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Abstract. Quasi-least squares (QLS) is a method based on the popular
generalized estimating equation (GEE) approach that is widely used for analy-
sis of correlated cross-sectional and longitudinal data. This article summarizes
the development of QLS that occurred in several manuscripts and describes its
implementation with the user-written program xtqls in Stata. In addition, it
demonstrates the following advantages of QLS: (i) QLS allows for implemen-
tation of some correlation structures that have not yet been implemented in
the framework of GEE; (ii) QLS can be applied as an alternative to GEE if
the GEE estimate is infeasible; and (iii) QLS is a method in the framework
of GEE that uses the same estimating equation for estimation of β as GEE;
as a result, implementation of QLS can involve programs already available for
GEE. In particular, xtqls calls up the Stata program xtgee within an iterative
approach that alternatives between updating estimates of the correlation pa-
rameter α and then using xtgee to solve the GEE estimating equation for β
at the current estimate of α. The benefit of this approach is that following
implementation of xtqls, all the usual post-regression estimation commands are
readily available to the user. The xtqls program is available on the website for
the Longitudinal Analysis for Diverse Populations project:

http://www.cceb.upenn.edu/~sratclif/QLSproject.html.

Keywords: correlated data; clustered data; longitudinal data; generalized
estimating equations; quasi-least squares

1 Introduction
This manuscript describes the method of quasi-least squares and its implemen-
tation using the user-written program xtqls.
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2 Methods
2.1 Set-up and notation
We consider the usual set-up for generalized estimating equations (GEE, Liang
and Zeger, 1986), for which the data comprise correlated measurements collected
on each of a group of independent clusters, or subjects. For example, consider a
longitudinal study, in which serial measurements are collected on unrelated sub-
jects at baseline and then at one and three months post-baseline. Or, consider
a cross-sectional study of rats within litters, in which length and weight are
measured once on all rats. In each of these studies it is reasonable to assume
that measurements between the clusters (subjects or litters, respectively) are
independent, but that within clusters they are correlated.

The typical goal of a GEE analysis is to relate the expected value of the out-
come variable with covariates measured on each of the subjects, while adjusting
for the potential correlation within the measurements on each cluster. The cor-
relation is typically considered to be a nuisance parameter that is of secondary
interest to the relationship between the outcome and covariates; however, the
association can sometimes be of scientific interest. For example, in a cross-
sectional study that relates the birth weight of rats with maternal feed during
pregnancy, the degree of similarity of weights within litters might be important
to assess.

In terms of notation, we assume that measurements Yi = (yi1, · · · , yini)
′ and

associated covariates x′ij = (xij1, · · · , xijp) are collected on subject i at times
Ti = (ti1, · · · , tini)

′, for i = 1, · · · ,m. The data are considered balanced and
equally spaced when ni = n ∀ i and |tij − tik| = γ ∀ i, j, k, respectively.
For analysis of a cross-sectional study, e.g. if one measurement is collected
on each of several subjects within multiple clusters, then Yi = (yi1, · · · , yini)

′

represents the ni measurements that were collected within cluster i. We also
define N =

∑m
i=1 ni.

A key feature of GEE is that the number of clusters should be relatively large
in order for assumptions regarding the asymptotic properties of the estimators
to be valid. A popular rule of thumb is that the data should contain at least 30
clusters; in general, the required sample size for a particular study will depend
on the degree of correlation and the study design, as discussed in §2.4 of Diggle
et al. (2002). Usually, the size of the clusters is small relative to the number
of clusters; e.g. a typical longitudinal study of 30 subjects might contain 3 or 4
measurements per subject.

GEE analyses specify the relationship between the outcome and covariates
measured on each subject by specifying a generalized linear model for the ex-
pected value of the outcome variable. In particular, the expected value and
variance of measurement yij on subject (or cluster) i are assumed to equal
E(yij) = g−1(x′ijβ) = uij and V ar(yij) = φh(uij), respectively, where φ is a
known or unknown scale parameter. We also let Ui(β) represent the ni × 1
vector of expected values uij on subject i.

Adjustment for the intra-cluster correlation of measurements is achieved by
specifying a working correlation structure that describes the pattern of asso-
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ciation between measurements within each cluster. The working structure for
subject (or cluster) i, denoted by Corr(Yi) = Ri(α), depends on a correlation
parameter α that can be scalar or vector-valued. We note that α must take
value in a particular region (the feasible region) in order for the correlation
matrix to be positive definite. The covariance matrix of Yi is then given by
Cov(Yi) = φAi

1/2Ri(α)Ai
1/2, where Ai = diag(h(ui1), . . . , h(uini

)) and φ is a
scalar parameter that can be known or unknown.

