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Longitudinal Nested Compliance Class Model
in the Presence of Time-Varying

Noncompliance

Julia Y. Lin, Thomas R. TenHave, and Michael R. Elliott

Abstract

This article discusses a nested latent class model for analyzing longitudinal ran-
domized trials when subjects do not always adhere to the treatment to which they
are randomized. In the “Prevention of Suicide in Primary Care Elderly: Collabo-
rative Trial” (PROSPECT) study, subjects were randomized to either the control
treatment, where they received standard care, or to the intervention, where they re-
ceived standard care in addition to meeting with depression health specialists. The
health specialists educate patients, their families, and physicians about depression
and monitor their treatment. Those randomized to the control treatment have no
access to the health specialists; however, those randomized to the intervention
could choose not to meet with the health specialists, hence, receiving only the
standard care. Subjects participated in the study for two years where depression
severity and adherence to meeting with health specialists were measured at each
follow-up. The outcome of interest is the effect of meeting with the health spe-
cialists on depression severity. Traditional ”intention-to-treat” and ”as-treated”
analyses may produce biased causal effect estimates in the presence of subject
noncompliance. Utilizing a nested latent class model that uses subject-specific
and time-invariant ”superclasses” allows us to summarize longitudinal trends of
compliance patterns, and estimate the effect of the intervention using ”intent-to-
treat” contrasts within principal strata corresponding to longitudinal compliance
behavior patterns. Analyses show that subjects with more severe depression are
more likely to adhere to treatment randomization, and those that are compliant
and meet with health specialists benefit from the meetings and show improvement
in depression. Simulation results show that our estimation procedure produces
reasonable parameter estimates under correct model assumptions.
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Abstract

This article discusses a nested latent class model for analyzing longitudinal randomized tri-
als when subjects do not always adhere to the treatment to which they are randomized.
In the “Prevention of Suicide in Primary Care Elderly: Collaborative Trial” (PROSPECT)
study, subjects were randomized to either the control treatment, where they received stan-
dard care, or to the intervention, where they received standard care in addition to meeting
with depression health specialists. The health specialists educate patients, their families,
and physicians about depression and monitor their treatment. Those randomized to the
control treatment have no access to the health specialists; however, those randomized to the
intervention could choose not to meet with the health specialists, hence, receiving only the
standard care. Subjects participated in the study for two years where depression severity
and adherence to meeting with health specialists were measured at each follow-up. The
outcome of interest is the effect of meeting with the health specialists on depression sever-
ity. Traditional “intention-to-treat” and “as-treated” analyses may produce biased causal
effect estimates in the presence of subject noncompliance. Utilizing a nested latent class
model that uses subject-specific and time-invariant “superclasses” allows us to summarize
longitudinal trends of compliance patterns, and estimate the effect of the intervention using
“intent-to-treat” contrasts within principal strata corresponding to longitudinal compliance
behavior patterns. Analyses show that subjects with more severe depression are more likely
to adhere to treatment randomization, and those that are compliant and meet with health
specialists benefit from the meetings and show improvement in depression. Simulation re-
sults show that our estimation procedure produces reasonable parameter estimates under
correct model assumptions.

KEY WORDS: Longitudinal compliance class model; Principal stratification; Latent class
model; Potential outcomes; Randomized trial; Geriatric depression.

1 INTRODUCTION

We consider longitudinal compliance class models that use hierarchical latent class structures

which characterize subject compliance behavioral patterns over time. More specifically, we

consider studies where subjects are randomized at baseline and the randomization status

remains the same over time, though subject adherence to their randomized treatment may

vary over time. We illustrate the model with analyses of the “Prevention of Suicide in

Primary Care Elderly: Collaborative Trial” (PROSPECT) study (Bruce et al. 2004).

