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Methodological Issues in the Study of the
Effects of Hemoglobin Variability

Marshall Joffe, Wei Yang, Steve Brunelli, and Harold Feldman

Abstract

We consider estimating the effect of hemoglobin variability on mortality in hemodial-
ysis patients. Causal effects can be defined as comparisons of outcomes under dif-
ferent hypothetical interventions. Defining measures of the effect of hemoglobin
variability and clinical outcomes is complicated by the fact that hypothetical in-
terventions on variability used to define its effect inevitably involve manipulation
of related variables. We propose a model-based definition of the effect of the
hemoglobin variability as a parameter for variability in a causal model for the
effect of an overall intervention on hemoglobin levels over time. We consider
this problem using history-adjusted marginal structural models, and apply this ap-
proach to data from a large observational database. We consider issues arising
when the variable of interest is endogenous, and consider in principle alternate
estimands.
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Abstract

We consider estimating the effect of hemoglobin variability on mortality in hemodialysis

patients.  Causal effects can be defined as comparisons of outcomes under different hypothetical

interventions.  Defining measures of the effect of hemoglobin variability and clinical outcomes is

complicated by the fact that hypothetical interventions on variability used to define its effect

inevitably involve manipulation of related variables.  We propose a model-based definition of

the effect of the hemoglobin variability as a parameter for variability in a causal model for the

effect of an overall intervention on hemoglobin levels over time.  We consider this problem

using history-adjusted marginal structural models, and apply this approach to data from a large

observational database.  We consider issues arising when the variable of interest is endogenous,

and consider in principle alternate estimands.
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1 Introduction

Individuals with end-stage renal disease dependent on chronic hemodialysis commonly

manifest anemia.  That anemia is typically treated with a combination of two therapies: 

erythropoetin (EPO) and intravenous iron.  Despite these therapies, or, in part, because of the

way that they are administered, hemoglobin (Hgb) levels often vary substantially over time. 

Further, the amount of this individual variability in Hgb varies substantially among individuals

(Lacson, Ofshun and Lazarus 2007;Berns, Elzein, Hafez, Fishbane, Meisels and Deoreo

2003;Fishbane and Berns 2005).  It has been hypothesized that increased Hgb variability is

associated with and leads to increased mortality. 

Understanding of the effect of Hgb variability requires an appropriate definition of the

causal effects of that variability, as well as consideration of the assumptions under which those

effects are estimable.  Definition and estimation of the effects of Hgb variability is complicated

by two factors:  Hgb variability is not definable instantaneously, but only over time, and Hgb

itself and its variability are subject to human control or manipulation only indirectly and

incompletely.  After considering how to define the effects of Hgb variability, we outline

appropriate methods for estimating the effect of Hgb variability on mortality.  We then apply

these methods to data obtained from the Fresenius Medical Corporation, a large national chain

provider of hemodialysis in the U.S.

2 Defining the Effect of Hemoglobin Variability

2.1 The Potential Outcomes Model

Under the potential outcomes model(Neyman 1990;Rubin 1974), causal effects are
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defined as comparisons of what would happen to the same individual or group under two or

more potential manipulations or conditions.  Hgb variability is not meaningful instantaneously,

but is meaningful as a description of how Hgb varies over time.   Thus, in considering possible

manipulations, it is most straightforward to consider directly manipulating a person’s Hgb level

over a period of time; Hgb variability would then be a function of the fluctuations in Hgb over

time under this planned manipulation.  

We formalize these ideas using the potential outcomes model.  Let  denote a subject’s

Hgb level at time k, and let  indicate whether the subject is alive at time k (1=dead).  We use

overlines to denote the history of a variable; thus,  denotes the course of Hgb

through time k.  Let  denote the outcome that would have been observed at time k had a

subject’s Hgb level through time k-1 been manipulated achieve Hgb history .  Causal effects

are comparisons of outcomes  and  for different Hgb histories ,  for the same

individual or group (Robins 1986;Robins 1987).