Some useful correlation structures for analysis of correlated data include the
following:

1. The Equicorrelated (Exchangeable): For this structure all correla-
tions within a cluster are identical, so that Corr(yij , yik) = α. This
structure is often plausible in cross-sectional analyses, e.g. to describe
the pattern of association of blood pressure among family members at
baseline.The feasible region for this structure is (−1/(nm − 1), 1), where
nm represents the maximum value of ni over i = 1, 2, . . . ,m.

2. The first-order autoregressive AR(1): For this structure the cor-
relation among repeated measurements on a subject will be smaller for
measurements that are farther apart in terms of order of measurement, so
that Corr(yij , yik) = αj−k. This structure is often reasonable in longitudi-
nal trials with equally spaced measurements, e.g. in a depression study in
which Hamilton depression scores are measured at baseline and then once
weekly for six months. The feasible region for this structure is (−1, 1).
However, a negative value for α may be biologically implausible because
it may be unreasonable to allow the intra-subject correlations to alternate
in sign, e.g. for α2 and α3 to be positive and negative, respectively.

3. The Markov correlation structure: For this structure the correlation
among repeated measurements on a subject will be smaller for measure-
ments that are farther apart in terms of timing of measurement, so that
Corr(yij , yik) = α|tij−tik|. This structure generalizes the AR(1) structure
to allow for unequal spacing of measurements. The feasible region for this
structure is (−1, 1). However, as for the AR(1) structure, a negative value
for α is typically not biologically plausible.

4. The tri-diagonal correlation structure: For this structure the cor-
relation among measurements that are separated by one measurement oc-
casion will be constant, so that Corr(yij , yik) = α for |j − k| = 1 and
is zero otherwise. This structure is not widely applied in practice, but
it is implemented in Stata’s xtgee procedure and in other standard soft-
ware packages that implement GEE. The feasible region for this structure
is (−1/cm, 1/cm), where cm = 2 sin

(
π[nm−1]
2[nm+1]

)
and nm is the maximum

value of ni over i = 1, 2, . . . , m; this interval is approximately (−1/2, 1/2)
for large n and contains (−1/2, 1/2) for all n.

5. The unstructured correlation matrix: For this structure there is no
assumed pattern to the correlations within a subject, so that Corr(Yij , Yik) =
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αjk. This structure is typically reasonable for studies with a common set
of timings of measurements for all subjects. Its drawback is that the
dimension of the correlation parameter will be very large for clusters of
even moderate size; e.g. a study with clusters of size n = 5 will require
estimation of n×(n−1)

2 = 10 correlation parameters.

6. The working independent correlation matrix: Another popular struc-
ture is the identity matrix. It’s application is straightforward because it
does not involve estimation of any correlation parameters. However, in-
correct application of an identity structure can result in loss in efficiency
in estimation of the regression parameter, especially when the true corre-
lations are large ; e.g. see Sutradhar and Das (2000) and Wang and Carey
(2003).

2.2 Brief Review of the GEE approach
GEE (Liang and Zeger, 1986) is an iterative approach that alternates between (i)
updating the estimate of the regression parameter β by solving the GEE estimat-
ing equation for β and (ii) updating the estimate of the correlation parameter
α. Typically, moment estimates are used for estimation of α; the XT reference
manual (2005) for Stata 9.0 describes the estimates that are implemented for
GEE in the xtgee command in Stata, for the following correlation structures:
the equicorrelated (exchangeable), AR(1), tri-diagonal (MA(1)), identity, and
unstructured. The Stata estimates differ slightly from those suggested by Liang
and Zeger (1986), as also mentioned in Section 2.3. The identity matrix can also
be specified in Stata 9.0, but this does not require a special algorithm, since for
this structure α = 0.

The distribution of the GEE estimate of β, β̂GEE , is asymptotically normal.
Stata 9.0, via xtgee and related commands, provides estimates of the model-
based and sandwich-type estimates of the covariance matrix of β̂. The model
based estimate of the covariance matrix is appropriate when the user has a high
degree of confidence that the correlation structure has been correctly specified.
It has the following form:

ĈovM (β̂) = φ̂Wm
−1, (1)

where

Wm =
m∑

i=1

X ′
iAi

1/2R−1
i (α̂)Ai

1/2Xi

and

φ̂ =
1

N − p

m∑

i=1

Zi(β̂)′Zi(β̂).

