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Flexible Distributed Lag Models using Random
Functions with Application to Estimating Mortality

Displacement from Heat-Related Deaths

Matthew J. HEATON and Roger D. PENG

As climate continues to change, scientists are left to analyze the effects these
changes will have on the public. In this article, a flexible class of distributed lag mod-
els are used to analyze the effects of heat on mortality in four major metropolitan areas
in the U.S. (Chicago, Dallas, Los Angeles, and New York). Specifically, the proposed
methodology uses Gaussian processes as a prior model for the distributed lag function.
Gaussian processes are adequately flexible to capture a wide variety of distributed lag
functions while ensuring smoothness properties of process realizations. Additionally,
the proposed framework allows for probabilistic inference of the maximum lag. Ap-
plying the proposed methodology revealed that mortality displacement (or, harvesting)
was present for most age groups and cities analyzed suggesting that heat advanced
death in some individuals. Additionally, the estimated shape of the DL functions gave
evidence that prolonged heat exposure and highly variable temperatures pose a threat
to public health.

Key Words: Climate change; Gaussian process; Public health; Harvesting.

1. INTRODUCTION
In their fourth assessment (IPCC 2007), the Intergovernmental Panel on Climate Change

(IPCC) reports that as the global climate changes, temperatures will become more variable
and extreme (Tebaldi, Hayhoe, Arblaster, and Meehl 2006) and heat waves will lengthen
and strengthen in intensity (Meehl and Tebaldi 2004). Such changes are concerning as
many studies have already linked extreme temperatures and heat waves to excess mortality
(see, e.g., O’Neill, Zanobetti, and Schwartz 2003; Kovats and Hajat 2008; Anderson and
Bell 2009). Other studies argue that excess mortality is expected to increase given the pro-
jected changes in climate (Li, Sain, Mearns, Anderson, Kovats, Ebi, Bekkedal, Kanarek,
and Patz 2011; Peng, Bobb, Tebaldi, McDaniel, Bell, and Dominici 2011). For these rea-
sons, understanding the relationship between mortality (or morbidity) and heat is one of
many keys to understanding how public health will be affected by global climate changes.
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2 M. J. HEATON AND R. D. PENG

A common statistical tool for studying the relationship between mortality and heat are
distributed lag (DL) models which relate a response observed at time t, say Yt , to covariates
measured at the current and previous time periods, say Xt , . . . ,Xt−M for some maximum lag
M, via the mean such that

g(E(Yt | Xt , . . . ,Xt−L)) = β0 +
M

∑
�=0

θ�Xt−� (1.1)

where g(·) represents an appropriate link function (e.g. identity, log, etc.). The {θ� : � =
1, . . . ,M} is called the distributed lag (DL) function and describes how past covariates in-
teract with the response at time t. In terms of relating heat to mortality, DL models match
a priori intuition in that heat-related deaths could be the result of either (i) shorter-term
(i.e. same or previous day) exposure to extreme heat resulting in heat stroke or (ii) pro-
longed heat exposure resulting in disease or dehydration. To highlight a few results, Braga,
Zanobetti, and Schwartz (2001) used DL models to analyze time series data from 12 U.S.
cities and found that the public in those cities with colder climates were more susceptible to
short term heat-related deaths than cities in warmer climates. In a follow-up study, Braga,
Zanobetti, and Schwartz (2002) discovered a “harvesting” (i.e. mortality displacement) ef-
fect such that heat advanced death by a few days (thus prematurely depleting the cohort of
susceptible persons) such that mortality on day t was negatively associated with tempera-
tures on days t − 3, t − 4, and so on. Hajat, Armstrong, Gouveia, and Wilkinson (2005)
compared the DL function of heat-related deaths across different demographic profiles and
concluded that poorer populations were more susceptible to heat-related illnesses over both
short- and long-term heat exposures.

The goal of this study is to investigate the relationship between heat and mortality in
four major metropolitan areas (Chicago, Dallas, Los Angeles, and New York) in the United
States from 2001 to 2005. Non-accidental related mortality counts and daily temperature
for each city were obtained from the National Morbidity, Mortality and Air Pollution Study
(NMMAPS) database (Samet, Zeger, Dominici, Curriero, Coursac, Dockery, Schwartz, and
Zanobetti 2000). Figure 1 displays the empirical autocorrelation function Corr(Yt ,Xt−�)

for � = 0, . . . ,10 after accounting for a day of week effect, age, and annual trends where
Yt is the mortality count on day t and Xt is the average daily temperature on day t. From
Figure 1, both Chicago and Los Angeles may exhibit mortality displacement behavior in
that mortality counts are negatively correlated with daily temperature at lags greater than
2 or 3. In contrast, Dallas seems to exhibit resiliency to heat while New York is more
susceptible to long term heat exposure. Here, DL models are used to study these empirical
relationships in greater detail.

