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On the designation of the patterned
associations for longitudinal Bernoulli data:

weight matrix versus true correlation
structure?

Hanjoo Kim, Joseph M. Hilbe, and Justine Shults

Abstract

Due to potential violation of standard constraints for the correlation for binary
data, it has been argued recently that the working correlation matrix should be
viewed as a weight matrix that should not be confused with the true correlation
structure. We propose two arguments to support our view to the contrary for the
first-order autoregressive AR(1) correlation matrix. First, we prove that the stan-
dard constraints are not unduly restrictive for the AR(1) structure that is plausible
for longitudinal data; furthermore, for the logit link function the upper boundary
value only depends on the regression parameter and the change in covariate val-
ues between successive measurements. In addition, for given marginal means and
parameter $\alpha$, we provide a general proof that satisfaction of the standard
constraints for consecutive marginal means will guarantee the existence of a com-
patible multivariate distribution with an AR(1) structure. The relative laxity of
the standard constraints for the AR(1) structure coupled with the existence of a
simple model that yields data with an AR(1) structure bolsters our view that for
the AR(1) structure at least, it is appropriate to view this model as a correlation
structure versus a weight matrix.
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SUMMARY

Due to potential violation of standard constraints for the correlation for binary data, it has

been argued recently that the working correlation matrix should be viewed as a weight matrix
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2 H. KIM, J. HILBE, AND J. SHULTS

that should not be confused with the true correlation structure. We propose two arguments to

support our view to the contrary for the first-order autoregressive AR(1) correlation matrix. First,

we prove that the standard constraints are not unduly restrictive for the AR(1) structure that is

plausible for longitudinal data; furthermore, for the logit link function the upper boundary value

only depends on the regression parameter and the change in covariate values between successive

measurements. In addition, for given marginal means and parameter α, we provide a general

proof that satisfaction of the standard constraints for consecutive marginal means will guarantee

the existence of a compatible multivariate distribution with an AR(1) structure. The relative laxity

of the standard constraints for the AR(1) structure coupled with the existence of a simple model

that yields data with an AR(1) structure bolsters our view that for the AR(1) structure at least, it

is appropriate to view this model as a correlation structure versus a weight matrix.

Some key words: Bernoulli data; correlated binary data; first-order autoregressive AR(1) structure.

1. INTRODUCTION

Correlated binary data that occur in many settings. For example, in a study in which repeated

blood pressure measurements are collected on subjects, the binary variables Yij that take value

1 if subject i has high blood pressure and 0 otherwise, will be expected to be correlated within

subjects.

We consider longitudinal binary measurements Yi1, . . . , Yini with expected values E(Yij) =

pr(Yij = 1) = Pij , where Qij = pr(Yij = 0) = 1− Pij , and the correlation between measure-

ments Yij and Yik is given by corr(Yij , Yik) = Cijk. An important feature of correlated binary

data is that the Pij , Qij and Cijk completely determine the bivariate distribution of Yij and Yik

http://biostats.bepress.com/upennbiostat/art26



Why patterned associations are better viewed as a correlation structure 3

because the pair-wise probabilities pr(Yij = yij , Yik = yik) = pr(yij , yik) can be expressed as

pr(yij , yik) = P
yij

ij Q
1−yij

ij P yik
ik Q1−yik

ik

{
1 + Cijk

(yij − Pij)(yik − Pik)
(Pij Pik Qij Qik)1/2

}
(1)

as noted in Prentice (1988).

Prentice (1988) pointed out that the probabilities in (1) will be non-negative, i.e. pr(yij , yik) ≥

0, only if the correlations satisfy the following constraints that depend on the marginal means:

Li(j, k) ≤ corr(Yij , Yik) ≤ Ui(j, k) (2)

where

Li(j, k) = max
{
−(wijwik)1/2,−(wijwik)−1/2

}
,

Ui(j, k) = min
{
(wij/wik)1/2, (wij/wik)−1/2

}
,

and wij = PijQ
−1
ij for i = 1, . . . ,m, j = 1, . . . , ni, and k = 1, . . . , ni.