The robust sandwich covariance matrix is typically applied when there is less
certainty regarding the choice of working correlation structure. However, it has
been the experience of these authors that standard errors are not necessarily
smallest for this structure, so that application of the sandwich covariance matrix
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is not always the most conservative choice. The sandwich matrix takes the
following form:

ĈovR(β̂) = Wm
−1CmWm

−1, (2)

where

Cm =
m∑

i=1

X ′
iAi

1/2R−1
i (α̂)Zi(β̂)Z ′i(β̂)R−1

i (α̂)Ai
1/2Xi.

Stata 9.0 provides estimated standard errors, 95% confidence intervals, and
p− values for the tests βj = 0 that are based on both the model and sandwich
covariance matrices in GEE analyses.

2.3 Limitations to GEE that have been noted in the literature
GEE is one of the most widely applied and heavily cited statistical methods.
For example, a search by these authors (in July, 2006) for the seminal paper
on GEE (Liang and Zeger, 1986) on the ISI web of knowledge web-site yielded
4026 citations. However, GEE, like all statistical approaches, has some limi-
tations. The first limitation concerns infeasibility of the moment estimates of
α. Crowder (1995) noted that if the working correlation structure is misspeci-
fied, there may be no solution (asymptotically) to a moment-based estimating
equation for α. In practice, this can result in failure to converge in a GEE analy-
sis. Shults and Chaganty (1998) demonstrated that the Liang and Zeger (1986)
suggested estimates for the AR(1) structure will often take value greater than
one, especially for larger values of α. (However, we note that Stata 9.0 imple-
ments an algorithm by Newton (1988) for the AR(1) structure which, judging
from the experience of these authors, does not have a problem with infeasibil-
ity (estimates α̂ > 1).) In Section 4.2 we consider an obesity study in renal
transplanted patients for which we demonstrate that the GEE estimate of α is
infeasible for the tri-diagonal structure, so that the estimated correlation matrix
is not positive-definite.

Another limitation of GEE is that relatively few correlation structures have
been implemented in the major statistical software packages that implement
GEE. For example, the Markov correlation structure is a relatively simple and
useful structure that has not yet been implemented for GEE (Shults and Cha-
ganty, 1998). Stata 9.0 currently implements only five correlation structures for
GEE, in addition to the identity structure and a user-specified structure that is
treated as fixed in the analysis. Although a simple structure is often reasonable
to describe the expected pattern of associations, expansion of GEE analyses
to incorporate more complex structures can be helpful, e.g. when the associa-
tion is of scientific interest, or when a more complex structure is plausible for
a particular study design. See Shults and Morrow (2002), Shults, Whitt, and
Kumanyika (2004), and Shults, Mazurick and Landis (2006) for discussion of
studies that benefited from analysis with more complex correlation structures
than are typically implemented for GEE.
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2.4 Overview of QLS approach
QLS is a two-stage approach in the framework of GEE that was described for
balanced data (stage one) in Chaganty (1997); unbalanced data (stage one) in
Shults (1996) and Shults and Chaganty (1998); and for unbalanced data (stage
two) in Chaganty and Shults (1999). Like GEE, QLS is iterative and alternates
between estimation of β and of α in each stage of the procedure. For estimation
of β, QLS uses the same estimating equation as GEE. However, QLS differs
from GEE with respect to estimation of the correlation parameter. Rather than
implement the moment estimates that are typically implemented in a GEE anal-
ysis, QLS obtains a solution to an asymptotically unbiased estimating equation
for α. In stage one, QLS alternates till convergence between updating the esti-
mates of β and solving the stage one estimating equation for α:

∂

∂α

{
m∑

i=1

Z ′i(β)
{
R−1

i (α)
}

Zi(β)

}
= 0, (3)

where Zi(β) = (zi1, zi2, . . . , zini
)ni×1 for zij = (yij −uij)/h(uij) is the vector of

Pearson residuals on subject i.
The solution α̂ to (3) is not consistent. Stage two of QLS therefore obtains

a consistent estimate α̂QLS as the solution to the stage two estimating equation
for α:

m∑

i=1

trace

{
∂R−1

i (δ)
∂δ

Ri(α)
}∣∣∣∣∣

δ=α̂

= 0. (4)

Section 3.5.2 provides solutions to (3) and (4) for several working correlation
structures.

The final QLS estimate β̂QLS of β is then obtained by solving the GEE
estimating equation for β evaluated at α̂QLS . The asymptotic distribution of
β̂QLS is the same as the asymptotic distribution of the GEE estimate β̂GEE . As a
result, we demonstrate in Section 4.0 that testing and construction of confidence
intervals for β with QLS is easily accomplished with the xtgee procedure in Stata
9.0 that implements GEE. Please see Sun et al. (2006) for more details about
the QLS approach and a comparison with other methods.