The PROSPECT study was a randomized intervention trial targeted at elderly 64 years of age

or older with clinical depression in primary care clinics. There were two treatment groups:

2

http://biostats.bepress.com/upennbiostat/art10



control treatment, where patients received standard care; and intervention, where patients

met with health specialists in addition to receiving standard care. The health specialists ed-

ucated patients, families, and physicians about depression and monitored patient adherence

to treatment. Primary care clinics were randomized to the treatment groups rather than

randomization of individual patients for practicality and potential contamination between

patients in the same clinic. Those randomized to the control treatment did not have access

to the health specialists. Patients were randomized to a treatment group only once at base-

line, and the randomization status remained constant throughout the study. Patients were

followed up at 4, 8, 12, 18, and 24 months, and at each follow-up their adherence to the

treatment randomization and outcomes were measured. Treatment adherence was measured

by whether patients met with the health specialists at least once since the last follow-up if

randomized to the intervention group. The outcome of the study is the severity of patients’

depression measured by the Hamilton Rating Scale for Depression (HAMD). The HAMD is

a 17-item scale with scores ranging from 0-54. Higher scores indicate more severe depression.

In the PROSPECT study, the baseline HAMD scores ranged from 2-41 with a mean of 18.1

and a standard deviation of 6.0. Patient suicidal ideation was measured at baseline and 26%

of our study sample had suicidal ideation. We are interested in the effect of the intervention

on depression controlling for treatment non-adherence.

Estimating the causal effects of experimental manipulations becomes complicated in the

presence of subject noncompliance (Little and Rubin 2000). Traditionally, the intention-

to-treat (ITT) and as-treated (AT) analyses are performed but these two methods do not

always allow us to obtain unbiased estimates of the causal effects of the treatment on out-

comes in the presence of treatment noncompliance. The relationship between experimental

manipulation and the outcome may be confounded by treatment non-adherence. Hence, it

may be important to account for compliance behavior in the presence of subject noncom-

pliance when estimating treatment effects. Compliers and noncompliers may be inherently

different, which could affect how they respond to treatment randomization, as well as the

actual treatment itself (Heitjan 1999; Frangakis and Rubin 1999; Mealli, Imbens, Ferro, and

Biggeri 2004).

3
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Baker and Lindeman (1994), Angrist, Imbens, and Rubin (1996), and Imbens and Ru-

bin (1997) suggested using latent compliance classes to characterize compliance behavior,

within which the effect of treatments are estimated to account for compliance behavior. In a

cross-sectional two-arm randomized experimental study, where treatment-received is binary

(experimental or control treatment), and subjects have access to the experimental or control

treatment regardless of treatment randomization, there are four possible compliance classes:

compliers, those that would adhere to the treatment to which they are randomized; always-

takers, those that would always seek the experimental treatment regardless of the treatment

to which they are randomized; never-takers, those that would always opt for the control

treatment regardless of the treatment to which they are randomized; and defiers, those that

would seek the treatment opposite to the arm to which they are randomized. Estimating the

effect of the experimental treatment while controlling for compliance behavior can be accom-

plished by estimating the ITT effects within compliance classes via comparing the potential

outcomes under each randomization arm stratified on compliance classes. The Imbens and

Rubin (1997) approach allows us to examine the effect of the experimental treatment in

particular population of interest such as the compliers (i.e. complier average causal effect;

CACE), for which the ITT contrast is a valid estimate of the direct effect of treatment on

the outcome under certain assumptions (Angrist et al. 1996; Little and Rubin 2000).

Compliance classes are latent variables related to randomization status and actual treatment

received. They fall under the principal stratification framework, and can be thought of as

“compliance principal strata,” such as in Imbens and Rubin (1997), and Frangakis and

Rubin (1999, 2002), where principal strata were defined by compliance classes. Knowing

the randomization status and the actual treatment received does not completely determine

the compliance class. For example, an individual randomized to the control treatment and

receives the control treatment could be a complier or a never-taker but not an always-taker

or a defier. The probabilities of subject compliance class membership can be estimated in a

Bayesian framework (Imbens and Rubin 1997; Frangakis and Rubin 1999; Hirano, Imbens,

Rubin, and Zhou 2000), or in a frequentist framework (Little and Yau 1998; Jo and Muthén

2001). Peng, Little, and Raghunathan (2004) compared Bayesian methods to frequentist
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methods and concluded that both methods yield similar results.

Not all two-arm cross-sectional studies provide four possible compliance classes. For example,

in the PROSPECT study where subjects randomized to the control treatment have no access

to the experimental treatment, there are only two possible compliance classes: compliers and

never-takers. Since no subjects randomized to the control treatment could be observed to

receive the experimental treatment, there are no always-takers and defiers. In this setting,

compliance classes are partially latent. Subjects assigned to the treatment arm are either

observed to be compliers if they receive the experimental treatment, or never-takers if they do

not receive the experimental treatment. However, these compliance classes are not observed

for those randomized to the control arm.