2.2 History-adjusted Marginal Structural Models

One way to parametrize these comparisons is through history-adjusted marginal

structural models (HA-MSMs)(van der Laan, Petersen and Joffe 2005b).  HA-MSMs can be used

to model the effect of Hgb levels over a particular interval on the outcome following that

interval.  We use double subscripting to refer to the history of a process over a specified interval. 

Thus,  refers to a potential exposure history starting at k and lasting 

http://biostats.bepress.com/upennbiostat/art19
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intervals.  HA-MSMs model the expectation or distribution of  given some function of

the observed covariates measured through time k  for some known function ;

 can be the null set, the entire history , or some function thereof (e.g., the current value

of covariates ).   Thus, these are models for  or for .  

For discrete-time failure outcomes, we consider models of the form 

 can be a standard link function (e.g., logit) or complementary log-log.   is used to

parametrize 1) the association of “baseline” covariates  with the potential outcomes, 2) the

effect of the exposure (Hgb) experienced from k to , and 3) any modification of the

exposure effect by “baseline” covariates.   For simplicity, we suppose for now that there is no

modification (on the chosen scale) of the effect of Hgb variability by covariates ; we may thus

write ;  represents the association of covariates  with the

outcome, and  represents the effect of Hgb exposure over time.  

2.3 Defining the Effect of Hemoglobin Variability

We may choose to represent the effect  of Hgb exposure as being a function in part of

Hgb variability under that exposure pattern.  For any , one might summarize an exposure

(1)
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pattern through a linear regression: ; here  and  are the least squares

slopes and intercepts, and  is the residual from this regression.  The residual variability of the

 after adjusting for the regression line may be described as ; we call  the

residual standard deviation of Hgb.  

One way to model the effect of hemoglobin over the period  is as a function of

the intercept, slope, and residual standard deviation; e.g., .  In this

model, the effect of Hgb is expressed through separate regression parameters for the Hgb

intercept, slope, and residual standard deviation.  We call the regression parameter for the

residual standard deviation the effect of Hgb variability, as it represents the effect of variability

in Hgb apart from overall Hgb levels and trends.

2.4 Difficulties with Definition

Hgb is not modified directly.  For many other interventions whose effects are of interest

(e.g., taking a particular dose of a drug), the immediate goal of the intervention (e.g., the amount

of drug ingested) may be achieved in a standardized fashion (e.g., ingestion of the desired

amount); the exposure  is simply set by some person (e.g., physician or patient).  The standard

approach to modify Hgb in hemodialysis patients is through a combination of synthetic

erythropoetin (EPO) and intravenous (IV) iron.  It may be impossible to specify in advance the

dose of these agents required over time to achieve the Hgb goals, and so , while strongly

affected by human intervention, is not as completely under human control.  

http://biostats.bepress.com/upennbiostat/art19
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To speak formally about the effect of Hgb variability, or of Hgb in general, it is necessary

to consider the hypothetical intervention that might be applied to get Hgb to reach a certain level

(Robins 1986;Rubin 1986).  Although current technology does not allow one to completely

control Hgb levels, one can imagine interventions and technology that could lead to closer

control.  In addition, one will need to assume that the effect of Hgb does not depend on the

method used to make Hgb reach those levels (e.g., different combinations of EPO and iron that

might lead to identical Hgb levels), at least among the several methods used among subjects in

the study and in the future to achieve given Hgb levels.  This assumption does not imply that the

methods used to change Hgb exert an effect on mortality only through their effect on Hgb levels;

in other words, EPO or IV iron may affect mortality partly by modifying Hgb and partly through

other mechanisms.  These other pathways through which EPO or iron affect mortality do not

prevent meaningful definition of the effect of Hgb on mortality.

