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Corrected Confidence Bands for Functional Data Using

Principal Components

BY JEFF GOLDSMITH, SONJA GREVEN AND CIPRIAN CRAINICEANU

November 8, 2011

Abstract

Functional principal components (FPC) analysis is widely used to decompose and express func-

tional observations. Curve estimates implicitly condition on basis functions and other quantities de-

rived from FPC decompositions; however these objects are unknown in practice. In this paper, we

propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decom-

positions. Additionally, pointwise and simultaneous confidence intervals that account for both model-

based and decomposition-based variability are constructed. Standard mixed-model representations of

functional expansions are used to construct curve estimates and variances conditional on a specific de-

composition. A bootstrap procedure is implemented to understand the uncertainty in principal com-

ponent decomposition quantities. Iterated expectation and variance formulas combine both sources

of uncertainty by combining model-based conditional estimates across the distribution of decompo-

sitions. Our method compares favorably to competing approaches in simulation studies that include

both densely- and sparsely-observed functions. We apply our method to sparse observations of CD4

cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly

available, and our method is implemented as the IVfpca() function in the R package refund on

CRAN.

Keywords: Bootstrap; functional principal components analysis; iterated expectation and variance; simultane-

ous bands.
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1 Introduction

Functional principal components (FPC) analysis, in which individual curves are expressed as a linear

combination of population-level basis functions and curve-specific scores, is a key tool in functional data

analysis. FPC analysis has applications in dimension reduction, estimation of curves in the presence of

measurement error, and the expression of traditional longitudinal data as sparsely observed functional

data. Despite the ubiquity of FPC analysis in the functional data literature, principal components expan-

sions are poorly understood in terms of their sources of variability. In this paper, we develop a method

for the estimation of curves that accounts for uncertainty in the model-based estimation of curve-specific

scores for a particular FPC decomposition as well as uncertainty in the FPC decomposition itself. Further,

we construct confidence intervals for the curves that include both model-based and decomposition-based

sources of variability.

Using FPC analysis, individual curves are expressed as a linear combination of population-level basis

functions and curve-specific scores. These scores can be predicted as the best linear unbiased predic-

tors (BLUPs) in a mixed model framework for a particular FPC decomposition, which includes the basis

functions and score variances. Thus FPC analysis allows a parsimonious, nonparametric representation

of functional data. Additionally, mixed model results allow the construction of confidence intervals for

estimated curves, again for a particular decomposition. However, in practice the decomposition is based

on the estimated covariance structure of the population of curves and is subject to variability. This added

variability can be substantial in many settings, including when a small number of curves is observed and

when the curves are observed sparsely at the subject level, yet is often overlooked. Accurate estimation

and inference for functional expansions is important is many scientific settings, such as understanding

CD4 cell count trajectories in HIV positive individuals based on infrequent measurements or quantifying

intracranial white-matter structure using diffusion tensor imaging.

Our proposed method explicitly conditions on a particular FPC decomposition when predicting curve-

specific scores and estimating the associated variability. Next, we use iterated expectation and variance

formulas to combine uncertainty in the conditional estimates across the distribution of FPC decomposi-

tion objects (the basis functions, mean function, measurement error and score variances, and the trunca-

tion lag). We use the bootstrap to derive an empirical distribution of decomposition objects by resampling
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curves with replacement and, for each sample, constructing an FPC decomposition. Thus, our method

accounts for two major sources of variability: 1) the model-based uncertainty conditional on a particular

decomposition; and 2) the uncertainty in the estimated FPC decomposition objects. Moreover, it is appli-

cable when curves are sparsely or densely sampled, for small and large sample sizes and when the curves

are measured with error.

FPC analysis has a long history in the statistical literature, dating at least to the treatment of growth

curves in Rao (1958). For a modern introduction to the topic, see Ramsay and Silverman (2005), Chap-

ter 8, or Jolliffe (2002), Section 12.3. Recently, Yao et al. (2005) proposed the use of BLUPs to predict

curve-specific scores for FPC expansions in a mixed model framework; this approach is related to that

of Shi et al. (1996) and Rice and Wu (2001), in which curves are expressed using penalized spline bases

in a mixed model, but can be used when curves are sparsely observed. BLUPs have also been used in

multilevel and longitudinal functional principal components analysis by Di et al. (2009) and Greven et al.

(2010), respectively, to predict scores in more complex decompositions. The mixed model framework has

allowed the use of Bayesian techniques for FPC analysis (Crainiceanu and Goldsmith, 2010) and the joint

modeling of curves and scalar outcomes in functional regression models (Goldsmith et al., Accepted).

Asymptotic consistency and distributions of scores predicted in the mixed model framework are devel-

oped by Yao et al. (2005), and asymptotic properties of FPC decompositions are considered in Hall and

Hosseini-Nasab (2006). James et al. (2000) use a penalized spline approach to estimate FPC basis functions

directly, rather than through decomposing an estimated covariance matrix. This paper also uses the boot-

strap to generate pointwise confidence intervals by taking the empirical quantiles of estimated functions;

importantly, this approach accounts for uncertainty in the FPC decompositions, but not for model-based

uncertainty. The bootstrap is similarly used with functional data by Hall and Hosseini-Nasab (2006) to

construct confidence intervals for FPC basis functions, and by Crainiceanu et al. (2011b) for inference on

the mean difference curve between two groups.

The remainder of the paper is organized as follows. In Section 2 we review FPC analysis and the

estimation of curves in a mixed model framework. Section 3 introduces our method for including uncer-

tainty in principal component expansions in the estimation of curves and understanding the associated

variability. Simulation results comparing several methods are presented and discussed in Section 4. Two
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statistically and scientifically distinct applications are considered in Section 5. We close with a discussion

in Section 6.

2 Mixed-model Framework for FPC Analysis

Given curves Yi(d), d ∈ [0, 1], for 1 ≤ i ≤ I , define the covariance operator ΣY (d, d′) = Cov[Yi(d), Yi(d
′)]

so that ΣY (d, d′) is a bivariate function giving the covariance between two locations on the same curve.

Let
∑∞

k=1 λkφk(d)φk(d
′) be the spectral decomposition of ΣY (d, d′), where φ(d) = {φk(d) : k ∈ Z

+} are

orthonormal eigenfunctions and λ1 ≥ λ2 ≥ . . . are the corresponding non-increasing eigenvalues. Based

on this decomposition, a Karhunen-Loève expansion for Yi(d) is Yi(d) = µ(d) +
∑∞

k=1 ξikφk(d), where the

ξik =
∫ 1
0 {Yi(d)− µ(d)}φk(d)dd are uncorrelated random variables with variance λk, and µ(d) = E[Y (d)].

