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Likelihood Based Population Independent

Component Analysis

Ani Eloyan, Ciprian M. Crainiceanu and Brian S. Caffo

October 11, 2011

Abstract

Independent component analysis (ICA) is a widely used technique for blind

source separation, used heavily in several scientific research areas including acous-

tics, electrophysiology and functional neuroimaging. We propose a scalable two-

stage iterative true group ICA methodology for analyzing population level fMRI

data where the number of subjects is very large. The method is based on like-

lihood estimators of the underlying source densities and the mixing matrix. As

opposed to many commonly used group ICA algorithms the proposed method does

not require significant data reduction by a twofold singular value decomposition. In

addition, the method can be applied to a large group of subjects since the memory

requirements are not restrictive. The performance of our approach is compared

with commonly used group ICA algorithms is shown by using simulation studies.

Furthermore, the proposed method is applied to a large collection of resting state

fMRI datasets. The results show that the postulated brain networks are recovered

by the proposed algorithm.

Keywords: functional MRI, signal processing
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1 Introduction

Independent component analysis (ICA, Jutten and Herault, 1991) is a source separation

technique that assumes linear mixing and independent source signals. ICA is commonly

used in a variety of fields, including: acoustics, electrophysiology and neuroimaging. Par-

ticularly, in resting state (rs) functional connectivity (fc) functional magnetic resonance

imaging (fMRI), it has become the standard tool for discovery, exploration and model-

ing of brain networks. An active scientific discussion is ongoing as to the exact (patho-)

physiological interpretation and importance of rs-fc-fMRI brain networks discovered via

ICA. It is clear that large scale implementations of ICA will be an important component

of resolving these issues. Large scale databases of resting state fMRI scans are becoming

increasingly common; ideally allowing rs-fMRI to become a part of population-based re-

search. As an example, the 1,000 Connectome Project combines scans from several sites

resulting in a database of over 1,400 scans of healthy adults. In addition, the ADHD 200

dataset has resting state scans of roughly 200 attention deficit hyperactive children and

500 control children where some of the children have several scans resulting in over 1,000

fMRI scans. Moreover, the US National Institutes of Health has spearheaded the Human

Connectome Project, a 30 million dollar venture to compile a comprehensive database of

connectivity data, including rs-fMRI. In addition to addressing the importance of such

large scale implementations of ICA to rs-fc-fMRI, our work generalizes to any high di-

mensional implementation of ICA.

ICA is an umbrella term that includes several different algorithmic implementations

and theoretical foundations. At their core, the primary commonality of ICA algorithms

is a linear factor analytic model (Harman, 1967) with the assumption of independence

of underlying factors. We focus on the so-called noise-free ICA, a version of ICA that

simply results in an “unmixing” (non-singular linear multiplication) of the input data
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matrix. This results in including the measurement error or other noise in the data as

a part of the independent components. The estimation of the linear un-mixing matrix

involves iterative algorithms. A common starting point for all algorithms is a first stage

singular value decomposition where dimension reduction is performed, after de-meaning,

to avoid an overdetermined system. Thus, the data input to ICA have mean zero and are

uncorrelated. Hence, Gaussian distributional assumptions provide little further insight to

linear reorganizations. This motivates the search for solutions that are as non-Gaussian as

possible. Hyvarinen et al. (2001) present an extensive overview of such algorithms. Most

notably, Hyvarinen and Oja (1997) introduced a fast fixed point algorithm (called fastICA)

for finding the independent signals by maximizing an approximation to the negentropy.

Cardoso (1990) introduced the JADE algorithm which is based on cumulant tensors.

The Bell-Sejnowski algorithm (Bell and Sejnowski, 1995) finds maximum likelihood (ML)

estimates of the underlying independent signals.

As Bell and Sejnowski (1995), we focus on the ML implementations of ICA, which

require a fully specified likelihood. Eloyan and Ghosh (2011a) discuss parameter identifi-

ability in ICA and present a set of sufficient conditions that ensure model identifiability.

