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Abstract

It is a challenge to design randomized trials when it is suspected that a treatment may

benefit only certain subsets of the target population. In such situations, trial designs have been

proposed that modify the population enrolled based on an interim analysis, in a preplanned

manner. For example, if there is early evidence that the treatment only benefits a certain subset

of the population, enrollment may then be restricted to this subset. At the end of such a trial,

it is desirable to draw inferences about the selected population. We focus on constructing

confidence intervals for the average treatment effect in the selected population. Confidence

interval methods that fail to account for the adaptive nature of the design may fail to have

the desired coverage probability. We provide a new procedure for constructing confidence

intervals having at least 95% coverage probability, uniformly over a large class of possible

data generating distributions. We prove an optimality property for our confidence interval

procedure in terms of minimizing the average confidence interval widths.

1 Introduction

We consider the problem of constructing confidence intervals in randomized trial designs that

involve a preplanned rule for changing enrollment criteria based on an interim analysis. Such trial

designs have been proposed in situations where a baseline risk factor is conjectured to be predictive

of treatment benefit (Follmann, 1997; Russek-Cohen and Simon, 1997; Wang et al., 2007; Jennison

and Turnbull, 2007; Wang et al., 2009). As an example of such a predictor, in trials of trastuzumab

for treating metastatic breast cancer, the level of overexpression of human epidermal growth factor

receptor-2 (HER2) has been shown to be predictive of treatment benefit (Slamon et al., 2001).
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As another example, Kirsch et al. (2008) present suggestive evidence that for a certain class of

antidepressants, a patient’s initial severity of depression may be predictive of treatment benefit.

For concreteness, we focus on two-stage, randomized trial designs of a single treatment versus

control, where the overall population is partitioned into two, prespecified subpopulations. In the

designs we consider, a decision is made at an interim analysis to possibly restrict the enrollment

criteria for the second stage, based on data in the first stage; this is called an enrichment design.

The decision rule in such designs must be specified before the study starts. We allow the population

enrolled in stage two to be subpopulation 1, subpopulation 2, or the combined population. We do

not allow changes to the randomization probabilities, total sample size, or number of treatments.

However, it may be possible to apply our general method for constructing confidence intervals to

some designs with these additional types of adaptation, as we discuss in Section 6.

We focus on the problem of constructing confidence intervals for the average treatment effect

in the population selected for enrollment in stage two. Standard confidence interval procedures

that ignore the adaptive nature of the design may fail to have the desired coverage probability. The

main contributions of this paper are: demonstrating a general method for constructing confidence

intervals that have at least 95% coverage probability, uniformly over a large class of possible data

generating distributions, for this problem; and, proving these confidence intervals have an optimal-

ity property in terms of their average width. To the best of our knowledge, our confidence interval

procedure is the first to have this optimality property, for the enrichment designs we consider.

The confidence intervals we present are centered at the difference ∆̂S in sample means between

treatment and control arms for the selected population, using all data from both stages from that

population. We compute the minimum factor c by which the standard confidence interval centered

at ∆̂S must be expanded in order to have, asymptotically, at least 95% coverage probability, uni-

formly over a large class of data generating distributions. Computing this constant is not trivial,

since it is not a priori clear, for a given decision rule, what the least favorable data generating

distribution is, i.e., which distribution requires the largest constant c in order for the corresponding

confidence interval procedure to have coverage probability at least 95%. We show how to compute

the least favorable distribution and the corresponding minimum factor c.
For the enrichment designs we consider, the ratio of average width of our confidence intervals,

compared to naive confidence intervals that ignore the adaptive nature of the design, is never more

than 1.1. Thus, for the adaptive designs we consider, at most a 10% inflation of the standard

confidence interval width is required in order to ensure at least 95% coverage probability. However,

in many cases that we expect to occur in practice, the required inflation is at most 5%, as we

describe in Section 5.

Our results are asymptotic, as the sample sizes in both stages of the design go to infinity.

However, our confidence interval coverage is at least 95% at all sample sizes in the special case

that the outcome is normally distributed.

In Section 2, we present related work. We describe the setup of our problem and the type of

adaptive designs we consider, in Section 3. We then give a confidence interval procedure that has

uniform coverage probability at least 95% for these designs, and that has an optimality property,

in Section 4. The distribution of confidence interval widths from our procedure is examined in

Section 5. We discuss limitations and directions for future research in Section 6.
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2 Related Work

We focus on two-stage designs that allow changes to a trial’s enrollment criteria after an interim

analysis; our goal is to construct a confidence interval for the average treatment effect in the popu-

lation selected for enrollment in stage two. We now describe related work.

Designs that make changes to enrollment criteria based on preplanned rules include those of,

e.g., (Follmann, 1997; Russek-Cohen and Simon, 1997; Wang et al., 2007; Jennison and Turnbull,

2007; Wang et al., 2009; Rosenblum and van der Laan, 2011). However, the aforementioned

papers focus on hypothesis testing rather than on confidence intervals. It is not clear how to invert

the multiple testing procedures from these methods to construct a valid confidence interval for the

selected population, due to the multiple hypotheses involved as well as the adaptive nature of the

design.

Repeated confidence intervals for a single population, under various rules for modifying a trial’s

total sample size, have been constructed, e.g., by (Jennison and Turnbull, 1984; Lehmacher and

Wassmer, 1999; Brannath et al., 2006). Posch et al. (2005) give simultaneous confidence intervals

for adaptive designs with multiple treatments. That is, they give a simultaneous set of confidence

intervals for all the treatments. Analogous ideas could be applied to our setting of adaptive designs

with multiple subpopulations. However, the focus of our paper is constructing confidence intervals

with minimum width for the selected population, rather than simultaneous confidence intervals for

all subpopulations considered.

Sampson and Sill (2005) and Wu et al. (2010) consider drop the loser designs, that is, designs

in which the treatment with the largest estimated treatment effect at the end of stage one is selected

for continued study in stage two. They provide confidence intervals for the selected treatment

that have conservative coverage probability for such designs. These methods could be extended

to trial designs that, instead of continuing the best performing treatment, continue the population

with the largest estimated treatment effect. However, in the context of designs that adapt the

population enrolled, it may not be ideal to always continue the population with largest estimated

treatment effect. For example, if the overall population had a large estimated benefit, but a small

subpopulation had a slightly larger estimated benefit, it may be unwise to give up on the overall

population and only continue enrollment from the small subpopulation. Therefore, drop the loser

designs may not be ideal for changing enrollment criteria. The designs we consider below involve

decision rules that are tailored to population selection, and that allow continued enrollment of the

combined population even when it doesn’t have the largest estimated treatment benefit.

3 Problem setup

3.1 Assumptions on data generating distribution

For each subject i, we collect the following vector of data: (Si,Wi, Ai, Yi), where Si is the sub-

population (1 or 2), Wi is the stage of the trial in which the subject is enrolled (1 or 2), Ai is the

study arm assignment (1 indicating the treatment arm and 0 indicating the control arm), and Yi is

the outcome. We allow the outcome variable Y to be discrete or continuous valued.