In practice, we observe the functions Yi(d) with error – that is, we observe Ỹi(d) = Yi(d) + εi(d) where

εi(d) ∼ N
[

0, σ2
]

. Moreover, functions Yi(d) are observed on finite grids {dij}Ji

j=1 that are often sparse at

the subject level. These practical concerns impact the estimation of the mean function, the FPC decompo-

sition, and the Karhunen-Loève expansion. First, the mean function is estimated using penalized splines

fit to the pooled observations under working independence; the smoothing parameter is selected via re-

stricted maximum likelihood (REML). Next, we use a method of moments approach to construct a raw

estimate of the covariance matrix and smooth the off-diagonal elements to obtain Σ̃Y (d, d′) (Staniswalis

and Lee, 1998; Yao et al., 2003). Smoothing of the raw covariance matrix is performed using bivariate

penalized splines, again with smoothing parameters chosen via REML. For both the mean function and

the covariance matrix, other smoothing approaches could be used without modification of the underlying

technique. The retained estimated principal component basis functions φ̂(d) = {φ̂k(d) : k ∈ {1, . . . , K̂}}

and score variances {λ̂k : k ∈ {1, . . . , K̂}} are based on the decomposition of Σ̃Y (d, d′); the estimate K̂

of the truncation K lag is the minimum number of components needed to explain 99% of the variabil-

ity in the observed curves, although other methods for estimating K are possible. The estimate of the

covariance matrix ΣY (d, d′) is given by

Σ̂Y (d, d′) =

K̂
∑

k=1

λ̂kφ̂k(d)φ̂k(d
′) = φ̂(d)Λ̂φ̂

T
(d′) (1)
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where Λ̂ is a diagonal matrix with elements λ̂1, . . . , λ̂K̂
based on the retained basis functions and score

variances. The measurement error variance σ2 is estimated as the average difference between the middle

60% of diagonal elements of the raw covariance matrix and Σ̂Y (d, d′); omitting the extreme diagonal

elements provides more stable estimates of the measurement error variance.

Numeric integration for the estimation of the scores may be inaccurate when the curves are sparsely

observed. With this in mind, Yao et al. (2005) predict scores ξi = {ξik : k ∈ K̂} using best linear unbiased

predictors, effectively basing inference on the the mixed model

Yi(dij) = µ(dij) +
K

∑

k=1

ξikφk(dij) + εi(dij)

ξi
iid∼ N [0,Λ] , εi(dij)

iid∼ N
[

0, σ2
]

(2)

where ξi and εi = {εi(di1), . . . , εi(diJi
)} are independent. Notationally, let θ = {φ, µ,Λ, σ2, K} be the

collection of unobserved FPC decomposition objects: the basis functions φ evaluated over the domain of

d; the mean function µ evaluated over the domain of d; the matrix of score variances Λ = diag{λ1, ...λK};

the measurement error variance σ2; and the truncation lag K. Similarly, let θ̂ = {φ̂, µ̂, Λ̂, σ̂2, K̂} be the

estimated FPC decomposition objects. Also, let di = {dij}Ji

j=1 and dg be a dense grid on the domain of

d, often taken as the union of the di. In the following, Ỹi(di) will represent the vector of observations for

curve i, the vector φk(di) will be the kth basis function evaluated at locations di, and the Ji × K matrix

φ(di) will be the collection of basis functions evaluated at locations di. Analogous notation will represent

functions evaluated over the dense grid dg. We emphasize the conditioning on the FPC decomposition

objects notationally by conditioning on θ̂.

The estimated best linear unbiased predictors for the loadings are

ξ̂
θ̂,i

= E
[

ξi|Ỹi(di), θ̂
]

=
(

φ̂
T
(di)φ̂(di) + σ̂2Λ̂−1

)−1
φ̂

T
(di)

(

Ỹi(di)− µ̂(di)
)

. (3)

A truncated Karhunen-Loève expansion for the ith curve over the dense grid dg, based on the objects
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estimated in the FPC decomposition and the predicted scores, is

Ŷ
θ̂,i

(dg) = E
[

Yi(dg)|ξ̂θ̂,i
, θ̂

]

= µ̂(dg) +
K̂

∑

k=1

ξ̂
θ̂,ik

φ̂k(dg)

= µ̂(dg) + φ̂(dg)ξ̂θ̂,i
. (4)

Model-based covariances for the predicted scores are used to obtain the covariance operator for the esti-

mated curve

Var
[

Ŷ
θ̂,i

(dg)− Yi(dg)|θ̂
]

= φ̂(dg)

(

1

σ̂2
φ̂

T
(di)φ̂(di) + Λ̂−1

)−1

φ̂
T
(dg); (5)

the curve specific covariance in (5) is similar to the estimate of ΣY in (1), but is decreased according to the

term 1
σ̂2 φ̂(di)

T φ̂(di). This covariance focuses on the variability in the curve-specific expansion, and does

not include uncertainty in the estimated overall mean function µ̂(dg). Next, approximate (1 − α)% level

pointwise confidence intervals for the predicted curves are given by

Ŷ
θ̂,i

(dg)± Φ−1
(

1− α

2

)

√

diag
{

Var
[

Ŷ
θ̂,i

(dg)− Yi(dg)|θ̂
]}

(6)

where Φ(·) is the standard Gaussian cumulative distribution function. Similarly, approximate (1 − α)%

level simultaneous intervals are given by

Ŷ
θ̂,i

(dg)±
√

χ2
K,(1−α)diag

{

Var
[

Ŷ
θ̂,i

(dg)− Yi(dg)|θ̂
]}

(7)

where χ2
K,(1−α) is the (1 − α) quantile of a chi-squared distribution with K degrees of freedom. The

intervals in (6) and (7) are justified by asymptotic arguments in Yao et al. (2005).

3 Correct Expansions and Inference

The mixed model framework developed in Section 2 explicitly conditions on the FPC decomposition ob-

jects θ and, given the basis functions, mean function, score and measurement error variances, and trun-

cation lag, derives best linear predictors for curve-specific loadings and variance estimates for functional

6 http://biostats.bepress.com/jhubiostat/paper233



expansions. When these elements are fixed at their true values, standard mixed model results support the

construction described above (Ruppert et al., 2003). In practice, the elements of the FPC decomposition

are unknown and must be estimated from the data. As noted, asymptotic work in Yao et al. (2005) can

be used to justify the above construction for large samples, but this approach can lead to a substantial

understatement of the total variability in the estimated curves when the uncertainty in the decomposition

is high.