3 Identification and Estimation

We use methods proposed for HA-MSMs  for estimating the effect of Hgb, including the

effect of variability.  This approach uses inverse probability of treatment weighting to control for

confounding, and inverse probability of censoring weighting to adjust for censoring.  To estimate

parameters in our HA-MSM  (1), we fit the corresponding observed

data model using weights.   Let 

and , where the statement  means that the (random
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variable) Hgb at time k equals its observed value .  Let  if a subject is not lost to follow-

up between k and k+1, 0 if the subject is lost to follow-up.  Let

 and let .   The

weights used for each person-interval are ; the first term

( ) is the stabilized inverse probability of treatment weight, and the second term

( ) is the stabilized inverse probability of censoring weight.  Fuller discussion

and justification of this weighting scheme for use in MSMs and HA-MSMs appear elsewhere

(Hernan, Brumback and Robins 2000;van der Laan et al. 2005b).  

The treatment weights derive from models of Hgb levels, not for models of Hgb

variability.  This is formally justified because we are modeling the effect of a pattern of Hgb (of

which variability is a part), not directly modeling the effect of variability.  Additionally, because

our measures of variability derive from monthly Hgb measures, variability is defined only over a

longer time scale.  Directly modeling variability would require modeling a composite variable

defined from a number of individual measurements over several months.  The longer time frame

could interfere with the ability of inverse probability weighting to control confounding of the

effect of Hgb by time-varying covariates, especially if Hgb level has immediate effects on other

variables which quickly affect subsequent Hgb. 

In modeling Hgb level, we divided Hgb levels into four categories:  #9.7 g/dl, 9.7-10.6

g/dl, 10.6-11.3 g/dl, and >10.3 g/dl.  We then used logistic regression models for unordered

http://biostats.bepress.com/upennbiostat/art19
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categorical outcomes to model Hgb levels.  For comparison, we considered models for ordered

categorical outcomes; the fit of the proportional odds model, one such model, was substantially

poorer.  Further, since the models for Hgb are not the main target of our inference, the improved

interpretability of the simpler ordinal logistic regression model is of relatively little concern.  We

considered several approaches to modeling current Hgb as a function of previous Hgb: in some,

we modeled current Hgb directly as a function of Hgb levels in previous months; in others, we

modeled current Hgb level as a function of previous Hgb levels summarized by the intercept,

slope, and standard deviation of an individual’s observed Hgb levels over the previous six

months.  Since the model for Hgb level is a nuisance model; thus, we are less concerned with

interpretability of these models than we are for the HA-MSM for mortality.  Similarly, we used

logistic regression to model censoring as a discrete-time process.  We derived weights as above

from these models.

Table 1 presents selected parameters from a polychotomous regression model for Hgb

levels; in particular, it presents parameters modeling the comparison of the lowest Hgb category

to the highest Hgb category.  Earlier Hgb levels are the variable which most strongly predicts

current Hgb.  Interestingly, having moderately high Hgb is associated with a lower conditional

probability of a having a low Hgb the next month than having a high Hgb.  Two of the strongest

other predictors of Hgb were the treatments aiming at increasing Hgb:  EPO dose and iron dose. 

In both cases, higher doses in the previous month were associated with lower probabilities of

having low Hgb later (controlling for the other variables in the model).  Interestingly, higher

earlier EPO dose was associated with higher probabilities of having low current Hgb; this could

reflect the fact that these are subjects with higher levels of EPO required to maintain a given Hgb

Hosted by The Berkeley Electronic Press
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level.  Higher albumin, a marker for good nutritional status, is associated with lower probability

of having low Hgb, and higher ferritin is associated with higher probability of low Hgb. 

Figure 1 presents modified box plots of the inverse probability of treatment weights, the

censoring weights, and the overall weights, both stabilized and unstabilized.  Not surprisingly,

the treatment weights are much more variable than the censoring weights, and so these play a

larger role in generating the overall weights and the instability of our estimates.  As expected,

the stabilized weights are less variable than the unstabilized one.  Interestingly, the proportion of

the total weight contributed by any single observation is larger for the stabilized weights (0.11%

versus 0.01%). 