This manuscript builds on their work, extending it to high dimensional applications, fo-

cusing on fMRI.

Calhoun et al. (2001a) introduced the use of ICA for group inferences of fMRI data.

The proposed algorithm is based on reducing the dimensions of the original images by

using principal component analysis (PCA) and then applying fastICA to obtain the un-

derlying sources. In related work, Backmann and Smith (2005) presented tensorial ex-

tensions to ICA for group fMRI data analysis and Guo and Pagnoni (2008) provided an

EM algorithm based ICA method for the case when there is a Gaussian noise term in the

model.
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We propose a two stage maximum likelihood algorithm for group independent com-

ponent analysis applicable to datasets where the number of subjects is very large. The

densities of the underlying sources are modeled using finite mixtures of smooth densities.

The time courses for each subject are updated using an optimization algorithm. The

method is based on iteratively updating the time courses of each subject in the group

along with estimating the underlying densities of the independent components to obtain

the individual time courses for each subject and the common spatial map.

Most methods developed for group ICA require high memory capacity, since the data

are usually concatenated to obtain a full matrix consisting of the observed images from

each subject. If the number of subjects is very large, then loading the concatenated ma-

trix requires excessive memory and becomes implausible. A solution to the problem of

dimensionality uses a two stage SVD approach for dimension reduction. In this approach,

a first stage SVD is applied to the image for each subject, where a few vectors are retained

before concatenating the matrices. Next, a second SVD is applied to the now concate-

nated (over subjects) spatial singular vectors and the first few spatial singular vectors are

retained to force a determined linear system for the noise-free group ICA model. Notice

that in this process the reduction of the dimension from having components for a group

of subjects to one subject is done using the SVD. The ICA algorithm is applied to the

resulting twice projected data to find the independent components. In this standard ap-

proach to group ICA, one SVD is required by the algorithm, while another is done purely

for computational convenience. In the meantime, if the number of subjects is very large

the concatenation of the matrices may not be computationally feasible, which limits di-

rect applications of current group ICA methods to only a few subjects. Our methods are

linear in the number of subjects and are scalable to high dimensional data because they

require sequential access to subject-specific data instead of the entire group data matrix.
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Our primary application data is the 1,000 Functional Connectomes Project hosted

on the NITRC web site (http://www.nitrc.org/projects/fcon 1000). Biswal et al. (2010)

describe the data collection and acquisition parameters from contributing sites and provide

an analysis of functional connectivity. The data set contains structural and rs-fMRI

images for 1,414 healthy adults collected independently from 35 centers worldwide. The

time of repetition, total scan time and other experimental parameters differ across sites.

Hence, we focus on subsets of the data that share the same scanning characteristics; the

largest number of subjects considered was 150, but our methods are linear in the number

of subjects and can easily be applied to thousands or tens of thousands of subjects. Such

large groups of subjects cannot reasonably be handled by the commonly used group ICA

algorithms. These are the reasons why we label our method “likelihood-based population

ICA”.

2 Methods

2.1 Likelihood Based Group Independent Component Analysis

for fMRI

We present the model in generality. Suppose that for each subject, indexed by i = 1, . . . , I,

a T × V dimensional matrix X i is observed. Here the columns, indexed by v = 1, . . . , V ,

are the independent repetitions of each observed mixture while the rows, indexed by

t = 1, . . . , T , are the mixed signals. Contextually, v represents voxels in a fMRI series

while t indexes the scans.

When necessary we useX i(t, v) to represent row t, column v ofX i and apply the same

convention to other vectors and matrices. We assume that a group ICA decomposition
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implies the equation

X i(t, v) =

Q∑

q=1

Ai(t, q)S(q, v) (1)

for all i = 1, . . . , I. Model (1) assumes that the spatio-temporal process, Xi(t, v), for

each subject, i, can be decomposed into a finite sum of products between subject-specific

time series, Ai(t, q), and subject-independent spatial maps, S(q, v). This equation is

equivalent to X i = AiS or X = AS where X = [XT
1 . . .XT

I ]
T and A = [AT

1 . . .AT
I ]

T

are the IT×V and IT×Qmatrices obtained by stacking theX i andAi respectively. Here

the V dimensional vectors, S(q, ·), are the underlying independent components (assumed

random over v) and Ai(t, ·) are the subject-specific fixed effect linear mixing vectors.