Our proposed method accounts for both model-based and decomposition-based uncertainty in esti-

mating curves and in assessing the variability of these estimates. Briefly, the framework described in

Section 2 is used to construct estimates of curves and their associated variability given a particular decom-

position. Uncertainty in the distribution of decompositions is examined through a bootstrap procedure;

that is, we resample curves with replacement and construct FPC decompositions based on the bootstrap

sample. Finally, estimated curves are given by averaging the model-based estimates across the distribu-

tion of decompositions using iterated expectation, and total variability is understood using the iterated

variance formula. Because we estimate all objects of the FPC decomposition θ = {φ, µ,Λ, σ2, K} within

each bootstrap sample, uncertainty in all of these objects is accounted for by our method. This holds if

other methods are used to estimate the individual components of θ so that, for example, other smoothing

approaches can be used for the covariance operator and other rules can be used to select the truncation

lag K.

More specifically, we draw a sample Y B of I functions from the full data Y with replacement. Based

on this sample, we derive an estimate of the covariance operator Σ̂Y

B by smoothing the off-diagonal el-

ements of the raw covariance matrix and obtain an estimate of the FPC decomposition objects θ̂B =

{φ̂B, µ̂B, Λ̂B, σ̂2
B, K̂B}. Conditioning on θ̂B , we proceed as in Section 2 and estimate the scores ξ̂

θ̂B ,i
,

curves Ŷ
θ̂B ,i

(dg), and variances Var
[

Ŷ
θ̂B ,i

(dg)− Yi(dg)|θ̂B

]

for each element of the full dataset Y . Thus,

resampling is used only to assess uncertainty in the decomposition – given each bootstrap decomposi-

tion, estimates and variances are constructed for each curve Yi. Model-based expectations and variances

condition on a particular decomposition, but can be estimated for curves Yi that are not contained in the

bootstrap sample Y B .

Next, we combine information across bootstrap samples to estimate curves and construct variability
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estimates that account for uncertainty in the FPC decompositions. First, we use iterated expectations to

estimate curves over the dense grid dg:

Ŷi(dg) = E [Yi(dg)] = E
θ̂

{

E
Yi|θ̂

[

Yi(dg)|ξ̂θ̂,i
, θ̂

]}

. (8)

Thus, estimated curves are the average of model-based estimates taken over the distribution of decompo-

sition objects in θ. This is estimated taking the average of the model-based estimates across our bootstrap

samples. The total covariance operator of the estimated curves is based on the iterated variance formula:

Var
[

Ŷi(dg)− Yi(dg)
]

= E
θ̂

[

Var
Ŷ |θ̂

(

Ŷ
θ̂,i

(dg)− Yi(dg)|θ̂
)]

+ Var
θ̂

[

E
Ŷ |θ̂

(

Ŷ (dg)|ξ̂θ̂,i
, θ̂

)]

. (9)

The conditional mean and variance are the model-based quantities derived for a given FPC decompo-

sition. Therefore, the left term appearing in (9) gives the average model-based uncertainty across the

distribution of decompositions, and is estimated for each curve i by taking the average of covariance ma-

trices estimated within each bootstrap sample. The right term inflates this by the variance in the estimated

functions taken over the distribution of decompositions, and is estimated using the covariance matrix of

the estimates of curve i across bootstrap samples. Pointwise confidence intervals for the predicted curves

are given by

Ŷi(dg)± Φ−1
(

1− α

2

)

√

diag
{

Var
[

Ŷi(dg)− Yi(dg)
]}

. (10)

Simultaneous confidence intervals for FPC expansions are constructed similarly to intervals for penal-

ized splines (Ruppert et al., 2003). Specifically, a 100(1− α)% simultaneous confidence interval for Yi(dg)

is given by

Ŷi(dg)±m(1−α)

√

diag
{

Var
[

Ŷi(dg)− Yi(dg)
]}

. (11)
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where m(1−α) is the (1− α) quantile of the random variable

max
d ∈ dg

∣

∣

∣

∣

∣

∣

∣

∣

Ŷi(d)− Yi(d)
√

diag
{

Var
[

Ŷi(d)− Yi(d)
]}

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

To estimate m(1−α), we note that Ŷi(dg) − Yi(dg) is approximately multivariate normal centered at 0 and

with the total covariance found in (9):

Ŷi(dg)− Yi(dg)
approx.
∼ N

[

0, Var
(

Ŷi(dg)− Yi(dg)
)]

(13)

We repeatedly draw functions with the estimated covariance from this distribution, and for each draw

calculate the resulting value of (12); the (1 − α) quantile of these values is used as an estimate of m(1−α).

Because this sampling is done only once after all bootstrap samples have been used, estimating simulta-

neous intervals does not add considerably to the total computation time of this approach.

The construction of pointwise intervals in (10) and simultaneous intervals in (11) assumes that the

estimated curve averaged over the distribution of FPC decompositions is approximately Normally dis-

tributed around the true curve. In practice, the distribution of curves may exhibit skewness, overdis-

persion, or multimodality; in this case, the expected value and variance defined in (8) and (9) may not

completely specify the distribution. Alternatively, one might pose more flexible parametric distributions

or use empirical distributions to describe the behavior of curves accounting for variability in FPC de-

compositions. However, asymptotic results in Yao et al. (2005) justify the Normal distribution for large

sample sizes, and simulation studies in Section 4 indicate that the Normality assumption is reasonable

and provides confidence intervals that achieve the nominal coverage in a variety of situations, including

small sample sizes and sparse observations.

4 Simulations

In this section, we conduct a simulation study to examine the accuracy of the estimated curves and the

coverage probabilities of confidence intervals based on our proposed method.
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We construct datasets using the following model

Yi(d) = µ(d) +

4
∑

k=1

ξikφk(d) + εi(d)

for d observed on the dense equally-spaced grid dg = {(t − .5)/50, t = 1, . . . , 50}, µ(d) = 1
4d and εi(d) ∼

N
[

0, σ2
]

; two scenarios for the distribution of scores ξi are given below. The eigenfunctions are taken to

be φ = {φ1(d) = 1;φ2(d) =
√

3(2d−1);φ3(d) =
√

5(6d2−6d+1);φ4(d) =
√

7(20d3−30d2+12d−1)} and the

variances are λk = {.75k−1}4k=1. Five hundred such datasets are constructed for all possible combinations

of the scenarios below:

1. Sample sizes (a) I = 20; (b) I = 50; (c) I = 100;

2. Measurement error variances (a) σ2 = .0025; (b) σ2 = .01;

3. Number of points observed per curve (a) Ji = 50; (b) Ji = 20; (c) an unbalanced design. For the

unbalanced design, the number of points observed per curve follow a Pois[λ = 15] distribution; for

sparse designs (b) and (c), the locations of observed points are uniformly distributed within dg.