We extend the Imbens and Rubin (1997) method to longitudinal settings where treatment is

randomized once initially but treatment is applied multiple times throughout the study, and

outcomes are repeatedly measured over time. Subject compliance behavior is allowed to vary

over time (i.e. treatment received could be different at each follow-up period). We model

the relationship between latent, or partially observed, longitudinal compliance patterns and

longitudinal outcomes.

There have been other extensions of the Imbens and Rubin’s (1997) method to longitudinal

settings. Yau and Little (2001) extended Imbens and Rubin’s (1997) method to a study

where treatment was randomized initially and treatment was applied only once, and out-

comes were measured repeatedly over time. Treatment compliance was measured by initial

treatment randomization and actual treatment received, and did not vary over time. Fran-

gakis et al. (2004) extended the model to a study where randomization and treatment were

administered at multiple times throughout the study, and longitudinal outcomes were mea-

sured. Treatment compliance was measured repeatedly over time, and was allowed to vary

over time.

The proposed method differs from the method in Yau and Little (2001) in that we allow time-

varying treatment compliance. It also differs from the method in Frangakis et al. (2004)
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in two ways: 1) we assume that randomization is constant across time; 2) we incorporate a

hierarchical latent class structure that consists of time-varying compliance nested in classes

of longitudinal compliance trends that are time-invariant. Our method provides summary

measures of longitudinal compliance behaviors, and estimates ITT effects within overall

compliance behavioral trends.

In longitudinal studies where randomization status remains constant but treatment com-

pliance can vary over time, ITT contrasts must be made with respect to the longitudinal

compliance class patterns, which can be thought of as pre-existing, though unobserved,

subject-level characteristics at the time of randomization. Thus one might consider the

set of potential outcomes for a given compliance pattern, for example, any subject who

would have been a complier at every time point. However, it may be useful to character-

ize longitudinal compliance patterns and estimate the causal effect of treatment conditional

on general longitudinal compliance profiles, which we denote as “superclasses”. We pro-

pose to use latent class models to create subject-specific and time-invariant “superclasses”

to describe longitudinal trends of compliance patterns. This allows us to obtain a baseline,

time-invariant compliance class structure based on time-varying compliance information that

we can utilize in a potential outcomes framework. These “superclasses” become the prin-

cipal strata (Frangakis and Rubin 2002; Frangakis et al. 2004) within which we estimate

the effect of randomization over time. Thus, if the data suggests there are, e.g. “highly

compliant,” “highly noncompliant,” and “early compliant” superclasses, we could consider

the effect of randomization among the “highly compliant” as a measure of clinical interest.

The time-varying compliance classes in the PROSPECT study are functions of subjects’

initial treatment randomization and their actual treatments received at each follow-up, and

the superclasses are functions of subjects’ compliance classes over time.

We will define notation, discuss assumptions, principal effect of interest, parametric models,

parameter estimation, and assessment of model fit in Section 2, and discuss analysis and

simulation results in Section 3, then proceed to discussion and future work in Section 4.
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2 LONGITUDINAL PRINCIPAL STRATIFICATION

MODEL

2.1 Notation

Let Zi denote randomization for subject i where i = (1, ..., N) and Zi ∈ (0, 1) for standard

care and the intervention, respectively. Similarly, let Dij denote treatment received for

subject i at time j where j = (1, 2, 3, 4, 5) for 4, 8, 12, 18, and 24 months, respectively, and

Dij ∈ (0, 1) for standard care and the intervention, respectively. Note that Zi does not have

index j because we are restricting to designs in which randomization remains constant over

time. Let Yij denote the observed HAMD score for subject i at time j. We use Z, D, and

Y to denote the vector of Zi, Dij, and Yij. Not all subjects have data for all 5 follow-ups,

so let Ji denote the last follow-up visit of subject i where Ji ∈ (1, 2, 3, 4, 5).