In the context of fMRI, the S(q, ·) are spatial maps that are often interpreted as brain

networks while the Ai are the subject specific temporal mixing matrices.

In order for the ICA model to be fully identifiable we assume that the square mixing

matrices, Ai, are of full rank and hence we define W i = A−1
i . We define the densities of

the underlying sources as f1, . . . , fQ. That is, we assume that {S(q, v)}Vv=1 is a collection

of iid draws from fq, for all q = 1, . . . , Q.

Group ICA makes the parsimony assumption that the (random) independent compo-

nents are common across subjects, while how they mix is a fixed effect that can differ

among subjects. This is exactly a standard ICA model on the data concatenated across

subjects to obtain an IT ×V matrix. Allowing for separate independent components (IC)

and mixing matrices across subjects is equivalent to simply applying ICA separately to

each subject and is discussed here. Having separate ICs across subjects and a common

mixing matrix is another possible parsimony assumption. This is analogous to an ICA

model on the data having concatenated subjects to obtain a T × IV matrix.

In the context of single-subject fMRI, assuming spatial ICs and temporal fixed effect

mixing matrices results in the so-called spatial ICA (sICA) (Calhoun et al., 2001b). Alter-
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natively, assuming temporal ICs and spatial fixed effect mixing matrices is often referred

to as temporal ICA (tICA). The assumptions in different fMRI experiments leading to

the choice of using sICA or tICA have been widely discussed. For instance, Calhoun et al.

(2001b) show different paradigm related fMRI experiments where the tICA may perform

poorly compared with sICA when the assumptions on the temporal independence are

violated. Concatenating to obtain an IT ×V matrix and hence using the sICA, has been

settled upon for group ICA analysis of rs-fMRI. For resting state data, only this varia-

tion of concatenation is sensible, since subjects are spatially co-registered into a common

template space, whereas they are not temporally registered. In other words, time 1 for

subject 1 is not the same as time 1 for subject 2. We develop our method for group sICA,

however it can easily be modified to obtain the temporal ICA model if necessary.

There is a technical consideration in that (1) is overdetermined. Hence, we first pre-

process the data at the subject level by centering and whitening the observed matrices

via an SVD and retaining only the first Q components for each subject. Henceforth, we

assume that the number of components to estimate is Q = T , i.e. the data are projected

on the first Q singular vectors. Since we are assuming a noise-free model, noise in the

data is absorbed into the estimated ICs and the mixing matrix.

2.2 Density Estimation in High Dimensions

In the early literature on maximum likelihood based estimation of the independent sources,

well known distribution functions were used to model the fq (Hyvarinen et al., 2001,

p. 204). Boscolo et al. (2004) suggested using kernel density estimation to model the

underlying densities non-parametrically. We take a similar approach by using mixture

density estimates (MDE) introduced by Eloyan and Ghosh (2011b).
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To elaborate, we parameterize the density as:

fq(s) =

Jq∑

j=1

θqj
1

σq

φ

(
s− µqj

σq

)
, (2)

where φ(·) is the standard normal density function. Our treatment fixes the means, µqj,

and variance, σq for each mixture density. We define the µqj to lie on a grid of not

necessarily equidistant points. To illustrate, consider a strict density estimation problem

where s(q, ·) are observed with empirical mean zero and variance one.