4. a) Normally distributed scores: ξik ∼ N [0, λk];

b) Non-normally distributed scores (mixture of normals): ξik drawn with equal probability from

either N
[

−
√

λk/2, λk/2
]

or N
[

√

λk/2, λk/2
]

.

This gives a total of 36 possible designs.

For each dataset, we estimate curves and construct 95% pointwise confidence intervals using the

method described in Section 3 with 100 bootstrap samples per dataset; additional unreported simulations

indicate that this number of bootstrap samples is sufficient to understand the uncertainty in the estimation

of FPC decomposition objects in the scenarios we consider. We estimate curves and confidence intervals

using three methods: (i) the iterated expectation and variance method proposed in Section 3, labeled “IV”

in Figures, Tables and the text below; (ii) the mixed model approach estimating the FPC decomposition

objects θ from the data, labeled “MM - θ̂”; and (iii) the mixed model approach fixing the FPC decompo-

sition objects θ at their true values, labeled “MM - θ”. In addition, when examining pointwise intervals

we consider using the 2.5% and 97.5% quantiles of the curves estimated within each bootstrap sample,
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labeled “Bootstrap”. For simulated datasets and bootstrap samples in which the measurement error vari-

ance σ2 is estimated to be zero, the model-based variance estimates are also zero. This is most common

for scenarios in which σ2 = .0025, Ji = 20 or the design is unbalanced, and I = 20. Such datasets are

omitted from the results below.

Table 1 provides the average mean squared error AMSE = 1
I

∑I
i=1

[

1
50

∑

d∈dg

(

Ŷi(d)− Yi(d)
)2

]

of the

curves estimated from IV, MM - θ̂, and MM - θ approaches using non-normally distributed scores (results

for normally distributed scores are similar and reported in an online supplement). For reference on the

values in this table, Figure 1 displays two examples of simulated curves, the observed data points, and

curve estimates with the MSE for each estimate. The example in the left panel comes from a simulation

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

1
.0

d

Y
i(
d
)

IV; MSE = 0.508

MM - θ^; MSE = 0.403
MM - θ; MSE = 0.257

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

d

Y
i(
d
)

IV; MSE = 0.079

MM - θ^; MSE = 0.082
MM - θ; MSE = 0.075

Figure 1: Comparison of three methods for estimating curves: the proposed iterated expectation method
(“IV”), the model-only approach estimating θ from the data (”MM - θ̂”) and the mixed model approach
fixing θ at the truth (”MM - θ”). The left panel displays a curve from a simulated dataset with I = 20,
Ji = 20, and σ2 = .01; the right panel comes from a simulation with I = 50, Ji = 50, and σ2 = .0025.
MSEs are provided for each estimate.

with I = 20, Ji = 20, and σ2 = .01, while the example in the right comes from a simulation with I = 50,

Ji = 50, and σ2 = .0025. For densely observed curves, Table 1 indicates that the IV and MM - θ̂ approaches

have similar performances, but that the IV method modestly outperforms the model-based approach

when curves are sparsely observed. Moreover, these methods are most similar to the MM - θ approach

when curves are fully observed. As expected, performance improves as sample size increases and when

the measurement error variance is smaller.

Next we consider inference on estimated curves. Table 2 displays the average coverage, taken across
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IV MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 0.026 0.259 0.509 0.026 0.268 0.561 0.020 0.065 0.138
σ

2 = .01 0.100 0.475 0.814 0.099 0.485 0.834 0.078 0.242 0.416

I = 50; σ2 = .0025 0.023 0.145 0.303 0.023 0.166 0.342 0.020 0.064 0.143
σ

2 = .01 0.088 0.340 0.600 0.088 0.355 0.627 0.079 0.240 0.423

I = 100; σ2 = .0025 0.022 0.109 0.233 0.022 0.121 0.266 0.020 0.064 0.140
σ

2 = .01 0.083 0.295 0.519 0.083 0.305 0.535 0.078 0.240 0.418

Table 1: 100 × AMSE, taken over all grid points and subjects, of estimated curves constructed using
the proposed iterated expectation method (“IV”), the mixed model approach estimating θ from the data
(“MM - θ̂”) and the mixed model approach with θ fixed at the true value (“MM - θ”). Curves are sampled
with Ji = 50, Ji = 20, and using an unbalanced design (“Unbal”).

all grid points and all subjects, of pointwise confidence intervals for simulation scenarios with non-

normally distributed scores (again, results for normally distributed scores are similar and reported in an

online supplement). The results in Table 2 demonstrate the reliability of the IV method, with coverages

IV Bootstrap MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 95.3 97.3 97.0 63.6 86.2 83.8 90.3 68.4 72.0 95.0 94.9 95.0
σ

2 = .01 95.2 94.7 93.8 61.2 75.7 73.9 90.9 81.2 80.0 95.0 94.9 95.0

I = 50; σ2 = .0025 94.8 95.3 96.6 46.4 77.2 75.9 93.0 75.6 78.5 95.0 94.9 95.0
σ

2 = .01 94.8 94.3 93.9 43.9 61.4 61.8 93.2 88.6 86.8 95.0 94.9 95.0

I = 100; σ2 = .0025 94.9 93.8 95.0 35.3 70.4 68.7 94.1 79.9 79.2 95.0 95.0 95.0
σ

2 = .01 94.9 94.7 94.2 33.6 52.3 51.6 94.1 91.5 90.5 95.0 95.0 95.0

Table 2: Average pointwise coverage, taken over all grid points and subjects, of 95% confidence intervals
constructed using the proposed iterated variance method (“IV”), the approach that uses the quantiles of
bootstrapped curve estimates (“Bootstrap”), the mixed model approach estimating θ from the data (“MM
- θ̂”) and the mixed model approach with θ fixed at its true value (“MM - θ”). Coverages are expressed
as percents.

between 93.8 and 97.3 for all simulation scenarios. Lower coverages are observed for both the bootstrap

method and the MM - θ̂ approach, particularly for smaller sample sizes and sparser observations.