3
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The definition of the subpopulations must be a prespecified function of variables measured

prior to randomization. We assume the two subpopulations are disjoint, and together make up the

combined population. For example, subpopulation 1 could be defined as those having a certain

biomarker positive at baseline, and subpopulation 2 would then be the biomarker negative popula-

tion. For each s ∈ {1, 2}, let πs denote the proportion of the overall population in subpopulation

s. We assume that in stage one, the proportion of subjects enrolled in the study from each sub-

population s ∈ {1, 2} is the same as the corresponding population proportion πs. We denote the

total sample size in stage j by nj , for j ∈ {1, 2}; these are fixed at the beginning of the study.

We assume π1, π2, n1, n2 are known, non-random quantities. We also assume that neither stage

completely dominates the total sample size, in that we assume the fraction of the sample in stage

one, t1 = n1/(n1 + n2), is between 0.01 and 0.99.

We assume that each subject is enrolled with probability 1/2 to treatment or control, indepen-

dent of the subpopulation Si and stage Wi. For simplicity in what follows, we assume that for each

subpopulation and each stage, exactly half the subjects are assigned to the treatment arm (Ai = 1),

and half to the control arm (Ai = 0). This can be approximately guaranteed by using stratified

block randomization.

We denote the unknown outcome distribution for each subpopulation s ∈ {1, 2} and study arm

a ∈ {0, 1} by Qsa, We assume conditioned on the set of patient subpopulations {Si}, study arm

assignments {Ai}, and trial stages at enrollment {Wi}, that the outcome Yi for each subject i is an

independent draw from the unknown outcome distribution QSiAi
.

We denote subpopulation 1, subpopulation 2, and the combined population by the subscripts

1, 2, and ∗, respectively. Denote the mean outcome for subpopulation s ∈ {1, 2} under assignment

to arm a ∈ {0, 1} by µ(Qsa), and denote the corresponding variance by σ2(Qsa). We assume the

variances σ2(Qsa) are known.

We make no assumptions on the forms of the outcome distributions Qsa except that their sup-

port is contained in an interval [−M,M ], for some M > 0, and that the variance of each Qsa is

at least a (small) constant τ > 0. In particular, the means, variances, and other features of these

distributions may differ across treatment arms and subpopulations. We fix M > 0, τ > 0, and

define Q to be the class of data generating distributions Q = (Q10, Q11, Q20, Q21) for which each

Qsa has support contained in the interval [−M,M ], and the variance of each Qsa is at least τ > 0.

We assume each subject’s outcome Yi is measured relatively quickly after enrollment, so that all

outcomes in stage one can be used to determine the enrollment criteria in stage two.

3.2 Definition of average treatment effects

For each subpopulation s ∈ {1, 2}, define the average treatment effect for subpopulation s, on the

risk difference scale, by ∆s(Q) = µ(Qs1)−µ(Qs0). Similarly, for the combined population, define

the average treatment effect on the risk difference scale by ∆∗(Q) = π1∆1(Q)+(1−π1)∆2(Q). For

clarity of notation, we sometimes suppress dependence on Q, e.g., writing ∆∗ instead of ∆∗(Q).
Let S denote the population selected to be enrolled in stage two. S = 1 indicates population

1 is enrolled in stage two, S = 2 indicates subpopulation 2 is enrolled in stage two, and S = ∗
indicates both subpopulations are enrolled in stage two in the same proportions as in stage 1. The

total number of subjects enrolled in stage two is set at n2, regardless of which population is selected
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to be enrolled in stage two. Below, we describe the set of decision rules for determining S as a

function of stage one data, which will use the statistics defined next.

3.3 Statistics used in decision rule and confidence interval procedure

For each subpopulation s ∈ {1, 2} and stage w ∈ {1, 2}, we denote the difference between the

sample means under treatment and under control by

∆̂(w)
s =

(

∑

{i:Si=s,Wi=w,Ai=1} Yi

|{i : Si = s,Wi = w,Ai = 1}|

)

−
(

∑

{i:Si=s,Wi=w,Ai=0} Yi

|{i : Si = s,Wi = w,Ai = 0}|

)

,

where |B| denotes the number of elements in the set B. Similarly, for the combined population, in

stage w ∈ {1, 2}, we denote the difference in the sample means under treatment and under control

by

∆̂(w)
∗ =

(

∑

{i:Wi=w,Ai=1} Yi

|{i : Wi = w,Ai = 1}|

)

−
(

∑

{i:Wi=w,Ai=0} Yi

|{i : Wi = w,Ai = 0}|

)

= π1∆̂
(w)
1 + (1− π1)∆̂

(w)
2 .

For the population S selected for enrollment in stage two, let ∆̂S denote the difference in

sample means between treatment and control arms, pooling all subjects in both stages of the trial

in population S. On the event S = ∗, that is, if the combined population is enrolled in stage two,

then ∆̂S equals

(

∑

{i:Ai=1} Yi

|{i : Ai = 1}|

)

−
(

∑

{i:Ai=0} Yi

|{i : Ai = 0}|

)

=
n1∆̂

(1)
∗ + n2∆̂

(2)
∗

n1 + n2

,

while if enrollment in stage two consists of n2 subjects from only one of the subpopulations, i.e.,

if S = s ∈ {1, 2}, then ∆̂S equals

(

∑

{i:Si=s,Ai=1} Yi

|{i : Si = s, Ai = 1}|

)

−
(

∑

{i:Si=s,Ai=0} Yi

|{i : Si = s, Ai = 0}|

)

=
πsn1∆̂

(1)
s + n2∆̂

(2)
s

πsn1 + n2

.

We define the stage one z-statistics for subpopulation 1, subpopulation 2, and the combined

population, respectively, as:

Z
(1)
1 =

√
π1n1

σ1(Q)
∆̂

(1)
1 , Z

(1)
2 =

√
π2n1

σ2(Q)
∆̂

(1)
2 , Z(1)

∗ =

√
n1

σ∗(Q)
∆̂(1)
∗ ,

where for each s ∈ {1, 2}, σ2
s(Q) = 2 {σ2(Qs0) + σ2(Qs1)}, and σ2

∗(Q) = π1σ
2
1(Q) + (1 −

π1)σ
2
2(Q).

Let ρs denote the covariance between Z
(1)
s and Z

(1)
∗ for each s ∈ {1, 2}. We then have

ρs =
√
πsσs(Q)/σ∗(Q), ρ21 + ρ22 = 1, and Z(1)

∗ = ρ1Z
(1)
1 + ρ2Z

(1)
2 .
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3.4 Set of decision rules

For concreteness, throughout this paper we focus on the following type of decision rule for stage

two enrollment, for a prespecified constant d:

If Z
(1)
∗ > d, in stage two, continue enrolling from the combined population, in the

same proportions as in stage one. Else, enroll exclusively from the subpopulation

corresponding to the larger of Z
(1)
1 , Z

(1)
2 (with ties broken arbitrarily, e.g., selecting

subpopulation 1).