2.5 How QLS expands implementation of GEE
In this manuscript we demonstrate that QLS can be used to expand implemen-
tation of GEE. First, in Section 4 we demonstrate that QLS can be successfully
applied when GEE fails to yield a feasible estimate of α. QLS might therefore be
considered as an alternative approach if α̂ is infeasible, or if the GEE iterative
estimation procedure fails to converge.

Next, in Section 4 we demonstrate that QLS can be used to implement
a useful and relatively simple structure (the Markov) that has not yet been
implemented in the framework of GEE. This demonstrates that QLS can expand
application of GEE by allowing consideration of patterns of association that are
more complex than those currently available for GEE, but that are biologically
plausible, or reasonable for a particular study design.
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However, it is important to note that failure of GEE to converge or infeasi-
bility of α̂ may be a sign that some model assumptions are wrong. For example,
Prentice (1988) noted that α̂ must satisfy additional constraints to be feasible
in analyses of binary data. Shults et al (2006) demonstrated that infeasibility
of α̂ for binary outcomes can be very likely when the AR(1) structure has been
misspecified as equicorrelated and α is large. Failure to converge, or infeasibil-
ity of α̂ should therefore prompt careful examination of the choice of working
structure.

3 The xtqls command
3.1 Syntax
The xtqls command has following syntax which is very similar to the syntax for
the xtgee procedure:

xtqls depvar [indepvars] , options

where depvar is the dependent variable; indepvars are the covariates; and
options are the required options that are described below, in Section 3.3.

3.2 Description
The xtqls command provides QLS estimates of the regression and correlation
parameter. QLS is a method in the framework of GEE, so that implementation
of xtqls might be considered whenever GEE is appropriate and especially if
GEE fails to converge, or if a correlation structure not available for GEE can
be implemented in QLS. QLS allows for implementation of the equicorrelated,
AR(1), Markov, and tri-diagonal correlation structures.

Implementation of an unstructured matrix is possible using QLS, but the
algorithm is complex (Chaganty and Shults, 1998). For implementation of an
unstructured matrix, we therefore recommend application of xtgee in Stata. In
addition, the QLS and GEE procedures are identical for the identity matrix,
so that use of xtgee is also recommended for implementation of an identity
structure.

Future updates of the xtqls procedure are planned, to allow for implemen-
tation of additional structures with QLS.

3.3 Options
The options for xtqls (all required) are as follows:

i(var1) where var1 is the ID variable for subjects, or clusters

t(vart) where vart is the variable that indicates the timings of observations

f(family) where family is the distribution of depvar. The following families
can be implemented in xtqls:
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gau (Gaussian)
bin (Bernoulli/binomial)
poi (Poisson)

c(correlation) where correlation is the correlation structure to be imple-
mented. The following correlation structures can be implemented in xtqls:

AR 1 (AR(1))
sta 1 (tridiagonal)
exc (equicorrelated)
Markov (Markov)

vce(vcetype) where vcetype indicates the type of covariance structure for es-
timation of β̂. The following covariance structures can be implemented in xtqls:

model (model based covariance structure)
robust (sandwich type robust sandwich covariance matrix)
jack (obtains jack-knife standard errors)
boot (obtains boot-strapped standard errors)

3.4 Relationship to the xtgee procedure
The xtqls procedure implements the xtgee procedure and has important sim-
ilarities to the xtgee procedure. In particular, the syntax is as similar to the
xtgee procedure as is possible. For example, the family names and names of
the correlation structures (when they are available in xtgee) are identical to the
names that are used in xtgee.

However, there are some differences between xtqls and xtgee: (1) Unlike
xtgee which allows more flexibility in choice of link and variance functions, xtqls
implements the canonical link function and corresponding variance function that
is appropriate when Yi is distributed according to an exponential family. For
continuous (Gaussian) yij xtqls applies the identity link function g−1(γ) = γ and
variance function h(γ) = 1. For binary (Bernoulli) yij xtqls applies the logistic
link function g−1(γ) = exp(γ)/(1 + exp(γ)) and variance function h(γ) = γ(1−
γ). For count (Poisson) yij xtqls applies the exponential link g−1(γ) = exp(γ)
and identity variance function h(γ) = γ. (2) Unlike xtgee which requires use
of the force option for implementation of the AR(1) or tri-diagonal structures
when the timings are unequally spaced, xtqls does not require this option for
unequal timings. Rather, xtqls treats the observations as equally spaced when
these two structures are specified. (3) Not all options that are available for xtgee
are available for xtqls. The authors anticipate that future versions of xtqls will
be more similar to xtgee than this initial version of the procedure. (4) For
implementation of the tri-diagonal, equicorrelated, and tri-diagonal structures,
implementation of xtqls can be noticeably slower than implementation of xtgee.
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3.5 Methods and Formulas
3.5.1 The xtqls Algorithm for Estimation of the Correlation and Regression

Parameters

The xtqls procedure implements the following algorithm for estimation of β and
of α:

1. Obtain a starting value for β̂ by assuming α = 0 and then fitting a GEE
model using xtgee in Stata, with the option corr(Ind) that indicates ap-
plication of an identity working correlation structure.