Chaganty & Joe (2004) noted that the standard bounds (2) can be extremely tight for modeling

correlated binary data with a vector of covariates xij , under the constant correlation assumption

between all measurement pairs, i.e. corr(Yij , Yik) = α for all i, and j 6= k. As a result, they sug-

gest the working correlation matrix should be viewed as a weight matrix that is not to be confused

with the true correlation matrix of the binary measurements. They also propose simple rules for

analysis with either an exchangeable weight matrix, or a first-order autoregressive AR(1) weight

matrix, for which corr(Yij , Yik) = α|j−k|. The AR(1) structure is often applied in longitudinal

studies because it forces the correlation to decrease with increasing separation in measurement

occasion; this is plausible for many biological outcomes.

In this note we argue that it is appropriate and beneficial to view the AR(1) structure as the true

correlation structure versus a weight matrix. First, in §2 we prove that the constraints (2) are not

necessarily severe for the AR(1) structure. Our proof consists of showing that satisfaction of (2)

Hosted by The Berkeley Electronic Press



4 H. KIM, J. HILBE, AND J. SHULTS

for consecutive Pij and Pij+1 implies the satisfaction of the constraints for all other Pij and Pik.

Further, we simplify (2) for the logit link function and prove that for this link function, the upper

boundary value for α only depends on the regression parameter β and the change in consecutive

covariate values on each subject. In many situations the consecutive changes will not be large.

For example, in many clinical studies, the temporal spacing of measurements is relatively small,

so that time varying covariates should not change much from one measurement to the next.

In addition, for studies that only contain cluster level covariates, e.g. sex and treatment group

indicators, the consecutive changes will be zero, in which case the upper value of the constraints

for α will be 1. In all situations, the lower boundary value for α is negative.

In general, as discussed in Chaganty & Joe (2006), satisfaction of (2) for given marginal means

Pij and parameter α is necessary but not sufficient to guarantee so-called compatibility which

refers to the existence of a multivariate binary distribution with the given marginal means Pij

and patterned correlation structure with parameter α. We therefore next prove in §3 that for the

AR(1) structure, satisfaction of the constraints (2) does guarantee the existence of a compatible

multivariate distribution; this distribution is based on a Markovian model that was discussed by

Liu & Liang (1997) and Jung & Ahn (2005).

Considered jointly, our proofs show (i) the standard bounds (2) are not necessarily unduly

restrictive and (ii) that there exists a relatively simple compatible distribution with an AR(1)

structure for a given set of marginal means and parameter α; these results suggest that is appro-

priate to view the AR(1) structure as a correlation structure versus a weight matrix. In §4 we

argue that in addition to being appropriate, there are important benefits to be gained by viewing

the AR(1) structure as the true correlation structure, versus a weight matrix.

http://biostats.bepress.com/upennbiostat/art26



Why patterned associations are better viewed as a correlation structure 5

2. STANDARD CONSTRAINTS FOR THE AR(1) STRUCTURE

For the AR(1) structure the correlation between consecutive measurements Yij and Yij+1 is α.

Theorem 1 establishes that if the standard constraints (2) are satisfied for α, and all consecutive

marginal means Pij and Pij+1, i.e.

Li(j, j + 1) ≤ α ≤ Ui(j, j + 1) (3)

for all i = 1, . . . , m, and j = 1, . . . , ni − 1, then (2) will be satisfied for the correlation α|j−k|

between any Yij and Yik.

THEOREM 1 (CONSECUTIVE BOUNDS FOR AR(1) STRUCTURE). Suppose Li(j, j + 1) ≤

α ≤ Ui(j, j + 1) for all i = 1, . . . ,m, and j = 1, . . . , ni − 1. Then for j, k = 1, . . . , ni such

that |j − k| ≥ 2,

Li(j, k) ≤ α|j−k| ≤ Ui(j, k)

for all i = 1, . . . , m.

Proof. Without loss of generality assume that j < k. We first consider the upper bounds. Let

m = min {Ui(j, j + 1), Ui(j + 1, j + 2), . . . , Ui(k − 1, k)}

= min
{
vij , (vij)−1, vij+1, (vij+1)−1, . . . , vik−1, (vik−1)−1

}
,

where vij = (wij/wij+1)1/2. Then (3) implies that αk−j ≤ mk−j where

mk−j ≤ vijvij+1 . . . vik−1 = (wij/wik)1/2, and

mk−j ≤ (vij)−1(vij+1)−1 . . . (vik−1)−1 = (wij/wik)−1/2.