The general method we give below can be applied to construct confidence intervals for other types

of rules than above, which we discuss in Section 6.

4 Confidence interval procedure with uniform coverage prob-

ability

4.1 Goal of confidence interval procedure

The goal in this paper is to provide a procedure CI for constructing confidence intervals with at

least 95% coverage for the treatment effect in the population selected to be enrolled in stage two

of the trial. The treatment effect for the population selected to be enrolled in stage two is ∆S .

This is a random quantity, since it depends on the selected population S. The confidence interval

procedure can use the following as input: all the data from both stages of the trial, π1, π2, n1, n2,

and the outcome variances σ2(Qsa) for each subpopulation s ∈ {1, 2} and study arm a ∈ {0, 1},
since the variances σ2(Qsa) are assumed known.

We seek a function CI from the set of data in both stages of the trial to an interval in R

that, asymptotically as the sample sizes in both stages go to infinity, has at least 95% coverage

probability, uniformly over all possible data generating distributions Q. Formally, we require our

procedure CI to satisfy, for fixed decision rule threshold d and subpopulation proportions π1, π2:

lim inf
n1,n2→∞

inf
Q∈Q

PQ,n1,n2(∆S ∈ CI) ≥ 0.95, (1)

where PQ,n1,n2 is the probability distribution defined by data generating distribution Q and stage

one and two sample sizes n1 and n2, respectively.

Though the above criterion is asymptotic, our confidence interval procedure has at least 95%

coverage probability at any sample size, in the special case in which the outcome distributions Qsa

are each normal distributions. We note that standard, normal-based confidence intervals for fixed

(non-adaptive) designs have at least 95% coverage only asymptotically, or in special cases such as

when outcomes are normally distributed.

Our goal is to construct a confidence interval procedure CI satisfying (1). The probability in

(1) is a type of average coverage probability, in that we can write it as a convex combination of

coverage probabilities conditioned on each possible enrollment decision:

PQ,n1,n2(∆S ∈ CI) =
∑

s∈{1,2,∗}

PQ,n1,n2(S = s)PQ,n1,n2(∆s ∈ CI | S = s).
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Alternatively, one may wish to have the stronger guarantee of asymptotically conservative condi-

tional coverage probability:

lim inf
n1,n2→∞

inf
Q∈Q

inf
s∈{1,2,∗}

PQ,n1,n2(∆s ∈ CI | S = s) ≥ 0.95. (2)

We focus on constructing confidence intervals that satisfy (1). However, our general method can

be used to determine how much one would need to expand these confidence intervals to meet the

stricter condition (2).

4.2 Confidence interval procedure satisfying (1)

Let NS denote the total sample size, at the end of the trial, for the selected population S. This is a

random variable that equals n1+n2 if the combined population is selected, else it equals πsn1+n2

if subpopulation s ∈ {1, 2} is selected.

We define the naive 95% confidence interval that ignores the adaptive nature of the design as

[

∆̂S − z0.975σS/
√

NS, ∆̂S + z0.975σS/
√

NS

]

, (3)

for z0.975 the 0.975 quantile of the standard normal distribution. In general this will fail to have

95% coverage probability.

Our modified confidence interval, CI , is defined as

CI =
[

∆̂S − c(π1, t1, ρ1)z0.975σS/
√

NS, ∆̂S + c(π1, t1, ρ1)z0.975σS/
√

NS

]

, (4)

for c(π1, t1, ρ1) the solution to an optimization problem we define in (6) below. We provide a short

program in R to compute an approximation to c(π1, t1, ρ1) in the Supplementary Materials, and we

explore the features of the function c in Section 5. The value c(π1, t1, ρ1) can be thought of as the

smallest multiplicative factor by which the naive confidence interval (3) that ignores the adaptive

nature of the design needs to be expanded, in order to maintain at least 95% coverage probability,

uniformly over Q, as sample size goes to infinity.

We prove in the Appendix that the confidence interval CI has the desired property (1), that

is, it has asymptotic coverage probability at least 95%, uniformly over the class of data gener-

ating distributions Q. Furthermore, we prove that our expansion factor c is smallest possible, at

every value of (π1, t1, ρ1). More precisely, we prove that for any continuous function c′ that maps

(π1, t1, ρ1) into R, if the confidence interval CI in (4), except replacing c by c′, has property (1),

then c′(π1, t1, ρ1) ≥ c(π1, t1, ρ1) at every (π1, t1, ρ1).

4.3 Construction of expansion factor c

We first give the intuition behind our construction, given below, of the minimum expansion factor

c(π1, t1, ρ1) that guarantees asymptotic, uniform coverage probability at least 95%, as expressed

in (1). Fix π1, t1, ρ1, and consider a candidate value for the expansion factor c(π1, t1, ρ1). Consider

7
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large sample sizes n1, n2, and any data generating distribution Q ∈ Q for which ρ1(Q) = ρ1. The

coverage probability of CI can be decomposed as:

PQ (∆S ∈ CI) =
∑

s∈{1,2,∗}

PQ(∆S ∈ CI, S = s). (5)

We show in the Appendix that each term PQ(∆S ∈ CI, S = s) in this sum is approximately

the probability that a multivariate normal distribution Gs is in a certain rectangular region Rs;

furthermore, the mean and covariance of Gs and the boundaries of the rectangular region depend

on π1, t1, ρ1, c, d, and depend on Q only through the non-centrality parameters δs′ = EZ
(1)
s′ =√

πs′n1∆s′/σs′ , for s′ ∈ {1, 2}. We choose the expansion factor c(π1, t1, ρ1) to be the smallest

value such that no matter what the values of the non-centrality parameters δ1, δ2, the sum of the

multivariate normal probabilities
∑

s∈{1,2,∗} P (Gs ∈ Rs) is at least 0.95.

We now formally define the function c. Fix the threshold d used in the decision rule from

Section 3.4. For each s ∈ {1, 2, ∗}, let Gs(π1, t1, ρ1) denote the multivariate normal random vector

in R
3 with mean vector (0, 0, 0) and covariance matrix the function of (π1, t1, ρ1) given in (9)-(11)

in the Appendix. For any c̃ ∈ R, define the following disjoint, rectangular regions of R3:

R1(ρ1, c̃, d, δ1, δ2) = [−c̃z0.975, c̃z0.975]× (−∞, d− (ρ1δ1 + ρ2δ2)]× [(δ2 − δ1)/
√
2,∞).

R2(ρ1, c̃, d, δ1, δ2) = [−c̃z0.975, c̃z0.975]× (−∞, d− (ρ1δ1 + ρ2δ2)]× (−∞, (δ2 − δ1)/
√
2).

R∗(ρ1, c̃, d, δ1, δ2) = [−c̃z0.975, c̃z0.975]× (d− (ρ1δ1 + ρ2δ2),∞)× R.

Define

c(π1, t1, ρ1) = inf







c̃ > 0 : inf
δ̃1,δ̃2∈R

∑

s∈{1,2,∗}

P
[

Gs(π1, t1, ρ1) ∈ Rs(ρ1, c̃, d, δ̃1, δ̃2)
]

≥ 0.95







.