We fit logistic regression HA-MSMs to the data, using the stabilized weights derived

above.  Weights which vary too much can interfere with inference (Elliott and Little 2000); these

weights can reflect the fact that some levels of exposure are extremely rare for subjects with

certain prior exposure and covariate levels.  Highly variable weights can lead (properly) to large

standard errors and imprecise inference.  In the presence of large and highly variable weights,

weight trimming is sometimes applied (Elliott and Little 2000).  In this approach weights larger

than (or smaller than) a specified level are trimmed to that level; for example, if the level used

for trimming were 10, a subject whose weight was estimated to be 50 based on the inverse

probability weighting methods would be reassigned a weight of 10. 

It is not always clear what level should be used for trimming.  In the survey sampling

literature, one approach is to choose weights to minimize the model-based mean squared error

(MSE).  Let  denote the estimate where weights greater than t are trimmed.  If one assumes

that the untrimmed estimate  is asymptotically unbiased, we can naively estimate the MSE of

http://biostats.bepress.com/upennbiostat/art19
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a trimmed estimator by ; we can then choose the trimming level t to minimize

the MSE.  

Table 2 provides estimates of the effect of Hgb on mortality using different schemes for

trimming.  Higher initial Hgb (intercept) and greater increases in Hgb over time (slope) are both

associated with less mortality.  Weighting decreases the magnitude of these associations;

increasing trimming increases the magnitude, as it produces analyses closer to the unweighted

ones.  Thus, at least some of the associations between lower Hgb and mortality appears to be due

to time-varying confounding.  Increasing residual variability (standard deviation) is associated

with more mortality; unlike the other Hgb parameters, its magnitude appears to increase with

weighting.  

Table 3 presents the model-based MSE for each Hgb parameter for each trimming

scheme.  For residual standard deviation, the MSE is minimized when trimming weights at 100.

For the intercept and slope parameters, the untrimmed weights produce the smallest MSE.

4 Alternative Estimands

The possible feedback mechanisms between Hgb and EPO or IV iron may pose some

problems for defining the effect of treatment.   Figure 2 shows possible relations among Hgb

levels, EPO dose, and mortality.  EPO dose affects Hgb, and Hgb levels also influence

subsequent dosing of EPO.  Finally, we draw arrows from EPO to mortality to indicate that EPO

may have a direct effect on mortality separate from any effect of EPO on mortality mediated by

Hgb.

Hosted by The Berkeley Electronic Press
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In characterizing the effect of Hgb in this setting, we can consider both the overall effect

of Hgb on mortality and the direct effect, controlling for EPO use.  The direct effect of Hgb on

mortality is the effect of Hgb on mortality were we to ensure that EPO dosing is not affected by

Hgb (or alternatively, were the direct effect of EPO somehow to be blocked); we imagine

intervening to change EPO dosing patterns from their current dependence on Hgb.  The overall

effect of Hgb is the effect of Hgb not controlling for EPO; that is, the effect of Hgb were EPO

dosing to follow the patterns it takes in our data.  No intervention on EPO is contemplated in

defining overall effects.  Figures 3 and 4 show two manipulated graphs; the first represents the

direct effect of Hgb (controlling for EPO as a possible intermediate and also as a confounder);

the second represents the overall effect of Hgb, controlling for EPO only as a potential time-

varying confounder; the second represents the overall effect of Hgb, controlling for EPO only as

a potential time-varying confounder.  

If we are interested in studying the “pure” or “biologic” effect of Hgb, we should  be

more interested in the direct effect.  The direct effect would represent roughly the effect of an

intervention which alters Hgb but does not affect mortality through other pathways.  The HA-

MSM approach that we have adopted instead takes the estimand to be the overall effect of Hgb. 

