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Formulae for causal mediation analysis
in an odds ratio context without a normality assumption

for the continuous mediator

by

Eric J. Tchetgen Tchetgena;b

aDepartment of Epidemiology, Harvard School of Public Health

bDepartment of Biostatistics, Harvard School of Public Health

Abstract

In a recent manuscript, VanderWeele and Vansteelandt (American Journal of Epidemiology, 2010,172:1339-

1348) (hereafter VWV) build on results due to Judea Pearl on causal mediation analysis and derive

simple closed-form expressions for so-called natural direct and indirect e¤ects in an odds ratio con-

text for a binary outcome and a continuous mediator. The expressions obtained by VWV make

two key simplifying assumptions:

A. The mediator is normally distributed with constant variance,

B. The binary outcome is rare.

Assumption A may not be appropriate in settings where, as can happen in routine epidemiologic

applications, the distribution of the mediator variable is highly skew. However, in this note,

the author establishes that under a key assumption of "no mediator-exposure interaction" in the

logistic regression model for the outcome, the simple formulae of VWV continue to hold even when

the normality assumption of the mediator is dropped. The author further shows that when the
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"no interaction" assumption is relaxed, the formula of VWV for the natural indirect e¤ect in this

setting continues to apply when assumption A is also dropped. However, an alternative formula to

that of VWV for the natural direct e¤ect is required in this context and is provided in an appendix.

When the disease is not rare, the author replaces assumptions A and B with an assumption C that

the mediator follows a so-called Bridge distribution in which case simple closed-form formulae are

again obtained for the natural direct and indirect e¤ects.
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Recent advances in causal inference have provided a mathematical formalization of mediation

analysis.1�3 Speci�cally, the counterfactual language of causal inference has allowed for new de�n-

itions of causal e¤ects in the mediation context, accompanied by formal identi�cation conditions,

and corresponding nonparametric formulae for computing these new types of causal e¤ects.1�9 In a

recent manuscript, VanderWeele and Vansteelandt6 (VWV) build on results due to Judea Pearl2;3

on causal mediation analysis and derive simple closed-form expressions for so-called natural direct

and indirect e¤ects in an odds ratio context for a binary outcome and a continuous mediator. Gen-

eral de�nitions and identifying assumptions of natural direct and indirect e¤ects in an odds ratio

context are described in great detail in VWV and are not reproduced here. However, to obtain

closed-form expressions for natural direct and indirect e¤ects, VWV require two key simplifying

assumptions which are reproduced here:

A. The mediator is normally distributed with constant variance

B. The binary outcome is rare.

Assumption A may not be appropriate in settings where, as can happen in routine epidemiologic

applications, the distribution of the mediator variable is highly skew. However, in this note,

the author establishes that under a key assumption of "no mediator-exposure interaction" in the

logistic regression model for the outcome, the simple formulae of VWV continue to hold even when

the normality assumption of the mediator is dropped. The author further shows that when the

"no interaction" assumption is relaxed, the formula of VWV for the natural indirect e¤ect in this

setting continues to apply when assumption A is also dropped. However, an alternative formula

to that of VWV for the natural direct e¤ect is derived in this context. When the disease is not

rare, the author replaces assumptions A and B with an assumption C that the mediator follows a

so-called Bridge distribution in which case simple closed-form formulae are again obtained for the
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natural direct and indirect e¤ects.10

Relaxing the normality assumption
To proceed consider the statistical model studied by VWV. In their basic set up, they assume

independent and identically distributed data (C;A;M; Y ) are observed on n individuals, where Y

is the binary outcome of interest, A is the exposure,M is a continuous mediator variable measured

prior to Y and subsequently to A; and C are pre-exposure confounders of the e¤ects of (A;M) on

Y: VWV assume the following regression models:

logitPr(Y = 1jA = a;M = m;C = c) = �0 + �1a+ �2m+ �
0
4c (1)

and

E[M jA = a; C = c] = �0 + �1a+ �02c (2)

where, under (2) the error term � = (M � E[M jA;C]) for the linear regression of [M jA;C] is

normally distributed with constant variance. VWV show that, under the nonparametric identifying

assumptions 1-4 of their paper, assumptions A and B given above, and the parametric modeling

assumptions (1) and (2), odds ratio natural direct and indirect e¤ects are given by the simple

formulae

ORNDEa;a�jc (a
�) = exp (�1 (a� a�)) (3)