(6)

In Appendix A.3, we explain how to solve the above non-linear optimization problem, and

therefore compute c(π1, t1, ρ1), to any desired accuracy, in the following sense: for any π1, t1, ρ1,
and any tolerance ε > 0, we show how to compute a value cε satisfying the following two condi-

tions:

i. cε ≥ c(π1, t1, ρ1), which implies the confidence interval procedure CI using cε satisfies the

asymptotic, uniform coverage probability condition (1);

ii. cε is no larger than ε plus the expansion threshold required to obtain uniform coverage prob-

ability at least 0.95+ ε; that is, cε is no greater than ε plus (6) with 0.95 replaced by 0.95+ ε.

We give a brief overview of the main ideas used in Appendix A.3 to compute c(π1, t1, ρ1) to

any desired accuracy, in the above sense. For any given vector (π1, t1, ρ1), any candidate value

c̃, and any δ̃1, δ̃2, one can compute the sum in the right hand side of (6) using statistical software

such as the mvtnorm package in R. To compute inf δ̃1,δ̃2∈R of this sum to any desired accuracy,

one can compute this sum at each pair (δ̃1, δ̃2) in a sufficiently fine grid of values, as described in

8
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Appendix A.3. One can then use binary search over candidate values of c̃ to determine the smallest

value for which the minimum coverage probability is at least 95%, yielding an approximation to

c(π1, t1, ρ1).
It turns out that the right hand side of (6) does not depend on d, the threshold used in the

decision rule from Section 3.4. This justifies our writing c as a function only of the variables

π1, t1, ρ1. This is advantageous in that once c(π1, t1, ρ1) is computed for a given d, it is unnecessary

to recompute it for any other value of d. We also learn that there is no advantage in adjusting d
in the hope of obtaining shorter confidence intervals with uniform coverage probability (assuming

we are using the general type of confidence interval in (4)). The reason for no dependence of the

right hand side of (6) on d is that for fixed ρ1, c̃, d, the set of triples of regions generated by varying

δ̃1, δ̃2:
{(

R1(ρ1, c̃, d, δ̃1, δ̃2), R2(ρ1, c̃, d, δ̃1, δ̃2), R3(ρ1, c̃, d, δ̃1, δ̃2)
)}

δ̃1,δ̃2∈R

does not depend on d. This can be seen since for any d, d′, the triple of regions corresponding to

(ρ1, c̃, d, δ̃1, δ̃2) is identical to that corresponding to
(

ρ1, c̃, d
′, δ̃1 + (d′ − d)/(ρ1 + ρ2), δ̃2 + (d′ − d)/(ρ1 + ρ2)

)

.

5 Confidence interval widths

The function c defined in (6) represents the multiplicative factor by which the naive confidence

interval (3) must be expanded in order to achieve at least 95% coverage, uniformly over the class

of possible data generating distributions Q. When c = 1, this indicates no change is needed to the

naive confidence interval that ignores the adaptive nature of the design. In general, the width of

the naive confidence interval must be increased by 100(c− 1)% to maintain at least 95% coverage,

uniformly over Q. We note that the value of the expansion factor c(π1, t1, ρ1) is always at least 1,

which we prove in Appendix A.1.

The arguments to the function c are π1, t1, ρ1, which represent the proportion of the population

in subpopulation 1, the proportion of the sample in stage one, and the covariance of the first stage

statistics Z
(1)
1 , Z

(1)
∗ (which is a function of π1 and the variances σ2

1(Q), σ2
2(Q) of the outcome for

each subpopulation), respectively. At different values of these arguments, the required expansion

factor c(π1, t1, ρ1) can differ.

In Figure 1, we plot the value of the expansion factor c(π1, t1, ρ1), showing how it varies as

we change each of π1, t1, and ρ1. We initialized the values of (π1, t1, ρ1) to (1/2, 1/2, 1/
√
2),

respectively, which corresponds to equal subpopulation sizes, equal sample sizes in each stage of

the trial, and equal variances in the outcome distribution for each subpopulation. We then changed

one variable at a time, and looked at the effect on c(π1, t1, ρ1). In each plot in Figure 1, we

computed c at 20 points with equally spaced values on the horizontal axis ranging from 0.01 to

0.99.

In Figure 1a, we vary π1, the proportion of the population in subpopulation 1. The minimum

value of c is 1.03 (here and below, we round all values to two decimal places), which occurs at

π1 = 1/2; c increases as π1 moves farther from 1/2. A similar pattern occurs in Figure 1c, where

9
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Figure 1a:  c versus π1
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Figure 1b:  c versus t1
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Figure 1c:  c versus ρ1

ρ1

c

Figure 1: Plots of the expansion factor c versus the proportion of the population

in subpopulation 1 (π1), the proportion of the sample in stage one (t1), and the

covariance (ρ1) of the first stage statistics Z
(1)
1 , Z

(1)
∗ , respectively. In each plot, the

vector (π1, t1, ρ1) is initialized to (1/2, 1/2, 1/
√
2), and then one component of the

vector (π1, t1, ρ1) is varied while the other two are held fixed.

we vary ρ1, the covariance of the first stage statistics Z
(1)
1 , Z

(1)
∗ . The minimum value of c is 1.04,

which occurs at ρ1 = 1/
√
2, and c increases as ρ1 moves farther from 1/

√
2.

In Figure 1b, we varied t1, the proportion of the sample in stage one. As this proportion

increases from 0.01 to 0.99, the expansion factor c increases from 1 to approximately 1.06. In-

tuitively, the limit as t1 ↓ 0 corresponds to the limit design in which the stage two population is

selected instantaneously after the trial starts, i.e., before any data is collected; therefore, the naive

confidence interval (3) has the desired coverage probability since the population is selected inde-

pendent of the data, and so no expansion is required. Also, the limit as t1 ↑ 1 corresponds to the

limit design in which the population of interest is selected after the trial is over (but based on the

trial data); this is a fixed design with data-dependent parameter selection, and requires inflation of

the standard confidence interval width to obtain coverage probability at least 95%.

In order to explore the range of values the function c can take as (π1, t1, ρ1) varies, we did a

grid search, computing c at each point in the grid. We used the grid D′ = D ×D ×D, for

D = {0.01, 0.1, 0.2., . . . , 0.8, 0.9, .99}. The largest value of c was 1.10. Also, the smallest cover-

age probability of the naive confidence interval (3) that ignores the adaptive nature of the design

was 93.5%. We emphasize that before our analysis, which uses the general method for deter-

mining the least favorable distribution described in the Appendix, it was unknown how much

under-coverage the naive confidence interval can have for our set of enrichment designs.

If we restrict our grid search to those points in D′ satisfying π1, ρ1 ∈ [0.2, 0.8] and t1 ≤ 0.5,
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then the maximum value of c is 1.05. We think such values of π1, ρ1 will be common in practice,

as long as neither subpopulation is very small compared to the other, and as long as the variances

of the outcome distributions in both subpopulations are of the same order of magnitude. However,

this might be violated if the outcome is binary and one population has much smaller risk than the

other. Having t1 ≤ 0.5 can be achieved if the enrollment decision is planned to be made before

half the total number of subjects are enrolled.