Methods to estimate the direct effect are more involved; it is not clear how estimates of Hgb

effect would differ from the overall effect estimates reported here.

5 Discussion

There are widely divergent views on the propriety of discussing the causal effect of

variables for which direct intervention is not possible.  Some have adopted the slogan or motto,

http://biostats.bepress.com/upennbiostat/art19
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“no causation without manipulation,” (Rubin 1986); this slogan can be taken to mean that, if the

variable whose effect is being considered is not subject to manipulation in the current setting, it

is meaningless to consider its causal effect.  In this view, not only is it meaningless to consider

the effects of such nonmanipulable variables as sex or race, but it is also meaningless to consider

the effect of medication usage (as opposed to treatment assignment) in a randomized trial if there

is noncompliance to the assigned treatment (Imbens and Rubin 1997).  A complementary view is

that, if there are multiple versions of the intervention (i.e., different ways to achieve different

Hgb patterns), and those versions lead to different outcomes (e.g., different EPO and iron dosage

patterns that lead to identical Hgb patterns have different consequences), it is not meaningful to

speak of the causal effect of the intervention (Rubin 1986); in this view, methods developed

primarily to answer causal questions may not be of interest in these settings.  

In our opinion, these attitudes are too strong, as they forbid the consideration of

important causal questions.  In common usage, people speak of the causal effect of medication

use or of Hgb levels; it is a useful exercise to attempt to make this common understanding more

precise.  Consideration of the effects of variables that are not subject to direct manipulation can

serve to advance understanding of the mechanisms that lead to clinical outcomes of interest (e.g.,

mortality) and can lead to prediction of the effects of interventions to change this variable.

A different view is that methods developed for answering causal questions, such as the

HA-MSM estimand (estimated using the inverse probability weighted estimator), are of interest

even when it is difficult to imagine direct intervention on the variable of interest (e.g., Hgb)

given current technology (van der Laan, Haight and Tager 2005a).  While we sympathize with

this viewpoint in general, it is unsatisfying in the current setting, because it does not fully
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address the questions motivating our analysis (see Hernan (2005) for discussion in an analogous

setting); part of the motivation for considering the effect of Hgb variability is to consider what

would happen were we to use a hypothetical intervention (e.g., a new pharmacologic agent or

new reimbursement policies for EPO) to modify Hgb levels and variability.  The HA-MSM

estimand may estimate the effect of Hgb patterns under the current mixture of Hgb management

protocols leading to those patterns (van der Laan et al. 2005a).  

In this setting, we would hope that Hgb levels could serve as a surrogate for the

intervention that sets Hbg levels over time at particular values and so fixes Hgb variability. 

These ideas might be formalized in terms of the joint effects of an actual intervention applied for

Hgb management and of the Hgb levels themselves (van der Laan et al. 2005a;Pearl 2001;Robins

and Greenland 1992;Taylor, Wang and Thiebaut 2005;Freedman, Graubard and Schatzkin

1992); in this view, Hgb level (including its variability) would be a good surrogate for the actual

intervention if the direct effect of method of managing those levels (i.e., that part of its effect that

is not mediated by its effect on Hgb level) were small.  Methods for evaluating the usefulness of

Hgb as a surrogate are beyond the scope of this paper. 

In conclusion, we believe that it is worthwhile to try to define and estimate the effect of

Hgb variability, and we have attempted to do so.  Nonetheless, we are cognizant of the

difficulties involved, and so caution in interpretation is warranted.  Nonetheless, our analysis and

interpretation suggest that increased Hgb variability may lead to adverse outcomes.  Stronger

evidence might be obtained by a trial with arms with tighter and less tight control of Hgb levels.

http://biostats.bepress.com/upennbiostat/art19
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Table 1.  Logistic regression model for monthly hemoglobin.

