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Abstract

An important scienti�c goal of genetic epidemiology studies is increasingly to determine whether

an interaction between a genetic factor and an environmental factor or two genetic factors is present

in the e¤ect that they produce on the risk of a disease outcome. In such studies, interaction

is commonly assessed by �tting a logistic regression model to case-control or cohort data, in

which the linear predictors includes on the log-odds scale, the product between the two factors of

interest. Unfortunately, inferences on an interaction using standard logistic regression methods

are prone to bias due to model mis-speci�cation of main exposure e¤ects or of the association

model between extraneous factors and the outcome. In this paper, an alternative semiparametric

logistic regression model is considered, which postulates the statistical interaction in terms of a

�nite-dimensional parameter, but which is otherwise unspeci�ed. We show that estimation is

generally not feasible in this model because of the curse of dimensionality associated with the

required estimation of auxiliary conditional densities given high-dimensional covariates. We thus

consider �multiply robust estimation�and propose a more general model which assumes at least
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one of several working models holds. We illustrate the methods via simulation and the analysis of

an Israeli ovarian case-control study.

KEYWORDS: Double robustness; Gene-environment interaction; Gene-gene interaction;logistic

regression; Semiparametric inference.

1 Introduction

A common scienti�c aim of genetic epidemiology studies is to determine whether a genetic variant

and an environmental factor, or two genes interact in the e¤ect that they produce on the risk

of a disease outcome. When the outcome is binary, the presence of e¤ect modi�cation between

exposures A1 and A2 is commonly assessed by �tting a logistic regression model for the outcome

Y , in which the linear predictor includes the product between these exposures. To be speci�c, let

X be a vector of measured pre-exposure variables such that conditioning on X su¢ ces to control

for confounding when estimating the e¤ects of A1 and A2 on outcome Y . In observational studies,

X will typically be high-dimensional with a number of continuous components. Throughout this

article, we will therefore consider X to be a high-dimensional vector. It then follows that the term

�� in the logistic model

logitPr(Y = 1jA;X) = �0 + �1A1 + �2A2 + �
0

3 X + �
�A1A2 (1)

with A = (A1; A2)
0; encodes the degree to which exposure A2 modi�es the e¤ect of A1 on the

odds-ratio scale of the outcome risk, and vice versa. Speci�cally, the choice �� = 0 expresses

that the e¤ect of exposure A1 on the outcome is the same on the odds ratio scale, regardless

of the other exposure A2. It thus encodes the absence of e¤ect modi�cation on the odds ratio
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scale. The odds ratio scale is an attractive scale to estimate associations in general, because it is

invariant to alterations in the marginal distributions of (Y;X) or of (A;X) : As a consequence, it

accommodates data collected under a variety of commonly employed epidemiological designs, in

particular, simple random sample designs and case-control designs unmatched or matched on some

or all the components of X: To allow for generality in our exposition, suppose instead of (1) one

�ts a logistic model of the form

logitPr(Y = 1jA;X) = q3 (A;X; ��) + q2 (X; A2; �2) + q1 (X; A1; �1) + h(X; �0) (2)

with q3 (A;X; ��) a known function smooth in �� and satisfying q3 (A;X; ��) = 0 when A1A2 = 0,

with q2 (X; A2; �2), q1 (X; A1; 
�
1) and h (X; 

�
0) known functions smooth in 

� = (�00 ; 
�0
1 ; 

�0
2 )

0 (and

�0 ; 
�
1 and 

�
2 variation independent parameters), satisfying q1 (X; 0; 

�
1) = q2 (X; 0; 

�
2) = 0, with

� 2 Rp and � 2 Rq unknown parameters and with the joint law of (A;X) unrestricted. In this

model, the term q3 (A;X; �
�) encodes on the odds ratio scale, the statistical interaction between

exposures A1 and A2 (possibly as a function of X), in other words, q3 (A;X; ��) is equal to :

log
ORY;AjX (1;AjX)

ORY;AjX (1; (A1; A2 = 0) jX)
= log

ORY;AjX (1;AjX)
ORY;AjX (1; (A1 = 0; A2) jX)

where ORY;AjX (AjX) is the conditional odds ratio association relating Y and A within levels

of X :Without loss of generality, we can require q3 (A;X; ��) to satisfy q3 (A;X; 0) = 0 so that

�� = 0 continues to encode the absence of statistical interaction. The functions q2 (X; A2; �2)

and q1 (X; A1; �1) encode the main e¤ects (possibly as functions of X) of the exposures A2 and

A1, respectively. Finally, h (X; �0) encodes the main e¤ect of the extraneous factors X. For

instance, model (1) is the special case in which q3 (A;X; �) = �A1A2; q2 (X; A2; 2) = 2A2;

3 Hosted by The Berkeley Electronic Press



q1 (X; A1; 1) = 
�
1A1 and h(X; 0) = 

�
0 + 

�0
3 X.

In the following, models for the main exposure e¤ects q2 (X; A2; �2) ; q1 (X; A1; 
�
1) and for

main e¤ect h(X; �0) of extraneous factors X on the outcome are not of primary scienti�c interest

and constitute auxiliary models. Our primary goal is to construct an estimator and/or test for a

statistical interaction between the exposures A1 and A2. Standard tests of the null hypothesis of no

interaction, i.e. �� = 0; such as the fully parametric logistic regression approach described above,

are not entirely satisfactory, because they require the analyst consistently estimates these auxiliary

quantities. In fact, Tchetgen Tchetgen (2010) demonstrated in a simulation that standard logistic

regression estimation of a statistical interaction can be severely biased when a main e¤ect is

misspeci�ed. His �nding agrees with related simulation results by Vansteelandt et al (2008) who

considered the performance of standard regression analysis for evaluating an interaction on a linear

or a log-linear scale. To remedy the serious limitation of standard regression analysis, Vansteelandt

et al developed multiply robust estimators which they show have favorable theoretical properties,

and which were also shown to outperform standard methods in simulation studies. For improved

robustness; their approach uses a model for the conditional density of A given X in addition

to a working model for the outcome regression of Y on (A;X) : However, to remain valid, their

approach only requires correct speci�cation of some but not all of auxiliary models. In fact, they

showed that for an additive interaction, their approach is consistent and asymptotically normal

(CAN), provided that at least one of the following four conditions holds:

a) the outcome regression model of Y on (A;X) is correctly speci�ed, or

b) a model for the e¤ect of A1 on the mean of Y given (A2;X) ,and the density of A1 given

(A2;X) are both correct, or

c) a model for the e¤ect of A2 on the mean of Y given (A1;X) ; and the density of A2 given

(A1;X) are both correct, or
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d) the density of A given X is correct.

