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Abstract

In this paper, the author provides a mixed model speci�cation of a general class of quadratic

exponential models for correlated binary outcomes, thus e¤ectively establishing that these two

seemingly unrelated models, are in fact intimately connected. The connection is particularly fruit-

ful in that it produces an alternative interpretation for the parameters indexing the exponential

model and partitions the latter as (i) a vector of subject-speci�c regression parameters relating

covariates to each outcome conditional on a vector of random e¤ects for the cluster; and (ii) a

covariance matrix relating the random e¤ects within a cluster. The established equivalence be-

tween these two models presents certain computational advantages for modeling and estimating

�xed e¤ects and variance components, within the context of complex multilevel data. This is be-

cause the exponential model formulation of the logistic mixed e¤ects model readily accommodates,

without the need for high dimensional integration, multiple levels of clustering as well as the serial

correlations typically present in longitudinal studies. A data example is presented to illustrate the

methodology.
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1 Introduction

Logistic mixed e¤ects models (Breslow & Clayton 1993) have become a popular approach to mod-

eling correlated binary outcomes. The basic logistic mixed e¤ects model accounts for correlation

among clustered observations by incorporating a normally distributed random intercept into the

logistic regression of interest. By sharing a single random intercept across observations within a

cluster, the basic logistic mixed e¤ects model assumes that the correlation structure of clustered

observations is compound symmetric; and the approach can further incorporate random slopes to

account for heterogeneity in covariate e¤ects across clusters. However, because of its nonlinear

link function, maximum likelihood estimation of the logistic mixed e¤ects model typically requires

evaluating for each cluster an integral with respect to the random e¤ects, which in general is not

available in closed-form, and is usually evaluated numerically via Gaussian quadrature. An al-

ternative less commonly used approach to modeling correlated binary outcomes entails �tting a

quadratic exponential model (Cox, 1972). An advantage with this approach is that the likelihood

is available in closed form, and therefore maximum likelihood estimation is relatively straight-

forward. Although, a key limitation of the approach is the di¢ culty of directly interpreting the

odds ratio parameters relating the covariates to each of the outcomes, mainly because it involves

conditioning on the other outcomes within the cluster. As a solution to this problem, Zhao and

Prentice (1990) proposed to reparametrize the exponential model in terms of a marginal logistic

regression relating each outcome to the covariates, and a correlation matrix for outcomes within a

cluster. Fitzmaurice and Laird (1993) similarly proposed a reparametrization in terms of marginal
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logistic regression model, but preserved the odds ratio parametrization to encode the within-cluster

association of the outcomes; and established an interesting connection between quadratic and more

general exponential models and generalized estimating equations for evaluating covariate associ-

ations with the marginal risk of the outcome. In the current paper, the author proposes to use

the quadratic exponential model in its original parametrization, and provides a logistic mixed ef-

fects model interpretation of its canonical parameters, thus e¤ectively establishing that these two

seemingly unrelated models, are in fact intimately connected. The connection is particularly fruit-

ful in that it produces an alternative more meaningful interpretation of the parameters indexing

the exponential model and the latter are partitioned as (i) a vector of subject-speci�c regression

parameters relating covariates to each outcome conditional on a vector of random e¤ects for the

cluster; and (ii) a covariance matrix relating the random e¤ects within a cluster. The established

equivalence between these two models presents certain computational advantages for modeling

and estimating �xed e¤ects and variance components, within the context of complex multilevel

data. This is because the exponential model formulation of the logistic mixed e¤ects model readily

accommodates, without the need for high dimensional integration, multiple levels of clustering

as well as the serial correlations typically present in longitudinal studies. An appealing feature

of the quadratic exponential model is that it reduces to the standard logistic regression in the

absence of dependence between the outcomes. The connection to the random e¤ect model thus

provides a formulation for the logistic mixed e¤ect model in which the independence logistic model

is genuinely embedded, unlike the standard formulation of the logistic mixed model, in which the

independence model lies on the boundary of the parameter space. A data example is presented to

illustrate the results.
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2 Logistic Mixed Model

