes it worse is that those results are almost always based on the location shift
semiparametric model. Hence, those generally impressive efficiency results do not necessarily generalize to
fully nonparametric settings.

In considering the relative merits of the Wilcoxon rank sum test and the t test, it should be noted that
we are comparing nonparametric (distribution-free) estimators of θW = Pr(X ≥ Y ) and θT = E[X]−E[Y ].
For some families, these estimators may also be the parametric efficient estimates of those functionals.

The following subsections use particular parametric models to compare the estimated statistical power of
the Wilcoxon and the t test that allows unequal variances to detect various alternatives, as well as an estimate
of the relative efficiency of the two tests under those alternatives. (Estimates are based on simulations.) The
relative efficiency can be thought of as the proportionate decrease or increase in the sample size for a t
test that would provide the same power as the Wilcoxon test that had 100 subjects in each treatment arm.
Hence, a relative efficiency of 0.95 suggests that a t test with 95 subjects per group would have the same
power as a Wilcoxon test that had 100 subjects per group. A relative efficiency of of 1.24 suggests that a t
test with 124 subjects per group would have the same power as a Wilcoxon test that had 100 subjects per
group.

10.1 Normal distribution with homoscedasticity

We consider a parametric family in which (without loss of generality) X ∼ N (θ, 1) and Y ∼ N (0, 1). This
parametric family is a subset of a location shift semiparametric family.

In this family, the efficient estimator of θT is θ̂T = X−Y . Hence, the t test that presumes equal variances
will be the optimal inferential strategy, and in this balanced setting (m = n = 100) the t test that allows
for the possibility of unequal variances will be essentially equivalent. The efficient estimator of θW would be
the parametric estimator based on Pr(N (X, s2

X) > N (Y , s2
Y )). The distribution-free estimator U will not

therefore be efficient.

Table 10.1 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As
can be seen from these data (which agree well with, for instance, Lehmann’s Nonparametrics: Statistical
Methods Based on Ranks), the Wilcoxon rank sum test is approximately 90-95% efficient in this parametric
model.

10.2 Exponential distribution

We consider a parametric family in which (without loss of generality) X ∼ E(θ) and Y ∼ E(1), where we
have parameterized the exponential distribution such that E[X] = θ and E[Y ] = 1. This parametric family
is a subset of both the accelerated failure time (scale) and the proportional hazards semiparametric families.

In this family, the efficient estimator of θT is θ̂T = X − Y . The distribution of the sample means would
be related to a gamma distribution, but owing to the central limit theorem, θ̂T is approximately normally
distributed with a variance that depends upon θ and the distribution of Y . The t test that allows for the
possibility of unequal variances would be the typical choice here, but it will not be the most efficient choice,
because it does not explicitly consider the mean-variance relationship. (The most efficient test of the strong
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Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

0.500 0.00 0.026 0.027 NA
0.529 0.10 0.104 0.103 1.021
0.556 0.20 0.279 0.292 0.943
0.585 0.30 0.549 0.560 0.975
0.611 0.40 0.780 0.806 0.937
0.639 0.50 0.934 0.944 0.955
0.663 0.60 0.985 0.989 0.947

Table 10.1
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Normal Location Shift Model

null would use s2
Y for both groups, as it would estimate the correct within group variance under the null

hypothesis.)

The efficient estimator of θW would be the parametric estimator based on Pr(E(X) > E(Y )). The
distribution-free estimator U will not therefore be efficient.

Table 10.2 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As
can be seen from these data, the Wilcoxon is less efficient (70% to 80%) than the t test in this parametric
model. (I note that if in the t statistic we use an estimated standard error of sY

√
1/n+ 1/m instead of√

s2
X/n+ s2

Y /m, the efficiency advantage of the t test is even more pronounced: The Wilcoxon is only about
50% as efficient as a test of means.)

Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

0.501 0.00 0.026 0.024 NA
0.526 0.10 0.091 0.111 0.722
0.556 0.30 0.274 0.355 0.733
0.588 0.40 0.580 0.691 0.773
0.625 0.70 0.873 0.932 0.809
0.667 1.00 0.989 0.994 0.894
0.714 1.50 1.000 1.000 1.032

Table 10.2
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Exponential Scale Model

The results presented in Table 10.2 are seemingly at odds with the 3-fold greater efficiency reported
for the Wilcoxon test over the t test reported in Lehmann’s Nonparametrics: Statistical Methods Based
on Ranks). And one has to wonder at Lehmann’s results, given the optimality of the sample mean in the
exponential distribution and the implications of the central limit theorem.