As a starting set of fixed parameters for the mixture densities define the number of

densities in the mixture as Jq = 1+ 2
3
Rangev{S(q, v)}. The set of fixed means is given by

µqj = minv S(q, v) +
j−1
Jq−1

Rangev{S(q, v)} for j = 1, . . . , Jq, and the variance component

σ2
q = 2(µqV − µq1)/{3(Jq − 1)}. The rationale behind these choices is to set the µqj as an

equally spaced grid between the extremes of the data and to set σ2
q such that σq = o(1)

as Jq → ∞. Suppose MJq = {µq1 < ... < µqJq} is the set of fixed means of the mixture

densities. As the number of mixture densities Jq increases the setMJq+1 is constructed by

adding the median of one of the intervals [µq,j, µq,j−1]. Hence the sequence M1,M2, . . .

maintains the sieve structure, i.e. each consecutive set contains the previous sets as

subsets.

The weights of the mixture densities in (2) given by (θq1, . . . , θqJq) are estimated using a

constrained EM algorithm. The resulting density estimates satisfy the moment constraints

required for full identifiability of the model given by

E[S(q, ·)] = 0, E[S(q, ·)2] = 1, and (3)

0 < E[S(1, ·)3] < . . . < E[S(Q, ·)3],

for q = 1, . . . , Q.

The nonparametric estimation of the density of a vector S(q, ·), which has a large

sample size (≈ 70, 000 voxels in this case), can be computationally problematic. To
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address this issue, we propose a binning algorithm for the density estimation, essentially

looking at the approximation to the histogram of the data. Choose p << V and suppose

for each independent component, q, the set (rq1, rq2, . . . , rqp, rq,p+1) consists of the p +

1 quantiles of S(q, ·). Next, bins, Bq1, Bq2, . . . , Bqp, are constructed using the above

quantiles as the endpoints for the bins. In addition, let cq = (cq1, cq2, . . . , cqp) denote the

counts of the observations in each of the bins. The underlying density of the components

can be found by using the midpoints, say M q = (Mq1,Mq2, . . . ,Mqp), of the bins and the

counts by slightly modifying the proposed constrained EM algorithm. In other words, the

updates of the mixture weights are computed as

θ̂
(k+1)
qj =

∑n

i=1 wij(θ
(k)
q , cq,M q)

λ̂1 + λ̂2µqj + λ̂3µ2
qj

. (4)

where the Lagrange multipliers are computed by the following system of equations

N∑

j=1

∑n

i=1 wij(θ
(k)
q , cq,M q)

λ1 + λ2µqj + λ3µ2
qj

= 1

N∑

j=1

∑n

i=1 wij(θ
(k)
q , cq,M q)µqj

λ1 + λ2µqj + λ3µ2
qj

= 0 (5)

N∑

j=1

∑n

i=1 wij(θ
(k)
q , cq,M q)µ

2
qj

λ1 + λ2µqj + λ3µ2
qj

= 1− σ2
q ,

where

wij(θ
(k)
q , cq,M q) =

θ
(k)
qj φ([Mqi − µqj]/σq)cqi

∑Jq
j=1 θ

(k)
qj φ([Mqi − µqj]/σq)cqi

.

see Eloyan and Ghosh (2011b) for more details on the construction of the constrained EM

algorithm.

The estimated densities maintain the constraints on the moments of the densities

(mean and variance). By (3) it is stated that the independent components are ordered so

that the third moments are in increasing order. This is necessary to avoid label switching

issues, as the model is invariant to permutations of the independent components (provided
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the mixing matrix is permuted correspondingly). The ordered third moment assumption

is a straightforward fix to this issue. Thus, within each iteration, the independent com-

ponents are permuted to preserve the order of the estimated third moments.

2.3 Semiparametric Iterative Algorithm for Group ICA

Based on the density estimation algorithm described in Section 2.2 we develop a semi-

parametric iterative algorithm for true group independent component analysis model (1).