The bootstrap and MM - θ̂ approaches each consider only one important source of variability: the

bootstrap approach captures uncertainty in the FPC decomposition objects θ but does not consider the

model-based uncertainty in the estimation of the scores, while the MM - θ̂ approach includes the model-

based variability in the subject-specific scores but does not consider uncertainty in the decomposition

objects. As the sample size increases, θ is better estimated, so the coverage of the MM - θ̂ approach that

conditions on this estimate improves. For the bootstrap interval, coverage decreases as sample size in-

creases because θ is better estimated within each bootstrap sample, which provides more stable estimates
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of individual curves across samples. Thus, the bootstrap estimates themselves show lower variability, but

do not reflect the uncertainty in the predicted curve-specific scores. Surprisingly, coverage for the MM -

θ̂ method is worse when the measurement error variance is low - accurate estimation of this parameter

may be more difficult when it is small, which would impact the coverage of resulting confidence intervals.

Finally, the MM - θ method attains the nominal coverage in all situations, which illustrates that the low

coverages in the asymptotic approach are not caused by the mixed-model framework, but by uncertainty

in the FPC decomposition objects.

Table 3 provides the average coverage of simultaneous confidence intervals taken over all grid points

and subjects. For the IV approach, these intervals are constructed using the quantile estimate procedure

described in equations (11) - (13) in Section 3. For the MM - θ̂ and MM - θ methods, simultaneous intervals

are given by equation (7) in Section 2. The coverage of the IV method is somewhat lower for simultaneous

IV MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 94.1 96.5 95.0 86.4 34.4 41.6 98.2 98.2 98.3
σ

2 = .01 94.3 92.2 89.3 88.6 59.8 56.8 98.2 98.3 98.3

I = 50; σ2 = .0025 93.8 93.2 96.1 94.1 49.0 56.4 98.3 98.2 98.3
σ

2 = .01 94.1 92.6 91.0 94.6 82.4 78.2 98.3 98.2 98.3

I = 100; σ2 = .0025 94.1 89.9 92.8 96.4 59.6 59.4 98.3 98.3 98.2
σ

2 = .01 94.4 93.7 92.1 96.7 91.4 88.3 98.3 98.3 98.3

Table 3: Average coverage of 95% simultaneous confidence intervals constructed using the proposed
iterated variance method (“IV”), the mixed model approach estimating θ from the data (“MM - θ̂”) and
the mixed model approach with θ fixed at its true value (“MM - θ”). Coverages are expressed as percents.

intervals than for pointwise intervals, with values ranging between 89.3% and 96.5%; in general, however,

the intervals approach nominal coverage. On the other hand, the MM - θ̂ approach has substantially

worse performance in many scenarios with coverages as low as 34.4%. The effect of low measurement

error variance on decreasing coverage probabilities using the mixed model approach is more evident

for simultaneous intervals than for pointwise intervals, particularly for sparse data scenarios. Results

for the MM - θ method indicate that intervals constructed using equation (7) are in fact conservative,

with coverages of approximately 98.2% for all simulation scenarios. In an online appendix, we discuss

the adaptation of the quantile estimation procedure used to construct simultaneous intervals for the IV

method to the MM - θ̂ and MM - θ methods. Additional simulations indicate that using the quantile

estimation procedure, rather than the χ2 quantile in equation (7), produces confidence intervals with
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nominal coverage for the MM - θ approach, although coverages for the MM - θ̂ method drop to as low as

27.3%.
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Figure 2: Illustration of the proposed inference method using a single function. The left panel shows the
true curve in black, the observed points as black dots, and the within bootstrap sample estimated curves
in red. The middle panel shows pointwise confidence intervals based on the iterated variance (“IV”)
approach, the mixed model method (“MM - θ̂”) and the quantiles of the bootstrapped estimates (“Boot-
strap”). In the right panel are simultaneous confidence intervals from the IV and MM - θ̂ approaches.

Figure 2 illustrates the results in Tables 2 and 3 by examining a single curve in a dataset with I = 20,

Ji = 20, and σ2 = .01. Shown in the left panel of this Figure is the true curve Yi(d), the observed points

and the estimated curves within each bootstrap sample. This panel illustrates the amount of variability

in the estimated curve based on uncertainty in the FPC decomposition objects θ. Displayed in the middle

panel for the same curve are the 95% pointwise confidence intervals based on the IV approach, the MM - θ̂

method, and the quantiles of the bootstrapped curve estimates. The bootstrap approach does not consider

model-based variance in the estimated scores, while the MM - θ̂ approach ignores variability in θ̂. In the

right panel are the simultaneous confidence intervals given by the IV and MM - θ̂ approaches. Pointwise

and simultaneous confidence intervals based on the model-only approach are narrower than those based

on the iterated variance approach, and do not achieve nominal coverage level.

The improvements in average mean squared errors and coverage probabilities for the IV approach

over the MM - θ̂ method incur computational costs. Estimation of decomposition objects requires bivari-

ate smoothing of a covariance matrix, which can be computationally expensive and must be repeated for

each bootstrap sample. The time needed to complete this step will increase with the number of points

in dg and with the number of knots used in the bivariate smoothing. However, in the scenarios we con-

sider estimating the decomposition objects takes between 4 and 6 seconds for each iteration, making the
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proposed IV approach computationally feasible.

5 Applications

In this section we consider two statistically and scientifically distinct applications. First, we treat longitu-

dinal observations of CD4 cell counts as sparsely observed functional data; second, we consider densely

observed white-matter tract profiles. Both datasets and the code implementing our analyses are available

online.

5.1 CD4 Data

Human immune deficiency virus (HIV) attacks an immune cell called the CD4 cell and thereby decreases

an affected individual’s response to infectious agents. Because of this, CD4 cell count per milliliter of

blood is a useful surrogate measure for the progression of HIV. In this dataset from the Multicenter AIDS

Cohort Study (MACS), we observe CD4 cell counts for 366 infected individuals in a traditional longitudi-

nal study (Kaslow et al., 1987). That is, subjects were observed at roughly semi-annual visits with varying

numbers of visits per subjects: there are a total of 1888 data points, with between 1 and 11 observations

per subject and a median of 5. CD4 counts are plotted against months since seroconversion (the time

at which HIV becomes detectable) in the top-left panel of Figure 3, with a randomly selected subset of

patients highlighted in red. Longitudinal data analysis approaches to this study are presented in Diggle

et al. (1994), and the treatment of a related dataset as sparsely observed functional data is given in Yao

et al. (2005).