Thus, their estimator of an additive interaction is quadruply robust. In other words, unlike

a standard regression analysis which o¤ers a single opportunity for obtaining valid inferences by

requiring that a) holds, the method of Vansteelandt et al (2008) gives four such opportunities. For

making inferences about a multiplicative interaction, their approach which is triply robust remains

CAN when at least one of a), b) or c) holds. Because an inference concerning an interaction e¤ect

under their approach, unlike under previous approaches, has multiple chances, rather than only

one chance, to be correct or nearly correct, Vansteelandt et al (2008) recommended it be used quite

generally, particularly when as in most observational studies, X is high dimensional. However, the

methods developed in Vansteelandt et al (2008) do not apply if the outcome is dichotomous and

the hypothesized interaction operates on the odds ratio scale.

In this article, we consider a semiparametric theory for odds ratio interactions. Speci�cally,

we consider a semiparametric logistic regression model which postulates a statistical interaction

in terms of a �nite-dimensional parameter, but which is otherwise unrestricted. We show that

estimation is generally not feasible in this model because of the curse of dimensionality associated

with the required estimation of a number of conditional densities. Thus, we develop a multiply-

robust framework, in a spirit similar to the approach of Vansteelandt et al (2008), in the sense

that our general model assumes at least one of several working models holds. We construct a CAN

estimator of �� under a union semiparametric logistic model that assumes q3 (A;X; �) is correctly

speci�ed, and at least one of the following three statements is true:

(i) the models q2 (X; A2; 2) ; q1 (X; A1; 1) ; h(X; 0) are all correct, and thus the working model

for the outcome regression of Y on (A;X) is correct;

(ii) the model q1 (X; A1; 1) and a model f (A1jY = 0; A2;X;�1) for the density f (A1jY = 0; A2;X)

of A1 given A2 and X in una¤ected individuals with Y = 0 are both correct, or

5 Hosted by The Berkeley Electronic Press



(iii) the model q2 (X; A2; 2) and a model f (A2jY = 0; A1;X;�2) for the density f (A2jY = 0; A1;X)

of A2 given A1 and X in una¤ected individuals with Y = 0 are both correct.

Thus, the proposed approach is triply robust as only one of (i)-(iii) needs to hold to obtain

a CAN estimator of ��. A subtle and notable di¤erence with the multiple-robust approach of

Vansteelandt et al (2008) lies in the fact that, whereas multiple robust estimation of an addi-

tive/multiplicative interaction involves models for f (A1jA2;X) and f (A2jA1;X) ; estimation of an

odds ratio interaction instead posits models for the retrospective densities f (A1jY = 0; A2;X) and

f (A2jY = 0; A1;X) : As we later formalize in this paper, this subtle distinction is key to obtaining

multiple robust estimators of an odds ratio interaction.

The paper is organized as follows. The semiparametric logistic model of interaction is intro-

duced in Section 2. The model parameterizes the statistical interaction between exposures A1 and

A2 (on the logistic scale) as a function of the exposures, and of X; in terms of a �nite number of

parameters, but leaves the observed data law otherwise unrestricted. In particular, the proposed

model leaves the main e¤ects of both exposures on the outcome unspeci�ed, along with their in-

teractions with extraneous variables. We examine properties of these models. We show that, due

to the curse of dimensionality, no general asymptotically distribution free test for statistical inter-

action exists with guaranteed performance in �nite samples because estimation of the interaction

parameters requires the auxiliary estimation of conditional densities given high-dimensional vari-

ables. We therefore introduce parametric models that we characterize as �working�models because

they are not guaranteed to be correct. In Sections 3 and 4 we show how to construct the multiply

robust estimator described above: We illustrate the performance of our estimator in a simulation

study in Section 5 and the analysis of a case-control cancer study in Section 6.
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2 Semiparametric model and inference

Suppose data (Yi;Ai;Xi) is collected for each of i = 1; :::; n independent subjects. Here, Yi is the

binary outcome of interest, Ai = (Ai1; Ai2)
0 is a vector of exposure variables Ai1 and Ai2, and Xi

is a vector of extraneous variables, such as confounders for the association between exposure Ai

and outcome Yi. The goal of the study is to assess whether the association between the exposure

A1 and the outcome Y is modi�ed by A2 on the logistic scale.

To determine whether an asymptotic distribution-free (ADF) test of the null hypothesis �� = 0

is available, we consider the semiparametric interaction model A in which some of the parametric

restrictions of model (2) are relaxed. Speci�cally, model A is de�ned by the conditional mean

model

logitPr (Y = 1jA;X) = m(A;X; ��) (3)

where

m(A;X; �) = q3 (A;X; �) + q2 (X; A2) + q1 (X; A1) + h(X)

with q3 (A;X; �) de�ned as before, q2 (X; A2) ; q1 (X; A1) and h(X) being unknown functions sat-

isfying q1 (X; 0) = q2 (X; 0) = 0, with the joint law of (A;X) unrestricted, and with �� 2 Rp an

unknown parameter vector. For instance, we may postulate that

logitPr (Y = 1jA;X) = ��A1A2 + q2 (X; A2) + q1 (X; A1) + h(X)

for unknown functions q2 (X; A2) ; q1 (X; A1) and h(X).

Theorem 1 gives the in�uence functions of regular asymptotically linear (RAL) estimators of

�� in model A and will form the basis of our argument as to why estimation of �� in model A is

infeasible when X is high dimensional.

7 Hosted by The Berkeley Electronic Press



Theorem 1. If b� is a regular asymptotically linear (RAL) estimator of �� in model A, then
there exists a p� 1 function d(A;X) in the set D of all p� 1 functions of (A;X) satisfying

Ef�2Y jA;X(A;X)d(A;X)jA1;Xg = Ef�2Y jA;X(A;X)d(A;X)jA2;Xg = 0; (4)

where

�2Y jA;X(A;X) =Pr (Y = 1jA;X) (1� Pr (Y = 1jA;X))

such that b� has in�uence function d(A;X)�(�), where �(�) = Y �B(A;X; �) and
logit B(A;X; �) = q3 (A;X; �) + q2 (X; A2) + q1 (X; A1) + h(X)

That is, n1=2
�b� � ��� = n�1=2Pn

i=1 d(Ai; Xi)�i(�) + op (1) :

By standard results from semiparametric theory in Bickel et al. (1993), Theorem 1 implies that

all regular and asymptotically linear (RAL) estimators of �� in model A can be obtained (up to

asymptotic equivalence) as the solution e� (d) to the equation
nX
i=1

d(Ai;Xi)�i(�) = 0; (5)

for some d 2 D: The solution e� (d) to this equation is an infeasible estimator as the set of functions
D satisfying (4) depends on the unknown conditional law f(AijXi) of exposure Ai, given Xi, and

�i(�) depends on the unknown functions q2 (Xi; Ai2) ; q1 (Xi; Ai1) and h(Xi). A feasible RAL

estimator is not possible unless a subset of these unknown functions can be consistently estimated.