While simple in composition, effectively using DL models for data analysis can be chal-
lenging for a few reasons. First, obtaining precise estimates of the DL function in (1.1) is
difficult because the covariates Xt , . . . ,Xt−M are often highly collinear resulting in inflated
standard errors. Solutions to reining in the standard errors include averaging covariates inhttp://biostats.bepress.com/jhubiostat/paper237
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Figure 1. Empirical autocorrelation function Corr(Yt ,Xt−�) for �= 0, . . . ,10 after accounting for a

day of week effect, age, and annual trends for each city in the current study. Note the different scales

used on the y-axes.
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4 M. J. HEATON AND R. D. PENG

temporal windows (Bell, Samet, and Dominici 2004; Welty and Zeger 2005; Caffo, Peng,
Dominici, Louis, and Zeger 2011), constraining {θ�} to follow a function such as a polyno-
mial (Schwartz 2000) or spline (Zanobetti, Wand, Schwartz, and Ryan 2000), or building
in strong prior knowledge to borrow strength across the estimates (Welty, Peng, Zeger, and
Dominici 2009; Peng, Dominici, and Welty 2009). Similar to Welty et al. (2009) and Peng
et al. (2009), this collinearity issue is handled here by inducing strong a priori correlation
between the parameters of the DL function while not constraining the shape to follow a
particular function. Specifically, Gaussian processes (i.e. random functions) are used as a
prior model for {θ�} to this end (see the books Banerjee, Carlin, and Gelfand 2004; Cressie
and Wikle 2011, for detailed discussions of Gaussian processes and their properties). A
stochastic process {θ� : � ∈D} for some continuous region D follows a Gaussian process if
and only if for any finite collection of locations �1, . . . ,�n the vector (θ�1 , . . . ,θ�n

)� follows a
multivariate Gaussian distribution. Here, the Matérn (Matérn 1986) correlation function is
used to induce strong a priori correlation between θ�i

and θ� j
to not only control standard

errors of θ� but also control the smoothness properties of the DL function.

A second challenge in using DL models is choice of the maximum lag M. One possible
solution is to allow M to be infinite yielding the Koyck distributed lag model (see Frances
and van Oest 2004). For studies relating heat to mortality, allowing M to be infinite does
not match a priori knowledge that M is not only finite but probably quite small (perhaps
only one or two weeks). The majority of analyses employing DL models assume that M is
known and choose its value based on a priori intuition. By choosing M to be large enough
to capture all possible effects of interest, credible (or confidence) intervals for {θl} could be
used to infer a smaller “true” maximum lag (e.g. the largest lag such that a credible interval
does not contain zero). With this approach, the collinearity of Xt , . . . ,Xt−M mentioned above
creates more problems because the standard errors of {θl} are inflated. A major contribution
of this work is to treat the maximum lag as a parameter of interest and infer its value using
the data. Specifically, a large lag M is first chosen and a Gaussian process prior distribution
is used for θ0, . . . ,θM. Next, a second “true” maximum lag L is introduced such that θ� = 0
if � ≥ L. Because conditioning on L is equivalent to conditioning on θL = · · · = θM = 0,
the conditional distribution [θ0, . . . ,θL−1 | L] is well defined by the properties of the mul-
tivariate Gaussian distribution where [·] denotes a general probability distribution. Thus, a
valid model specification is available for all L = 1, . . . ,M enabling convenient inference for
L. More modeling details and discussion on implementing a Markov chain Monte Carlo
(MCMC) algorithm for posterior inference is provided in Section 2.

To conclude this Introduction, the primary contributions are outlined as follows: (i)
the use of random functions (specifically, Gaussian processes) as a prior model for the DL
function which alleviates collinearity issues through strong a priori correlation between
parameters and inducing smoothness properties while not overly constraining the DL func-
tion; (ii) full posterior inference on the maximum lag L such that θ� = 0 if � ≥ L; andhttp://biostats.bepress.com/jhubiostat/paper237
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(iii) an in-depth analysis of the relationship between heat and mortality in four major U.S.
metropolitan areas. Section 2 details the modeling strategy used throughout this article
including a discussion of how to effectively implement a MCMC algorithm for posterior
inference. Section 3 validates the proposed methodology via simulation studies and Section
4 describes the results from the heat-related death analysis. Finally, Section 5 concludes,
identifies short-comings of the analysis and details open research questions.

2. DISTRIBUTED LAG MODELS USING RANDOM
FUNCTIONS

2.1. METHODOLOGY

For purposes of methodological development, let t ∈Z denote time, Yt denote a response
variable of interest observed at time t and Xt denote the univariate response variable that is,
potentially, associated with Yt . Recall that the application of interest in this article is the
mortality displacement of heat-related deaths such that Xt will denote average daily temper-
ature. Because temperature data in the years 2001-2005 time frame is highly abundant and
typically measured with high precision, assume that Xt is known for all t of interest.