2. Alternate between the following steps till convergence in the estimates of
β:

(a) Obtain updated values of the Pearson residuals at the current esti-
mates of β and of α.

(b) Update the estimate of α by obtaining the solution to the stage one
estimating equation (3) for α.

(c) Construct the estimated working correlation structure R(α̂) that cor-
responds to the updated estimate of α. For structures other than
Markov, the matrix R(α̂) will be constructed for the maximum value
of ni. For example, in a study in which the maximum number of
observations per subject is 4 and the working correlation structure
is AR(1), R(α̂) will be a 4 × 4 AR(1) structure evaluated at α̂. For
the Markov structure, the dimension of R(α̂) will equal the number
of distinct values of the timing variable. For example, in a study
in which some subjects are measured at times (1, 2, 4) and all other
subjects are measured at times (1, 3, 9), the dimension of R(α̂) will
be 5× 5.

(d) Update the estimate of β by using the xtgee procedure, with a cor-
relation structure that is treated as fixed and equal to R(α̂).

3. After convergence in stage one, update the estimate of α by obtaining the
solution to the stage two estimating equation (4) for α.

4. Construct the estimated working correlation structure R(α̂) that corre-
sponds to the stage two estimate of α.

5. Obtain the final estimate of β by using the xtgee procedure, with a corre-
lation structure that is treated as fixed and equal to R(α̂).

An important feature of this algorithm is its use of the xtgee procedure
to update β̂. As a result, as we demonstrate in Section 4, all the usual post
regression commands in Stata are available after implementation of xtqls. We
note that this algorithm was described in a presentation by the first author at
the Stata 2004 User’s Group Meetings in Boston, MA that is available on the
following web-site:

http://repec.org/nasug2004/Shults_Stata_2004.ppt.
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3.5.2 Stage One and Stage Two estimates of α

The xtqls procedure obtains provides solutions to the stage one (3) and stage
two (4) estimating equations for several working correlation structures. For
estimating equations that do not have a unique solution, xtqls uses the bisection
method to obtain a solution in the feasible region for α.

For the AR(1) structure and for unbalanced data, Shults and Chaganty
(1998) proved that the feasible stage one estimate α̂ can be expressed as:

α̂QONE =

m∑
i=1

ni∑
j=2

(z2
ij + z2

ij−1)−
√

m∑
i=1

ni∑
j=2

(z2
ij + z2

ij−1)
m∑

i=1

ni∑
j=2

(z2
ij − z2

ij−1)

2
m∑

i=1

ni∑
j=2

zijzij−1

,

(5)
while the stage two estimate α̂QLS−AR1 (Chaganty and Shults, 1999) is given
by

α̂QLS−AR1 =
2α̂QONE

1 + α̂2
QONE

. (6)

For the Markov structure and unbalanced data, Shults (1996) obtained the
QLS stage one estimating equation for α:

m∑

i=1

ni∑

j=2

eijα
eij

[
α2eij zijzi,j−1 − αeij

(
z2
ij + z2

i,j−1

)
+ zijzi,j−1

]
= 0

1− α2eij
, (7)

where eij = |tij − ti,j−1|. Note that xtqls requires that eij ≥ 1 ∀ i and j.
The stage two estimating equation for the Markov structure (Chaganty and

Shults, 1999) is given by:

m∑

i=1

ni∑

j=2

2eijδ
2eij−1 − αeijeij

[
δeij−1 + δ3eij−1

]

1− δ2eij

∣∣∣∣∣∣
δ=α̂

= 0. (8)

For the equicorrelated structure and for unbalanced data, Shults (1996)
proved that there will be a unique feasible solution to the following stage one
estimating equation for α:

∑

i:ni>1

Z ′i Zi −
∑

i:ni>1

1 + α2(ni − 1)
(1 + α(ni − 1))2

(Z ′i(β) ei)2 = 0, (9)

where Ini is the identity matrix and ei is a ni× 1 column vector of ones. Shults
and Morrow (C.3,2002) obtained the stage two estimate α̂QLS−EQC :