ORNIEa;a�jc (a
�) = exp (�2�1 (a� a�)) (4)

so that given a �xed value a�, the total causal e¤ect of A on Y within levels of C; comparing the
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odds of Y when A = a versus when A = a�

ORTEa;a� =
Pr (Y = 1jA = a; C = c) Pr (Y = 0jA = a�; C = c)
Pr (Y = 0jA = a; C = c) Pr (Y = 1jA = a�; C = c)

can be decomposed on the odds ratio scale into natural direct and indirect causal e¤ects according

to6:

ORTEa;a� = OR
NDE
a;a�jc (a

�)�ORNIEa;a�jc (a
�) (5)

= exp ((�1 + �2�1) (a� a�))

In the appendix, it is established that the formulae (3),(4) and therefore formula (5) continue to

hold even when the normality assumption is replaced by the weaker assumption:

A�. The error term � for the linear regression (2) for M is independent of (A;C) :

Thus, by eliminating the requirement that the mediator is normally distributed, the result con-

siderably broadens the scope of settings in which the methodology of VWV remains appropriate.

In fact, the result states that their formulae (3) and (4) continue to hold even when as can occur

in epidemiologic applications, the mediatorM is not normally distributed, provided that the re-

gression model (2) completely characterizes the relation between the mediator, and exposure and

confounding variables; i.e. the residual � does not further depend on (A;C) :

The above result depends on the crucial "no exposure-mediator interaction" assumption im-

posed in the logistic regression model (1) :VWV also considered mediation analyses under an

alternative more general model for the risk of the outcome:

logitPr(Y = 1jA = a;M = m;C = c) = �0 + �1a+ �2m+ �3ma+ �
0
4c (6)
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where �3 now encodes the interaction (on the odds ratio scale) between the exposure and the

mediator variables, and the special case �3 = 0 recovers model (1) : Under the nonparametric

identifying assumptions 1-4 of their paper, assumptions A�and B given above, and the parametric

modeling assumptions (2) and (6) ; VWV establish that

ORNIEa;a�jc (a
�) = exp f(�2 + �3a) �1 (a� a�)g

In the appendix, it is shown that the formula in the above display continues to hold when assump-

tion A is replaced by the weaker assumption A�: However, the formula for ORNDEa;a�jc (a
�) given in

VWV under model (6) no longer applies under assumption A�if assumption A does not also hold.

An alternative expression for ORNDEa;a�jc (a
�) in this latter setting is given in an online appendix. For

inference, standard errors of estimators of ORNIEa;a�jc (a
�) and ORNDEa;a�jc (a

�) under the various mod-

eling assumptions considered above can be obtained as in VWV by straightforward application of

the delta method, details are relegated to the online appendix.

Relaxing the rare disease assumption
In this section, simple closed-form formulae are derived for the natural direct and indirect odds

ratios ORNIEa;a�jc (a
�) and ORNDEa;a�jc (a

�) ; in a setting where the outcome of interest is not rare. The

formulae are obtained upon replacing both assumptions A (or equivalently assumptions A�) and

B with the following alternative distributional assumption for the mediator density:

C. The conditional density of [�jA;C] follows a so-called "Bridge distribution" (more speci�-
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cally, a Bridge distribution for the logit link):10

f�[djA = a; C = c] =
sin (��)

cos (��) + cosh(�d)
;�1 < d <1; 0 < � < 1

where cosh(x) =
1

exp(x) + exp(�x)

The bridge density given above is denoted Bl(0; �); where the �rst argument indicates that it has

mean zero, � is a rescaling parameter and the subscript l stands for logistic. The variance of

Bl(0; �) is given by the simple formula:

�2

3
(��2 � 1)

so that the variance of Bl(0; �) approaches zero as � approaches one. Bl(0; �) is symmetric and

has a di¤erent shape from that of the Gaussian distribution.10 When standardized to have unit

variance, the bridge density can be shown to have slightly heavier tails than the standard normal

and lighter tails than the standard logistic. Wang and Louis10 provide a detailed study of Bl(0; �):