In order to capture lagged effects of Xt on the response Yt , consider the distributed lag
model given by,

g(E(Yt | {Xt : t ∈ Z})) = β0 +
M

∑
�=0

θ�Xt−�, (2.1)

where, as in the previous section, g(·) denotes an appropriate link function (e.g. identity,
log, etc.), and {θ� : �= 0, . . . ,M} is the DL function quantifying the effect of Xt−� on E(Yt).
Specifically, for a unit increase in Xt−�, holding all else constant, g(E(Yt)) will change by
θ�. For DL models, the sum β1 = ∑∞

�=0 θ� is often of interest quantifies the effect of a unit
increase in Xt on E(Yt �) for all future days t

� = t + 1, t + 2, etc. Note, however, that the
value of β1 alone can be deceiving. For example, notice that β1 can be approximately 0,
suggesting a null effect between covariates and response, yet θ� �= 0 for all � suggesting that
all past covariates affect the response. Thus, the distributed lag function {θ� : �= 0, . . . ,M}
is the primary quantity of interest and β1 is a useful univariate summary. Here, the value of
M is set large enough such that {θ� : � ∈ {0, . . . ,M}} captures all lagged effects of interest.
For example, in the heat-related mortality example discussed in the Introduction, M = 60
because intuition states that, with near certainty, the effect of the average daily temperature
two months ago should have no effect on mortality today. As is discussed more below, a
second truncation level L (which will be estimated using the data) will be introduced which
represents the “true” maximum lag at which θ� = 0 for �≥ L.

Prior knowledge of θθθ = (θ0, . . . ,θM)� varies greatly from application to application. For
example, when relating temperature to mortality, the heat-related mortality displacement
hypothesis suggests that high temperatures in recent days may advance the death of at-riskHosted by The Berkeley Electronic Press



6 M. J. HEATON AND R. D. PENG

individuals. Under such a hypothesis, the resulting DL function would be positive at small
lags, negative at moderate lags then taper off to zero. As a different example, when relating
pollution exposure to mortality, the DL function may have a moderate positive effect for
small lags, peak at moderate lags, then decrease to zero for larger lags (Schwartz 2000). In
almost all cases, however, the physical constraints of the problem suggest θ� → 0 smoothly
as � ↑ M. Thus, a model for θθθ should be flexible at small lags yet constrained at larger lags.

The approach proposed here is to first assume a highly flexible model for θθθ then con-
dition on the physical constraints of the problem. First, to flexibly model θθθ , treat θθθ as a
realization of a random function. Specifically, assume θθθ is a realization from a Gaussian
process at the finite set of locations {0, . . . ,M} such that,

θθθ ∼ N (000,σ2
θ RRRθ (φθ )) (2.2)

where 000 is the zero-vector, σ2
θ is a constant variance term, RRRθ (φθ ) is a (M + 1)× (M + 1)

correlation matrix with i j
th element given by the Matérn correlation function

ρθ (�i− j�) =
�

σ2
θ

2ν−1Γ(ν)

�
(φθ�i− j�)ν

Kν(φθ�i− j�)

where ν is a smoothness parameter, φθ is a decay parameter, and Kν is the modified Bessel
function of the second kind of order ν . One particularly useful property of the Matérn cor-
relation function is that realizations can be shown to be k times mean square differentiable
if and only if ν > k (see Handcock and Stein 1993; Handcock and Wallis 1994). Thus, ν is
used to control the smoothness properties of the distributed lag function. Following Welty
et al. (2009) and Peng et al. (2009), the DL function is hypothesized to be smooth over time;
thus, here ν is fixed at 3 a priori. Borrowing a term from spatial statistics, the parameter
φθ is a decay parameter and controls the correlation at fixed temporal distances. In other
words, as φθ increases, Corr(θ�,θ�+u) decreases for fixed u ∈R\0. Finally, σ2

θ is a variance
term that controls the maximum (and minimum) height of the DL function. For example, if
σ2

θ is small (large) then max�{θ� : � ∈ {0, . . . ,M}} will, with high probability, also be small
(large) in absolute value. Importantly, Zhang (2004) showed that the parameter φθ is not
consistently estimable and fixing φθ a priori while estimating σ2

θ is sufficient. Thus φθ will
be treated as fixed for the remainder of this article. In initial investigations of the methodol-
ogy proposed here, φθ was treated as an unknown parameter but results were insensitive to
its value.