The seeming paradox is resolved by closer examination of the setting in which Lehmann examined the
exponential distribution: He considered a location shift semiparametric model in which Y ∼ E(1) and
X − θ ∼ Y . This setting is considered in the next section.
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10.3 Shifted exponential distribution

We consider a parametric family in which (without loss of generality) Y ∼ E(1) and X − θ ∼ E(1), where
we have parameterized the exponential distribution such that E[X] = θ and E[Y ] = 1. This parametric
family is called a “shifted exponential” and is a subset of location shift semiparametric family. (In the most
general case of shifted exponential family, there are two parameters: a shift and a scale. However, we are
trying to duplicate Lehmann’s results, and he used a simple location shift model.)

In this family, the maximum likelihood estimator of θT is the difference of the sample minima θ̂MLE =
X(1) − Y(1) = min{X1, . . . , Xn} −min{Y1, . . . , Yn}. Owing to the changing support of the distributions as θ
varies (that is, the set of possible values of X depends upon θ), the asymptotic results about efficiency of

maximum likelihood estimators does not apply to this problem. Nevertheless, it is easily shown that θ̂MLE

is an n-consistent, with n(θ̂MLE − θ) ∼ E(1) (note that this “asymptotic” distribution is actually exact).

Hence, the difference in sample means θ̂T = X − Y is a highly inefficient estimate of θ. The distribution
of the sample means would be related to a gamma distribution, but owing to the central limit theorem,
θ̂T is approximately normally distributed with a variance that depends only upon the sample sizes and the
distribution of Y . The t test that allows for the possibility of unequal variances would be the typical choice
here, but it will not be the most efficient choice, because under this location shift model, the variances are
equal.

The efficient estimator of θW = Pr(X > Y ) = 1 − 0.5e−θ would be the parametric estimator θ̂Wmle =

1− 0.5e−θ̂MLE . The distribution-free estimator θ̂W = U will not therefore be efficient.

Table 10.3 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As
can be seen from these data, the Wilcoxon is more efficient (2 to 2.5 fold) than the t test in this parametric
model. However, both of these statistics are exceedingly inefficient to detect a difference in distributions
within this parametric family. Using a test based on the maximum likelihood estimator, a difference in means
of 0.10 could be detected with approximately 25% power with a sample size of 28 in each group (compare
the Wilcoxon test’s power of 22% with the sample size of 100 in each group) and with approximately 11%
power with a sample size of 26 in each group (compare the t test’s power of 11% with a sample size of 100
in each group). As Lehmann acknowledges, the relevance of comparing the Wilcoxon to the t test in this
parametric family in practice is highly questionable.

Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

0.501 0.00 0.026 0.025 NA
0.548 0.10 0.217 0.111 2.525
0.590 0.20 0.597 0.291 2.444
0.630 0.30 0.898 0.575 2.253
0.665 0.40 0.987 0.810 2.160
0.697 0.50 0.999 0.941 2.089
0.728 0.60 1.000 0.990 1.990

Table 10.3
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Shifted Exponential Model
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10.4 Lognormal distribution

We consider a parametric family in which (without loss of generality) X ∼ LN (ω, 1) (so log(X) ∼ N (ω, 1))
and Y ∼ LN (0, 1) (so log(Y ) ∼ N (0, 1)). This parametric family is a subset of the accelerated failure time
(scale) semiparametric family.

In this family, the efficient estimator of θT = eω+0.5 − e0.5 is

θ̂T = exp
{

log(X) + s2
X/2

}
− exp

{
log(Y ) + s2

Y /2
}
.

Hence, the nonparametric estimator θ̂T is not efficient. Owing to the central limit theorem, θ̂T is approx-
imately normally distributed with a variance that depends upon θ and the distribution of Y . However,
because these lognormal distributions are heavily skewed, the approximation provided by the CLT is not
good in very small samples.

The efficient estimator of θW would be the parametric estimator based on Pr(LN (X, s2
X) > LN (Y , s2

Y )).
The distribution-free estimator U will not therefore be efficient.

Table 10.4 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can
be seen from these data, the Wilcoxon is much more efficient than the t test in this parametric model. This
is in keeping with the oft quoted statement that the Wilcoxon will out perform the t test in distributions
with heavy tails.

Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

0.499 0.00 0.023 0.023 NA
0.529 0.20 0.103 0.082 1.510
0.558 0.40 0.289 0.187 1.720
0.585 0.60 0.547 0.366 1.649
0.612 0.80 0.788 0.552 1.742
0.637 1.10 0.929 0.724 1.798
0.665 1.40 0.987 0.861 1.903

Table 10.4
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Lognormal Scale Model

10.5 Shifted t distributions

We can further explore the effect of heavy-tailed distributions within the family of shifted t distributions.
The t distributions are parameterized by a parameter k measuring the degrees of freedom. As k →∞, the t
distribution converges to a standard normal distribution, in which setting the Wilcoxon test was found to be
approximately 90-95% efficient. The case k = 1 corresponds to a Cauchy distribution, which is of particular
interest because it has no mean. Similarly, the case of a t distribution with k = 2 has no variance. In these
two cases, the t test is not asymptotically valid, but the Wilcoxon test is. Hence, the relative efficiency of
the Wilcoxon test is infinite for these two lowest values of k.

We explore a few other t distributions below. We consider a parametric family in which (without loss of
generality) Y ∼ t(k) for a specific value of k > 2 and X − θ ∼ Y . This parametric family is a subset of the
location shift semiparametric family.
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Table 10.5 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As can
be seen from these data, the Wilcoxon is much more efficient (1.8 - 2 fold) than the t test in this parametric
model with heavy tails (k = 3), approximately 10% more efficient with moderately heavy tails (k = 7), and
approximately equally efficient when k = 19.

Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

k = 3

0.501 0.00 0.026 0.025 NA
0.547 0.20 0.208 0.129 1.912
0.591 0.40 0.607 0.379 1.823
0.633 0.60 0.910 0.686 1.822
0.675 0.80 0.994 0.890 1.952
0.713 1.00 1.000 0.983 1.866
0.748 1.20 1.000 0.999 1.829

k = 7

0.500 0.00 0.025 0.025 NA
0.525 0.10 0.090 0.083 1.158
0.551 0.20 0.235 0.224 1.061
0.574 0.30 0.440 0.426 1.040
0.600 0.40 0.688 0.646 1.101
0.625 0.50 0.873 0.847 1.081
0.653 0.60 0.970 0.954 1.115

k = 19

0.500 0.00 0.026 0.026 NA
0.528 0.10 0.099 0.105 0.915
0.556 0.20 0.274 0.275 0.995
0.579 0.30 0.489 0.508 0.951
0.609 0.40 0.763 0.766 0.993
0.634 0.50 0.915 0.918 0.989
0.659 0.60 0.980 0.980 1.004

Table 10.5
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Shifted t Model

10.6 Mixture distributions

In the preceding sections, we have explored the relative efficiency of the Wilcoxon and t tests under several
simple shift alternatives. In the normal and shifted t probability models, the support of the distribution was
(−∞,∞) for all alternatives. We found that relative to the t test, the Wilcoxon test was 90-95% efficient
for the normal distribution, with increasing relative efficiency as the heaviness of the tails increased. A t
distribution with k = 19 degrees of freedom had the t test and Wilcoxon test approximately equally efficient,
and a t distribution with k = 3 degrees of freedom had the Wilcoxon approximately twice as efficient. With
k = 1 or 2, the Wilcoxon is infinitely more efficient than the t test, because those heavy tailed distributions
have no variance.
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We also explored a shifted exponential distribution in which the support of the distribution varies with
the value of θT = E[X]−E[Y ]. In that parametric family of distributions, the Wilcoxon was found to be 2 -
2.5 times more efficient than the t test. We can also consider the effect that heavier tails has on the relative
efficiency of these two tests in the setting of changing support. We observe the same trend of increased
relative efficiency of the Wilcoxon as the tails become increasingly heavy, but with the Wilcoxon having the
advantage with lighter tails when the support changes that it does under common support:

• In the setting of a uniform distribution (which distribution has lighter tails than the normal distribu-
tion) with Y ∼ U(0, 1) and X − θ ∼ Y , the Wilcoxon is 90-95% as efficient as the t test.

• In the setting of a shifted folded normal distribution (so Y ∼ |N (0, 1)|, the absolute value of a standard
normal random value and X − θ ∼ Y , the Wilcoxon is 1.2 - 1.3 times as efficient as the t test.