Let Yij denote the jth binary outcome; j = 1; :::; ni from cluster i; i = 1; :::; N; and let Xi be a

known ni � p matrix of covariates constructed so that the jth row Xij is the vector of covariates

corresponding to Yij . The logistic mixed model speci�es two components of the model: a model

for the vector of outcome variables Yi = (Yi1; :::; Yini)
0
conditional on Xi and unobserved, cluster-

speci�c random e¤ects bi, and distributional assumptions on bi. Speci�cally, we assume Yij given

Xi and bi are independent random variables with:

logit�ij = logitPr (Yij = 1jXij; bi; �) = �0 +Xij�1 + Zijbi (1)

where � =
�
�0; �

0
1

�
is a (p+1)�1 vector of unknown �xed parameters, and Zij is a known covariate

matrix with columns typically a subset of those in Xij. In the special case where Zij = 1; bi entails

a random intercept, and the parameter �1 captures on the odds ratio scale, the cluster speci�c

e¤ects of Xij on Yij given bi; so that � = 0 encodes the independence of Yij and Xij given bi:

The mixture component of the likelihood is de�ned by bi � fb(bij �i (�)), where fb(�j�i (�)) is a

smooth joint density of the vector of random e¤ects such that the usual regularity conditions for the

standard maximum likelihood theory hold (Cox & Hinkley 1974). This density is parameterized

by the covariance matrix �i (�) indexed by an unknown parameter �. A common speci�cation of

the random intercept model takes bi � N(0; �2); although more �exible speci�cations have also

been considered in the literature, see Molenberghs and Verbeke (2005). For inference, the marginal

likelihood
NY
i=1

LM;i (�; �) =
NY
i=1

Z
f
�eYi; bij eXi; �;�i (�)

�
dbi
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is constructed under the additional assumption that the elements of Yi are conditionally indepen-

dent given bi :

NY
i=1

LM;i (�; �) (2)

=

NY
i=1

Z
f (YijXi; bi; �) f (bijXi; �i (�)) dbi

=
NY
i=1

Z niY
j=1

�ij (�)
Yij (1� �ij (�))

1�Yij fb(bij�i (�))dbi

and maximummarginal likelihood estimates of (�; �) are obtained upon maximizing
Pn

i=1 logLM;i (�; �)

and standard errors are constructed by inverting the information matrix of the marginal likelihood.

3 Quadratic exponential model

The quadratic exponential model assumes the density of [YijXi] is of the form

exp
�
Y T
i 
iYi + Ci

	
(3)

where 
i is an ni � ni matrix function of Xi, and Ci is the normalizing constant

Ci = � log
X

y2f0;1gni
expfyT
iyg

Because Yij is binary, the jthdiagonal entry of 
i; may be interpreted as the log odds of Yij; i.e.



(j;j)
i = 


(j;j)
i (Xi) = logfPr(Yi;j = 1jYi;�j = 0; Xi)=Pr(Yi;j = 0jYi;�j = 0; Xi)g (4)
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where Yi;�j is the subvector of Yi obtained by deleting Yi;j: The o¤-diagonal entry



(j;j0)
i = 


(j;j0)
i (Xi) = log

Pr(Yi;j = 1jYi;j0 = 1; Yi;�(j;j0); Xi)=Pr(Yi;j = 0jYi;j0 = 1; Yi;�(j;j0) ; Xi)

Pr(Yi;j = 1jYi;j0 = 0; Yi;�(j;j0); Xi)=Pr(Yi;j = 0jYi;j0 = 0; Yi;�(j;j0) ; Xi)

(5)

is the log odds ratio relating Yij and Yij0 conditional on
�
Yi;�(j;j0); Xi

�
; j 6= j0: Thus, it is straight-

forward to verify that 
(j;j
0)

i = 0 for all j 6= j0 encodes the null hypothesis that Yi;j and Yi;j are

independent; while 
(j;j
0)

i 6= 0 implies that there is dependence of the outcomes measured within a

cluster. In principle, one could model the e¤ect of Xi;j on the risk of Yi;j by specifying a logistic

regression model for 
(j;j)i (Xi) ; say



(j;j)
i (Xi)� 
(j;j)i (0)