Therefore αk−j ≤ min{(wij/wik)1/2, (wij/wik)−1/2} = Ui(j, k). Next, we consider the lower

bounds. The lower bounds will be satisfied when k − j is even because in this case αk−j > 0

Hosted by The Berkeley Electronic Press



6 H. KIM, J. HILBE, AND J. SHULTS

and the lower bound is always negative. We therefore only need to consider the case that k − j

is odd. Let

s = max {Li(j, j + 1), Li(j + 1, j + 2), . . . , Li(k − 1, k)}

= = max
{
−zij ,−(zij)−1,−zij+1,−(zij+1)−1, . . . ,−zik−1,−(zik−1)−1

}
,

where zij = (wijwij+1)1/2. Then (3) and the fact that k − j is odd implies that αk−j ≥ sk−j

where

sk−j ≥ −zij(zij+1)−1zij+2 . . . (zik−2)−1zik−1 = −(wijwik)1/2, and

sk−j ≥ −(zij)−1zij+1(zij+2)−1 . . . zik−2(zik−1)−1 = −(wijwik)−1/2.

Therefore αk−j ≥ max{−(wijwik)1/2,−(wijwik)−1/2} = Li(j, k). Since our results do not de-

pend on the particular choice of i, j, and k, the result of the theorem follows. ¤

Theorem 1 is useful in establishing the boundary constraints for AR(1) structure for mul-

tivariate binary data with the logit link function that is widely used in practice. Specifically

let log (wij) = x′ijβ where xij is 1× ni vector of covariates and β is 1× p vector of re-

gression coefficients. Then it follows that wijwij+1 = exp {(xij + xij+1)′β} and wij/wij+1 =

exp {(xij − xij+1)′β}. Substituting theses two expressions into (3) yields the following con-

straints for α:

max
i,j

[
− exp

{
−|(xij + xij+1)′β|

2

}]
≤ α ≤ min

i,j

[
exp

{
−|(xij − xij+1)′β|

2

}]
. (4)

Therefore, any α which satisfy the constraints (4) must also satisfy the standard bound (2) for

correlated binary data with an AR(1) structure and logit link function.

In all practical applications for which α is thought to be positive and only positive estimates

of α will be considered, the restriction on the lower bound no longer applies since it is always

negative. Moreover, the upper bound in (4) depends only on the changes in consecutive time-

http://biostats.bepress.com/upennbiostat/art26



Why patterned associations are better viewed as a correlation structure 7

varying covariates values and their corresponding regression parameters. Consequently, if the

multivariate binary data do not contain any time-varying covariates, the upper bound becomes 1.

Furthermore, even for data with time-varying covariates, the standard bounds need not necessar-

ily be too tight because the upper bounds depend only on the change in consecutive values.

3. COMPATIBLE MULTIVARIATE BINARY DISTRIBUTION WITH AR(1) STRUCTURE

Here we prove that assumption of constant correlation α between consecutive Yij , Yij+1 and

satisfaction of the constraints (2) for consecutive marginal means Pij , Pij+1 will guarantee the

existence of a compatible multivariate binary distribution with AR(1) structure parameterized

by α; this result was shown for n ≤ 14 in §7 of Chaganty & Joe (2006) through a numerical

approach.

As a first step, we consider the following Markovian model described by Liu & Liang (1997)

and Jung & Ahn (2005) for the probability of a particular realization of the random variables Yij

on subject i:

pr(yi1, . . . , yini) = pr(Yi1 = yi1)
ni∏

j=2

pr(Yij = yij |Yij−1 = yij−1) (5)

where pr(yi1, . . . , yini) = pr(Yi1 = yi1, . . . , Yin = yini).

Next, we prove the following theorem. A shorter proof for the following result is avail-

able in the technical report by Shults et al. (Shults, J., Sun, W. & Tu, X. 2006. On the

violation of bounds for the correlation in generalized estimating equation analyses of bi-

nary data from longitudinal trials. UPenn Biostatistics Working Papers. Working Paper 8,

http://biostats.bepress.com/upennbiostat/papers/art8.)