While smoothing methods could in principle be used, with the sample sizes found in practice, the

data available to estimate either the density f(AijXi) or q2 (Xi; Ai2) ; q1 (Xi; Ai1) and h(Xi) will
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be sparse when Xi is a vector with more than two continuous components. As a consequence

any feasible estimator of �� under model A will exhibit poor �nite sample performance when the

predictor space is large. It follows that in general, inference about �� in model A is infeasible due

to the curse of dimensionality and that dimension-reducing (e.g. parametric) working models must

be used to estimate the unknown auxiliary functions q2 (Xi; Ai2) ; q1 (Xi; Ai1), h(Xi) and f(AijXi).

Before we proceed, we give a key result due to Chen (2007), who established that in the semi-

parametric model A characterized by the sole restriction (3) ; the density f (Yi;AijXi) can be

written as f (Yi;AijXi; �
�) where f (Y;AjX;�) =

ORY;AjX (Y;AjX;�) f(Y jA = 0;X)f (AjY = 0; X)R
ORY;AjX (Y;AjX;�) f(yjA = 0;X)f (ajY = 0; X) d� (a; y) ; (6)

f (AjX;�) = f (1;AjX;�) + f (0;AjX;�) ;

with ORY;AjX (Y;AjX;�) the conditional odds ratio function relating Y and A within levels of

X :

logORY;AjX (Y;AjX;�) = fq3 (A;X; �) + q2 (X; A2) + q1 (X; A1)gY;

logitf(Y = 1jA = 0;X) =h(X)

and f (AjY = 0; X) =

ORA1;A2jY=0;X (A1; A2jY = 0;X) f (A1jY = 0; A2 = 0;X) f (A2jY = 0; A1 = 0;X)R
ORA1;A2jY=0;X (a1; a2jY = 0;X) f (A1 = a1jY = 0; A2 = 0;X) f (A2 = a2jY = 0; A1 = 0;X) d� (a1; a2)

(7)

ORA1;A2jY=0;X (A1; A2jY = 0;X) is the unknown conditional odds ratio function relating A1 and

A2 given Y = 0 and X; and f (A1jY = 0; A2 = 0;X) and f (A2jY = 0; A1 = 0;X) are unknown
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conditional densities which are solely restricted byR
ORA1;A2jY=0;X (a1; a2jY = 0;X) f (A1 = a1jY = 0; A2 = 0;X) f (A2 = a2jY = 0; A1 = 0;X) d� (a) <

1; a:e

and Z
ORY;AjX (y; ajX;�) f(yjA = 0;X)f (ajY = 0; X) d� (a; y) <1, a:e

In the following two sections, we demonstrate that multiply robust estimators of �� are obtained

when the parameters of these models are estimated in an appropriate fashion. In Section 3, we

assume that A1 has �nite support: This assumption is dropped in Section 4.

3 Polytomous A1

Suppose A1 has support f0; z1; :::zJg and de�ne the vector (I(A1 = z1); :::; I(A1 = zJ)) which for

convenience, we again denote A1: There are several important settings in which A1 is a polytomous

factor. For instance, in the context of a genetic study, J = 2 with A1 2 f0; z1;z2g = f0; 1; 2g

typically corresponds to the three ordered levels of a Single Nucleotide Polymorphism (SNP).

For A1 polytomous, let 	(A2;X; ��) = E
n
�2Y jA;X(A;X)� (�

�)
2 jA2;X
o
and

k 7! V (�;k) = [k(A2;X)� eEfk(A2;X)jX;�g]��(�)
be a function that maps the space of p�dimensional functions of A2 and X into L2; where

eE fk (A2;X) jX; �g
= Efk(A2;X)� 	(A2;X; �) jXg � Ef 	(A2;X; �) jXg�1
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and

�(�) = A1 � E(�2Y jA;X(A;X)A1jA2;X; ��)� E
�
�2Y jA;X(A;X)jA2;X

	�1
L2 is the Hilbert space of functions of (Y;A;X) with �nite variance. The following lemma is proved

in the appendix.

Lemma 1: Under model A with polytomous A1, the set of estimating equations (5) with d 2 D

can equivalently be rewritten as

0 =
nX
i=1

Vi(�;k)� �i(�)

where k = k(A2;X) is a member of the set of p�K functions of (A2;X). For reasons previously

discussed, the solution e� (d) to this equation remains an infeasible estimator.
We consider three modeling strategies. The �rst strategy is to postulate the parametric

model (2), i.e., to postulate a parametric modelMy for q2 (X; A2) = q2 (X; A2; �2), q1 (X; A1) =

q1 (X; A1; 
�
1) and h (X) = h (X; 

�
0) with  � (00; �1 0; �2 0)0 unknown �nite dimensional parameters,

and with 0; 1 and 2 variation independent. For the second and third strategies, we postulate

modelsMy;a1 andMy;a2 respectively which we describe next. Both of these models share a model

for the odds ratio function or (A1; A2jY = 0;X) relating A1 and A2 given X among una¤ected

individuals Y = 0;

ORA1;A2jY=0;X (A1; A2jY = 0;X) = ORA1;A2jY=0;X (A1; A2jY = 0;X;��0)

where ORA1;A2jY=0;X (A1; A2jY = 0;X;�0) is a known function smooth in �0 that satis�es

1 = ORA1;A2jY=0;X (0; A2jY = 0;X;�0) = ORA1;A2jY=0;X (A1; 0jY = 0;X;�0)

= ORA1;A2jY=0;X (A1; A2jY = 0;X;0)

In the second strategy, we also assume q1 (X; A1; �1) is correct and we further assume a
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parametric model for the density of A1 given X among una¤ected individuals Y = 0 with A2 = 0;

f (A1jY = 0; A2 = 0;X) = f (A1jY = 0; A2 = 0;X;��1)

These three assumptions constituteMy;a1 : For the third strategy, we assume q2 (X; A2) = q2 (X; A2; 
�
2)

is correct and further assume a parametric model for the density of A2 given X among una¤ected

individuals Y = 0 with A1 = 0;

f (A2jY = 0; A1 = 0;X) = f (A2jY = 0; A1 = 0;X;��2)