= log

�
Pr(Yi;j = 1jYi;�j = 0; Xi)=Pr(Yi;j = 0jYi;�j = 0; Xi)

Pr(Yi;j = 1jYi;�j = 0; Xi = 0)=Pr(Yi;j = 0jYi;�j = 0; Xi = 0)

�
= Xi;j (6)

which encodes the simplifying assumption that 
(j;j)i only depends on Xi through Xi;j: Unfor-

tunately, the parameter  is generally di¢ cult to interpret because it captures the association

between Xi;j and Yi;j upon conditioning on the other outcomes within the cluster; i.e. conditional

on Yi;�j = 0; an association measure seldom of primary interest. As mentioned in the introduction,

in an e¤ort to resolve this di¢ culty, Zhao and Prentice (1990) and Fitzmaurice and Laird (1993) re-

spectively proposed a reparametrization of the density (3) that entails instead of the logistic model

(6), specifying a marginal logistic regression for E(Yi;jjXi;j) that relates Xi;j to Yi;j; j = 1; ::ni:

In the next section, instead of reparametrizing the quadratic exponential model as proposed by

Zhao and Prentice (1990) and Fitzmaurice and Laird (1993), we propose a reparametrization of

the logistic mixed model (2), such that the regression parameters  = �1 and therefore  can be
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interpreted as a cluster-speci�c e¤ect of Xi;j on Yi;j:

4 A mixed model interpretation of the quadratic exponen-

tial model

4.1 General formulation

To state the main result, we consider a reparametrization of the joint density f(Yi; bijXi) of the

outcome and the random e¤ects conditional on Xi; where for the moment we make no parametric

assumption about the functional form of this density: We proceed as in Tchetgen Tchetgen et al

(2010) and note that the joint density of [Yi; bijXi] can generally be written:

f(Yi; bijXi) =
g0 (YijXi)OR(Yi; bijXi)h0(bijXi)P

y2f0;1gni
R
g0 (yjXi)OR(y;ebjXi)h0(ebjXi)deb

where g0 (YijXi) = f(YijXi; bi = 0); h0(bijXi) = f(bijXi; Yi = 0) and

OR(Yi; bijXi) =
f(Yi; bijXi)f(Yi = 0; bi = 0jXi)

f(Yi = 0; bijXi)f(Yi; bi = 0jXi)

is the conditional odds ratio function relating bi and Yi within levels of Xi; and assuming

X
y2f0;1gni

Z
g0 (yjXi)OR(y;ebjXi)h0(ebjXi)deb <1:

The above expression e¤ectively replaces the marginal density of the random e¤ects f(bijXi) with

the conditional density f(bijXi; Yi = 0) in parametrizing the joint distribution of [Yi; bijXi]. How-

ever, as we show next, this reparametrization is perfectly compatible with a logistic mixed model,
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but the assumptions about the random e¤ects distribution are inherently di¤erent under the repara-

metrization. In fact, to be consistent with the logistic mixed model (1), let

g0(YijXi; bi = 0; �) =

niY
j=1

�0ij (�)
Yij
�
1� �0ij (�)

�1�Yij

where �0ij (�) = logitPr (Yij = 1jXij; bi = 0; �) is given by (1); and

logOR(Yi; bijXi) =

niX
j=1

ZijbiYij

Then, it is easy to verify that this speci�cation recovers:

f(YijXi; bi) =

niY
j=1

�ij (�)
Yij (1� �ij (�))

1�Yij

To proceed with inference under this reparametrization, we assume that the random e¤ect density

h0(bijXi) is multivariate normal:

[bijYi = 0; Xi] �MVN(0;�i ())

with covariance matrix indexed by an unknown parameter : Let f(Yi; bijXi; �; ) denote the joint

density under this speci�cation; then a straightforward application of the moment generating

function of the multivariate normal distribution produces the following equivalence between the

marginal likelihood of [YijXi] for the reparametrized logistic mixed model, and the quadratic

exponential model:

Z
f(Yi; bijXi; �; )dbi = exp

n
Y T
i
e
i (�; )Yi + eCi (�; )o
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where

e
(j;j)i (�; ) = �0 +Xij�1 + Zi;j�i ()Z
T
i;j=2;

e
(j;j0)i (�; ) = Zi;j�i ()Z
T
i;j0=2;

and eCi (�; ) = � log
P

y2f0;1gni expfyT e
i (�; ) yg: Estimation of (�; ) then entails maximizing
the log likelihood

P
i Y

T
i
e
i (�; )Yi+ eCi (�; ), and variance estimates of the maximum likelihood

estimator can be obtained by inverting the corresponding information matrix.

4.2 Random intercept logistic models

An important special case is the random intercept model where Zi;j = 1 and �i () = 2, then the

formulae in the previous display yield

Z
f(Yi; bijXi; ; )dbi

= exp
n
Y T
i
e
iYi + eCio

=
exp

nPni
j=1 (�0 +Xij�1 + 2=2)Yij +

P
1�j 6=j0�ni 

2YijYij0
o

P
y2f0;1gni exp

nPni
j=1 (�0 +Xij�1 + 2=2) yj +

P
1�j 6=j0�ni 

2yjyj0
o (7)

As we show next, the connection between the logistic mixed model and the quadratic exponential

model also facilitates estimation of more general mixed models.

For instance, consider the more general random intercept logistic model:

logit�ij = logitPr (Yij = 1jXij; bi; �) = �0 +Xij�1 + bi;j (8)

which allows each observation within a cluster to have a separate intercept, �1 is an observation

speci�c covariate e¤ect, and bi = (bi;1; :::bi;ni). Let j;j0 denote the covariance Cov(bi;j; bi;j0jYi =
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0; Zi); and suppose that [bi;j jYi = 0; Zi] � N(0; jj): Then, a similar derivation as above gives:

Z
f(Yi; bijXi; �; )dbi

=
exp

nPni
j=1 (�

�
0 +Xij�1 )Yij +

P
1�j 6=j0�ni j;j0YijYij0

o
P

y2f0;1gni exp
nPni

j=1 (�
�
0 +Xij�1) yj +

P2
1�j 6=j0�ni j;j0yjyj0

o
where here, we note that ��0 = �0 + j;j=2 and �1 identi�ed regression parameters, but �0 and

j;j are not separately identi�able. In other words, the variance of bi;j is not identi�ed but the

covariance components j;j0 are identi�ed for j 6= j0: The above model recovers the shared random

e¤ect model, i.e the standard random intercept model, upon specifying j;j0 = j;j = 2; in which

case of course, j;j0 becomes identi�ed. A potential limitation of the standard random intercept

model is that it produces a compound symmetric correlation structure in which the outcomes are

restricted to be positively correlated. The connection to the quadratic model motivates alternative

simple formulations of the random intercept model in which the outcome are not a priori restricted

to be positively correlated, as illustrated in the data example in Section 5. One such formulation

might specify j;j = 0 � 0 and j;j0 = Cov(bi;j; bi;j0jYi = 0) = 1 constant in j,j0; such that 1

is unrestricted and thus can take on a positive or a negative value; therefore accommodating an

exchangeable covariance structure for possibly negatively correlated binary outcomes. In principle,

by virtue of 1 being unrestricted, the above model could be used to construct a standard likeli-

hood ratio test of the null hypothesis that the outcomes are independent, i:e:that the covariance

components j;j0 = 0 for all j 6= j0:

In a longitudinal setting where j indexes time, j;j0 could easily be modelled to re�ect the

typical serial correlation structures encountered in such settings; for instance by assuming j;j0 =