6 Discussion

The general method we used can be applied to construct confidence intervals for other types of

decision rules than those in Section 3.4. In general, a decision rule based on the first stage statistics

Z
(1)
1 , Z

(1)
2 , Z

(1)
∗ can be constructed by partitioning R

3 into three regions D1, D2, D∗, where the rule

is that if

(Z
(1)
1 , Z

(1)
2 , Z

(1)
∗ ) ∈ Ds then one enrolls from population s in stage two. If the regions Ds have

simple boundaries and are straightforward to integrate a multivariate normal distriubution over us-

ing standard software, then the method in this paper can be used. However, an important limitation

of the method is that it may not be feasible to implement for complex rules.

It may be possible to extend the above results to designs that allow prespecified changes to the

randomization probabilities and/or total sample size, but this is an area of future research.

In this paper we considered only prespecified decision rules for which population to enroll in

stage two. Another interesting set of designs are flexible designs, where there is no prespecified

decision rule. Posch et al. (2005) and Brannath et al. (2006) present confidence interval procedures

for such designs that have uniform coverage probability under any possible adaptation within the

class of adaptations they allow. Confidence intervals with uniform coverage probability will in

general need larger widths if a flexible design is used, compared to if a prespecified decision rule is

used. It is in interesting open problem to determine the price, in terms of wider confidence interval

widths, that must be paid if one does not specify the decision rule for the design in advance.

Our confidence interval procedure is optimal, as described in Section 4.2, among those that

are symmetric and centered at the difference ∆̂S in sample means between treatment and control

arms for the selected population, using all data from both stages from that population. However,

it may be possible to reduce the confidence interval widths by considering asymmetric confidence

intervals, or by centering at a different value. This is an open problem for future research.

This research was supported by the National Institutes of Health, U.S.A., and by the U.S. Food

and Drug Administration’s Partnership in Applied Comparative Effectiveness Science (PACES).

Appendix

In Appendix A.1, we prove the confidence interval procedure (4) from Section 4.2 satisfies (1), i.e.,

it has asymptotic, uniform coverage probability at least 95%. Then, in Appendix A.2, we prove

that this function c is smallest possible, at every value of (π1, t1, ρ1), in that for any continuous

function c′ that maps (π1, t1, ρ1) into R, if the confidence interval CI in (4), except replacing c
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by c′, has property (1), then c′(π1, t1, ρ1) ≥ c(π1, t1, ρ1) at every (π1, t1, ρ1). Lastly, in Appendix

A.3, we show how to compute c(π1, t1, ρ1), for given values of (π1, t1, ρ1), to any desired accuracy,

using statistical software.

A.1. Proof that confidence interval procedure (4) satisfies (1)

We prove the confidence interval procedure (4) from Section 4.2 satisfies (1), i.e., it has asymptotic,

uniform coverage probability at least 95%.

We first show that the value of the expansion factor c(π1, t1, ρ1) is always at least 1. To show

this, consider any c̃ < 1. The sum in (6) converges to Φ(c̃z0.975) − Φ(−c̃z0.975) as δ̃1, δ̃2 both

go to infinity, which follows by the form of the regions R1, R2, R∗ in Section 4.3. Therefore, the

infimum of the sum in (6) over δ̃1, δ̃2 ∈ R is at most Φ(c̃z0.975) − Φ(−c̃z0.975), which is less than

0.95 for c̃ < 1. This implies the inequality to the right of the colon in (6) does not hold for c̃ < 1,

and therefore c(π1, t1, ρ1) ≥ 1.

We now prove the confidence interval procedure (4) satisfies (1). Fix the decision rule threshold

d from Section 3.4 and the subpopulation proportions π1, π2. For any sample sizes n1, n2, and any

data generating distribution Q ∈ Q, the probability that the confidence interval CI contains ∆S(Q)
is

PQ(∆S(Q) ∈ CI) =
∑

s∈{1,2,∗}

PQ(∆S(Q) ∈ CI, S = s). (7)

We consider the terms in the sum on the right hand side separately for each of s ∈ {1, 2, ∗}. First,

consider the term corresponding to s = 1. We suppress the dependence on Q for notational clarity.

P (∆S ∈ CI, S = 1)

= P (∆1 ∈ CI, S = 1)

= P
(

∆1 ∈ CI, Z(1)
∗ ≤ d, Z

(1)
1 ≥ Z

(1)
2

)

(8)

= P
(

∆1 ∈ [∆̂1 − cz0.975σ1/
√

NS, ∆̂1 + cz0.975σ1/
√

NS], Z
(1)
∗ ≤ d, Z

(1)
1 ≥ Z

(1)
2

)

= P
(

∆̂1 ∈ [∆1 − cz0.975σ1/
√

NS,∆1 + cz0.975σ1/
√

NS], Z
(1)
∗ ≤ d, Z

(1)
1 ≥ Z

(1)
2

)

= P

(√
NS

σ1

{

∆̂1 −∆1

}

∈ [−cz0.975, cz0.975], Z(1)
∗ ≤ d, Z

(1)
1 ≥ Z

(1)
2

)

= P

(√
π1n1 + n2

σ1

{

∆̂1 −∆1

}

∈ [−cz0.975, cz0.975], Z(1)
∗ ≤ d, Z

(1)
1 ≥ Z

(1)
2

)

= P

(√
π1n1 + n2

σ1

{

∆̂1 −∆1

}

∈ [−cz0.975, cz0.975],

Z(1)
∗ −

√
n1∆∗

σ∗
≤ d−

√
n1∆∗

σ∗
,

1√
2

{(

Z
(1)
1 −

√
π1n1∆1

σ1

)

−
(

Z
(1)
2 −

√
π2n1∆2

σ2

)}

≥
√

π2n1

2
∆2

σ2

−
√

π1n1

2
∆1

σ1

)

,
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where (8) follows from our decision rule from Section 3.4.

Denote the random variables on the right hand side of the last equality above by X1, X2, X3,

respectively, that is,

X
(1)
1 =

√
π1n1 + n2

σ1

{

∆̂1 −∆1

}

,

X
(1)
2 = Z(1)

∗ −
√
n1∆∗

σ∗
,

X
(1)
3 =

1√
2

{(

Z
(1)
1 −

√
π1n1∆1

σ1

)

−
(

Z
(1)
2 −

√
π2n1∆2

σ2

)}

.

The vector (X
(1)
1 , X

(1)
2 , X

(1)
3 ) has mean (0, 0, 0) and covariance matrix

Σ1 :=





1 ρ1f1 f1/
√
2

ρ1f1 1 −ρ′
f1/
√
2 −ρ′ 1



 , (9)

for fs =
√

πsn1

πsn1+n2
=
√

πst1
πst1+1−t1

and ρ′ = (ρ2 − ρ1)/
√
2. Summarizing the above argument, we

have shown

P (∆S ∈ CI, S = 1) = PQ,n1,n2

{

(X
(1)
1 , X

(1)
2 , X

(1)
3 ) ∈ R1(ρ1, c, d, δ1, δ2)

}

,

for R1 defined in Section 4.3. We will show below that the vector (X
(1)
1 , X

(1)
2 , X

(1)
3 ) converges to a

multivariate normal distribution, uniformly overQ as (n1, n2)→∞, in a sense we define formally

below.