THEOREM 2 (CONSTANT α AND MARKOVIAN MODEL YIELDS AR(1) STRUCTURE).

Consider the Markovian model in (5) with the constant correlation between any two consecutive

Hosted by The Berkeley Electronic Press



8 H. KIM, J. HILBE, AND J. SHULTS

observation on a subject, i.e. corr(Yij , Yij+1) = α for all i = 1, . . . , m and j = 1, . . . , ni − 1.

Then the correlation structure of the measurements for this model is given by AR(1), i.e.

corr(Yij , Yik) = α|j−k| for all i = 1, . . . , m and j, k = 1, . . . , ni.

A proof is given in the Appendix. Next, for a given set of marginal means Pij and param-

eter values α, satisfaction of (3) for all consecutive Pij−1 and Pij guarantees that all bivari-

ate distributions for Yij−1 and Yij will be valid. Consequently, a compatible joint distribution

with the given marginal means and corr(Yij , Yik) = α|j−k| does exist by taking products of

the Markovian model in (5) over all i = 1, . . . ,m, i.e.
∏m

i=1 pr(yi1, . . . , yini) =
∏m

i=1 pr(Yi1 =

yi1)
∏ni

j=2 pr(Yij = yij |Yij−1 = yij−1). Therefore, we have

pr(y11, . . . , ymni) =
m∏

i=1

pr(Yi1 = yi1)
ni∏

j=2

pr(yij−1, yij)
pr(Yij−1 = yij−1)

(6)

where pr(yij−1, yij) is defined using(1) in §1 evaluated at Cij−1j = α.

Lastly, note that if a compatible distribution exists with given means Pij and correlations

corr(Yij , Yik) = α|j−k|, then the constraints in (2) will be satisfied because the bivariate prob-

abilities pr(yij , yik) will clearly be non-negative, since they can be obtained by summing the

appropriate probabilities in the multivariate distribution. However, Theorem 1 was helpful to es-

tablish that even if data are not distributed according to the multivariate Markovian model (6),

then satisfaction of the constraints (2) for consecutive marginal means will guarantee satisfaction

of (2) for all marginal means.

4. DISCUSSION

In this note we have proven (Theorem 1) that the standard constraints on α are not necessarily

severe for the AR(1) structure. In addition, we have proven that for given marginal means and

parameter α, there will exist a relatively simple compatible multivariate distribution with an

http://biostats.bepress.com/upennbiostat/art26



Why patterned associations are better viewed as a correlation structure 9

AR(1) structure. Our goal was to argue in favor of designating the AR(1) structure as a true

correlation structure versus a weight matrix, for longitudinal binary data. We suggest that this

designation may be appropriate for other structures as well, although more work may be needed

to establish this conclusion.

Admitting that our working structure plays the role of a correlation structure could encourage

us to think more carefully about our choice of structure and the implications of improper selec-

tion. For example, this note was motivated by the authors recent experience with submission to

an applied statistics journal of a paper that discussed methods for choosing the correct corre-

lation structure for binary data; one reviewer mentioned in three places, the recent publication

that promotes the view that the AR(1) structure should be viewed as a weight matrix versus a

correlation structure. These multiple citations implied the question “Why work on choosing a

correlation structure for binary data when the working structure should be viewed as a weight

matrix that is not to be confused with the true correlation structure of the data?”

More generally, we note that wording can have an important and potentially detrimental im-

pact on research. For example, we suspect that the early designation of the correlation parameters

as nuisance parameters for GEE, discouraged efforts to implement the same wide variety of pat-

terned correlation matrices that have been applied for maximum likelihood analysis of normally

distributed data, due to the fact that this designation encouraged researchers to dismiss the cor-

relation parameters as unimportant.