Together with ORA1;A2jY=0;X (A1; A2jY = 0;X;�0) these last two models constituteMy;a2 : Since

we cannot be certain that any of the three modelsMy;My;a1 orMy;a2 is correct, we aim to �nd

an estimator b� of �� that is guaranteed to be CAN when any one of them (but not necessarily

more than 1 of them) is correct. That is, we wish to �nd estimators b� that are CAN in the union
submodel B � A\ (My [Mya1 [Mya2) of model A that assumes that at least one ofMy;Mya1 ;

and Mya2 is true. In line with Robins and Rotnitzky (2001) and Vansteelandt et al, (2008), we

refer to such estimators as multiply robust estimators. Part (i) of Theorem 2 below shows that,

under mild regularity conditions, the estimator b� � b� (k) is multiply robust, in the sense of being
CAN for �� under model B, for b� (k) the solution to

0 =
nX
i=1

Ui

�b�; b �b�� ; b��b�� ;k� (8)

=
nX
i=1

h
k(A2i;Xi)� eEfk(A2i;Xi)jXi; b�; b �b�� ; b��b��gi

��i(
�b�; b �b�� ; b��b���� �i �b�; b �b���
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with �i(b�; b �b��) = Y � B �A;X; b�; b �b���, k(A2i;Xi) an arbitrary p � J function of (A2i;Xi),

for b�0 �b�� ; b�1 �b��, b�2 �b�� ; b1 �b�� ; b2 �b�� and b0 �b�� solving the system of equations:

0 =
nX
i=1

G0i(b��b�� ; b �b�� ; b�) (9)

�
nX
i=1

h
c0(A2i;Xi)� eEfc0(A2i;Xi)jYi;Xi; b�; b��b�� ; b1 �b�� ; b2 �b��gi

�
h
A1i � E

n
A1ijA2i; Yi;Xi; Yi; b�; b�0 �b�� ; b�1 �b�� ; b1 �b��oi

0 =
nX
i=1

G1i

�b�; b�0 �b�� ; b�1 �b�� ; b1 �b��� (10)

�
nX
i=1

@

@�1
ln f

�
A1ijA2iYi;Xi; b�; b�0 �b�� ; �1; b1 �b���

j�1=b�1(b�;b�0(b�);b1(b�))
0 =

nX
i=1

G2i

�b�; b�0 �b�� ; b�1 �b�� ; b1 �b��� (11)

�
nX
i=1

@

@�2
ln f

�
A2ijA1iYi;Xi; b�; b�0 �b�� ; �2; b2 �b���

j�2=b�2(b�;b�0(b�);b2(b�))
0 =

nX
i=1

H1i

�
�; b �b�� ; b�0 �b�� ; b�1 �b��� (12)

�
nX
i=1

24c1(Ai;Xi)�
E
h
c1(Ai;Xi)V ar

n
YijAi;Xi; b�; b �b��o jA2i;Xi; b�; b �b�� ; b��b��i

E
h
V ar

n
(YijAi;Xi; b�; b �b��o jA2i;Xi; b�; b �b�� ; b��b��i

35 �i �b�; b �b���

0 =
nX
i=1

H2i

�
�; b �b�� ; b�0 �b�� ; b�1 �b��� (13)

�
nX
i=1

24c2(Ai;Xi)�
E
h
c2(Ai;Xi)V ar

n
YijAi;Xi; b�; b �b��o jA1i;Xi; b�; b �b�� ; b��b��i

E
h
V ar

n
(YijAi;Xi; b�; b �b��o jA1i;Xi; b�; b �b�� ; b��b��i

35 �i �b�; b �b���

0 =

nX
i=1

H3i

�
�; b �b�� ; b�0 �b�� ; b�1 �b��� (14)

=

nX
i=1

c3(Xi)�i(b�; b �b��)
for arbitrary vector functions c0(A2i;Xi), c1(Ai;Xi); c2(Ai;Xi) and c3(Xi) of the dimension of �0,

1; 2 and 0, respectively. The arguments of Robins and Rotnitzky (2001) imply that a necessary
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condition for the existence of such a triply robust estimator of �� in model A\(My[Mya1[Mya2)

is that there exist an unbiased estimating equation for �� (with non-trivial power against local

alternatives) when any of the following three statements holds: (1) q2 (X; A2) ; q1 (X; A1) and h (X)

are all known, (2) q1 (X; A1) ; and f(A1jA2; Y;X) are both known (3) q2 (X; A2) ; and f(A2jA1; Y;X)

are both known, The main step in the proof of Theorem 2 is showing that, for j = 1; 2; 3, (8) is an

unbiased estimating equation for �� when statement j holds and the known values of the functions

speci�ed in statement j are substituted for their estimated values in (8). The proof of the theorem

is then completed by showing that all of the following are true:B
�
A;X; b�; b �b��� is a CAN

estimator of f(Y = 1jA;X) in modelMy, f
�
A1ijYi; A2i;Xi; b�; b�0 �b�� ; b�1 �b�� ; b1 �b��� is a CAN

estimator of f (A1ijYi; A2i;Xi) in modelMya1 ;and f
�
A2ijYi; A1i;Xi; b�; b�0 �b�� ; b�2 �b�� ; b2 �b��� is

a CAN estimator of f (A1ijYi; A2i;Xi) in modelMya2 :

Theorem 2. Suppose that the regularity conditions stated in the appendix hold and that �; �0; �1; �2; 00; 
�
1
0;

and �2 are variation independent.

(i) Then,
p
n(b� � ��) is RAL under model B with in�uence function

E�1
�
@

@�
U�
i (�;

~� (��) ;k)j�=��

�
U�
i (�

�; ~� (��) ;k)

and thus converges in distribution to a N (0;�), where

� = E

 �
E�1

�
@

@�
U�
i (�;

~� (��) ;k)j�=��

�
U�
i (�

�; ~� (��) ;k)

�
2!

with ~� (��) = (~ (��),~� (��)) denoting the probability limits of the estimators b� �b�� = (b(b�),b�(b�)),
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respectively, and

U�
i (�; �;k) = Ui(�; �;k)� E

�
@

@�
Ui(�; �;k)

�
E�1

�
@

@�
Ri(�; �)

�
�Ri(�; �)

with Ri(�; �) � (H0
i(�; �);G

0
i(�; �))

0, Hi(�; �) � (H0
i1(�; �);H

0
i2(�; �);H

0
i3(�; �))

0 and Gi(�; �) �

(G0
i0(�; �); G

0
i1(�; �); G

0
i2(�; �))

0.