Having defined a very flexible model for θθθ in (2.2) above, consider now incorporating
the physical constraints of the problem. Under (2.2), the physical constraint that θ� → 0
smoothly as � ↑ M can now be enforced via conditioning in the following manner. Consider
a lag time L ∈ {1, . . . ,M} such that θ� = 0 if � ≥ L and partition θθθ = (θθθ �

1,θθθ
�
2)

� where
θθθ 1 = (θ0, . . . ,θL−1)� and θθθ 2 = (θL, . . . ,θM)�. Furthermore, partition

RRRθ =

�
RRRθ ,11 RRRθ ,12

RRRθ ,21 RRRθ ,22

�

http://biostats.bepress.com/jhubiostat/paper237
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Figure 2. The non-zero portion (i.e. θθθ 1) of five DL functions randomly drawn according to the

random function DL model with M = 21, L = 14, σ2
θ = 1, and φθ = 0.18. Notice that the random

function DL model allows for a wide variety of DL functions while constraining each of these to

approach 0 as the lag increases.

such that Corr(θθθ i,θθθ j) = RRRθ ,i j for i, j = 1,2. Conditioning (2.2) on L, the distribution
of the non-zero portion of the DL function θθθ 1 follows directly from the properties of
the multivariate normal distribution. That is, θθθ 1|L ∼ N (000,σ2

θ RRR
�
θ (L)) where RRR

�
θ (L) =

RRRθ ,11 −RRRθ ,12RRR
−1
θ ,22RRRθ ,21 is now L× L. By conditioning on L, notice that the first few el-

ements of θθθ 1 (i.e. the lagged effects at small lags) are less constrained than the lagged
effects at larger lags. To illustrate this behavior, Figure 2 plots five random draws of θθθ 1

using M = 21, L = 14, φθ = 0.18 and σ2
θ = 1. Notice that at early and moderate lags, the

functions look quite different; yet, all taper off to zero as the lag increases.

Returning to the discussion of the truncation level M in (2.1), the role of M is now
more clear given the introduction of the maximum lag L. Specifically, M is chosen large
enough such that, with prior probability 1, θ� = 0 if � ≥ M. In practice, the value of M

should often be chosen to be much larger than the maximum possible value of L in order to
properly capture the effect of conditioning on θθθ 2 = 000. For example, notice that if L = M

then θθθ 2 = θM is univariate and conditioning on θM = 0 will not adequately capture the
knowledge that θM+1 = θM+2 = · · · = 0. To avoid this, L, a priori, will be assumed to
follow a discrete uniform prior where max�{� : Pr(L = �)> 0} will be much less than M.Hosted by The Berkeley Electronic Press



8 M. J. HEATON AND R. D. PENG

2.2. MODEL SPECIFICATION AND PARAMETER ESTIMATION

Let YYY = (Y1, . . . ,YT ) denote the vector of observed response variables. Also consider, for
the moment, that the support of each Yt is R such that a Gaussian assumption is appropriate
(perhaps following a transformation). Using (2.1), a model for YYY can be written as,

YYY | XXX ∼ N
�
β0111T +XXXθθθ ,σ2

Y
IIIT

�
, (2.3)

where 111T is the length T column vector of ones, XXX is the T ×M + 1 design matrix with
t
th row (Xt ,Xt−1, . . . ,Xt−M), θθθ = (θ0, . . . ,θM)�, σ2

Y
is the error variance and IIIT is the rank

T identity matrix. Notice that (2.3) assumes that all of the temporal correlation in YYY is
explained through XXX . Admittedly, this may be overly simplistic because YYY may have excess
temporal correlation beyond that explained by XXX ; however, this extension is not considered
here and focus is placed on estimating the DL function θθθ . Partition XXX = [XXX1:L,XXX (L+1):(M+1)]

such that XXXa:b are columns a through b of XXX . Conditioning (2.3) on L, gives,

YYY | XXX ,L ∼ N
�
β0111T +XXX1:Lθθθ 1,σ2

Y
IIIT

�
(2.4)

where, again, θθθ 1 | L ∼ N (000,σ2
θ RRR

�
θ (L)) as in the previous section.

The unknown parameters in model (2.4) are L,β0,σ2
Y
,σ2

θ , and the DL function θθθ 1. To
emphasize, a strong contribution of the proposed modeling strategy here is to treat the maxi-
mum lag L as an additional unknown parameter and estimate it from the data. The approach
here is Bayesian and parameter estimation is achieved via MCMC simulation. That is, each
parameter is drawn successively from its’ complete conditional distribution (i.e. the distri-
bution of the parameter given all other parameters and the data). With the exception of
the maximum lag L, implementing a Gibbs sampler to obtain realizations from the pos-
terior distribution is straight forward. For example, conditional on the maximum lag L,
the complete conditional distribution for θθθ 1 is Gaussian (i.e. θθθ 1 is a conjugate parameter).
Likewise, if conjugate prior distributions are appropriate for the intended application, then,
again conditional on L, β0, σ2

θ , and σ2
Y

can all be drawn directly from their complete condi-
tional distribution without the use of Metropolis-Hastings (MH) type algorithms. However,
sampling L is more difficult.