For our purposes, the bridge distribution Bl(0; �) is of interest in the present setting because it

is the unique covariate distribution under which marginalization of a standard multiple logistic

regression model with respect to a single covariate (with a bridge distribution) produces a marginal

regression that is again a standard logistic regression with regression parameters rescaled by an

amount determined by �: More speci�cally, consider the standard logistic regression model (1) for

the conditional density of [Y jA;M;C]; then under model (2) paired with assumption C, we have

that the marginal (with respect to M) regression model of [Y jA;C] is again a standard logistic

regression:

logitPr(Y = 1jA = a; C = c) = 0 + 1a+ 04c
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where

1 = k (�1 + �2�1)

and

k =
�
�22(�

�2 � 1) + 1
	�1=2

Similar expressions relating 0 and 4 to �1; �2,�4 and � are provided in the online appendix:

The main point is that standard multiple logistic regression is closed under marginalization of a

continuous covariate with a bridge distribution. A more general formulation of the above result

is used in the online appendix to establish that under the nonparametric identifying assumptions

1-4 of VWV; the parametric modeling assumptions (1) and (2) ; and assumption C:

ORNDEa;a�jc (a
�) = exp (k�1 (a� a�)) (7)

ORNIEa;a�jc (a
�) = exp (k�2�1 (a� a�)) (8)

Note the similarity between formulae (3) and (4) ; and formulae (7) and (8) where the factor

k in the latter two expressions accounts for a non-rare outcome under assumption C that the

mediator follows a bridge distribution. Analogous formulae are provided in the online appendix

that incorporate an interaction between the mediator and exposure variables under model (6) :

Concluding remarks
In this note, the author has extended the results of VWV in a number of interesting directions,

by providing weaker conditions under which their simple estimators of natural direct and indirect

e¤ects remain valid, and by providing alternative distributional assumptions under which the

assumption of a rare outcome can be dropped and yet simple formulae are still available for

routine use in epidemiologic practice. However, it is important to note that as in VWV, the
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methods described herein rely on fairly strong modeling assumptions and can deliver severely

biased inferences under modeling error of regression models such as models (2) and (6). As a

possible remedy, alternative so-called multiply robust estimators have recently been proposed,

that deliver valid inferences about natural direct and indirect e¤ects even when, as can happen in

practice, a statistical model for the likelihood of [Y;M;AjC] is partially mis-speci�ed.7�9
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APPENDIX

Closed form expressions for ORNDEa;a�jc (a
�) and ORNIEa;a�jc (a

�) :

Under the nonparametric identifying assumptions 1-4 of their paper, assumptions A�and B given

in the paper, and the parametric modeling assumptions (2) and (7) ; we have that

g(a; a�; c) =

Z
Pr fY = 1jA = a; C = c;M = mg f (mjA = a�; C) dm

�
Z
exp (�0 + �1a+ �2m+ �3ma+ �

0
4c) f (mjA = a�; C) dm

= exp (�0 + �1a + �
0
4c)

Z
exp ( �2m+ �3ma ) f (mjA = a�; C) dm

= exp (�0 + �1a + �
0
4c)

Z
exp ( (�2 + �3a) m) f (mjA = a�; C) dm

= exp (�0 + �1a + �
0
4c)MM jA=a�;C=c (�2 + �3a) (9)

whereMM jA=a�;C=c (�) is the moment generating function of [M jA = a�; C = c] evaluated at (�) :

Note that under our assumptions,

MM jA=a�;C=c (�2 + �3a) = exp f(�2 + �3a) (�0 + �1a� + �02c)gM� (�2 + �3a) (10)

whereM� (�) is the moment generating function of [�jA = a�; C = c] evaluated at (�) :We conclude

that by a result due to Pearl2;3 (also see VWV6)

ORNDEa;a�jc (a
�) � g(a; a�; c)

g(a�; a�; c)

=
exp (�0 + �1a + �

0
4c) exp f(�2 + �3a) (�0 + �1a� + �02c)gM� (�2 + �3a)

exp (�0 + �1a� + �04c) exp f(�2 + �3a�) (�0 + �1a� + �02c)gM� (�2 + �3a�)

= exp [f�1 + (�3 (�0 + �1a� + �02c))g (a � a�)]M� (�3 (a� a�))
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and

ORNIEa;a�jc (a
�) =

g(a; a ; c)

g(a; a�; c)