(ii) Furthermore, let b�(k;G(1);H(1)) and b�(k;G(2);H(2)) be 2 estimators of �� under model

B corresponding to the same index functions k, but di¤erent unbiased estimating functions G(1)

and G(2) for ��0 under model A \ (Mya1 [Mya2); �
�
1 under model A \Mya1 ; �

�
2 under model

A \Mya2 ;and H(1) and H(2) for �0 under model A \My; 
�
1 under model A \ (My [Mya1);

and �2 under model A \ (My [Mya2): Then,
p
n
nb�(G(1);H(1))� b�(G(2);H(2))

o
= op(1) at the

intersection model A \My \Mya1 \Mya2 :

(iii) For any choice of (G;H); b�(bkopt) is semiparametric locally e¢ cient in the sense that it is
RAL under model B and achieves the semiparametric e¢ ciency bound for B at the intersection

submodel A \My \Mya1 \Mya2 ; where

bkopt = 
 �A2;X; �y� ;

 (A2;X; �) is the p�K matrix with kth column given by @q3 (A1 = zk; A2;X; �) =@�; and �y is

a preliminary estimator which is CAN at the intersection submodel

Part (i) of Theorem 2 suggests that multiply robust estimators of �� in model B can be obtained

by solving an equation of the form (8). General results on doubly robust estimation in Robins and

Rotnitzky (2001) further imply that any regular CAN estimator of �� in model B has the same

asymptotic distribution as b� (k) for some k and, thus, that any multiply robust estimator in model
15 Hosted by The Berkeley Electronic Press



B can be obtained in this way. An empirical version of � can be used to estimate the large sample

covariance of b� (k), or alternatively, a bootstrap estimator can also be used. Part (ii) of Theorem
2 suggests that the choice of estimators for � and ��0 has no impact on the e¢ ciency of b� when the
modelsMy;Mya1 andMya2 are correctly speci�ed. Thus the fact that 

�
1 , 

�
2 and �

�
0 are estimated

by solving equations (12), (13) and (9), respectively, rather than by the more e¢ cient maximum

likelihood estimators under say model modelA\My\Mya1\Mya2 has no e¤ect on the asymptotic

variance of b� when the law of the data lies in the intersection submodelA \My \Mya1 \Mya2.

Nonetheless, the use of these speci�c estimating equations is critical to control bias. Indeed, (12),

(13) and (9) are the doubly robust estimating equations developed by Tchetgen Tchetgen, Robins

and Rotnitzky (2010) that are guaranteed to yield CAN estimators of �1 , 
�
2 and �

�
0 under the

semiparametric odds ratio models A \ (My [Mya1);A \ (My [Mya2) and A \ (Mya1 [Mya2)

respectively. To be more speci�c, consider equation (12) which is double robust for (�1 ; �
�) under

model A \ (My [Mya1) that assumes the odds ratio model

ORY;A1jA2;X (Y;A1jA2;X; ��; �1) = exp fq3 (A;X; ��)Y + q1 (X; A1; �1)Y g

is correct and either model My is correct and thus f (Y jA1 = 0; A2; L) is correctly modeled, or

modelMya1 holds and thus f (A1jY = 0; A2; L) is correctly modeled but not necessarily both. As

demonstrated in the proof of Theorem 2, it is precisely our careful use of these doubly robust

estimators (instead of maximum likelihood estimators) that makes our multiply robust approach

possible.

Part (iii) of the theorem gives a locally e¢ cient estimator of �� under model B at the intersection

submodel A \My \Mya1 \Mya2 : A theorem due to Robins and Rotnitzky (2001) implies the

semiparametric variance bound in models B and A coincide whenever the model My \Mya1 \
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Mya2 is true, and thus b�(bkopt) is semiparametric e¢ cient in model A at the intersection model

My \Mya1 \Mya2.

4 Continuous A

In this section, we generalize the results from the previous section and consider the setting where

A is continuous. To proceed, we need the following de�nition from Tchetgen Tchetgen, Robins

and Rotnitzky (2010):

De�nition: Admissible Independence Density: Given conditional densities f y (Y jX) ; gy1 (A1jX)

and gy2 (A2jX), the density hy (AjX) = gy1 (A1jX) g
y
2 (A2jX) that makes A1 and A2conditionally

independent given X is an admissible independence density if the joint law of A given X un-

der hy (AjX) is absolutely continuous wrt to the true law of A given X with probability one.

Furthermore, Ey(�j�;X) denotes conditional expectations with respect to hy (AjX) :

The following lemma is proved in the appendix:

Lemma 2: Given an admissible independence density hy; under model A, the set of estimating

equations (5) with d 2 D can equivalently be rewritten as

0 =
nX
i=1

fd (Ai;Xi)� dy (Ai;Xi)g
hy (AijXi)

f (Yi;AijXi; ��)
(�1)1�Yi

with f (Yi;AijXi; �
�) de�ned in Eq. (6) and dy (A;X) = Ey(DjA1;X)+Ey(DjA2;X)�Ey(DjX):with

d 2 D a member of the set of p� 1 functions of (A;Xi).

A multiply-robust estimator of the interaction parameter �� is then obtained as in the previous

section, withUi

�
�; �; ;d; hy

�
obtained upon substituting f (Ai; YijXi; �; ; �) for f (Y;AijXi; �

�)
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in the estimating function given in the above display,and by replacing G0i(�; ; �) with

fc0 (Ai;Xi)� cy0 (Ai;Xi)g
hy (AijXi)

f (AijYi;Xi; �; ; �)

in equation (9) for estimating ��0; where c0 (Ai;Xi) is a user-speci�ed function of Ai and Xi;of

the dimension of ��0: Parts (i) and (ii) of Theorem 2 can then be shown to still hold, even when,

as will be convenient in practice, gy1 and g
y
2 and thus h

y = gy1 � g
y
2 is estimated from the ob-

served data. Speci�cally, the asymptotic distribution of b� = b� �d;bhy� thus obtained, is equal
to that of b� �d;hy� given in Theorem 2 upon making the aforementioned substitutions, with hy

the probability limit of bf y � bgy: Unfortunately, Part (iii) of Theorem 2 only applies when as in

the previous section, either A1 or A2 has �nite support. If in fact A1 and A2 are both continu-

ous, the e¢ cient score of �� is not available in closed form, and thus locally e¢ cient estimation

is not possible using this approach. Instead, we undertake an alternative approach similar to

Tchetgen Tchetgen et al (2010). The approach is based on a result due to Newey (1993). We

take a basis system �s (A;X) ; s= 1; ::: of functions dense in the Hilbert space L2 of functions

of A;X with �nite variance (e.g. tensor products of trigonometric, wavelets or polynomial bases

when the components of A;X are all continuous): For some �nite S > dim (��) ; we form the