The natural instinct is to draw L from its complete conditional distribution using a
MH algorithm but complications immediately arise. For example, consider a proposal
value L

� such that L
� > L. Evaluating the likelihood in this case would require values for

θL, . . . ,θL�−1 which are not available in the current draw of θθθ 1. Likewise, if L
� < L it may

not be reasonable to simply “zero-out” the elements of θθθ 1 to evaluate (2.4) given L
�. Thus

rejection of L
� may result not because the value of L

� is poor but because the value of θθθ used
to evaluate the likelihood is poor. The proposed solution to this is to use a collapsed Gibbs
sampler (see van Dyk and Park 2008) and sample (θθθ 1,L) from its joint complete conditional
distribution [θθθ 1,L | YYY ,,,XXX ,σ2

Y
,σ2

θ ,φθ ] = [θθθ 1 | L,YYY ,,,XXX ,σ2
Y
,σ2

θ ,φθ ][L | YYY ,,,XXX ,σ2
Y
,σ2

θ ,φθ ]. That
is, first sample L conditional on everything except θθθ 1 then sample θθθ 1 from its’ conjugatehttp://biostats.bepress.com/jhubiostat/paper237
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complete conditional distribution. Obviously, this results in a valid (i.e. converges to the
correct stationary distribution) Markov chain because any joint distribution can be factored
[A,B] = [A | B][B] and sampled from accordingly.

In order to facilitate sampling L, a convenient prior distribution is the discrete uniform
distribution on {1, . . . ,Lmax} where Lmax < M and, often, Lmax � M (see the discussion
above). Using a discrete uniform prior for L yields,

�
L = � | YYY ,,,XXX ,σ2

Y
,β0,σ2

θ
�
=

N
�
YYY ;β0111T ,σ2

θ XXX1:�RRR
�
θ (�)XXX

�
1:�+σ2

Y
IIIT

�

∑Lmax
i=1 N

�
YYY ;β0111T ,σ2

θ XXX1:iRRR
�
θ (i)XXX

�
1:i +σ2

Y
IIIT

� (2.5)

where N (x; µ,σ2) denotes the Gaussian distribution function with mean µ and variance
σ2 evaluated at x. Using (2.5), L can be drawn directly following which θθθ 1 can be drawn
directly from its complete conditional distribution as discussed above.

Because (2.1) can be used with more than just the Gaussian distribution, turn now to the
case where Yt is distributed as a Poisson random variable. Using (2.1), a model for Poisson
data is given by,

Yt | L,xxxt(L),β1,θθθ 1,σ2
θ

ind∼ P
�
exp

�
β0 + xxx

�
t
(L)θθθ 1

��
(2.6)

where P(µ) represents the Poisson distribution with mean µ and xxx
�
t
(L) = (Xt ,Xt−1, . . . ,

Xt−L+1)�. The apparent difficulty with using the Poisson distribution, rather than the Gaus-
sian distribution, is loss of conjugacy for the parameters β0 and θθθ 1 (notice that σ2

θ may
still be conjugate even in the Poisson setting depending on the choice of prior distribution).
Additionally, the difficulty of sampling L persists. For sampling β0 and θθθ 1, the adaptive
Metropolis algorithm of Haario, Saksman, and Tamminen (2001) works well here and its
use is highly recommended to achieve efficient posterior simulation.

To sample L in the Poisson setting, the collapsed Gibbs sampler method is again used.
However, the Poisson setting presents a new computational challenge. Specifically, the
posterior probability [L = � | YYY ,,,XXX ,σ2

θ ] given by,
�
R� ∏T

t=1 P (Yt ; exp{β0 + xxx
�
t
(�)θθθ 1:v})N

�
θθθ 1:�;000,σ2

θ RRR
�
θ (�)

�
dθθθ 1:�

∑i

�
Ri ∏T

t=1 P (Yt ; exp{β0 + xxx
�
t(i)θθθ 1:i})N

�
θθθ 1:i;000,σ2

θ RRR
�
θ (i)

�
dθθθ 1:i

(2.7)

is no longer available in closed form where P(x; µ) is the Poisson distribution with mean
µ evaluated at x and θθθ 1:i = (θ0, . . . ,θi−1)�. Notice that the numerator in (2.7) is simply
Eθθθ 1:�(∏

T

t=1 P(Yt ; exp{β0+xxx
�
t|�θθθ 1:�}) where θθθ 1:� ∼N (000,σ2

θ RRR
�
θ (�)) and could be calculated

using Monte Carlo integration. Monte Carlo integration, however, could be imprecise if the
product ∏T

t=1 P(Yt ; exp{β0+xxx
�
t
(�)θθθ 1:v}) is highly concentrated relative to N (000,σ2

θ RRR
�
θ (�)).