By the independence of the underlying sources S(q, ·) the likelihood of the unmixing

matrix W = [W 1 . . . W I ] is given by

L(W ,f) =
I∏

i=1

V∏

v=1

Q∏

q=1

fq

(
Q∑

l=1

wiqlxilv

)
| detW i|. (6)

Assuming that the densities of the underlying sources are estimated using the finite

mixtures of Gaussian densities defined as f̂1, . . . , f̂Q, the likelihood function of the unmix-

ing matrix W can be constructed analytically as

L(W , f̂) =
I∑

i=1

{
V∑

v=1

Q∑

q=1

log

[
f̂q

(
Q∑

l=1

wiqlxilv

)]
+ V log | detW i|.

}
, (7)

where

f̂q(s) =

Jq∑

j=1

θ̂qjφ

(
s− µqj

σq

)
1

σq

.

Notice that by construction of the densities of the underlying sources the derivative and

Hessian matrices of the loglikelihood can also be found analytically.

We need to obtain starting values for the unmixing matrices to start the algorithm.

This can be done by choosing the subject specific unmixing matrices given by Ŵ i

(0)
.

Alternatively, we can find starting values that satisfy the condition that the underlying

independent components are the same for all subjects. We can use the population value

decomposition (Crainiceanu et al., 2010) of the full matrix X = [XT
1 , . . . ,X

T
I ]

T given by

X = UΣV T (8)
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The starting values of the W i then are chosen as the ith block of the rows of UΣ.

Table 1: HDICA algorithm.

For M ∈ {1, 2, . . .}

1. Let S
(M)
i = W

(M−1)
i X i, for each i = 1, . . . , I

2. For each IC q construct the set of midpoints Mq1,Mq2, . . . ,Mqp of the bins

and the corresponding counts cq1, cq2, . . . , cqp.

3. For each q = 1, . . . , Q construct the set of means M
J
(M)
q
⊇M

J
(M−1)
q

.

and the variance component σq.

4. By using MDE estimate (θ
(M)
q1 , . . . , θ

(M)

qJ
(M)
q

).

5. For each i = 1, . . . , I compute the gradient L′(Ŵ i

(M)
) and hessian matrix L′′(Ŵ i

(M)
).

6. For each i = 1, . . . , I update the unmixing matrix

Ŵ i

(M+1)
= Ŵ i

(M)
− L′′(Ŵ i

(M)
)−1L′(Ŵ i

(M)
).

7. δ = max |Ŵ i

(M+1)
− Ŵ i

(M)
|. If δ > ε return to step 1

Even though the derivative and Hessian matrices of the loglikelihood can be com-

puted analytically we can also use an approximation to the Hessian given by L′′(w) ≈

L′(w)L′(w)T to have a more robust optimization algorithm.

The iterative algorithm for finding the maximum likelihood estimate of the unmixing

matrices W 1, ...,WNs
is given in Table 1. One of the striking differences of our method

compared with other group ICA algorithms is that at each iteration only one Q × V

dimensional subject-specific matrix is loaded in memory to compute the update for W

matrix. In addition, the densities are estimated using a binning algorithm hence the

increase in the sample size does not affect the speed of the density estimation part of the

algorithm.
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3 Results

3.1 Simulation Results

In order to illustrate the performance of the proposed method we conducted simulation

studies where data were generated using distributions of different shapes. Three different

cases were used in the study. The results are compared with the commonly used group

ICA algorithm by Calhoun et al. (2001a) which is based on fastICA (Hyvarinen and Oja,

1997).
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Figure 1: The distributions used to generate data for the underlying sources.

Suppose the number of subjects isNs = 3. First suppose that the number of underlying

sources Q = 2. The data are generated by the ICA model X i = AiS with T = 2 and

V = 2000. We further assume that

A1 =



0.75 0.25

0.5 −0.5


 , A2 =




1 0

0.5 −0.5


 , A3 =




1 0.5

0.75 1
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with det(A1) = −0.5, det(A2) = −0.5 and det(A3) = 0.625. The shapes of the densities

used for as the densities for independent components are shown in Figure 1. For each

of the densities two independent components are generated and the individual mixture

matrices are constructed by using A1, A2, A3 above.
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Figure 2: The Amari errors of the estimated W matrix using the proposed Iterative

Group ICA and Fast ICA. The sources are generated using Weibull densities.