• In the setting of a shifted folded t distribution with k = 19 degrees of freedom (so Y ∼ |t(k)|, the
absolute value of a t distributed random value and X − θ ∼ Y , the Wilcoxon is 1.3 - 1.4 times as
efficient as the t test.

• In the setting of a shifted folded t distribution with k = 7 degrees of freedom (so Y ∼ |t(k)|, the
absolute value of a t distributed random value and X − θ ∼ Y , the Wilcoxon is 1.5 - 1.7 times as
efficient as the t test.

• In the setting of a shifted folded t distribution with k = 3 degrees of freedom (so Y ∼ |t(k)|, the
absolute value of a t distributed random value and X − θ ∼ Y , the Wilcoxon is 3 - 3.5 times as
efficient as the t test.

We also explored two probability models in the family of accelerated failure time models. With the
exponential distribution, the Wilcoxon was approximately 70-90% as efficient as the t test, while in the more
heavily skewed lognormal distribution, the Wilcoxon test was 1.5 - 1.9 times more efficient than the t test.

It is also of interest to explore some parametric models mimicking a scientific setting in which only
patients in a nonidentifiable subset are susceptible to the effects of the treatment. We thus consider a
model in which Y ∼ N (0, 1) and the distribution of X depends upon what the corresponding individuals
(counterfactual) value of Y would have been. That is, we consider distributional parameters (π, η, ω) and
latent normal random variable Zi ∼ N (0, 1) and latent Bernoulli random variable Wi ∼ B(1, π). We then
let Xi = Zi + ω1[Φ(Zi)>η]1[Wi=1]. (A corresponding untreated patient would have Yi = Zi.)

This mimics the setting in which the patients from the population having the lowest 100η% values of Zi
receive no benefit of treatment (so η models non-susceptibility to the treatment that is related to severity of
disease), while the patients in the upper 100(1−η) percentile of the distribution have a benefit ω of treatment
with probability π (so π models susceptibility to the treatment that is unrelated to the counterfactual value
of outcome in the absence of treatment). Using such a model thus constitutes a mixture of parametric
distributions.

Table 10.6 provides estimates of the statistical power of the Wilcoxon and t tests to detect various
alternatives, as well as an estimate of the relative efficiency of the two tests under those alternatives. As
can be seen from these data, the Wilcoxon is less efficient than the t test in these particular mixture models
considered here. It should be noted that for fixed sample size in these mixture models, the Wilcoxon hits an
upper bound on the possible power no matter how the mean changes. This is because the mixture model
places an upper bound on the magnitude of θW = Pr(X ≥ Y ).

It should be noted that the results presented in this section are related to results that have been explored
in the setting of weighted logrank statistics and censored time to event analyses. The Wilcoxon form of the
logrank statistic is well-known to have greater power than the logrank statistic under alternatives that lead
to “early differences” survival distributions. Hence, those models that had varying support corresponded to
such early differences, and the mixture models in this section tended to lead to “late differences”, especially
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Power to Detect Alternative Relative
θW = Pr(X ≥ Y ) θT = E[X]− E[Y ] Wilcoxon t Test Efficiency

Complete non-susceptibility η = 0, Probability of benefit among remainder π = 0.5

0.500 0.00 0.024 0.024 NA
0.529 0.10 0.104 0.111 0.898
0.557 0.20 0.280 0.284 0.983
0.582 0.30 0.516 0.544 0.934
0.607 0.40 0.750 0.770 0.954
0.628 0.50 0.889 0.911 0.925
0.650 0.60 0.965 0.973 0.936

Complete non-susceptibility η = 0, Probability of benefit among remainder π = 0.25

0.503 0.00 0.028 0.027 NA
0.534 0.12 0.129 0.137 0.914
0.565 0.25 0.349 0.389 0.878
0.589 0.38 0.585 0.673 0.814
0.607 0.50 0.748 0.860 0.746
0.614 0.62 0.803 0.937 0.649
0.624 0.76 0.869 0.977 0.605

Complete non-susceptibility η = 0.5, Probability of benefit among remainder π = 0.5

0.502 0.01 0.027 0.028 NA
0.524 0.10 0.083 0.095 0.784
0.541 0.20 0.172 0.252 0.616
0.552 0.30 0.249 0.439 0.505
0.560 0.41 0.313 0.633 0.410
0.561 0.50 0.316 0.755 0.313
0.560 0.55 0.316 0.802 0.278

Complete non-susceptibility η = 0.5, Probability of benefit among remainder π = 0.25