∑

i:ni>1

ni (ni − 1) α̂ (α̂ (ni − 2) + 2)
(1 + α̂(ni − 1))2

/
∑

i:ni>1

ni (ni − 1)
(
1 + α̂2(ni − 1)

)

(1 + α̂(ni − 1))2
. (10)

For the tri-diagonal structure and unbalanced data, Shults (1996) proved
that there will always be a feasible solution to the stage one estimating equation
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for α. Xtqls obtains solutions to the stage one and two estimating equations
(3) and (4) for the tri-diagonal structure by first constructing the tri-diagonal
matrix Ri(α̂) and then using the Stata function syminv to obtain R−1

i (α̂).
Next, to evaluate

∂R−1
i (δ)
∂δ

∣∣∣∣
δ=α̂

,

xtqls implements the following expression:

∂R−1
i (δ)
∂δ

∣∣∣∣
δ=α̂

= −R−1
i (α̂)

∂Ri(δ)
∂δ

∣∣∣∣
δ=α̂

R−1
i (α̂),

where ∂Ri(δ)
∂δ is an ni × ni matrix with ones on the off-diagonal and zero else-

where, i.e. the (j, k)th element of ∂Ri(δ)
∂δ is 1 if |j − k| = 1 and is 0 otherwise.

3.6 Saved Results
The saved results for xtqls are the same as those for the xtgee procedure in
Stata. For example, typing xtcorr will display the estimated correlation matrix.

4 Examples
Here we demonstrate implementation of xtqls command in Stata.

4.1 Data and variables
We will use the data set

random_small.dta

that is available on http://www.cceb.upenn.edu/∼sratclif/QLSproject.html .
This contains data from a study of obesity in children following renal transplant
that was conducted at the Children’s Hospital in the University of Pennsylvania.
To facilitate sharing of this data for the purpose of demonstrating the xtqls
procedure, 10 percent of observations were dropped prior to saving the data set

random_small.dta.

(This was done by generating the variable random with the uniform command,
sorting on the variable random, and then dropping all observations correspond-
ing to random ≤ 0.1.)

A description of the data is as follows:

Contains data from random_small.dta
obs: 531

vars: 5 20 Aug 2006 09:56
size: 12,744 (98.8% of memory free)

-------------------------------------------------------------------------------
storage display value
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variable name type format label variable label
-------------------------------------------------------------------------------
id float %9.0g subject id
month float %9.0g month of measurement
bmiz float %9.0g BMI z-score
basebmiz float %9.0g BMI z-score at baseline
obese float %9.0g 1 if subject is obese/ 0 if not

obese
-------------------------------------------------------------------------------
Sorted by: id month

For the examples we consider here, we will regress BMI z-score and obesity
status (yes/no) on baseline BMI z-score and on month of measurement. We will
demonstrate implementation of the robust sandwich-based covariance matrix
and also of the model based covariance matrix.

4.2 An example where the GEE moment estimate is infeasible
If we regress BMI on time and baseline BMI then the feasible region (set of values
on which α is positive definite) for the tri-diagonal structure is (−0.51764, 0.51764).
We first implement this structure using using Stata’s xtgee procedure, with the
sandwich-based covariance matrix:

. xtgee bmiz base month, i(id) t(month) f(gau) vce(robust) c(sta 1) force

Iteration 1: tolerance = .0290889
Iteration 2: tolerance = .0021742
Iteration 3: tolerance = 1.180e-06
Iteration 4:tolerance = 6.366e-09

GEE population-averaged model Number of obs = 531
Group and time vars: id month Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: stationary(1) max = 11

Wald chi2(2) = 104.78
Scale parameter: .6754737 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)
------------------------------------------------------------------------------

| Semi-robust
bmiz | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
basebmiz | .6350395 .0625064 10.16 0.000 .5125293 .7575498

month | -.0023181 .0033438 -0.69 0.488 -.0088719 .0042357
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_cons | .9186753 .0619903 14.82 0.000 .7971766 1.040174
------------------------------------------------------------------------------

Note that above xtgee required the use of the option force because the timing
variable month is not equally spaced on all subjects. Next, we will display the
estimated correlation matrix:

.xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.8262 1.0000
r3 0.0000 0.8262 1.0000
r4 0.0000 0.0000 0.8262 1.0000
r5 0.0000 0.0000 0.0000 0.8262 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r7 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000
r9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8262 1.0000

r10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
r11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c10 c11
r10 1.0000
r11 0.8262 1.0000

The estimate α̂GEE = 0.8262 which is outside the feasible region (−0.51764, 0.51764)
for the tri-diagonal structure.