The Amari error (introduced by Amari, 1998) is used for evaluating the performance

of the ICA methods. It is given by

AE(A, Ŵ ) =
1

2Q

Q∑

i=1

(
Q∑

j=1

|pij|

maxk|pik|
− 1

)
+

1

2Q

Q∑

j=1

(
Q∑

i=1

|pij|

maxk|pkj|
− 1

)
,

where P = AŴ and Ŵ is the estimated unmixing matrix for each subject by each method.

The Amari error: is invariant to matrix permutations, sign changes, and is a value between
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Figure 3: The scatterplots showing the difference of the estimated components from the

true data in the simulation study with m = 8. The x-axis shows the true component

and the y-axis shows the absolute difference of the true component with the estimated

component (by HDICA (red) and by fastICA (blue)).

0 and Q− 1.

The boxplots of the Amari errors are shown in Figure 2. When the distributions of the

underlying sources are symmetric and unimodal (t, Laplace) we observe that our method

is competitive with fastICA. However, for the other distributions our method seriously

outperforms fastICA in terms of minimizing the Amari error.

The scatterplots in Figure 3 show the absolute difference of the true independent

component with the estimates found by using the HDICA (in red) and fastICA (in blue).

Two of the components generated using Gamma (left) and multimodal densities (right)
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are plotted. As can be seen from this figure the independent components are almost

completely recovered by HDICA. In other words the absolute difference of the estimate

by HDICA with the truth is less variable than the absolute difference of the estimate

found by fastICA with the truth.
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Figure 4: The Amari errors of the estimated W matrix using the proposed Iterative

Group ICA and Fast ICA. The sources are generated using Weibull densities.

For the second scenario suppose that the number of underlying sources is Q = 4 with

V = 5000 voxels. Again the number of subjects is Ns = 3. The mixing matrices used are

given by:

A1 =




2 1 2 3

3 3 1 0.5

1 2 2 4

4 3 2 1




, A2 =




2 3 2 1

3 4 1 0.5

3 2 3 4

2 3 3 1




, A3 =




1 2 2 1

3 4 1 0.5

3 −1 3 4

2 1 3 1




,

with det(A1) = −8, det(A2) = 7.5 and det(A3) = 47. The shapes of the densities used
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for generating the values of the independent components Sk, k = 1, 2, . . . ,m are plotted

in Figure 1. Three different cases are considered as shown in Table 2.

IC 1 IC 2 IC 3 IC 4

a. Laplace(µ, σ) Laplace(µ, σ) Laplace(µ, σ) Laplace(µ, σ)

b. Gamma(a, b) Gamma(a, b) Laplace(µ, σ) Laplace(µ, σ)

c. Gamma(a, b) Gamma(a, b) MixNorm(µ, σ) MixNorm(µ, σ)

d. t(df) Gamma(a, b) Weibull(a, b) MixNorm(µ, σ)

Table 2: The choice of the independent components in simulations.

The boxplots of the Amari Errors are presented in Figure 4. Here again, the perfor-

mance of HDICA is comparable to that of fastICA using the Amari Error criterion. In

Case a., where the true underlying densities have Laplace distribution the results obtained

by HDICA are similar to that of fastICA. As has been observed before when the underly-

ing sources have nonsymmetric or bimodal densities as in b.-d. HDICA is outperforming

fastICA in minimizing the Amari Error.

Finally, we illustrate a simulation study using Q = 8 components with V = 5000

voxels. All of the distributions given in Figure 1. The Amari errors for this case are

shown in Figure 5. Here again our method performs significantly better than fastICA.

The simulations suggests that the proposed method, including data reduction steps

that remove information, resulting in an algorithm that is comparably as good as the most

popular group ICA algorithm. More importantly, however, is that the HDICA algorithm

is immediately scalable to hundreds or thousands of subjects.
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Figure 5: The Amari errors of the estimated W matrix using the proposed Iterative

Group ICA and Fast ICA. The sources are generated using Weibull densities.