Consider the term in the sum in (7) corresponding to S = 2. Analogous arguments as above

show that

P (∆S ∈ CI, S = 2) = PQ,n1,n2

{

(X
(2)
1 , X

(2)
2 , X

(2)
3 ) ∈ R2(ρ1, c, d, δ1, δ2)

}

,

for

X
(2)
1 =

√
π2n1 + n2

σ2

{

∆̂2 −∆2

}

,

X
(2)
2 = Z(1)

∗ −
√
n1∆∗

σ∗
,

X
(2)
3 =

1√
2

{(

Z
(1)
1 −

√
π1n1∆1

σ1

)

−
(

Z
(1)
2 −

√
π2n1∆2

σ2

)}

.

The vector (X
(2)
1 , X

(2)
2 , X

(2)
3 ) has mean (0, 0, 0) and covariance matrix

Σ2 :=





1 ρ2f2 −f2/
√
2

ρ2f2 1 −ρ′
−f2/

√
2 −ρ′ 1



 . (10)
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Lastly, consider the term in the sum in (7) corresponding to S = ∗. Analogous arguments as

above show that

P (∆S ∈ CI, S = ∗) = PQ,n1,n2

{

(X
(∗)
1 , X

(∗)
2 , X

(∗)
3 ) ∈ R∗(ρ1, c, d, δ1, δ2)

}

,

where

(X
(∗)
1 , X

(∗)
2 ) =

(√
n1 + n2

σ∗

{

∆̂∗ −∆∗

}

, Z(1)
∗ −

√
n1∆∗

σ∗

)

,

and we let X
(∗)
3 denote a random variable that is independent of (X

(∗)
1 , X

(∗)
2 ), and that has a stan-

dard normal distribution. We add in this exogenous variable so that all of our random vectors

below have three components, which allows a simpler exposition. The vector (X
(∗)
1 , X

(∗)
2 , X

(∗)
3 )

has mean (0, 0, 0) and covariance matrix

Σ∗ :=





1
√
t1 0√

t1 1 0
0 0 1



 . (11)

By the uniform central limit theorem of Götze (1991), under the assumptions in Section 3.1,

we have for each s ∈ {1, 2, ∗}

lim
n1,n2→∞

sup
Q∈Q,C∈C

∣

∣

∣

∣

PQ,n1,n2

{

Σ−1/2s (X
(s)
1 , X

(s)
2 , X

(s)
3 )t ∈ C

}

−
∫

C

dΦ3

∣

∣

∣

∣

= 0, (12)

where C denotes the set of all Borel measurable, convex subsets of R
3, Φ3 is the distribution

function of the multivariate normal distribution in R
3 with zero mean and covariance matrix the

identity matrix, and the superscript t indicates the transpose. Since we showed above that for

each s ∈ {1, 2, ∗}, P (∆S ∈ CI, S = s) = PQ,n1,n2

{

(X
(s)
1 , X

(s)
2 , X

(s)
3 ) ∈ Rs(ρ1, c, d, δ1, δ2)

}

, for

Rs(ρ1, c, d, δ1, δ2) the rectangular region in R
3 defined in (4.3), the above display (12) implies

lim
n1,n2→∞

sup
Q∈Q

∣

∣

∣

∣

P (∆S ∈ CI, S = s)−
∫

Σ
−1/2
s Rs(ρ1,c,d,δ1,δ2)

dΦ3

∣

∣

∣

∣

= 0. (13)

We point out that Σs, ρ1, c, δ1, δ2 are each functions of π1, n1, n2, and Q. The integral in (13)

equals P [Gs(π1, t1, ρ1) ∈ Rs(ρ1, c, d, δ1, δ2)], for Gs a multivariate normal random vector with

mean vector (0, 0, 0) and covariance matrix Σs. Therefore,

lim
n1,n2→∞

sup
Q∈Q

|P (∆S ∈ CI, S = s)− P [Gs(π1, t1, ρ1) ∈ Rs(ρ1, c, d, δ1, δ2)]| = 0. (14)

Combining the above with (7) implies

lim
n1,n2→∞

sup
Q∈Q

∣

∣

∣

∣

∣

∣

P (∆S ∈ CI)−
∑

s∈{1,2,∗}

P [Gs(π1, t1, ρ1) ∈ Rs(ρ1, c, d, δ1, δ2)]

∣

∣

∣

∣

∣

∣

= 0. (15)
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This implies

lim inf
n1,n2→∞

inf
Q∈Q

P (∆S ∈ CI) = lim inf
n1,n2→∞

inf
Q∈Q

∑

s∈{1,2,∗}

P [Gs(π1, t1, ρ1) ∈ Rs(ρ1, c, d, δ1, δ2)] . (16)

Recall that by the definition of c in (6), we have

∑

s∈{1,2,∗}

P [Gs(π1, t1, ρ1) ∈ Rs(ρ1, c, d, δ1, δ2)] ≥ 0.95,

which together with (16) proves that the confidence interval procedure (4) satisfies (1), completing

the proof.

A.2. Proof that c as defined in (6) is smallest possible

We prove that for any continuous function c′ that maps (π1, t1, ρ1) into R, if the confidence interval

CI in (4), except replacing c by c′, has property (1), then c′(π1, t1, ρ1) ≥ c(π1, t1, ρ1) at every

(π1, t1, ρ1).
Consider any continuous function c′ that maps (π1, t1, ρ1) into R, for which the confidence

interval CI in (4), except replacing c by c′ (which we refer to in what follows as confidence

interval procedure CI ′), has property (1). For sake of contradiction, assume there is a vector of

values (π̃1, t̃1, ρ̃1), for which c′(π̃1, t̃1, ρ̃1) < c(π̃1, t̃1, ρ̃1). Then by the definition of the function c
in (6), there exist values δ̃1, δ̃2 ∈ R for which

∑

s∈{1,2,∗}

P
[

Gs(π̃1, t̃1, ρ̃1) ∈ Rs(ρ̃1, c
′(π̃1, t̃1, ρ̃1), d, δ̃1, δ̃2)

]

< θ < 0.95, (17)

for some θ.