Extending the notation of Angrist et al. (1996), we identify two types of potential outcomes:

Dij(Z) and Yij(Z, D(Z)). Let Dij(Z) denote the potential treatment received at time j if

subject i is randomized to treatment Z; and let Yij(Z,D(Z)) denote the potential outcome

for subject i at time j if randomized to group Z and received treatment D(Z). In this paper,

we use upper case letters to denote random variables or indices for potential outcomes (e.g.

Dij(Z)), and lower case letters for realized or observed values of these random variables or

potential indices (e.g. Zi = z).

In PROSPECT, patients who are randomized to the control treatment do not have access

to the health specialists; therefore, there are only two possible compliance classes: compliers

and never-takers. Let Cij denote the latent compliance class for subject i at time j where

Cij ∈ (c, n) for compliers and never-takers, respectively. We use C to denote the vector of

Cij. The potential treatment received, Dij(0) and Dij(1), define compliance class: Cij = c

if Dij(0) = 0 and Dij(1) = 1, and Cij = n if Dij(0) = 0 and Dij(1) = 0. In studies where

those randomized to the control treatment have no access to the intervention, the compliance

classes are observed among those randomized to the intervention group: Cij = c if Zi = 1

and Dij = 1 and Cij = n if Zi = 1 and Dij = 0.
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Note that Dij(Z) is a deterministic function of Cij. If we know the compliance class of an

individual, then we know the potential treatment received of that individual. Therefore,

the notation (Yij(Z)|Cij) is equivalent to Yij(Z,D(Z)) where Yij(Z) denotes the potential

outcome for subject i at time j if randomized to group Z.

In studies such as the PROSPECT where subjects are followed longitudinally and subject

compliance behavior could vary over time, the number of possible compliance patterns in-

creases exponentially with time. With two possible compliance classes (i.e. compliers and

never-takers) and five time points, we have 25 = 32 possible compliance patterns. We pro-

pose to use compliance “superclasses” to summarize compliance patterns present in the data,

in which we can stratify on to compare potential outcomes. Let Ui denote the compliance

superclass for subject i where Ui ∈ (1, ..., K), and we use U to denote the vector of Ui.

Subject-level baseline covariates Ai and Qi are used in modelling the outcome and the

probability of compliance class membership, respectively. We use A and Q to denote vectors

of Ai and Qi. These models are discussed in more detail in Section 2.4.

2.2 Assumptions

The randomization assumption and the stable unit-treatment value assumption (SUTVA)

are made to identify the potential outcomes and the effect of the treatment using observed

outcomes.

The randomization assumption implies that conditional on observed baseline covariates (e.g.

baseline HAMD score and suicide ideation), treatment randomization is independent of all

baseline variables or pre-randomization variables (e.g. latent baseline characteristics) and

potential outcomes (Rubin 1978).

We implicitly make the stable unit-treatment value assumption (SUTVA) of no interference

between units when we write Dij(Z) and Yij(Z,D(Z)) instead of Dij(Z) and Yij(Z,D(Z)),

where D(Z) is a vector of potential treatment received for all participants. The SUTVA no

8
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interference assumption says that the compliance behavior of one individual is not affected

by randomization status of other individuals, and the potential outcome of one individual

is not affected by the randomization and compliance behaviors of other individuals. Note

that we are only assuming independence between subjects and do not assume independence

within subjects.

Identification of potential outcomes also require SUTVA’s consistency assumption (Rubin

1986). It assumes that the potential outcome of a certain treatment will be the same regard-

less of the treatment assignment mechanism. This assumption may be violated when there

are version of a treatment not reflected in the treatment indicator variable. The consistency

assumption implies that the potential outcome Yij(Z = z,D(Z = z)) for observed z is the

observed outcome conditional on Zi = z, and the potential treatment received Dij(Z = z) for

observed z is the observed treatment received conditional on Zi = z. Under this assumption,

the observed outcome is a function of the potential outcomes and the observed randomiza-

tion status, and the observed treatment received is a function of the potential treatment

received and observed randomization status: Yij = Zi ∗ Yij(1, D(1)) + (1− Zi) ∗ Yij(0, D(0))

and Dij = Zi ∗Dij(1) + (1− Zi) ∗Dij(0).

2.3 Principal Effects

If we attempt to estimate ITT effect within each of the 32 possible combinations of the

time-varying compliance classes in the PROSPECT study, we may encounter the problem

of having little or no subjects in some of the patterns, and inference based on such estimates

would be highly sensitive to modelling assumptions. We would also have 32 ITT effects for

the different compliance patterns, which could make interpretation of the results difficult,

and may be of limited use clinically.