3.2 Application to the 1,000 Functional Connectomes fMRI Dataset

To illustrate our algorithm we use one of the freely available large fMRI datasets. The 1000

Functional Connectomes Project dataset (Biswal et al., 2010) is aimed at discovery science

of brain function. As discussed in Section 1, applying the current group ICA methods

to a large number of subjects is computationally impossible for regular computers. As

discussed, the motivation of this paper is to develop a group ICA algorithm that can

be applied to use for any number of subjects without excessive data reduction steps.

Because there are several covariates in these data we illustrate our method for a subset of

50 subjects from the nitrc collection. Again our method does not require the concatenation

of the subject specific data matrices. Moreover, at each step of the algorithm only one of

the subject specific data matrices is loaded into the memory. Hence, the HDICA algorithm

is linear in the number of subjects and can be scaled up relatively easily.

The scans are collected when the subjects are in resting state. Each dataset is a 4D
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Figure 6: Temporal snapshot of the data in 7 slices from the fMRI images for 2 subjects

(subject 1 is shown in the top panels and subject 2 in the bottom panels).

array of intensities. Each subject was in the scanner for 2.2-20 minutes. For the subset

used in this analysis the number of time points was T = 123. Notice that even if the

number of time points varies among the subjects the algorithm can still be applied, since

the first PCA step will reduce the dimensions of the datasets to the same Q. The scans

are collected using a 3T scanner. Selected fMRI scans of the brain from two subjects are

shown in Figure 6 to illustrate the structure of the data. Standard image processing was

performed to register the data to the MNI standard brain space. However, no smoothing

is done on the data before applying group ICA.

The MNI152 T1 3mm brain mask.nii mask was used to extract the background of

the images and obtain the voxels that are in the actual brain. For each time point,

the 3D array is vectorized to obtain a V dimensional vector of intensities that are then

concatenated over time. Hence we obtain a T×V dimensional matrix X i for each subject.

The HDICA algorithm is then applied using these X i matrices. The algorithm is applied

without smoothing the data first.

We first chose a subset of I = 50 subjects to compare the performance of HDICA and

fastICA. Following Biswal et al. (2010) we use group ICA to obtain m = 20 components.
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motor network fastICA

motor network HDICA

default network fastICA

default network HDICA

Figure 7: Motor (top two) and default (bottom two) networks computed for I = 50

subjects using fastICA and HDICA.
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Figure 8: Motor (top) and default (bottom) networks computed for I = 150 subjects

using the proposed HDICA algorithm.

The slices of two independent components overlayed on the brain template are shown

in Figure 7. The first two rows correspond to the motor network estimated by fastICA

(above) and HDICA (below). The third and forth rows show the default brain network.

Finally, HDICA was used to compute m = 20 independent components by using fMRI

data of I = 150 subjects from Cambridge site (a subset of the nitrc data). Figure 8 shows

two of the independent components overlayed on the brain template. Again the motor

network and the default network are found by HDICA.

4 Discussion

In this paper we present a group ICA algorithm based on nonparametric estimation of

the densities of the underlying sources using finite mixtures of continuous densities. The

mixing matrix is simultaneously estimated using an iterative optimization algorithm. The

proposed algorithm is scalable to large datasets. As a byproduct of the algorithm we
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obtain the estimates of the densities of the underlying spatial maps.

We first develop a density estimation method based on binning the data and using a

mixture of continuous densities for approximating the histogram of the data. The density

estimates are computed using a constrained EM algorithm to satisfy moment constraints

for identifiability of the model. The estimated densities are then used to model the

distributions of the underlying spatial maps.

The performance of the proposed algorithm is presented by simulation studies showing

that our method performs at least as well as other commonly used methods. The algorithm

was applied to a set of resting state fMRI data. The method can be used for large groups if

fMRI data in different subpopulations to obtain the brain networks and study differences

within the subpopulations.
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