Next, we will implement the tri-diagonal structure using the xtqls procedure
with the sandwich-based covariance matrix. Note that this does not require the
option force; as mentioned earlier, xtqls will treat the timings as equally spaced
for the tri-diagonal and AR(1) structures.

. xtqls bmiz basebmi month, i(id) t(month) f(gau) vce(robust) c(sta 1)

Iteration 1: tolerance = .09658071
Iteration 2: tolerance =2.737e-16

GEE population-averaged model Number of obs = 531
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Group and time vars: id __00000S Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 94.09
Scale parameter: .8811255 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)
------------------------------------------------------------------------------

| Semi-robust
bmiz | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
basebmiz | .6224297 .0738585 8.43 0.000 .4776697 .7671897

month | .0178934 .0036415 4.91 0.000 .0107561 .0250306
_cons | .7849147 .0760118 10.33 0.000 .6359344 .933895

------------------------------------------------------------------------------

As noted earlier, xtqls implements the xtgee procedure for a fixed correlation
matrix. Therefore all usual post regression commands are available after imple-
mentation of xtqls. For example, if we use the xtcorr command to provide the
estimated correlation matrix, we see that α̂QLS = 0.5176 so that the estimated
correlation parameter is within (but just barely) the feasible region for α.

.xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.5176 1.0000
r3 0.0000 0.5176 1.0000
r4 0.0000 0.0000 0.5176 1.0000
r5 0.0000 0.0000 0.0000 0.5176 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r7 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000
r9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5176 1.0000

r10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
r11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c10 c11
r10 1.0000
r11 0.5176 1.0000
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When other structures were implemented, we observed that the variable
month was only significant for the tri-diagonal structure and QLS. However, as
discussed in Shults et al. (2006) infeasibility of α̂GEE or α̂QLS might be an
indication that the correlation structure has not been correctly specified. Given
that the tri-diagonal structure is not biologically plausible for this analysis,
coupled with the fact that α̂GEE was infeasible for GEE, we would therefore be
more inclined to accept the results of an analysis based on a more biologically
plausible structure such as the Markov. We demonstrate implementation of the
Markov structure in the next section.

4.3 Implementation of the Markov structure
Next, let’s examine the spacing of measurements in this study. First, create a
variable called lag that represents the spacing of measurements with respect to
time:

. qui sort id month

. qui by id: gen lag = month - month[_n-1] if _n>1

Next, if we tabulate the variable lag we see that the spacing between mea-
surements varies between 2 and 36 months.

. tab lag

lag | Freq. Percent Cum.
------------+-----------------------------------

2 | 81 18.79 18.79
3 | 77 17.87 36.66
5 | 6 1.39 38.05
6 | 76 17.63 55.68
9 | 11 2.55 58.24

11 | 2 0.46 58.70
12 | 160 37.12 95.82
18 | 4 0.93 96.75
24 | 12 2.78 99.54
36 | 2 0.46 100.00

------------+-----------------------------------
Total | 431 100.00

Application of the Markov structure is appropriate for this analysis, because
as discussed earlier, this structure takes the variability of spacing of measure-
ments into account. We next implement the Markov structure using the xtqls
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procedure. Here we implement that model based covariance matrix that is ap-
propriate under the assumption that the correlation matrix has been correctly
specified:

. xtqls bmiz basebmi month, i(id) t(month) f(gau) vce(model) c(Markov)

Iteration 1: tolerance = .08135458
Iteration 2: tolerance =6.117e-17

GEE population-averaged model Number of obs = 531
Group and time vars: id month Number of groups = 100
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2)= 179.83
Scale parameter: .6887826 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
bmiz | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
basebmiz | .6438863 .0483796 13.31 0.000 .549064 .7387087

month | .0008804 .002362 0.37 0.709 -.003749 .0055099
_cons | .8149975 .080812 10.09 0.000 .6566088 .9733861

------------------------------------------------------------------------------

Next, we display the estimated correlation matrix:

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.9177 1.0000
r3 0.8069 0.8792 1.0000
r4 0.6237 0.6796 0.7730 1.0000
r5 0.3727 0.4061 0.4619 0.5975 1.0000
r6 0.2227 0.2426 0.2760 0.3570 0.5975 1.0000
r7 0.1330 0.1450 0.1649 0.2133 0.3570 0.5975 1.0000
r8 0.0795 0.0866 0.0985 0.1275 0.2133 0.3570 0.5975 1.0000
r9 0.0475 0.0518 0.0589 0.0762 0.1275 0.2133 0.3570 0.5975 1.0000

r10 0.0284 0.0309 0.0352 0.0455 0.0762 0.1275 0.2133 0.3570
r11 0.0170 0.0185 0.0210 0.0272 0.0455 0.0762 0.1275 0.2133

c10 c11
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r10 1.0000
r11 0.5975 1.0000

It is interesting to note that the within subject correlations are quite high
for this analysis.