Rather, the approach used here is to calculate the marginal posterior probability [L = v |
YYY ,,,XXX ] by calculating the marginal likelihoods for each value of L using the method of Chib
and Jeliazkov (2001). The resulting collapsed Gibbs sampler follows by first sampling L

from [L | YYY ,,,XXX ] followed by sampling θθθ 1 and σ2
θ from their respective complete conditional

distributions via Metropolis steps. Hosted by The Berkeley Electronic Press



10 M. J. HEATON AND R. D. PENG

Table 1. Simulation study model scenarios where φ(x | µ,σ) is the Gaussian probability
density function with mean µ and standard deviation σ evaluated at x and φ (1)(·)
is its first derivative. For each scenario, {Xt} were taken to be the average daily
temperatures in Chicago between April 1 and September 30, 2005. The distributed
lag functions for each scenario are given by the solid black lines in Figure 3.

Scenario Model

(a) Yt

ind∼ N
�
25+0.17∑13

�=0 sin(2π�/14)Xt−�,25
�

(b) Yt

ind∼ P
�
exp

�
1.75+0.03∑13

�=0 sin(2π�/14)Xt−�
��

(c) Yt

ind∼ N
�
−55+1.75∑13

�=0 φ(� | 4,14/3)Xt−�,25
�

(d) Yt

ind∼ P
�
exp

�
−15+0.3∑13

�=0 φ(� | 4,14/3)Xt−�
��

(e) Yt

ind∼ N
�
125+1.75∑13

�=0 φ (1)(� |−3,7)Xt−�,25
�

(f) Yt

ind∼ P
�
exp

�
18+0.3∑13

�=0 φ (1)(� |−3,7)Xt−�
��

3. SIMULATION STUDIES
3.1. SIMULATION STUDY OUTLINE AND PRIOR DISTRIBUTIONS

The goal of this section is to study how the proposed modeling strategy of Section 2
recovers various forms of DL functions based on different distributional assumptions for
Yt . For this simulation study, 100 data sets, consisting of T = 153 values of Yt (5 months
of daily data), were simulated for each model scenario given in Table 1. Graphically, the
distributed lag functions for each scenario are given by the solid black lines in Figure 3.
The general strategy in selecting these scenarios was to choose three different functional
forms (a sine function, Gaussian density function, and derivative of the Gaussian density
function) for the “true” DL function and then study the ability of the model to recover
this function assuming a Gaussian and Poisson distribution for Yt . Thus, the six scenarios
listed in Table 1 are a 3× 2 full factorial design with three levels of DL functions and two
distributional assumptions. Note that for each scenario, the DL function is zero if the lag
�≥ 14. The additive and multiplicative constants were chosen to scale the simulated data to
approximately match the scale of the mortality dataset which is of primary interest in this
article.

The model given by Equation (2.4) was fit to each dataset in scenarios (a), (c), and (e)
while (2.6) was fit to each simulated data set in scenarios (b), (d), and (f). For both the
Gaussian and Poisson models, M was assumed to be 30 and a discrete prior distribution
was assumed for L with equal probability assumed for the values of {1,4,7,10,14,17,21}.
This is a moderately coarse grid for L yet is still informative as to the maximum non-zero
lag. A finer grid for L could be used but computation, especially for the Poisson model
which relies on the methods of Chib and Jeliazkov (2001) to calculate marginal likelihoods,
could quickly become daunting. For the Gaussian models, the prior distribution for β0 was
assumed to be N (0,1002) while for the Poisson models β0 ∼ N (0,102). Note that for thehttp://biostats.bepress.com/jhubiostat/paper237
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Figure 3. The true distributed lag functions (solid black lines) for each simulation scenario along

with the 100 posterior mean DL functions for each simulated data set (gray lines).

Poisson case, the value of β0 is associated with log(E(Yt)) and a N (0,102) prior is quite
non-informative on the log-scale. Finally, proper inverse gamma (denoted by I G (·)) prior
distributions were assumed for both σ2

θ and σ2
Y

; specifically, σ2
θ and σ2

Y
were assumed to be

a priori independent I G (3, rate = 3) random variables.

Analysis was carried out by obtaining 10,000 draws from the posterior distribution
of model parameters via a Gibbs sampling algorithm. If lacking conjugacy, draws were
obtained using the adaptive Metropolis algorithm of Haario et al. (2001). An analysis of the
posterior draws using trace plots suggested that the Gaussian and Poisson models required
approximately 5,000 and 10,000 draws, respectively, as burn-in.

3.2. STUDY RESULTS

Figure 3 displays the 100 marginal posterior mean DL functions (that is, E(θ� | YYY ,,,XXX)

for �= 0, . . . ,21) in each simulation scenario with the true DL function overlaid. According
to Figure 3, on average, the model is finding the correct DL function. Figure 4 displays
the empirical coverage (EC) rates of 95% central credible intervals for θ�. In general, the
EC rates are close to the nominal rate of 0.95 yet the uncertainty is slightly understated in
scenarios (a) and (e).