0 exp
�1jti�tj j2so that the correlation between observations is weaker the further apart they are,
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with 0; 1 unknown parameters. A further generalization may be made to handle a multilevel

setting in which longitudinal measurements are made on clustered binary outcomes fYi;j;t : i; j; tg,

for unit j at time t; within cluster i: Such a multilevel setting is easily captured for instance, by

assuming that the random intercepts within a cluster have a covariance structure given by

j;j0;t1;t2 = Cov(bi;j;t1 ; bi;j0;t2jYi = 0) = 2 + 0 exp
�1jt1�t2j2

consisting of a serial correlation component re�ecting the longitudinal nature of the data and an

exchangeable correlation component re�ecting clustering at each occasion.

4.3 Random e¤ect logistic models

In this section, we brie�y consider another generalization of the simple random intercept models

of the previous section and we additionally allow for a single random slope:

logit�ij = logitPr (Yij = 1jXij; bi; �) = �0 +Xij�1 + b1;i + Zijb2;i

where Zij is a scalar variable contained in Xij;
h
(b1i; b2;i)

T jYi = 0; Xi

i
is multivariate normal with

mean zero and V ar(b1;ijYi = 0; Xi) = 1; V ar(b2;ijYi = 0; Xi) = 1; Cov(b1;i; b2;ijYi = 0; Xi) = 1;2:

Thus, we obtain using the results from the previous sections:

Z
f(Yi; bijXi; �; )dbi

= exp
n
Y T
i 


y
i (�; )Yi + Cyi (�; )

o

where



y(j;j)
i (�; ) = �0 +Xij�1 + 1=2 + 2Z

2
i;j + 1;2Zi;j=2;

11 Hosted by The Berkeley Electronic Press





y(j;j0)
i (�; ) = 1=2 + 12 (Zi;j + Zi;j0) =2 + 2Zi;j0=2

In principle, a more general model along the lines of the observation speci�c random intercept

model could similarly allow b1;i;j to vary across observations within a cluster, details are omitted

but are easily deduced from the presentation.

5 A data application

Fitzmaurice, Laird, & Ware (2004) used a logistic generalized linear mixed model with random

intercepts to analyze data from a longitudinal clinical trial examining the e¤ects of hormonal

contraceptives in women. In the trial, contracepting women received four successive injections of

either 100 mg or 150 mg of depot-medroxyprogesterone acetate at 0, 90, 180, and 270 days after

randomization, with this dosage remaining constant for each subject over the course of the study.

There was also a �nal follow-up visit one year after the �rst injection. The analysis, which was based

on N = 1151 women, focused on the within subject e¤ects of time on the binary outcome of whether

a woman experienced amenorrhea in the four successive three-month intervals, and whether this

trend in risk varied according to dosage. Let Yij = 1 if woman i,i = 1; :::; 1151; experienced

amenorrhea in the jth injection interval, j = 1; :::; 4;and Yij = 0 otherwise. Fitzmaurice, Laird &

Ware (2004) considered the model

logitfPr(Yij = 1jbi)g = �1 + �2timeij + �3time
2
ij + �4dosei � timeij + �5dosei � time2ij + bi;

where timeij = 1; 2; 3; 4 for the four consecutive 90-day injection intervals and dosei = 1 if subject

i is randomized to 150mg of depot-medroxyprogesterone acetate and dosei = 0 otherwise. The
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model speci�es a quadratic within-subject e¤ect of time, with this trend di¤ering according to

the dosage received. Because of randomization, the model does not include a main e¤ect of drug,

which corresponds to assuming that no di¤erences exist between the two drug groups at baseline.

In this model, dosei is a between-subject e¤ect and timeij is a within-subject e¤ect. Fitzmaurice,

Laird & Ware (2004) completed the speci�cation of the model by assuming that

bi � N(0; 2);

i.e. the correlation structure within an individual is compound symmetric, and thus the outcomes

are positively correlated.

Insert Table 1 here.