In this application, we wish to estimate the continuous trajectory of CD4 cell counts over time based

on a limited number of observations for each subject. FPC analysis offers a powerful tool for estimat-

ing population-level trends by using the dense collection of observations across subjects and predicting

subject-specific functions using a mixed model framework. The predicted functions are subject to model-

based variability as well as uncertainty in the FPC decomposition. This second source of variability can

be particularly important when functions are sparsely observed at the subject level. Here we analyze the

CD4 cell count data using both the IV method developed in Section 3 and the MM - θ̂ method. Both

approaches are implemented on the full dataset as well as the randomly selected subset of 25 individuals
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to demonstrate the effect of sample size in the analysis of sparse functional data.

Results of the CD4 cell count application are shown in Figure 3. The top-left panel plots the CD4 cell
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Figure 3: Results from analysis of CD4 cell count data. The top-left panel shows the observed CD4 counts;
a random sample of 25 subjects is highlighted in red. The top-right panel shows the estimated curves
(“Est”) for a single CD4 trajectory based on the sampled subjects and full dataset using the iterated ap-
proach (“IV”) and the mixed model approach (“MM - θ̂”); also shown are pointwise (“PW Int”) and
simultaneous (“Simul Int”) confidence intervals. The bottom-left and bottom-right panels compare the
width of pointwise and simultaneous confidence intervals, respectively, for the IV and MM - θ̂ approaches
averaged over all subjects; comparisons for the full and sampled data are given. Simultaneous intervals
are constructed using the resampling procedure in Section 3 for the IV method and using the interval in
(7) for the MM - θ̂ method

counts against months since seroconversion, highlighting the sample used in the subset analysis. Curve

estimates and intervals for a single subject in the subset analysis are provided in the top-right panel of

Figure 3. Simultaneous intervals are constructed using resampling procedure for the IV approach and
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using the asymptotic interval given in (7) for the MM - θ̂ method. For this subject, the estimated CD4 cell

count trajectory using the IV method is lower for months -18 to -10 and higher for months 0 to 12 than

the trajectory estimated using the mixed model approach. In these times, the pointwise and simultaneous

confidence intervals constructed using the IV approach are much wider than those constructed using the

MM - θ̂ framework. For example, using the method proposed in Section 3, at month -18 this subject’s

CD4 cell count is estimated to be approximately 2600 CD4 cells per milliliter of blood with upper and

lower bounds of 3300 and 1900; using the mixed model approach, the CD4 cell count is estimated to be

2800 with bounds 3100 and 2500. Further, using the upper bound of the simultaneous interval to estimate

the month in which CD4 cell count drops below 1500 per milliliter would yield month 10 under the IV

method and month 4 under the MM - θ̂ approach. Thus, inference for a subject’s CD4 trajectory can

change dramatically depending on the procedure used to construct mean and variance estimates.

In the bottom-left panel, we compare the widths of pointwise confidence intervals yielded by the IV

and MM - θ̂ approaches. For the full data analysis, intervals resulting from the proposed method have

a similar width as those from the mixed model approach, but are up to 1.18 times as wide for months

(36, 42) where there are fewer observations across subjects. In the analysis of the randomly selected 25

subjects, pointwise confidence intervals resulting from the IV approach are up to 1.52 times wider than

those from the MM - θ̂ method, and are on average 1.21 times wider. Similarly, a comparison of the

average widths of simultaneous confidence intervals given by the two methods is shown in the bottom-

right panel of Figure 3. The relationship between the widths of simultaneous intervals is similar to that for

pointwise intervals for the sampled data. For the full data analysis, the intervals given by the IV approach

are in fact slightly narrower than those for the MM - θ̂ method; recall that simulations indicated that

the simultaneous intervals in (7) may in fact be conservative asymptotically, while the IV simultaneous

intervals could attain coverages slightly under the nominal level. Generally, these results indicate that

ignoring the variability in the FPC decomposition can substantially understate the total variability in

estimated curves for small samples and sparse data.
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5.2 White-matter Tract Data

Next, we consider a neuroimaging study of white matter tracts in multiple sclerosis (MS) patients and

healthy controls. Intracranial white-matter consists of tracts or bundles of myelinated axons that carry

electrical signals between areas of the brain. Major examples of white matter tracts are the corticospinal

tracts, which connect the motor cortex to the spinal cord, and the corpus callosum, which bridges the left

and right hemispheres. MS is an autoimmune disorder that results in white matter lesions, axonal damage

and demyelination, and can lead to severe patient disability. Diffusion tensor imaging (DTI) is an MRI

modality able to resolve individual tracts by tracing the diffusion of water, which tends to be anisotropic

within white matter tracts and isotropic elsewhere in the brain (Basser et al., 1994, 2000; LeBihan et al.,

2001; Mori and Barker, 1999). Fractional anisotropy (FA) is one of several quantities derived from DTI

scans that measures overall anisotropy, and may be decreased in MS patients.

Our dataset consists of 42 healthy controls and 100 MS patients, for whom we observe FA values sam-

pled densely at 55 locations along the right corticospinal tract. The top-left panel of Figure 4 displays

these FA profiles, separating MS patients and healthy controls. There is significant variability in tract pro-

files comparing subjects, as well as apparent measurement error in the observed FA values. In addition,

35% of subjects are missing observations for at least one tract location, and 17% of subjects are missing

observations for 5 or more locations. For all subjects, any missing values are consecutive and begin at

tract location 0, so that missingness is clustered at the beginning of the tract.

Because tract profiles are affected by disease progression, they are useful biomarkers and have been

related to patient disability (Goldsmith et al., 2011). The goal of this analysis is to understand the total

variability in tract profile estimates using FPCA. We compare the proposed IV method to the standard

MM - θ̂ approach to assess the contribution of decomposition-based uncertainty on overall variability in

estimated curves. Additionally, to examine the effect of sample size when curves are densely sampled,

we conduct our analyses on both the full data set and on the subset of healthy controls.