We first consider the case in which all components of (π̃1, t̃1, ρ̃1) are rational numbers. We will

construct a sequence of sample sizes (n
(k)
1 , n

(k)
2 ) tending to infinity and data generating distribu-

tions Q(k) ∈ Q for which the confidence interval procedure CI ′ has coverage probability less than

θ for each k. Since (π̃1, t̃1, ρ̃1) are assumed to be rational numbers, there exist positive integers

j1, j2 such that t̃1 = j1/(j1 + j2), and such that both j1π̃1 and j1(1− π̃1) are positive integers. For

each positive integer k, define:

i. the kth pair of first and second stage sample sizes to be n
(k)
1 = kj1, n

(k)
2 = kj2;

ii. the outcome distribution for subpopulation 1, Q
(k)
1a , for each a ∈ {0, 1}, to be a normal

distribution with mean 2aδ̃1{(1− π̃1)ρ̃
2
1/(π̃1n

(k)
1 )}1/2 and variance (1− π̃1)ρ̃

2
1;

iii. the outcome distribution for subpopulation 2, Q
(k)
2a , for each a ∈ {0, 1}, to be a normal

distribution with mean 2aδ̃2{π̃1(1− ρ̃21)/((1− π̃1)n
(k)
1 )}1/2 and variance π̃1(1− ρ̃21).
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Define the kth data generating distribution Q(k) =
(

Q
(k)
10 , Q

(k)
11 , Q

(k)
20 , Q

(k)
21

)

. We constructed the

sample sizes and data generating distributions above so that for each k, the covariance of the

corresponding stage one z-statistics Z
(1)
1 , Z

(1)
∗ equals ρ̃1, which follows since this covariance equals

√

π̃1σ1(Q
(k))/σ2(Q

(k))

=





π̃1

(

σ2(Q
(k)
10 ) + σ2(Q

(k)
11 )
)

π̃1

(

σ2(Q
(k)
10 ) + σ2(Q

(k)
11 )
)

+ π̃1

(

σ2(Q
(k)
20 ) + σ2(Q

(k)
21 )
)





1/2

=

[

2π̃1(1− π̃1)ρ̃
2
1

2π̃1(1− π̃1)ρ̃21 + 2(1− π̃1)π̃1(1− ρ̃21)

]1/2

= ρ̃1,

and so that the corresponding non-centrality parameters equal δ̃1, δ̃2, which follows since the non-

centrality parameter corresponding to subpopulation 1 equals
√

π̃1n
(k)
1 ∆1(Q

(k))/σ1(Q
(k)) =

√

π̃1n
(k)
1

[

2δ̃1{(1− π̃1)ρ̃
2
1/(π̃1n

(k)
1 )}1/2

]

/
[

4(1− π̃1)ρ̃
2
1

]1/2

= δ̃1,

and a similar argument shows the non-centrality parameter corresponding to subpopulation 2

equals δ̃2.

By construction, the outcome distributions are normal, and by the assumptions in Section 3.1,

this implies that for each s ∈ {1, 2, ∗}, the vector of statistics (X
(s)
1 , X

(s)
2 , X

(s)
3 ) defined in Ap-

pendix A.1 has a multivariate normal distribution. We then have, by the arguments in Appendix

A.1, that for each s ∈ {1, 2, ∗}, under confidence interval procedure CI ′,

P
Q(k),n

(k)
1 ,n

(k)
2

(∆S ∈ CI ′, S = s)

= P
Q(k),n

(k)
1 ,n

(k)
2

{

(X
(s)
1 , X

(s)
2 , X

(s)
3 ) ∈ Rs(ρ̃1, c

′(π̃1, t̃1, ρ̃1), d, δ̃1, δ̃2)
}

= P
[

Gs(π̃1, t̃1, ρ̃1) ∈ Rs(ρ̃1, c
′(π̃1, t̃1, ρ̃1), d, δ̃1, δ̃2)

]

.

Therefore, by (7) and (17), we have

P
Q(k),n

(k)
1 ,n

(k)
2

(∆S ∈ CI ′) =
∑

s∈{1,2,∗}

P
[

Gs(π̃1, t̃1, ρ̃1) ∈ Rs(ρ̃1, c
′(π̃1, t̃1, ρ̃1), d, δ̃1, δ̃2)

]

.

< θ

< 0.95.

We have shown the coverage probability at each Q(k), n
(k)
1 , n

(k)
2 is less than θ. Since θ < 0.95, this

shows the confidence interval procedure CI ′ does not have uniform coverage probability property

(1). This completes the proof for the case in which all components of (π̃1, t̃1, ρ̃1) are rational

numbers. In general, the vector (π̃1, t̃1, ρ̃1) can be approximated by a sequence of vectors with

rational components, and applying the above arguments at each vector in this sequence, and using

the assumed continuity of c′, the general result follows.
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A.3. Computing c(π1, t1, ρ1) to any desired accuracy

We describe how to compute the expansion factor c at a given vector (π1, t1, ρ1), to any desired

accuracy, in the following sense: for any π1, t1, ρ1, and any tolerance ε > 0, we show how to

compute a value cε satisfying conditions (i) and (ii) in Section 4.3.

We first outline the algorithm for computing cε, and then give the details of the procedure

below. The outer loop in the procedure is a binary search over candidate values c̃ for c(π1, t1, ρ1).
We initialize the lower bound for candidate values c̃ of c(π1, t1, ρ1) to be 1, since as argued in

Appendix A.1, c(π1, t1, ρ1) ≥ 1; we describe how we initialize the corresponding upper bound

below. For a given candidate c̃, we compute an approximation (as described below) of

inf
δ̃1,δ̃2∈R

∑

s∈{1,2,∗}

P
[

Gs(π1, t1, ρ1) ∈ Rs(ρ1, c̃, d, δ̃1, δ̃2)
]

(18)

and see how it compares to 0.95+ ε. If the approximation to the above display is less than 0.95+ ε,
we set c̃ to be the new lower bound in our search; else, we set c̃ to be the new upper bound in

our search. We then take the midpoint of the current lower and upper bounds in our search as the

next candidate value of c̃, and iterate the above procedure until the upper and lower bounds of our

search are less than ε apart; we let cε be the upper bound after the search terminates.

We now describe how we initialize the upper bound for candidate values c̃ of c(π1, t1, ρ1) in the

above search. We compute the approximation (as described below) to (18) at c̃ = 1.1, (1.1)2, (1.1)3, . . .,
proceeding until the first time the approximation to (18) is greater than 0.95+ ε, at which point we

initialize the upper bound to the corresponding value of c̃.
We now describe how we approximate (18) to accuracy±ε, for given π1, t1, ρ1, c̃. We do a grid

search, where we compute the summation in (18), for each pair (δ̃1, δ̃2) ∈ H(ε), where H(ε) is

a sufficiently fine grid of points in R
2 that we define below; we then output the minimum value

found, i.e.,

min
(δ̃1,δ̃2)∈H(ε)

∑

s∈{1,2,∗}

P
[

Gs(π1, t1, ρ1) ∈ Rs(ρ1, c̃, d, δ̃1, δ̃2)
]

. (19)

Each computation of the summation in the above display can be computed by statistical software

for computing the distribution function of a multivariate normal distribution; in our computations,

we used the mvtnorm package in R. R code for this computation is given in the Supplementary

Materials.

It remains to define the grid H(ε) ⊂ R
2, so that (19) is within ε of (18). We make the change

of variables x1 = d− (ρ1δ̃1+ ρ2δ̃2), x2 = (δ̃2− δ̃1)/
√
2 to make the following explanation clearer.