S�dimensional vector Uf�; ; �; e�K ;bhyg with e�S the vector of the �rst S basis functions and
let cWS (�) � Uf�; b (�) ; b� (�) ; e�S;bhyg; and b�S ��y� = Pn

i=1
cWS;i

�
�y
�cW T

S;i

�
�y
�
; where �y is any

preliminary doubly robust estimator of ��: Let b�S;e¤ � b�S;e¤�e�S;bhy� be the minimizer of the
quadratic form

nPn
i=1
cWS;i (�)

oT nb�S ��y�o� nPn
i=1
cWS;i (�)

o
with

nb�S ��y�o� a generalized in-
verse of b�K ��y�. Then, b�S;e¤ � b�S;e¤�e�S;bhy� is consistent and asymptotically normal in the
semi-parametric union model B; furthermore with S chosen su¢ ciently large, the asymptotic vari-

ance of n1=2(b�S;e¤ � ��) nearly attains the semi-parametric e¢ ciency bound for the union model
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at the intersection sub-model with all working models correct. In particular, the inverse of the

asymptotic variance of b�S;e¤ at the intersection sub-model is
�S =

�
E

�
@

@�T
U
�
�; �; ��; e�S; hy� j�=����T ��SE � @

@�T
U
�
�; �; ��; e�S; hy� j�=���

= E
n
ST�U

�
��; �; ��; e�S; hy�o��S hE nST�U���; �; ��; e�S; hy�oiT

where ��S is a generalized inverse of �S = E
n
UT
�
��; �; ��; e�S; hy�U���; �; ��; e�S; hy�o : Thus

�S is the variance of the population least squares regression of the score of �, S� on the linear span

of U
�
��; �; ��; e�S; hy� : By e�K dense in L2; as S !1; the components of U

�
��; �; ��; e�S; hy�

become dense in the orthogonal complement to the nuisance tangent space

�?nuis =
�
Ui

�
��; �; ��;d; hy

�
: d 2D

	

of B by Lemma 2, so that �S !
S!1

jj�
�
S�j�?nuis

�
jj2 = V ar(S�;e� ); the semi-parametric information

bound for estimating �� under model B, with S�;e� the e¢ cient score of ��:

5 A Simulation Study

We evaluated the �nite sample performance of our locally e¢ cient multiply robust estimator of

an odds -ratio statistical interaction. Each experiment was based on 500 replications of random

samples of size 800 generated as follows. We generated a vector of auxiliary covariatesX = (X1; X2)

where X1

i:i:d

~ N(0; 1) and X2~Bernoulli(1=2):We generated a vector of binary variables (Y;A1; A2)

with joint conditional density given X given by eqn (6) where we speci�ed :

m(A;X; ��) = �0:5 + 0:5X2 � 0:8X2
1 + 0:75X2X

3
1 + 0:5A1 � 0:6A2 + 0:6A1A2

logitf (A1 = 1jY = 0; A2 = 0;X;�1) = 0:3� 0:4X2 + 0:61X2
1 � 0:71X2

1X2
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logitf (A2 = 1jY = 0; A1 = 0;X;�2) = 0:2 + 0:4X2 � 0:65X2
1 + 0:4X

2
1X2

logORA1;A2jY=0;X (A1; A2jY = 0;X) = �0:4A1A2

Thus q3(A;X; ��) = 0:6A1A2: In each simulation experiment, two estimators were calculated

under model A with q3(A;X; �) = �A1A2. The �rst is an ordinary logistic regression estimate

under working modelMy with q2(A2; X; �2) = 
�
2A2; q1(A1; X; 

�
1) = 

�
1A1 and h(X;

�
0) = 

�
0;0 +

�0;1X. The second estimator is the new locally e¢ cient multiply robust estimator which yields

consistent estimator of �1 in model B.

The results of the simulation study are summarized in Table 1.

The results indicate that as predicted by theory, the multiply robust estimator produces nearly

unbiased estimates for the statistical interaction parameter under modelA\My;modelA \Mya1 ;

and model A \Mya2 respectively. In comparison, the standard outcome regression approach is

substantially biased under misspeci�cation ofMy. The extra-robustness of the proposed approach

comes at a cost in terms of e¢ ciency as apparent in Table 1. The e¢ ciency loss is particularly

important when the conditional mean model for the outcome is correctly speci�ed, but overall,

the proposed semiparametric approach had reasonable e¢ ciency. As expected, both methods are

severely biased when B is misspeci�ed.

6 Data application

In this section, we illustrate the various methods in an analysis of data from a population-based

case-control study based on all ovarian cancer patients identi�ed in Israel between 1 March 1994

and 30 June 1999 (Modan et al 2001). Two controls per case were selected from the central popu-

lation registry matching on age within two years, area of birth and place and length of residence.

Blood samples was collected on both cases and controls and used to test for the presence of muta-
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tion in two major breast and ovarian cancer susceptibility genes BRCA1 and BRCA2. Additional

data was collected on reproductive and gynecological history such as parity, number of years of

oral contraceptive use and gynecological surgery. The main objective of the study was to examine

the interplay of the BRCA1/2 genes and known reproductive/gynecological risk factors of ovarian

cancer. To test for interactions between reproductive risk factors and BRCA1/2 in their e¤ects on

the risk of ovarian cancer, the authors tested for a gene-environment interaction using a standard

logistic regression analysis. They also performed an unadjusted case-only analysis of interaction

(Piegorsch et al. 1994) under an assumption that genetic variants and environment factor are un-

conditionally independent in the population. Chatterjee and Carroll (2005) and Tchetgen Tchetgen

(2011) re-analyzed these data using a fully parametric logistic regression model for disease given

the gene and the gene given disease respectively, further conditioning on environmental and con-

founding factors X, under a weaker conditional independence assumption of gene and environment

given the measured covariates X . The estimator of Chatterjee and Carroll (2005) also required

a model for the density [A1jA2;X] and thus it may result in biased estimates of interactions if the

working genetic model is incorrect or if their speci�ed working model for [Y jA1; A2;X] is incorrect.

Furthermore a violation of the independence assumption can also invalidate an inference based on

this approah. The estimator of Tchetgen Tchetgen (2011) which assumes gene-environment con-

ditional (on covariates) independence among controls, may result in biased estimates if either the

independence assumption fails or the required working model for [A1jY;A2;X] is false. In contrast,

the semiparametric case-only estimator of Tchetgen Tchetgen and Robins (2010) is endowed with

a partial protection against model mis-speci�cation of the required model for the association of X

and A1 among the unexposed cases. Speci�cally this estimator of interaction remains CAN if A1

and A2 are conditionally independent and either a model for [A1jA2 = 0;X; D = 1] or a model for

[A2jA1 = 0;X; D = 1] is correct but not necessarily both. However, the latter approach fails to be
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consistent if the required independence assumption is false or both working models are false.