Figure 4 shows the results from the analysis of the DTI tract data. A comparison of the relative widths

of pointwise confidence intervals constructed using the IV and MM - θ̂ methods is given in the top-right

panel of Figure 4. In the full data analysis, the IV method results in confidence intervals that are on

average 1.12 times wider than those given by the MM - θ̂ approach. When considering the 42 healthy
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Figure 4: Results from analysis of DTI tract data. The top-left panel shows the observed profiles, with MS
patients in black and healthy controls in red. The top-right panel compares the width of confidence inter-
vals for the MM - θ̂ and IV approaches averaged over all subjects; analyses of the full data and healthy
controls only are provided. The bottom-left and -right panels show the estimated curves and pointwise
confidence intervals for a single function based on the healthy controls and full dataset, respectively; esti-
mates are constructed using both the iterated approach (“IV”) and mixed model (“MM - θ̂”) approaches.

controls only, the IV approach produces intervals that are on average 1.40 times wider than those for

the MM - θ̂ approach. The comparison of the intervals yielded by these methods illustrates that, even

for densely sampled observations, the mixed-model approach that conditions on a single decomposition

can significantly understate the total variability by neglecting the uncertainty in the FPC decomposition

objects.

A demonstration of the difference between the IV and MM - θ̂ approaches is given in the bottom
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panels of Figure 4 using the tract profile of a single healthy control. On the left are the estimated curves

and pointwise confidence intervals from the analysis based on the 42 healthy controls only; the interval

based on the IV method is substantially wider at several locations on the tract, particularly near 0.0, 0.6,

and 0.8. In addition, the curve estimated using iterated expectations falls outside the pointwise confidence

interval given by the MM - θ̂ approach at several locations between 0.5 and 0.8. On the right are the

estimates and pointwise intervals from the full data analysis, showing that the two approaches provide

more similar intervals when a larger sample size is used. Thus for small sample sizes, accounting for

the uncertainty in the FPC decomposition by using the IV method results in noticeably wider confidence

intervals; as the sample size increases, the decomposition uncertainty decreases and the IV and MM - θ̂

methods yield more similar results.

6 Discussion

Functional principal components analysis is ubiquitous in functional data analysis. FPC decompositions

are estimated from the data, and curves are expressed using a truncated Karhunen-Loève expansion with

curve-specific scores predicted from a mixed model that conditions (often implicitly) on the estimated

decomposition. Previous work on estimation and inference for FPC expansions has focused on the model-

based prediction of scores and the associated variability without including the uncertainty in the FPC

decompositions. In many cases, including small samples or sparsely observed curves, this second source

of uncertainty is non-negligible.

In this paper, we propose a method for estimating curves and understanding the variability of those

estimates that accounts for both model-based and decomposition-based uncertainty. Specifically, we use

iterated expectations to average model-based estimates that condition on specific decompositions across

the distribution of those decompositions; similarly, the iterated variance formula provides correct infer-

ence by combining both sources of uncertainty. A bootstrap procedure provides an empirical distribution

of the FPC decompositions. Simulations demonstrate the accuracy of our method, both in terms of the

MSEs of estimated curves and in terms of the coverage of associated confidence intervals. We apply our

method to two statistically and scientifically distinct data sets, one using longitudinally observed CD4

cell counts as sparse functional data and the other using partially-unobserved tract profiles from a neu-
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roimaging study. An R implementation of our method is given by the iv.fpca() function in the refund

package on CRAN (Crainiceanu et al., 2011a).

Future work may proceed in several directions. The proposed method assesses uncertainty in the

FPC decomposition through the bootstrap; alternatively, one could use a probabilistic model for the un-

known objects in the decomposition. Such an approach could be integrated seamlessly with the meth-

ods developed here, but the specification of an appropriate model for the unknown objects is a difficult

challenge. Inference for more complex FPC-based methods may be improved through the extension of

iterated expectation and variance formulas. For instance, longitudinal functional principal components

analysis (LFPCA) decomposes repeated observations of curves into baseline subject-specific components,

time-varying subject-specific components, and subject-visit-specific components (Greven et al., 2010); in-

cluding model-based and decomposition-based variability will improve the understanding of uncertainty

in this scientifically useful setting. Additionally, the proposed method has focused on uncertainty in the

Karhunen-Loève expansion arising from both model-based and decomposition-based variability, but it

does not address the model-based uncertainty in the estimation of the mean function. Correctly includ-

ing this source of variability may increase the accuracy of the estimated curves and confidence intervals,

particularly in cases where the estimate of the mean function may be poor.
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In this supplement, we provide simulation results in addition to those appearing in Section 4 in the

main paper. In the following, we compare results given by the iterated variance method (IV), the mixed

model approach that estimates the FPC decomposition objects θ from the observed data (MM - θ̂), and

the mixed model approach that fixes the θ at the truth (MM - θ).

A Additional Simulation Results

Table A.1 provides the average mean squared error AMSE = 1
I

∑I
i=1

[

1
50

∑

d∈dg

(

Ŷi(d)− Yi(d)
)2

]

of the

curves estimated from IV, MM - θ̂, and MM - θ approaches using normally distributed scores (results for

non-normally distributed scores appear in Table 1). When curves are densely observed, the IV and MM

IV MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 0.026 0.266 0.524 0.026 0.277 0.574 0.020 0.064 0.134
σ

2 = .01 0.100 0.479 0.818 0.099 0.487 0.857 0.079 0.238 0.412

I = 50; σ2 = .0025 0.023 0.150 0.307 0.023 0.169 0.347 0.020 0.064 0.143
σ

2 = .01 0.088 0.347 0.609 0.088 0.363 0.637 0.079 0.240 0.424

I = 100; σ2 = .0025 0.022 0.114 0.238 0.022 0.126 0.270 0.020 0.064 0.141
σ

2 = .01 0.084 0.300 0.522 0.084 0.311 0.541 0.079 0.239 0.419

Table A.1: 100×AMSE, taken over all grid points and subjects for simulations with normally distributed
scores, of estimated curves constructed using the proposed iterated expectation method (“IV”), the mixed
model approach estimating θ from the data (“MM - θ̂”) and the mixed model approach with θ fixed the
true value (“MM - θ”). Curves are sampled with Ji = 50, Ji = 20, and using an unbalanced design
(“Unbal”).