Table 2 displays the empirical bias, root mean square error (RMSE), coverage rate andHosted by The Berkeley Electronic Press
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Figure 4. Empirical coverage (EC) rates of 95% central credible intervals for θ� (solid lines). The

dashed horizontal line indicates the nominal rate of 95%. The empirical rates are near the nominal

rates of 0.95 but the uncertainty is slightly understated in scenarios (a) and (e).
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Table 2. Empirical bias, root mean square error (RMSE) and 95% central credible interval
coverage and width for the cumulative effect parameter β1 =∑L

�=0 θ�. The true value
of β1 was 0.00,0.00,1.42,0.24,−1.22, and −0.20 for scenarios (a)-(f), respectively.
The model fits seem to be recovering the correct parameter with near nominal
coverage.

Scenario Bias RMSE Coverage Width
(a) 0.00 0.11 0.96 0.46
(b) 0.00 0.01 0.98 0.03
(c) -0.07 0.14 0.91 0.47
(d) -0.00 0.01 0.94 0.03
(e) 0.06 0.14 0.91 0.48
(f) -0.00 0.00 0.91 0.02

Table 3. Average, across simulated data sets, posterior probability distribution [L | YYY ,,,XXX ].
The model is able to correctly identify the true maximum lag of L = 14.

[L | YYY ,,,XXX ]

Scenario 1 4 7 10 14 17 21
(a) 0.000 0.000 0.000 0.000 0.629 0.272 0.099
(b) 0.000 0.000 0.000 0.000 0.999 0.001 0.000
(c) 0.000 0.000 0.005 0.304 0.431 0.173 0.087
(d) 0.000 0.000 0.000 0.067 0.933 0.000 0.000
(e) 0.000 0.000 0.002 0.179 0.489 0.221 0.110
(f) 0.000 0.000 0.000 0.038 0.962 0.000 0.000

width of a 95% central credible interval for the cumulative effect of all past covariates given
by β1 = ∑L

�=0 θ�. Again, the model fits seem to recover to correct value (indicated by low
bias) and have near nominal coverage rates of 95%.

Table 3 displays the average, across simulated data sets, posterior probability distribu-
tion [L | YYY ,,,XXX ] for each simulation scenario. Notice that the posterior mode of [L | YYY ,,,XXX ]

is located on the correct value of L = 14 suggesting that both the Gaussian and Poisson
models are able to correctly recover the maximum lag. For the Gaussian case, notice that
scenarios (c) and (e) place a substantial amount of posterior mass at L = 10 and L = 17.
For scenario (c), notice that ∑13

�=10 θ�/∑13
�=0 θl = 0.12 so that the final four lags only account

for 12% of the cumulative effect of the covariates on E(Yt). Because of the use of a log-
link function, this 12% is amplified creating a larger discrepancy between E(Yt | L = 10)
and E(Yt | L = 14) in the Poisson setting. Hence, the Poisson setting is more sensitive to
changes in the DL function due to the use of the log-link. Hosted by The Berkeley Electronic Press
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4. APPLICATION TO HEAT-RELATED DEATHS
Let Ycayt denote the number of non-accidental mortalities for city c (Chicago, Dallas,

Los Angles, New York), age category a ∈ {< 65, 65-74, ≥ 75}, year y ∈ {2001, . . . ,2005}
and time t = 1, . . . ,183 where t = 1 corresponds to April 1 and t = 183 corresponds to
September 30. In similar notation let xcyt denote the average daily temperature for city c,
year y and time t. The underlying model was assumed to be,

Ycayt

ind∼ P
�
exp

�
βca0 + xxx

�
cyt
(L)θθθ ca1 + zzz

�
cayt

γγγ
cay

��

where βca0 is the intercept for (city, age category) = (c,a), xxx
�
cyt
(L) is the vector of lagged

temperatures with M = 60, θca1 = (θca10, . . . ,θca1(L−1))
� is the vector of DL coefficients,

zzzcayt is a vector of confounding covariates including day of week and a natural cubic spline
basis in time with three degrees of freedom per year (15 degrees of freedom total), and
γγγ

cay
is the associated vector of coefficients. Vague Gaussian prior distributions were used

for each coefficient in γγγ
cay

. Exploratory analysis of each city suggested that the maximum
lag was no more than 14 days. Thus, the prior distribution for L was discrete with equal
probability on the values {1,3,5,7,9,11,14}. Inference for model parameters was done via
MCMC sampling using 25,000 draws from the posterior after an initial burn in of 50,000
draws.

The posterior probability [L = 3 | YYY ,,,XXX ] was at least 0.95 but typically upwards of 0.99.
The older than 75 age category in Chicago placed 5% posterior mass at L = 5. These
results seem to coincide with the findings of Braga et al. (2001) and Braga et al. (2002)
but contradict those of Hajat et al. (2005) would found significant lags of up to 4 weeks.
However, Hajat et al. (2005) used various demographic information that was not available
here. Thus, direct comparison of the two findings is not advisable.