4.4 Implementation of the AR(1) and equicorrelated structure
with QLS

Let’s next consider the outcome of obesity (1 = obese; 0 = not-obese) and
implement the AR(1) and equicorrelated correlation structures with xtqls and
the model based covariance matrix.

. xtqls obese basebmi month, i(id) t(month) f(bin 1) vce(model) c(AR 1)

Iteration 1: tolerance = .09449318
Iteration 2: tolerance = .0025892
Iteration 3: tolerance = .00016702
Iteration 4: tolerance =.00001117
Iteration 5: tolerance = 7.837e-07

GEE population-averaged model Number of obs = 531
Group and time vars: id __00000S Number of groups = 100
Link: logit Obs per group: min = 2
Family: binomial avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 35.66
Scale parameter: 1 Prob > chi2=0.0000

------------------------------------------------------------------------------
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
basebmiz | 1.260941 .2115425 5.96 0.000 .8463256 1.675557

month | .0015922 .0067496 0.24 0.814 -.0116368 .0148212
_cons | -1.401252 .2658318 -5.27 0.000 -1.922272 -.8802308

------------------------------------------------------------------------------

The estimated correlation matrix for the AR(1) structure is then given by:

. xtcorr

Estimated within-id correlation matrix R:
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c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.6987 1.0000
r3 0.4882 0.6987 1.0000
r4 0.3411 0.4882 0.6987 1.0000
r5 0.2384 0.3411 0.4882 0.6987 1.0000
r6 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r7 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r8 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000
r9 0.0568 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882 0.6987 1.0000

r10 0.0397 0.0568 0.0813 0.1164 0.1666 0.2384 0.3411 0.4882
r11 0.0277 0.0397 0.0568 0.0813 0.1164 0.1666 0.23840 0.3411

c10 c11
r10 1.0000
r11 0.6987 1.0000

Note that if we had implemented the AR(1) structure using xtgee then 97
subjects would have been dropped from the analysis, due to unequal spacing
of measurements. Or, we could have used the option force, which would have
treated all observations as equally spaced. (As mentioned earlier, implementa-
tion of the AR(1) structure with xtqls will not require the force option because
it will automatically treat the observations as equally spaced for the AR(1)
structure.)

Next, we will implement the equicorrelated correlation structure, when the
outcome is obesity and with the model based covariance matrix:

. xtqls obese basebmi month, i(id) t(month) f(bin 1) vce(model) c(exc)

Iteration 1: tolerance = .05135684
Iteration 2: tolerance =.03097018
Iteration 3: tolerance = .00177796
Iteration 4: tolerance =.00006787
Iteration 5: tolerance = 8.058e-06
Iteration 6: tolerance =9.287e-07

GEE population-averaged model Number of obs = 531
Group and time vars: id __00000S Number of groups = 100
Link: logit Obs per group: min = 2
Family: binomial avg = 5.3
Correlation: fixed (specified) max = 11

Wald chi2(2) = 35.38
Scale parameter: 1 Prob > chi2 =0.0000
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------------------------------------------------------------------------------
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
basebmiz | 1.37291 .2329508 5.89 0.000 .9163352 1.829486

month | -.0059594 .0045567 -1.31 0.191 -.0148904 .0029716
_cons | -1.334806 .2574099 -5.19 0.000 -1.839321 -.8302924

------------------------------------------------------------------------------

Let’s next display the estimated correlation matrix.

. xtcorr

Estimated within-id correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.5065 1.0000
r3 0.5065 0.5065 1.0000
r4 0.5065 0.5065 0.5065 1.0000
r5 0.5065 0.5065 0.5065 0.5065 1.0000
r6 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r7 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r8 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000
r9 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 1.0000

r10 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065
r11 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065 0.5065

c10 c11
r10 1.0000
r11 0.5065 1.0000

5 Discussion
In this paper we have implemented quasi-least squares using the user-written
xtqls procedure in Stata. As we demonstrated, this allows for implementation of
correlation structures such as the Markov that have not yet been implemented
in the framework of GEE. In addition, may provide a feasible estimate when
the GEE estimate is infeasible, or GEE fails to converge. The xtqls procedure
calls up the xtgee procedure and therefore all the usual post-regression esti-
mation commands are available after implementation of xtqls. Future updates
of xtqls will implement additional correlation structures, including the banded
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Toeplitz and other structures that are appropriate for data with multiple levels
of correlation.
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