0.500 0.00 0.025 0.025 NA
0.522 0.12 0.080 0.121 0.492
0.532 0.25 0.120 0.320 0.276
0.530 0.37 0.109 0.501 0.137
0.531 0.50 0.115 0.647 0.106
0.531 0.62 0.116 0.740 0.086
0.531 0.75 0.117 0.803 0.075
0.531 0.88 0.115 0.843 0.066

Table 10.6
Power and Relative Efficiency of Wilcoxon and t Tests in a

Parametric Mixture Model

when the probability of complete non-susceptibility was η = 0.5. The unweighted logrank statistic is generally
preferred to the Wilcoxon form in the setting of “late differences” in the survival curves.

In the setting of time to event analyses, the difference in means corresponds to the area between to
survival curves.
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11 Implications for Parametric and Semiparametric Analyses

In the preceding sections, I have criticized the evaluation and use of the Wilcoxon rank sum statistic on
multiple grounds:

• (Science) The functional of the distribution that the Wilcoxon consistently tests, θW = Pr(X ≥
Y ), does not provide any information about the scientific or clinical importance of the magnitude of
differences in outcomes.

– Arguably, the same could be also be said about such functionals as mean ratios, median ratios,
odds ratios, and hazard ratios, as the scientific importance might be more related to differences
of univariate functionals.

• (Science) The functional of the distribution that the Wilcoxon can consistently test, θW = Pr(X ≥ Y ),
does not provide a transitive ordering of populations.

– This property is shared by all functionals that cannot be expressed as a contrast of univariate
functionals. Hence, the median difference (e.g., sign test) or mean ratio of paired observations,
the maximal distance between two cumulative distribution functions (e.g., Kolmogorov-Smirnov
test), and even the usual computation of a hazard ratio (due to the weighting of estimated hazards
at observed failure times in Cox proportional hazards) can be shown to also be intransitive.

• (Statistics) The null sampling distribution is computed under the strong null hypothesis. The resulting
test is neither unbiased nor consistent as a test of the strong null in a distribution-free sense.

– This drawback is shared, at least in part, by any inference about the strong null hypothesis using
a statistic that is consistent for a particular functional of the probability distributions, if that null
value does not uniquely indicate the strong null hypothesis in a distribution-free environment.
Most commonly used parametric and semiparametric analysis models are based on some functional
θ and define a null value such that when F = G within the presumed distributional family, θ = θ0.
Furthermore, within the parametric or semiparametric family, there is a constraint that if θ = θ0,
then F = G. Yet in most such analysis models, outside the parametric or semiparametric model,
θ = θ0 does not necessarily imply F = G. For instance, the t test that presumes equal variances
will asymptotically reject the null hypothesis with probability equal to the type I error whenever
the means and variances are equal across the two groups. It is of course trivial to find X ∼ F
and Y ∼ G such that E[X] = E[Y ], V ar(X) = V ar(Y ), but F (x) 6= G(x) for some x. (The two-
sample parametric binomial probability model is a notable exception to this drawback, because
it is a one parameter family and the sum of independent binary variables must be binomial.)

• (Statistics) The null sampling distribution is computed under the strong null hypothesis. The resulting
test is not necessarily of the right size under distributions satisfying the weak null hypothesis.

– Again, this drawback is shared, at least in part, by most of the commonly used parametric
and semiparametric analysis models. For instance, the t test that presumes equal variances is
asymptotically of the nominal level under the weak null only if either the variances are equal or
the sample sizes in the two groups are equal.

• (Science) In light of the two previous results, rejection of the null hypothesis using the Wilcoxon
statistic can only validly be interpreted as a difference in distributions, not as a difference in location.

• (Statistics) Because the operating characteristics of the Wilcoxon statistic have generally been evalu-
ated in restrictive parametric and semiparametric settings, the generalization of those efficiency results
are not clear.
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I note that it is frequently the case that the historical development of useful statistics has involved a
derivation of the statistic in the confines of a parametric or semiparametric model, and then the evaluation
of the robustness of the inference in a distribution-free setting. Often that further evaluation leads to
relatively minor modifications of the statistic that yields valid, unbiased, and consistent testing of a weak
null hypothesis. Such tests can then often be inverted to obtain robust confidence intervals for a scientifically
meaningful functional of the probability distribution. It is not clear that the functional tested by the Wilcoxon
lends itself to generally useful distribution-free inference, however.
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