=
exp (�0 + �1a + �

0
4c) exp f(�2 + �3a) (�0 + �1a+ �02c)gM� (�2 + �3a)

exp (�0 + �1a + �04c) exp f(�2 + �3a) (�0 + �1a� + �02c)gM� (�2 + �3a)

= exp f�1 (�2 + �3a) (a � a�)g

which reduces to the formulae provided in the text for the special case where �3 = 0: For inference

when �3 6= 0; estimation of ORNDEa;a�jc (a
�) requires an estimator ofM� (�3 (a� a�)) : To motivate a

simple estimator of the latter quantity, note that under model (2) and assumption C:

M� (�3a) =
E [exp f�3aMg]

E [exp f�3a (�0 + �1A+ �02C)g]

since the numerator is equal to

E [exp f�3aMg] = E [exp f�3a (�0 + �1A+ �02C)g]M� (�3a)

and thus, similarly we have that

M� (�3 (a� a�)) =
E [exp f�3 (a� a�)Mg]

E [exp f�3 (a� a�) (�0 + �1A+ �02C)g]

which gives

ORNDEa;a�jc (a
�) � exp [f�1 + (�3 (�0 + �1a� + �02c))g (a � a�)]

E [exp f�3 (a� a�)Mg]
E [exp f�3 (a� a�) (�0 + �1A+ �02C)g]

13 Hosted by The Berkeley Electronic Press



We conclude that M� (�3 (a� a�)) and therefore ORNDEa;a�jc (a
�) is consistently estimated upon

substituting empirical averages for unknown marginal expectations and consistent estimates for

unknown parameters in the equation in the above display: Note that consistent estimation of

� =
�
�0; �1; �2; �3; �

0
4

�0
and � =

�
�0; �1; �

0
2

�0
are readily obtained under standard logistic regression

b� and ordinary least-squares b� respectively.
The variance-covariance matrix of the resulting estimator log

�dORNIEa;a�jc (a
�)
�
of log

�
ORNIEa;a�jc (a

�)
�

is obtained using a straightforward application of the delta method and details can be found in

VWV. The variance-covariance matrix of log
�dORNDEa;a�jc (a

�)
�
is similarly obtained under the "no

interaction" assumption. However, more generally when �3 6= 0; requires derivations not included

in VWV . To proceed, let IF�;� denote the in�uence function of
�b�; b�� : Let

�1 (�; �) = f�1 + (�3 (�0 + �1a� + �02c))g (a � a�) ;

�2 (�; �) = logE [exp f�3 (a� a�)Mg]

�3 (�; �) = logE [exp f�3 (a� a�) (�0 + �1A+ �02C)g]

: Then one can show that the in�uence function of [�1 (�; �) ;�2 (�; �) ;�3 (�; �)]
0 is given by

IF� = [IF�1 ; IF�2 ; IF�3 ]
0

0, where:

IF�1 = G1IF�;�
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with

G1 = [0; (a � a�) ; 0; (�0 + �1a� + �02c) (a � a�) ; 00

�3 (a � a�) ; �3a� (a � a�) ; �3c0 (a � a�)] ;

IF�2 = E [exp f�3 (a� a�)Mg]
�1 U�2

with

U�2 = exp f�3 (a� a�)Mg+ E [(a� a�)M exp f�3 (a� a�)Mg] [0; 0; 0; 1; 0; 0; 0; 0]IF�;�

and

IF�3 = E [exp f�3 (a� a�) (�0 + �1A+ �02C)g]
�1
U�3

with

U�3 = exp f�3 (a� a�) (�0 + �1A+ �02C)g � E [exp f�3 (a� a�) (�0 + �1A+ �02C)g]

+ [0; 0; 0; E [(a� a�) (�0 + �1A+ �02C) exp f�3 (a� a�) (�0 + �1A+ �02C)g] ; 0;

E [�3 (a� a�) exp f�3 (a� a�) (�0 + �1A+ �02C)g] ;

E [�3A (a� a�) exp f�3 (a� a�) (�0 + �1A+ �02C)g] ;

E [�3 (a� a�)C 0 exp f�3 (a� a�) (�0 + �1A+ �02C)g]]� IF�;�

Thus, the large sample variance of log
�dORNDEa;a�jc (a

�)
�
is approximately given by

n�1[1; 1;�1]E
�
IF�IF

T
�

�
[1; 1;�1]0
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A consistent estimator of the above quantity is obtained by substituting empirical expectations

for all unknown expectations, and consistent estimators of unknown parameters. The above con-

struction requires the in�uence function IF�;� for standard logistic regression and ordinary least

squares estimation, which is of the form:

0BB@ E
�
X1X

T
1

��1
X1"

E
�
X2X

T
2

��1
X2�

1CCA
with X1 = [ 1; A;M;AM;C

0]; X2 = [ 1; A; C
0] and " = Y � Pr(Y = 1jA;M;C):

Closed form expressions for ORNDEa;a�jc (a
�) and ORNIEa;a�jc (a

�) under a Bridge distribution:

Consider the logistic regression model

logitPr(Y = 1jA = a;M = m;C = c) = �0 + �1a+ �2m+ �3ma+ �
0
4c

where

M = �0 + �1A+ �
0
2C +�

and

[�jA;C] � Bl(0; �)

Note that

g(a; a�; c) =

Z
Pr(Y = 1jA = a ;M = m ;C = c )f (mja�; c)

=

Z
expit f�0 + �1a+ (�2 + �3a) (�0 + �1a� + �02c) + (�2 + �3a)� + �04cg f (�) d�

=

Z
expit

n
�0 + �1a+ (�2 + �3a) (�0 + �1a

� + �02c) +
e�+ �04co f �e�� de�
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where expit(logit(x)) = 1; f
�e�� is a bridge density with rescaling parameter

e� (a) = e� (a; �2; �3; �) = �(�2 + �3a)2 (��2 � 1) + 1	�1=2 :
Then, a result due to Louis and Wang10 implies that

g(a; a�; c) = expit
�e� (a) f�0 + �1a+ (�2 + �3a) (�0 + �1a� + �02c) + �04cg�

and therefore

ORNDEa;a�jc (a
�) =

exp
�e� (a) f�0 + �1a+ (�2 + �3a) (�0 + �1a� + �02c) + �04cg�

exp
�e� (a�) f�0 + �1a� + (�2 + �3a�) (�0 + �1a� + �02c) + �04cg�

ORNIEa;a�jc (a
�) =

exp
�e� (a) f�0 + �1a+ (�2 + �3a) (�0 + �1a+ �02c) + �04cg�

exp
�e� (a) f�0 + �1a+ (�2 + �3a) (�0 + �1a� + �02c) + �04cg�

= exp
�
�1 (�2 + �3a) e� (a) (a� a�) �

under the "no interaction" assumption �3 = 0, we obtain

ORNDEa;a�jc (a
�) = exp

��
�22(�

�2 � 1) + 1
	
�1 (a� a�)

�
= exp (k�1 (a� a�))

ORNIEa;a�jc (a
�) = exp (k�1�2 (a� a�) )

A consistent estimator b� of � is obtained by the method of moment upon noting that � =

� (�) =expit(�) solves the population equation :

E fU� (�; �)g = 0
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where U� (�; �) = � (�)
2 � �2

3
([expit (�)]�2 � 1): It can then be shown that the in�uence function

of
�b�; b�; b�� is given by IF�;�;�

IF�;�;� =

0BBBBBB@
E
�
X1X

T
1

��1
X1"

E
�
X2X

T
2

��1
X2�

E
�
@U�(�;�)

@�

��1
U� (�; �)

1CCCCCCA

Let dORNDEa;a�jc (a
�) and dORNIEa;a�jc (a

�) the estimators of ORNDEa;a�jc (a
�) and ORNIEa;a�jc (a

�) respectively

obtained upon substituting
�b�; b�; b�� for (�; �; �) : The large sample variances ofdORNDEa;a�jc (a

�) and

dORNIEa;a�jc (a
�) are then obtained by a straightforward application of the delta method, mainly:

var
�dORNDEa;a�jc (a

�)
�
� n�1H 0

1E
�
IF�;�;�IF

0
�;�;�

�
H1

where

H1 =
@

@ (�0; �0; �)0

8>><>>:
�e� (a; �2; �3; � (�)) f�0 + �1a+ (�2 + �3a) (�0 + �1a� + �02c) + �04cg�

�
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where

H2 =
@

@ (�0; �0; �)0

n
�1 (�2 + �3a) e� (a; �2; �3; � (�)) (a� a�)o
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