An alternative to stratifying on the time-varying compliance classes is to stratify on “com-

pliance superclasses” that characterize longitudinal compliance patterns. The superclasses

serve as summary measures of compliance patterns within which we estimate ITT effects of

9
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the experimental treatment. A compliance superclass is a pre-randomization variable, which

allows us to model potential outcomes, just as we do with compliance classes. It is a latent

variable at the subject level; unlike the time-varying compliance classes as we defined here,

which is at both subject and time level. The effect of interest would be the principal effect

of treatment assignment on the outcome at time j within a compliance superclass:

E[Yij(Z = 1)|Ui = k]− E[Yij(Z = 0)|Ui = k]

This principal effect is a standard ITT contrast, although stratified on the latent compliance

superclass, which allows us to consider the effect of randomization on the outcome controlling

for subject longitudinal compliance behavior. Since the compliance superclasses do not

represent exact longitudinal compliance class patterns, this principal effect does not translate

to the CACE in Angrist et al. (1996). We discuss details of the superclass model in Section

2.4.

The principal effect of interest can be identified through the observed data by making the

randomization and the SUTVA consistency assumptions:

E[Yij(Z = 1)|Ui = k]− E[Yij(Z = 0)|Ui = k]

= E[Yij(Z = 1)|Zi = 1, Ui = k]− E[Yij(Z = 0)|Zi = 0, Ui = k]

= E[Yij|Zi = 1, Ui = k]− E[Yij|Zi = 0, Ui = k].

The first equality follows from the randomization assumption which assumes independence

between baseline characteristics, such as potential outcomes, and the randomization status

conditional on other baseline factors, such as Ui. The second equality follow from SUTVA’s

consistency assumption, which assumes that the observed outcomes are functions of the

potential outcomes and the observed randomization status. Assuming the randomization and

the SUTVA consistency assumptions, we can utilize observed outcomes to model potential

outcomes.
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2.4 Parametric Models

Consider the complete data that consist of randomization status, potential outcomes, and

potential treatment received. Let f(.) denote the distribution function. The complete data

distribution is given by:

f (Z1, · · · , ZN , Y11(Z = 0), · · · , YNJN
(Z = 0), Y11(Z = 1), · · · , YNJN

(Z = 1),

Di1(Z = 0), · · · , DNJN
(Z = 0), Di1(Z = 1), · · · , DNJN

(Z = 1)) (1)

=
N∏

i=1

f(Zi = z)f (Yi1(Z = 0), · · · , YiJi
(Z = 1), Di1(Z = 0), · · · , DiJi

(Z = 1))

The equality follows from the randomization and the SUTVA no interference assumptions.

The distribution of the observed data (Yi1, · · · , YiJi
,Di1, · · · , DiJi

) for subject i is given by:

f(Yi1, · · · , YiJi
, Di1, · · · , DiJi

|θ)

=

∫ ∫
f(Yi1(Z = 0), · · · , YiJi

(Z = 1), Di1(Z = 0), · · · , DiJi
(Z = 1)|θ) dY mis

i dDmis
i

=

∫ ∫
f(Yi1(Z = 0), · · · , YiJi

(Z = 1)|Di1(Z = 0), · · · , DiJi
(Z = 1), θ)

f(Di1(Z = 0), · · · , DiJi
(Z = 1)|θ) dY mis

i dDmis
i

=

∫ ∫
f(Yi1(Z = 0), · · · , YiJi

(Z = 1)|Ci1, · · · , CiJi
, Ui, θ

Y ) (2)

f(Ci1, · · · , CiJi
|Ui, θ

C)f(Ui|θU) dY mis
i dDmis

i

=

∫ ∫
f(Yi1(Z = 0), · · · , YiJi

(Z = 1)|Ci1, · · · , CiJi
, θY )

f(Ci1, · · · , CiJi
|Ui, θ

C)f(Ui|θU) dY mis
i dDmis

i

where Y mis
i and Dmis

i contains the Yij(Z) and Dij(Z) for which Z 6= Zi, and θ = (θY , θC , θU)

where θY parameterizes the distribution of the potential outcomes Yij(Z), and θC and θU

parameterize the latent compliance class and superclass model for Cij and Ui.