Also, for each s ∈ {1, 2, ∗}, define

hs(x1, x2) = P
[

Gs(π1, t1, ρ1) ∈ Rs(ρ1, c̃, d, δ̃1(x1, x2), δ̃2(x1, x2)
]

, (20)

where δ̃j(x1, x2) is the value of δ̃j according to the above change of variables. With a slight abuse

of notation, we additionally define hs for x1, x2 taking values −∞ or ∞, by which we mean the

corresponding limit of (20), e.g., for x1 ∈ R,

hs(x1,−∞) = lim
x′2→−∞

hs(x1, x
′
2); and hs(∞,∞) = lim

x′1→∞,x′2→∞
hs(x

′
1, x

′
2).
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Define the vector g = (g1, g2) to be the gradient with respect to x1, x2 of
∑

s∈{1,2,∗} hs(x1, x2).

For for each j ∈ {1, 2} define g̃j = supx1,x2∈R |gj|; these values can be upper bounded using the

method in Section F of the Supplementary Materials of (Rosenblum and van der Laan, 2011). Then

for any two points (x1, x2) and (x′1, x
′
2) in R

2, by the mean value theorem,
∣

∣

∣

∣

∣

∣

∑

s∈{1,2,∗}

hs(x1, x2)−
∑

s∈{1,2,∗}

hs(x
′
1, x

′
2)

∣

∣

∣

∣

∣

∣

≤ |x1 − x′1|g̃1 + |x2 − x′2|g̃2. (21)

Define the grid of values of (x1, x2) to be H ′(ε) = H ′
1(ε)×H ′

1(ε), for

H ′
1(ε) = {−∞} ∪ {Φ−1(ε/6),Φ−1(ε/6) + γ, . . . ,Φ−1(ε/6) + kγ,Φ−1(1− ε/6)} ∪ {∞},

where we set γ = ε/(2max{g̃1, g̃2}) and k = b{Φ−1(1 − ε/6) − Φ−1(ε/6)}/γc. Define the grid

H(ε) to be that corresponding to H ′(ε), inverting the change of variables above that maps pairs

(δ̃1, δ̃1) to (x1, x2).
We now show that the above grid leads to an approximation of (18) to accuracy ±ε, i.e., that

min
(x1,x2)∈H′(ε)

∑

s∈{1,2,∗}

hs(x1, x2)− inf
(x1,x2)∈R2

∑

s∈{1,2,∗}

hs(x1, x2) ≤ ε. (22)

It suffices to show for every pair (x1, x2) ∈ R
2, that there is a point (y1, y2) in the grid H ′(ε) such

that
∑

s∈{1,2,∗}

hs(x1, x2) ≥
∑

s∈{1,2,∗}

hs(y1, y2)− ε. (23)

For each (x1, x2) ∈ R
2, we construct such a point (y1, y2), as follows: for each j ∈ {1, 2}, define

yj =







−∞, if xj < Φ−1(ε/6)
argminz∈H′1(ε)

|z − xj| if Φ−1(ε/6) ≤ xj ≤ Φ−1(1− ε/6)
∞, if xj > Φ−1(1− ε/6).

That is, if xj is contained in the interval [Φ−1(ε/6),Φ−1(1− ε/6)], we set yj to be the closest point

in the grid H ′
1(ε); otherwise, we set yj to be ±∞, where the sign equals that of xj . We will show

the point (y1, y2) ∈ H ′(ε) satisfies (23).

We have for any (x1, x2) ∈ R
2 for which x1 ∈ [Φ−1(ε/6),Φ−1(1− ε/6)], that y1 is the nearest

point to x1 in the one-dimensional grid H ′
1(ε), and we have

∣

∣

∣

∣

∣

∣

∑

s∈{1,2,∗}

hs(x1, x2)−
∑

s∈{1,2,∗}

hs(y1, x2)

∣

∣

∣

∣

∣

∣

≤ ε/2, (24)

which follows by (21) and our choice of the grid width γ. An analogous result holds for any

(x1, x2) ∈ R
2 for which x2 ∈ [Φ−1(ε/6),Φ−1(1− ε/6)].

For any x1 ∈ R ∪ {−∞,∞}, for any x2 < Φ−1(ε/6), it follows by the form of the regions

R1, R2, R∗ defined in Section 4.3 that for any s ∈ {1, 2, ∗},

|hs(x1, x2)− hs(x1,−∞)| ≤ ε/6. (25)
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Similarly, for any x1 ∈ R ∪ {−∞,∞}, for any x2 > Φ−1(1− ε/6), for any s ∈ {1, 2, ∗}, we have

|hs(x1, x2)− hs(x1,∞)| ≤ ε/6. (26)

Analogous results hold if we interchange x1 and x2.

By (24), (25), and (26), we have

∣

∣

∣

∣

∣

∣

∑

s∈{1,2,∗}

hs(x1, x2)−
∑

s∈{1,2,∗}

hs(y1, x2)

∣

∣

∣

∣

∣

∣

≤ ε,

which proves (23). This completes the verification of (22), that the above grid is sufficiently fine

so as to guarantee (19) is within ε of (18).

We now prove that the binary search algorithm in the second paragraph of this appendix leads

to a value cε satisfying the approximation conditions (i) and (ii) in Section 4.3. The algorithm

maintains, at every iteration, that the value of (19) is at least 0.95+ ε for c̃ equal to the upper bound

in the search. Then by (22), we have (18) is at least 0.95 at c̃ = cε, which implies condition (i).

The lower bound for candidate values c̃ of c(π1, t1, ρ1) in our binary search algorithm is ini-

tialized to 1, and as argued in beginning of Appendix A.1, the value of (18) at c̃ = 1 is at most

0.95. By the structure of the above algorithm, whenever the lower bound for candidate values c̃
of c(π1, t1, ρ1) is updated, the corresponding value of (19) must be less than 0.95 + ε. It follows

from (19) being greater or equal to (18) at any c̃, that the value of (18) is less than 0.95 + ε for c̃
equal to the lower bound in the search, at any iteration of the search. Therefore, the lower bound

in the search is always at most the value of (6) with 0.95 replaced by 0.95 + ε. By the termination

condition of the binary search, i.e., that the upper and lower bounds be within ε of each other, we

have cε is at most ε plus the value of (6) with 0.95 replaced by 0.95 + ε, which shows condition

(ii) is satisfied. We have demonstrated that cε satisfies the approximation conditions (i) and (ii) in

Section 4.3.

The above binary search algorithm assumed that computation of the terms in the summation

in (19), at any fixed values of δ̃1, δ̃2, can be done without error. Since computing each such term

involves integration, in practice there will be some error, which can be made small by integrating

over a fine partition. The above algorithm can be modified to handle such error, if each term in the

summation in (19) is computed to within ±ε/4, if the binary search algorithm uses 0.95 + ε/2 as

a threshold instead of 0.95 + ε, and if the grid H(ε) in (19) is replaced by the finer grid H(ε/4).
Then the approximation conditions (i) and (ii) in Section 4.3 hold for the modified algorithm.
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