Figure 5 displays the posterior mean distributed lag function by city and age group ex-
pressed in terms of percent increase in mortality due to unit increase in temperature; i.e.
100× (exp{θl}− 1). In the majority of cases, evidence of mortality displacement or har-
vesting is present with the largest effects occurring on the most recent days and negative
effects thereafter. Thus, in most cases heat advances the death of at-risk individuals. Com-
paring across age groups, the younger age groups have the smallest effect for all cities
except New York. Thus, heat-related effects are amplified for the older age groups.

Figure 6 displays the posterior distribution of the percent increase in mortality due to
a unit increase in temperature for the past L time periods (i.e. 100× (exp{β1}− 1)) by
city and age group. Dallas seems to be the least susceptible to heat effects. This is not
surprising as Dallas is a very warm climate where citizens most already but used to warm
temperatures. In contrast, Los Angeles, the elderly in Chicago, and New York seem to be
more susceptible to heat. Comparing the age groups, in all cities except Dallas the elderly
had a larger cumulative effect of heat on mortality. For Dallas, the posterior densities for
all age groups are centered near zero. This information combined with the distributed laghttp://biostats.bepress.com/jhubiostat/paper237
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Figure 5. Estimated (i.e. posterior mean) DL function by city and age group expressed in terms

of percent increase in mortality due to unit increase in temperature (100× (exp{θl}− 1)). Most

cases suggest a mortality displacement or harvesting effect where deaths are advanced by a day or

two. Furthermore, the heat effects for the older than 75 age group are exaggerated compared to the

younger age groups.
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Figure 6. Posterior density of 100× (exp{β1}− 1); i.e. percent increase in mortality due to a unit

increase in temperature for the past L time periods by city and age group. In most instances, the

majority of the density curve is greater than zero suggesting that a uniform increase in tempera-

ture would result in more heat-related deaths. Dallas (Los Angeles) seems to be the least (most)

susceptible to heat effects.

curves in Figure 5 suggest that heat only advances death of those highly susceptible persons
in Dallas which mortality displacement creates a net-zero effect of heat on mortality.

Given the DL functions in Figure 5 and the cumulative effects in Figure 6, one inter-
esting conclusion is that highly variable temperatures are a strong threat to public health
due to mortality displacement. While heat-waves and successively high temperatures on
neighboring days is a problem (as evidenced by positive cumulative effects), notice that the
shape of the DL functions suggest that the expected number of deaths from three successive
high temperature days is typically less than a sequence of a cool day followed by one or
two warm days. Hence, the projected variability in temperatures resulting from possible
changes in climate are a threat to public health.

5. DISCUSSION AND MODEL EXTENSIONS
In this study, a flexible class of DL models were used to analyze the relationship between

heat and mortality in four major metropolitan cities in the U.S. The modeling approach for
this analysis used random functions (Gaussian processes) which allowed for the DL func-http://biostats.bepress.com/jhubiostat/paper237
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tion to take a wide variety of shapes while still constraining the function to decrease to zero
smoothly as the lag increased. Additionally, a strong appeal of the proposed methodology
was the ability to perform probabilistic inference for the maximum lag L; a contribution
previously unseen in the literature.The analysis found some evidence of mortality displace-
ment, particularly in the older populations, suggesting heat may advance death of at-risk
individuals. Furthermore, the shape of the estimated DL functions suggest that not only
are longer heat-waves a threat to public health but highly variable temperatures are also.
Finally, the effect of heat on mortality for the cities considered in this analysis was seen to
have a maximum lag of 3 or 4 days.

The analysis here was limited to all non-accidental deaths. However, heat affects vari-
ous areas of the body differently suggesting different distributed lag functions for different
causes of death (Braga et al. 2002). For example, excessive heat exposure may lead to de-
hydration and renal failure. Thus, a DL function for deaths due to renal failure would look
different that the DL function for deaths due to respiratory failure. Furthermore, heat may
affect various populations differently; e.g. lower income areas may be more susceptible to
heat-related illness due to lack of acceptable housing. Here, all deaths were aggregated and,
as such, the ability to distinguish different DL functions for different causes of death and
different populations was lost. Applying the proposed methodology to different diseases
and populations may give further insight into how heat affects public well-being.

Average daily temperature was used as a covariate to indicate “heat”. However, average
daily temperature has a number of drawbacks. First, average daily temperature includes
temperatures at night and may not adequately represent how hot it is outside during daylight
hours when people are most active. Thus, perhaps daily maximum temperature would be a
preferred covariate to use in this case. Additionally, humidity (either absolute or relative)
may play a major role in explaining morbidity or mortality as high humidity influences how
fast water is lost from the body. Along these same lines, a combination of temperature and
humidity may be more closely correlated with heat-related illnesses. For example, days
with high temperature and high humidity may pose a more serious threat to public health
than just high temperature or high humidity alone. These and other questions are a current
area of research.
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