- θ̂ have similar results, but for sparsely observed curves the IV approach has lower AMSE indicating on

average less bias in estimated curves. As expected, AMSEs increase as measurement error increases, and

decrease as the number of observed curves increases. The results for the MM - θ provide a reference for

the performance of estimated curves.
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Table A.2 displays the average coverage, taken across all grid points and all subjects, of pointwise

confidence intervals for simulation scenarios with normally distributed scores (Table 2 provides coverages

of pointwise intervals for simulations with non-normally distributed scores). The proposed IV method is

IV Bootstrap MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 95.3 97.2 97.0 63.8 86.0 83.5 90.3 69.3 72.7 94.9 95.1 94.9
σ

2 = .01 95.2 94.7 93.9 61.3 75.6 73.8 90.8 81.7 78.6 94.9 95.1 94.9

I = 50; σ2 = .0025 94.8 95.3 96.8 45.9 77.0 75.9 93.0 75.0 77.7 95.0 95.0 95.0
σ

2 = .01 94.8 94.3 94.0 43.5 61.7 61.8 93.2 88.3 86.7 95.0 95.0 95.1

I = 100; σ2 = .0025 94.9 93.7 95.3 34.9 70.1 68.8 94.0 78.7 79.2 95.0 95.1 95.0
σ

2 = .01 94.9 94.7 94.2 33.2 52.5 52.2 94.1 91.2 90.2 95.0 95.1 95.0

Table A.2: Average pointwise coverage for simulations with normally distributed scores, taken over all
grid points and subjects, of 95% confidence intervals constructed using the proposed iterated variance
method (“IV”), the approach that uses the quantiles of bootstrapped curve estimates (“Bootstrap”), the
mixed model approach estimating θ from the data (“MM - θ̂”) and the mixed model approach with θ

fixed at its true value (“MM - θ”). Coverages are expressed as percents.

near the nominal coverage level for all simulation scenarios, with coverages between 93.7% and 97.2%.

For densely observed curves with large sample sizes, the MM - θ̂ method approaches nominal coverage,

but for smaller sample sizes and especially sparse curves, coverages are much lower and can be as low as

69.3%. The MM - θ method achieves nominal coverage in all scenarios, indicating that the lower coverages

for MM - θ̂ stem from failing to account for uncertainty in θ rather than from model-based uncertainty.

Table A.3 provides the average coverage of simultaneous confidence intervals taken over all grid

points and subjects constructed using the IV approach described in Section 3 and the MM - θ̂ and MM -

θ methods described in Section 2 (results for simulations with non-normally distributed scores are given

in Table 3). Coverages for the IV method approach the nominal level, with coverages between 89.6% and

IV MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 94.5 96.4 95.2 86.1 35.8 41.4 98.4 98.3 98.3
σ

2 = .01 94.6 92.3 89.4 88.3 61.0 54.1 98.3 98.3 98.3

I = 50; σ2 = .0025 93.7 93.3 96.1 93.8 48.7 56.1 98.2 98.3 98.3
σ

2 = .01 94.1 92.4 91.1 94.6 81.1 78.2 98.2 98.3 98.3

I = 100; σ2 = .0025 94.0 89.6 93.4 96.3 57.1 60.8 98.3 98.2 98.2
σ

2 = .01 94.4 93.3 92.1 96.6 89.9 87.6 98.3 98.2 98.2

Table A.3: Average coverage of 95% simultaneous confidence intervals for simulations with normally
distributed scores constructed using the proposed iterated variance method (“IV”), the mixed model ap-
proach estimating θ from the data (“MM - θ̂”) and the mixed model approach with θ fixed at its true
value (“MM - θ”). Coverages are expressed as percents.
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96.4%. For the MM - θ̂, coverage for densely observed curves roughly achieves the nominal level, but for

sparsely observed curves coverages are as low as 35.8%. Results for the MM - θ approach indicate that

the intervals are in fact conservative, with coverages of 98.2 and 98.3%.

The approach used to construct simultaneous intervals for the IV method can be adapted to the MM -

θ̂ and MM - θ methods in the following way. A 100(1− α)% simultaneous confidence interval for Yi(dg)

is given by

Ŷi(dg)±m(1−α)

√

diag
{

Var
[

Ŷi(dg)− Yi(dg)|θ̂
]}

, (A.1)

where Var
[

Ŷi(dg)− Yi(dg)|θ̂
]

is the variance conditional on the estimated decomposition θ̂ given in equa-

tion (5). The critical value m(1−α) is the (1− α) quantile of the random variable

max
d ∈ dg

∣

∣

∣

∣

∣

∣

∣

∣

Ŷi(d)− Yi(d)
√

diag
{

Var
[

Ŷi(d)− Yi(d)|θ̂
]}

∣

∣

∣

∣

∣

∣

∣

∣

. (A.2)

To estimate m(1−α), we note that Ŷi(dg) − Yi(dg) is approximately multivariate normal centered at 0 and

with the conditional covariance in (5):

Ŷi(dg)− Yi(dg)
approx.
∼ N

[

0, Var
(

Ŷi(dg)− Yi(dg)|θ̂
)]

(A.3)

We repeatedly draw functions with the estimated covariance from this distribution, and for each draw

calculate the resulting value of (A.2); the (1− α) quantile of these values is used as an estimate of m(1−α).

Using the resampling approach, we construct simultaneous confidence intervals for the MM - θ̂ and

MM - θ methods; coverages for these intervals are given in Table A.4. For reference, included in this Table

are the coverages for simultaneous intervals from the IV approach. First, we note that the coverages for

the MM - θ method achieve the nominal coverage level, indicating that the resampling procedure may

provide intervals that are less conservative than the asymptotic approach given in equation (7). Coverages

for the MM - θ̂ are lower for the resampling technique than for the asymptotic approach described in Table

A.4, with coverages as low as 27.3% and no higher than 91.3%. As noted previously, coverages for the IV
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IV MM - θ̂ MM - θ

Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal Ji = 50 = 20 Unbal

I = 20; σ2 = .0025 94.5 96.4 95.2 74.3 27.3 33.7 94.8 95.1 95.1
σ

2 = .01 94.6 92.3 89.4 77.6 48.1 43.4 94.9 95.0 94.8

I = 50; σ2 = .0025 93.7 93.3 96.1 86.1 37.2 46.4 94.8 95.1 95.2
σ

2 = .01 94.1 92.4 91.1 87.5 68.4 66.1 94.8 95.1 95.1

I = 100; σ2 = .0025 94.0 89.6 93.4 90.4 45.1 50.0 95.0 94.9 95.1
σ

2 = .01 94.4 93.3 92.1 91.3 79.6 76.8 94.9 95.0 95.1

Table A.4: Average coverage of 95% simultaneous confidence intervals for simulations with non-normally
distributed scores constructed. All intervals are constructed using the resampling procedure to determine
the critical value m(1−α).

method approximate the nominal level, ranging between 89.6% and 96.4%.
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