Variable Coefficient Standard error chi-squared d.f. p-value

MONTH 2507 75 <.0001

Hb previous month 3.07 0.02 81664 9 <.0001

0.74 0.01

-1.11 0.01

HB two months ago 0.36 0.01 3803 9 <.0001

0.22 0.01

-0.06 0.01

HB three months ago -0.08 0.01 551 9 <.0001

-0.02 0.01

0.04 0.01

HB four months ago 0.19 0.01 959 9 <.0001

0.10 0.01

-0.05 0.01

HB five months ago 0.38 0.01 2459 9 <.0001

0.16 0.01

-0.09 0.01

HB six months ago 0.29 0.01 1589 9 <.0001

0.12 0.01

-0.06 0.01

CO2 previous month 0.0167 0.0022 65 3 <.0001

CO2 2 months ago -0.0120 0.0023 38 3 <.0001

CO2 3 months ago -0.0202 0.0022 82 3 <.0001

SQRT_FERRITIN previous month 0.0655 0.0018 1381 3 <.0001

SQRT_FERRITIN 2 months ago -0.0261 0.0021 177 3 <.0001

SQRT_FERRITIN 3 months ago -0.0267 0.0017 237 3 <.0001

IRON previous month -0.0033 0.0004 62 3 <.0001

IRON 2 months ago -0.0034 0.0004 64 3 <.0001

IRON 3 months ago 0.0004 0.0004 1 3 0.8314

TSAT previous month 0.0080 0.0010 71 3 <.0001

TSAT 2 months ago 0.0046 0.0010 24 3 <.0001

TSAT 3 months ago -0.0018 0.0010 5 3 0.1499

Hosted by The Berkeley Electronic Press



16

URR previous month -0.0056 0.0014 27 3 <.0001

URR 2 months ago -0.0003 0.0015 6 3 0.1032

URR 3 months ago -0.0008 0.0015 2 3 0.6458

KTV previous month -0.2011 0.0480 18 3 0.0005

KTV 2 months ago 0.0132 0.0498 7 3 0.0654

KTV 3 months ago -0.0091 0.0485 4 3 0.2501

CALCIUM previous month 0.0714 0.0105 74 3 <.0001

CALCIUM 2 months ago 0.0121 0.0115 4 3 0.2847

CALCIUM 3 months ago -0.0285 0.0105 13 3 0.0057

PTH previous month 0.0003 0.0000 73 3 <.0001

PTH 2 months ago -0.0001 0.0001 4 3 0.2256

PTH 3 months ago -0.0001 0.0000 13 3 0.0043

PHOSPH previous month -0.0442 0.0047 93 3 <.0001

PHOSPH 2 months ago 0.0347 0.0050 54 3 <.0001

PHOSPH 3 months ago 0.0443 0.0047 96 3 <.0001

AST_GOT previous month -0.0031 0.0003 117 3 <.0001

AST_GOT 2 months ago -0.0007 0.0003 26 3 <.0001

AST_GOT 3 months ago 0.0002 0.0003 9 3 0.0234

ALBUMIN previous month -0.2795 0.0247 232 3 <.0001

ALBUMIN 2 months ago 0.0082 0.0262 6 3 0.1348

ALBUMIN 3 months ago 0.0633 0.0248 18 3 0.0005

SQRT_EPO previous month -0.0141 0.0001 17543 3 <.0001

SQRT_EPO 2 months ago 0.0069 0.0001 3400 3 <.0001

SQRT_EPO 3 months ago 0.0072 0.0001 4626 3 <.0001

SQRT_IRONDOSE previous month -0.0365 0.0007 3341 3 <.0001

SQRT_IRONDOSE 2 months ago -0.0155 0.0008 453 3 <.0001

SQRT_IRONDOSE 3 months ago -0.0015 0.0007 8 3 0.0369

Description of selected variables in the model C02: bicarbonate concentration (in blood); SQRT_FERRITIN: the square root of the ferritin

concentration; IRON: iron concentration; TSAT: transferring saturation; URR: urea reduction ratio; CALCIUM: calcium concentration; PTH:

parathyroid hormone concentration; PHOSPH: phosphate concentration; ALBUMIN: albumin concentration; SQRT_EPO; square root of the

erythropoetin dose; SQRT_IRONDOSE: square root of the intravenous iron dose.
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Table 2: MSM/6 months exposure window/weight calculated using previous 6 months' hgb value