In our re-analysis, we illustrate the multiply robust method developed in this paper, and thus

as in Modan et al (2001) and Chatterjee and Carroll (2005), we hypothesize that gene-environment

interactions operate on a logistic scale in the underlying population. Speci�cally, we used data

on 832 cases and 747 controls who did not have bilateral oophorectomy, were interviewed for

risk factor information and successfully tested for BRCA1/2 mutations. Our primary aim was to

provide multiply robust inference for an interaction between the dichotomous variable representing

a person�s BRCA1/2 mutation status and her use of oral contraceptives, where the latter was coded

as use for over six years vs use for six years or less:

We assume conditional independence of gene and environmental factors (oral contraceptive

and parity which we coded as a count of live births with 10 or more births coded as 10) given

age (categorical de�ned by decades), ethnic background ( Ashkenazi or non-Ashkenazi), the pres-

ence of personal history of breast cancer, a history of gynecological surgery, and family history

of breast or ovarian cancer (no cancer vs one breast cancer in the family vs one ovarian can-

cer or two or more breast cancer cases in the family). The independence assumption was in-

corporated in our reanalysis by setting logORA1;A2jY=0;X (A1; A2jY = 0;X) = 0, which is ap-

proximately correct under a rare disease assumption. Logistic regression models were used for

logitf (A1 = 1jY = 0; A2 = 0;X;��1) = ��T1 X and logitf (A2 = 1jY = 0; A1 = 0;X;��2) = ��T2 X

with main e¤ects for components of X. We speci�ed a working regression model (2), with

A1 = I(BRCA1=2 = 1) and A2 = I(OC use>6 yrs); q1 (X; A1; �1) = 
�
01A1+

�
11A1�Parity; �1 =

(�01; 
�
11) ; q2 (X; A2; 

�
2) = 

�
20A2 + 

�
21A2 � Parity; h(X; �0) = 

�T
0 X; q3 (A;X; �

�) = ��A1A2:

We obtained results for standard logistic regression and our multiply robust approach. Both

approaches indicated a strong genetic e¤ect among childless women for whom parity=0 and con-

traceptive use � 6 years. Among these women, our reanalysis con�rmed the well established
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association between BRCA1/2 mutation and ovarian cancer, producing a large increase in risk of

ovarian cancer (b01;logistic = 3:14 with corresponding weighted bootstrap s.e.=0:37; b01;dr = 3:26,

with corresponding weighted bootstrap s.e.= 0:33). We note however that our estimate of the

main e¤ect of BRCA1/2 is in theory more reliable since the estimator b01;dr that solves equation
(12) remains valid under any law in model A\ (My [Mya1) (Tchetgen Tchetgen et al, 2010),

whereas standard logistic regression assumes the smaller modelMy is correct:The logistic regres-

sion approach produced the estimate of an interaction b�logistic = 0:65 (weighted bootstrap s.e.= 1:
13) whereas the multiply robust approach gave b�mr = 0:82 (weighted bootstrap s.e.= 1: 044): Thus,
the multiple robust approach which in theory is less prone to bias, suggests a larger interaction

(although not statistically signi�cant) between BRCA1/2 and OC use. The increased precision of

the new approach may be due to the G�E independence assumption that we explicitly incorpo-

rated into the multiply robust analysis, whereas standard logistic regression is known not to use

this assumption.

7 Conclusion

In this article, we have developed a class of multiply robust estimators of an odds ratio statistical

interaction. Whereas multiply robust estimators previously proposed to evaluate additive and

multiplicative interactions use a model for the density of exposures given covariates (Vansteelandt

et al, 2008), in the case of an odds ratio interaction we show that multiply robust inference instead

requires a model for the conditional density of the exposures given covariates amongst noncases

(see Tchetgen Tchetgen et al (2010) for further discussion). An implication of our result is that

in contrast with an additive interaction (Vansteelandt et al, 2008), asymptotically distribution-

free tests of the no-conditional (onX) -interaction hypothesis are generally not available when
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high dimensional X is observed, even in settings where one of the exposure conditional (on X

distribution) is known, as is often the case in randomized follow-up studies and family-based

genetic association studies. Nevertheless, we recommend that our proposed approach be used quite

generally, because an inference concerning an interaction e¤ect under our approach has multiple

chances, rather than only one chance, to be correct or nearly correct. We also note that the

approach is easy to extend to more general outcomes, by modifying the methods developed here

along the lines of those in Tchetgen Tchetgen et al (2010) to accommodate a non-binary outcome .

We conclude by emphasizing that, the well-known invariance property of the odds ratio functional

to alterations in the marginal distributions of (Y;X) or of (A;X) implies that our methodology

readily applies to both prospective and retrospective study designs and may also be adapted to

more general outcome dependent sampling settings.
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APPENDIX

PROOF OF THEOREM 1:

Let P denote the law of (Y;A;X) : Suppose �rst that q2 (X; A2) and q1 (X; A1) are known

functions, then model A is the semiparametric model

logitPr (Y = 1jA;X) = m (X; A;��)

wherem (X; A;��) = q3 (A;X; ��)+q2 (X; A2)+q1 (X; A1)+h(X) with h (X) an unknown function

and the joint law of (A;X) is unknown. Bickel et al (1993) showed that the orthocomplement to the

nuisance tangent space for this model in the Hilbert space L02 (P ) (with covariance inner product)

of functions in L2 (P ) = L2 with mean zero is given by

�SRLogit;?nuis = fd (A;X)g � (��) : E
�
d (A;X)�2Y jA;X (A;X) jX

�
= 0g

Consider now the original model A with q2 (X; A2) and q1 (X; A1) unrestricted. Consider a one-

dimensional submodel q1 (X; A1; t) = q1 (X; A1) + tk1 (X; A1) : Then the score St(�; A;X) for t at

the truth t = 0 is of the form � (��) k1 (X; A1) :Thus, d (A;X) � (��) 2 �SRLogit;?nuis must satisfy

E
�
d (A;X)�2Y jA;X (A;X) jA1;X

�
: By symmetry, we conclude that the orthocomplement of the

nuisance tangent space in model A is

�?nuis =
�
�d (A;X) ;Efd(A;X)�2Y jA;X (A;X) jA1;Xg = Efd(A;X)�2Y jA;X (A;X) jA2;Xg = 0

	
(A.1)

PROOF OF LEMMAS 1 & 2: Consider the Hilbert space L2
�
PwA;X

�
of functions of (A;X)

under the tilted law of [AjX];fw (AjX;��) = f (AjX;��)�2Y jA;X (A;X)
nR

f (ajX;��)�2Y jA;X (a;X) d� (a)
o�1
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and the density of X as in model A: Then we wish to �nd a characterization of functions in

L2
�
PwA;X

�
that satisfy

D = fd(A;X) : Ewfd(A;X)jA1;Xg = Ewfd(A;X)jA2;Xg = 0g \ L2
�
PwA;X

�

where Ew is the expectation under fw (AjX;��) : Lemma 2 is a corollary of Theorem 1 of Tchetgen