Following Hirano et al. (2000) and Imbens and Rubin (1997), we model the outcome con-

ditional on partially latent compliance class, randomization, and covariates. We consider a

hierarchical model structure, similar to Elliott, Gallo, Ten Have, Bogner, and Katz (2005)
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and Hogan and Daniels (2002), to account for subject-level random effect. Outcomes are

assumed to be conditionally independent given compliance classes Ci1, · · · , Cij, treatment

assignment Zi, subject-level baseline covariates Ai, and subject-level random effect ϕi:

(
Yij|Ci1, · · · , Cij, Zi = z,Ai,Wi,λ, ζ(t, j),γ,ϕi, σ

2
)

ind∼ N(µijz, σ
2)

µijz =

j∑
t=1

[∑

η′
I(Cit = η′, Zi = z)λtη′zζ(t, j)

]
+ AT

i γ + WT
i ϕi (3)

Let λ denotes the vector of λtη′z. The within-compliance class effect of randomization on

the outcome is represented by
∑j

t=1

[∑
η′ I(Cit = η′, Zi = z)λtη′zζ(t, j)

]
, where I(H) is an

indicator function that equals to 1 if H is true, and 0 otherwise. We use ζ(t, j) to describe

the relationship between compliance class membership at time t on the outcome at time j,

where t ≤ j. If we assume a transient relationship, where outcome is assumed to depend

only on the compliance behavior in the current time period, then ζ(t, j) = I(t = j); if we

assume a non-transient relationship, where outcome is assumed to dependent on compliance

behavior in the current and all prior time periods, then ζ(t, j) = I(t ≤ j); if we assume a

decaying relationship, where outcome is assumed to be dependent on compliance behavior in

the current and all prior time periods, but the effect diminishes as time lag increases, then

we may assume ζ(t, j) = e−τ(j−t) where τ > 0.

The fixed effect of subject-level baseline covariates Ai on the outcome are described by the

column vector γ. The random effect ϕi is used to account for the within-subject correlation in

the outcomes where Wi denotes the random effect design matrix of subject i. A preliminary

analysis indicated that the within-clinic correlation was small (0.075); hence we ignore it for

this analysis. Subject-level random effects are assumed to be independent of random errors

of the outcome, and of the latent classes Cij and Ui for all i and j.

We assume that the compliance superclass is an underlying factor that drives subject com-

pliance over time; therefore, we model the time-varying compliance class conditional on com-

pliance superclass. Following Hirano et al. (2000) and Ten Have, Elliott, Joffe, Zanutto, and

Datto (2004), we model the compliance class probabilities conditional on baseline covariates

12
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Qi. Let P (Cij = η|Ui = k,Qi) = πkjη(Qi), and πkjη(Qi) = exp(α0kjη+α1ηQi)/[
∑

η′ exp(α0kjη′+

α1η′Qi)] ,where
∑

η′ πkjη′(Qi) = 1 ∀k, j (Clogg 1995), and we constrain α0kjη∗ and α1η∗ for

one of the compliance class η∗ to be 0 for identifiability. This multinomial logit model as-

sumes a constant effect of the baseline covariates Qi on the compliance class probabilities

that does not vary by time nor compliance superclass. Compliance classes between sub-

jects and compliance classes within a subject at each time point conditional on compliance

superclass and baseline covariates are assume to be independent:

P (C|U,Q) =
N∏

i=1

P (Ci1, ..., CiJi
|Ui,Qi) =

N∏
i=1

P (Ci1|Ui,Qi)...P (CiJi
|Ui,Qi).

Assuming conditional independence between compliance classes given superclass, estimates

of the λ parameters do not change with different ζ(t, j). We prove this in the Appendix.

This allows us to use the transient conditional mean outcome model in analysis, where

ζ(t, j) = I(t = j), regardless of the true relationship between the compliance classes and the

outcomes. Thus, equation (3) becomes µijz = I(Cij = η, Zi = z)λjηz + AT
i γ + WT

i ϕi.