M SM M SM (W#100) M SM (W#10) Unweighted M odel

Parameter beta se 95%  CI p beta se 95%  CI p beta se 95%  CI p beta se 95%  CI p

Intercept -2.287 3.292 -8.740 4.165 0.487 -0.095 2.188 -4.383 4.193 0.965 1.635 1.489 -1.283 4.552 0.272 1.813 0.799 0.246 3.379 0.023

H gb Intercept -0.168 0.142 -0.447 0.111 0.237 -0.283 0.091 -0.462 -0.104 0.002 -0.367 0.036 -0.437 -0.297 <.0001 -0.343 0.020 -0.382 -0.304 <.0001

H gb Slope -0.515 0.452 -1.402 0.372 0.255 -0.857 0.308 -1.461 -0.252 0.006 -1.162 0.123 -1.403 -0.922 <.0001 -1.278 0.069 -1.414 -1.143 <.0001

H gb Residual SD 0.656 0.242 0.181 1.131 0.007 0.514 0.182 0.157 0.872 0.005 0.410 0.084 0.246 0.574 <.0001 0.292 0.039 0.217 0.368 <.0001

Age (per year) 0.043 0.006 0.031 0.055 <.0001 0.039 0.004 0.030 0.047 <.0001 0.036 0.002 0.032 0.041 <.0001 0.033 0.001 0.031 0.036 <.0001

Sqrt Duration ESRD 0.123 0.062 0.002 0.244 0.046 0.161 0.049 0.065 0.257 0.001 0.210 0.033 0.145 0.274 <.0001 0.181 0.018 0.146 0.216 <.0001

Sex (Fem ale) -0.212 0.102 -0.412 -0.011 0.038 -0.142 0.084 -0.308 0.023 0.092 -0.145 0.056 -0.254 -0.036 0.009 -0.177 0.029 -0.235 -0.120 <.0001

Race (Asian/Pacific islander) -0.464 0.241 -0.936 0.008 0.054 -0.424 0.229 -0.873 0.025 0.064 -0.301 0.199 -0.692 0.089 0.130 -0.114 0.122 -0.352 0.124 0.347

Race (B lack) -0.320 0.092 -0.502 -0.139 0.000 -0.271 0.069 -0.406 -0.136 <.0001 -0.286 0.054 -0.392 -0.179 <.0001 -0.318 0.030 -0.377 -0.259 <.0001

Race (Native Am erican) -0.000 0.244 -0.478 0.478 1.000 0.009 0.244 -0.469 0.487 0.970 0.089 0.212 -0.326 0.503 0.676 0.054 0.134 -0.207 0.316 0.683

Race (O ther) 0.064 0.239 -0.404 0.532 0.788 0.101 0.230 -0.350 0.551 0.661 -0.051 0.135 -0.316 0.215 0.709 -0.125 0.072 -0.266 0.016 0.082

Adult O nset Diabetes 0.126 0.124 -0.117 0.368 0.310 0.232 0.086 0.064 0.400 0.007 0.295 0.056 0.186 0.404 <.0001 0.262 0.030 0.204 0.320 <.0001

Juvenille Diabetes 0.380 0.128 0.130 0.631 0.003 0.413 0.124 0.170 0.655 0.001 0.479 0.110 0.262 0.696 <.0001 0.628 0.066 0.500 0.756 <.0001

Epoetin dose (per 10,000) -0.006 0.009 -0.024 0.011 0.494 -0.008 0.008 -0.024 0.008 0.358 -0.001 0.007 -0.014 0.012 0.859 0.000 0.004 -0.008 0.008 0.994