There are also potential practical drawbacks to viewing working structures as weight matrices,

because lack of a defined role for the structure could result in ambiguity with respect to selection

of the estimated value of the weight parameter α. For example, the proponents of designating α

as a weight parameter (Chaganty & Joe, 2004) suggest choosing the value of α for the AR(1)

weight matrix from within an interval of potential values. For data that suggest strong dependence

Hosted by The Berkeley Electronic Press



10 H. KIM, J. HILBE, AND J. SHULTS

they suggest choosing a value for α that is the midpoint of the estimated bounds, or that is in the

interval (0.70, 0.90). That their approach requires the analyst to choose from an infinite number

of possible values for α suggests that their weight-based approach could be difficult to implement

in practice.

As Hardin & Hilbe (2002) pointed out, priority factors for choosing an appropriate generalized

estimating equations (GEE) (Liang & Zeger, 1986) model are the scientific questions of interest,

the size and nature of the clusters, and the nature of the covariates. Therefore, viewing a patterned

matrix as a correlation structure as opposed to merely treating it as a weight matrix should lead

to searching for a limited number of candidate structures that are plausible in the context of

the investigation. Careful modeling of the correlations is admittedly difficult due to complicated

boundary conditions for α; however, promising research is being done in this area. For example,

Chaganty & Deng (2007) have derived constraints for α for familial correlation structures that

are useful in analysis of genetic data. Furthermore, Qaqish (2003) has described a wide class

of multivariate distributions that can be used to yield Bernoulli data with particular patterned

correlation structures.

The theory of optimal estimating functions of Godambe (1960, 1991) can be used to show

that we will suffer a loss in efficiency in estimation of the regression parameter if the corre-

lation structure is misspecified. Further study of the impact of incorrect specification for new

correlation structures, in addition to further development of methods for choosing between and

implementing those structures in GEE analysis of binary data should therefore be beneficial.

http://biostats.bepress.com/upennbiostat/art26
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APPENDIX

Proof

Proof of Theorem 2. The proof is by induction. First note that for binary data, E(YijYij+1) = pr(Yij =

1, Yij+1 = 1) so that

corr(Yij , Yij+1) = {pr(Yij = 1, Yij+1 = 1)− PijPij+1} /(PijPij+1QijQij+1)1/2. (A1)

Since corr(Yij , Yij+1) = α by the assumption in Theorem 2, rearranging (A1) gives

pr(Yij = 1, Yij+1 = 1) = PijPij+1 + α(PijPij+1QijQij+1)1/2. (A2)

Without loss of generality assume that k > j. For the first step in the induction argument, let k =

j + 1. We need to show that the Markovian model (5) coupled with corr(Yij , Yij+1) = α implies that

corr(Yij , Yij+2) = α2, which is equivalent to showing that

pr(Yij = 1, Yij+2 = 1) = PijPij+2 + α2(PijPij+2QijQij+2)1/2.

Thus,

pr(Yij = 1, Yij+2 = 1) =
∑

y∈{0,1}
pr(Yij = 1, Yij+1 = y, Yij+2 = 1)

=
∑

y∈{0,1}
pr(Yij+2 = 1|Yij+1 = y)pr(Yij+1 = y|Yij = 1)Pij

=
∑

y∈{0,1}

pr(Yij+2 = 1, Yij+1 = y)
pr(Yij+1 = y)

pr(Yij = 1, Yij+1 = y)

=
pr(Yij+2 = 1, Yij+1 = 1)

Pij+1
pr(Yij = 1, Yij+1 = 1)

+
Pij+2 − pr(Yij+1 = 1, Yij+2 = 1)

Qij+1

{
Pij − pr(Yij = 1, Yij+1 = 1)

}

= PijPij+2 + α2(PijPij+2QijQij+2)1/2

where the second equality follows from the Markovian model (5) and the last expression is obtained from

(A2), and some algebra. Next, assume that corr(Yij , Yij+k) = αk is true for some k > j + 1. Then we

can use almost identical calculations as for k = j + 1 to show that

pr(Yij = 1, Yij+k+1 = 1) =
∑

y∈{0,1}
pr(Yij = 1, Yij+k = y, Yij+k+1 = 1)

Hosted by The Berkeley Electronic Press



12 H. KIM, J. HILBE, AND J. SHULTS

= PijPij+k+1 + αk+1(PijPij+k+1QijQij+k+1).

Therefore, corr(Yij , Yij+k+1) = αk+1. ¤
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