Tchetgen et al (2010) who established that given an admissible density hy (AjX) = gy1 (A1jX) g
y
2 (A2jX) ;

D =
�
fs (A ;X )� sy (A ;X )g hy (A jX )

fw (A jX ; ��)
: s (A ;X )

�
\ L2

�
PwA;X

�

Then, to get the result, it su¢ ces to note that

� (��) fs (A ;X )� sy (A ;X )g hy (A jX )

fw (A jX ; ��)

=
� (��)

�2Y jA;X (A;X)
fs (A ;X )� sy (A ;X )g h

y (A jX )

f (AjX;��)

�Z
f (ajX;��)�2Y jA;X (a;X) d� (a)

�
= fs2 (A ;X )� sy2 (A ;X )g hy (A jX )

f (Y ;A jX ; ��)
(�1)1�Y

with s2 (Ai;Xi)=
nR
f (ajX;��)�2Y jA;X (a;X) d� (a)

o
s2 (A;X) :

The equivalent representation of D provided in Section 4 of Tchetgen Tchetgen et al (2010)

proves Lemma 1.

PROOF OF THEOREM 2
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Lemma 1 implies that for any choice of k; there exist an s = s (k) such thatUi(�
�; ~ (��) ; ~� (��) ;k) =

V(��; s = s (k)) = fs (A ;X )� sy (A ;X )g hy(A jX )
f(Y ;A jX ;��) (�1)

1�Y . We begin by showing that

EfUi(�
�; ~ (��) ; ~� (��) ;k) g (15)

= E fV(��; ~ (��) ; ~� (��) ; s = s (k))g = 0

under model B where again we use ~to denote probability limits. First, ~(��) = � under model

A \My because Hi(�
�; ~ (��) ; �) has mean zero for each � under this model. Equality (15) now

follows because E( (�1)1�Yi
f(Yi;AijXi;��;~(��);~�(��))

jA;X) = E( (�1)1�Y
f(Y jA;X;��;�) jA;X)

1
f(AijXi;��;~(��);~�(��))

= 0.

Second, (~�0 (��) ; ~�2 (��) ; 2 (��)) = (��0; �
�
2; 

�
2) under model A\Mya2 (Tchetgen Tchetgen et al,

2010). Equality (15) now follows because

Ef fs (A ;X )� sy (A ;X )g hy (A jX )

f (Y ;A jX ; ��; ~ (��) ; ~� (��))
(�1)1�Y j A1; Y;Xg

= Ef fs (A ;X )� sy (A ;X )g hy (A jX )

f (A2jA1; Y ;X ; ��; ~� (��)) f (A1Y jX; ��; ~ (��) ; ~� (��))
(�1)1�Y j A1; Y;Xg

= Eyf fs (A ;X )� sy (A ;X )g (�1)1�Y j A1; Y;Xg
gy1 (A1jX)

f (A1Y jX; ��; ~ (��) ; ~� (��))

= 0

Third, equality (15) holds under model A \Mya2 by symmetry.

Assuming that the regularity conditions of Theorem 1A in Robins, Mark and Newey (1992)

hold for Ui(�; ; �), Gi(�; ; �) and Ai(�), it now follows by standard Taylor expansion arguments
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that

0 = n�1=2
nX
i=1

Ui(�
�; ~� (��) ;k) +

"
E

�
@

@�
U(�; ~� (��) ;k)

�
j�=��

� E
�
@

@�
U(��; � ;k)

�
j�=~�(��)

�E�1
�
@

@�
R(��; �)

�
j�=~�(��)

E

�
@

@�
R(�; ~� (��))

�
j�=��

#
p
n(b� � ��)

� E
�
@

@�
U(��; �

�
j�=~�(��)

E�1
�
@

@�
R(�; �

�
j�=~�(��)

R(��; ~� (��)) + op (1)

where op(1) denotes a random variable converging to 0 in probability. When

"
E

�
@

@�
U(�; ~� (��) ;k)

�
j�=��

� E
�
@

@�
U(��; � ;k)

�
j�=~�(��)

�E�1
�
@

@�
R(��; �)

�
j�=~�(��)

E

�
@

@�
R(�; ~� (��))

�
j�=��

#

is nonsingular, it now follows that

p
n(b� � ��) = 1

n1=2

nX
i=1

E�1
�
@

@�
U�(�; ~� (��) ;k)j�=��

�
U�
i (�

�; ~� (��) ;k) + op(1) (16)

The asymptotic distribution of
p
n(b� � ��) under model B follows from the previous equation by

Slutsky�s Theorem and the Central Limit Theorem. This proves part (i).

At the intersection model A \My \Mya1 \Mya2,

E

�
@

@�
U(�; �;k)

�
j�=~�(��)

= 0;

hence

U�(��; ~� (��) ;k) = U(��; ~� (��) ;k):
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It follows that the estimators b�(k;G(1);H(1)) and b�(k;G(2);H(2)) have the same in�uence functions

at the intersection model A \My \Mya1 \Mya2. This proves part (ii).

To prove part (iii) of the Theorem it su¢ ces to show that the following equality holds:

E
hn
S� (�

�)�U(��; ~� (��) ;kopt)
o
U(��; ~� (��) ;k)

i
= 0

for all scalar functions k � k (X) ; where S� (��) = Y @q3(A;X;�)
@�

j�=�� � E
�
Y @q3(A;X;�)

@�
j�=��jX

�
denotes the score of �� in model A. Since E

h
E
�
Y @q3(A;X;�)

@�
j�=��jX

�
U(��; ~� (��) ;k)

i
= 0 for all

for all k; we must check

E
hn
Y q3 (A2;X)A1 �U(��; ~� (��) ;kopt)

o
U(��; ~� (��) ;k)

i
= 0

where q3 (A2;X) =
�
@q3(z1;X;�)

@�
j�=�� ; :::; @q3(zJ ;X;�)@�

j�=��
�

We note that

E
h
Y q3 (A2;X)A1U(�

�; ~� (��) ;k)
i

= E
h
� (��)q3 (A2;X)A1U(�

�; ~� (��) ;k)
i

= E
h
� (��)q3 (A2;X)�U(�

�; ~� (��) ;k)
i

= E
h
U(��; ~� (��) ;kopt)U(�

�; ~� (��) ;k)
i

proving the result.
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Table 1. Simulation results

Logistic Regression Multiply Robust

� �

My correct bias 0.005 0.009

variance 0.092 0.106

Mya1correct bias 0.113 -0.002

variance 0.093 0.104

Mya2 correct bias 0.119 0.030

variance 0.094 0.113

All models wrong bias 0.151 0.119

variance 0.100 0.108
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