URR (per 10) 0.501 0.759 -0.986 1.988 0.509 0.038 0.554 -1.048 1.123 0.946 -0.450 0.423 -1.279 0.380 0.288 -0.428 0.225 -0.869 0.013 0.057

URR Square (per 100) -0.064 0.063 -0.188 0.060 0.315 -0.023 0.045 -0.110 0.065 0.610 0.021 0.034 -0.045 0.088 0.528 0.027 0.018 -0.008 0.062 0.133

Serum  album in -1.045 0.144 -1.328 -0.762 <.0001 -1.123 0.100 -1.318 -0.928 <.0001 -1.137 0.079 -1.292 -0.982 <.0001 -1.151 0.044 -1.238 -1.065 <.0001

AST/SGO T (per 25) -0.023 0.028 -0.077 0.032 0.413 -0.012 0.025 -0.060 0.037 0.640 0.026 0.023 -0.020 0.071 0.272 0.103 0.029 0.047 0.159 0.000

Bicarbonate -0.051 0.025 -0.100 -0.003 0.038 -0.030 0.015 -0.060 -0.001 0.042 -0.019 0.009 -0.037 -0.000 0.045 -0.017 0.005 -0.027 -0.006 0.001

Calcium 0.090 0.061 -0.030 0.210 0.144 0.059 0.048 -0.036 0.154 0.224 0.040 0.036 -0.031 0.110 0.269 0.090 0.019 0.052 0.127 <.0001
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Ferritin (per 100) 0.011 0.006 -0.001 0.024 0.068 0.011 0.005 0.001 0.022 0.030 0.013 0.004 0.004 0.021 0.003 0.017 0.003 0.012 0.022 <.0001

Phosphate 0.026 0.042 -0.056 0.108 0.530 0.057 0.027 0.004 0.110 0.034 0.069 0.019 0.032 0.105 0.000 0.066 0.010 0.046 0.086 <.0001

TSAT -0.012 0.006 -0.024 -0.001 0.030 -0.014 0.005 -0.024 -0.003 0.012 -0.011 0.004 -0.020 -0.002 0.015 -0.010 0.003 -0.015 -0.005 <.0001

H gb -0.026 0.100 -0.223 0.171 0.795 0.047 0.070 -0.091 0.185 0.506 0.100 0.033 0.035 0.164 0.002 0.074 0.018 0.038 0.109 <.0001

Iron (per 50) -0.013 0.187 -0.379 0.354 0.946 0.097 0.138 -0.173 0.367 0.480 0.104 0.109 -0.109 0.318 0.338 0.042 0.062 -0.079 0.163 0.500

K TV 0.738 0.461 -0.166 1.641 0.110 0.522 0.388 -0.238 1.283 0.178 0.259 0.334 -0.395 0.914 0.437 -0.153 0.170 -0.486 0.179 0.367

PTH  (per 20) 0.001 0.001 -0.002 0.004 0.560 0.000 0.001 -0.002 0.003 0.812 0.001 0.001 -0.002 0.003 0.615 0.002 0.001 0.000 0.003 0.020

Irondose 0.304 0.124 0.061 0.547 0.014 0.201 0.081 0.043 0.360 0.013 0.143 0.041 0.063 0.223 0.000 0.092 0.021 0.051 0.134 <.0001
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Table 3.  Estimated mean squared error for different weighted estimators

Parameter MSM MSM (W#100) MSM (W#10) Unweighted model

Intercept 0.14 0.15 0.20 0.18

Slope 0.45 0.46 0.66 0.77

Residual standard deviation 0.24 0.23 0.26 0.37
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Figure 1
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Figure 2.  Directed Acyclic Graph showing relationship between variables in study

Figure 3.  Manipulated graph diagramming overall effect of hemoglobin
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Figure 4.  Manipulated graph diagramming direct effect of hemoglobin
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