Table 1 presents the parameter estimates for (�1; �2; �3; �4; �5) and corresponding standard

errors from the �t of this model. Results suggest that there is a signi�cant e¤ect of dose on the

trend for the risk of amenorrhea, and that there is a large amount of heterogeneity in the baseline

risk among subjects. Table 1 also presents the results from a quadratic exponential model �t,

corresponding to the following more general logistic random intercept model :

logitfPr(Yij = 1jbi)g = �1 + �2timeij + �3time
2
ij + �4dosei � timeij + �5dosei � time2ij + bi;j;

j = 1; :::; 4

bi = (bi1; bi2;bi3; bi4)
T jYi = 0; Xi �MVN(0;� ())

� () with entries j;j = e2 and unstructured o¤-diagonal elements j;j0
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The above mixed model is more general than the model considered by Fitzmaurice, Laird, & Ware

(2004) in that similar to model (8), each person-time observation has a unique intercept, this allows

the correlation structure relating observations within an individual to remain unstructured. Upon

specifying this more �exible random intercept model, we note that the magnitude of the e¤ects of

the intervention is essentially halved, and only the e¤ect on a linear trend �4 remains statistically

signi�cant. Upon inspecting the covariance components j;j0 of � () ; it is quite striking that

the covariance structure of the random intercepts do not appear to follow any speci�c standard

pattern, and the results provides evidence that consecutive outcomes are positively related, but

outcomes two or more occasions apart appear to be negatively correlated. These results further

suggest that the simple random intercept model �t by Fitzmaurice, Laird, & Ware (2004) may not

be entirely appropriate for these data.

6 Conclusion

This paper unveils a simple relation between a logistic mixed model and a general class of quadratic

exponential models for correlated binary outcomes, two modeling approaches that have until now,

thought to be unrelated. As formally established, and illustrated in a data application, the equiva-

lence between these two models is computationally advantageous for modeling and estimating �xed

e¤ects and variance components, particularly in the presence of complex correlation structures;

this is primarily because the formulation of the logistic mixed model as a quadratic exponential

model permits inferences based on a simple closed-form likelihood. We anticipate that the repara-

metrization used in this paper to reveal the equivalence between these two models might also be

useful in other logistic latent variable models, such as for for instance, a logistic regression with

additive measurement error-in-variables.

14 http://biostats.bepress.com/harvardbiostat/paper145



References

[1] Breslow, N. E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed

models. J. Am. Statist. Assoc. 88, 9�25.

[2] Cox, D. R. (1972). The analysis of multivariate binary data. Appl Statist. 21, 113-20.

[3] Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analysing longitu-

dinal binary responses Biometrika. 80. 141-151.

[4] Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & Hall.

[5] Molenberghs G, Verbeke G. (2005) Models for Discrete Longitudinal Data. Springer-Verlag

New York.

[6] Tchetgen Tchetgen E, Robins JM, Rotnitzky A. (2010). On doubly robust estimation in a

semiparametric odds ratio model. Biometrika 97(1):171-180.

[7] Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic expo-

nential model. Biometrika 77, 642-8.

15 Hosted by The Berkeley Electronic Press



TABLE 1.Logistic-normal mixed model and quadratic exponential MLEs for the Amenorrhea Data.

Variable Logistic-normal (SE) Quadratic (SE)

Intercept -3.8057 (0.3050) -3.6786 (0.4694)

timeij 1.1332 (0.2682) 0.4470 (0.3800)

time2ij -0.0419 (0.0548) 0.0308 (0.0700)

dosei�timeij 0.5644 (0.1922) 0.2234 (0.1076)

dosei�time2ij -0.1095 (0.0496) -0.0588 (0.0327)

2 5.0646 (0.5840) -

1;2 - 3.8792 (0.2603)

1;3 - -1.8180 (0.4911)

1;4 - -1.0928 (0.4834)

2;3 - 0.3644 (0.3588)

2;4 - -3.2339 (0.4753)

3;4 - 7.5456 (0.3787)
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