We assume that subject compliance superclass (Ui = k) ∼ Multinomial(1, pk), where
∑K

k=1 pk = 1. Compliance superclasses between subjects are assumed to be independent:

f(U) =
∏N

i=1 f(Ui = k) for k = 1, ..., K. We assume that there are no covariates associated

with compliance besides the covariates Qi used in modelling time-varying compliance, and

therefore, do not include any covariates in modelling the superclasses. Covariates can be

incorporated using multinomial logit models.

13
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Given the model specifications, Equation (2) becomes

∫ ∫
f(Yi1(Z = 0), · · · , YiJi

(Z = 1)|Ci1, · · · , CiJi
, θY )

f(Ci1, · · · , CiJi
|Ui, θ

C)f(Ui|θU) dY mis
i dDmis

i

=

∫ ∫
f(Yi1(Z = 0), Yi1(Z = 1)|Ci1, θ

Y ) · · · f(YiJi
(Z = 0), YiJi

(Z = 1)|CiJi
, θY )

f(Ci1|Ui, θ
C) · · · f(CiJi

|Ui, θ
C)f(Ui|θU) dY mis

i dDmis
i

=




Ji∏
j=1

K∑

k′=1

pk′


 πk′jc(Qi)× φ

(
Yij−(λjc0+AT

i γ+WT
i ϕi)

σ

)
+

πk′jn(Qi)× φ
(

Yij−(λjn0+AT
i γ+WT

i ϕi)

σ

)






I(Zi=0)

×


 ∏

j∈Dij=1

K∑

k′=1

pk′ φ

(
Yij − (λjc1 + AT

i γ + WT
i ϕi)

σ

)


I(Zi=1)

×


 ∏

j∈Dij=0

K∑

k′=1

pk′ φ

(
Yij − (λjn1 + AT

i γ + WT
i ϕi)

σ

)


I(Zi=1)

where φ(s) is the pdf for standard normal distribution evaluated at s.

2.5 Estimation

We use the Bayesian Markov Chain Monte Carlo (MCMC) method to estimate model pa-

rameters. The model set up is similar to the methods used in Hirano et al. (2000) and Ten

Have et al. (2004). Bayesian estimation of latent compliance classes proposed by Imbens and

Rubin (1997) requires specifying prior distribution. We assume α ∼ MV N (0, Σα) (Garrett

and Zeger 2000; Ten Have et al. 2004), and the prior (p1, ..., pK) ∼ Dirichlet(a1, ..., aK).

For notational simplicity, let Xij = [I(Ci1 = c, Zi = 0), · · · , I(Ci5 = n, Zi = 1),Ai] denote

the row vector of the fixed effect, and Xi denotes the design matrix of the fixed effect for

subject i with Ji rows. Let β = [λ1c0, · · · , λ5n1, γ] denote the vector of coefficients cor-

responding to the fixed effect. We put a priors on the vector of fixed effect parameters

β ∼ MV N(µβ, Σβ), the random effect parameters, ϕi ∼ MV N (0, Σϕ), and conjugate

hyperprior, Σϕ ∼ Inv − Wishart (df = νϕ, Γ). We also assume a conjugate prior for the

variance of the random errors, σ2 ∼ Inv − χ2 (df = νσ, ψ). Gibbs sampling (Geman and
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Geman 1984; Gelfand and Smith 1990; Imbens and Rubin 1997; Gelman, Carlin, Stern, and

Rubin 2004) is used to obtain draws from the posterior distributions of the parameters. The

detailed description of the posterior distributions of β, σ2, ϕi, Σϕ, Cij, pk, and Ui from which

the parameters are drawn are given in the Appendix.

Since the posterior distributions of (α|C,U,Q) is not of a known parametric form, we pro-

pose to use the Metropolis-Hasting algorithm (Hastings 1970; Gelman et al. 2004) technique

to draw the α parameters. We use the multivariate t-distribution with 3 degrees of freedom

as the proposal distribution, using estimates of α from the previous iteration and the inverse

of the observed information as the mean and variance, respectively.

2.6 Model Fit Assessment

To assess the fit of the model to the data we examine the posterior predictive distributions

(PPD; Gelman et al. 2004). Since the compliance classes in those randomized to the inter-

vention are observed, we compare the PPD of the time-varying compliance classes in those

randomized to the intervention and assess their fit to the observed compliance. Let Gm de-

note the number of individuals in mth of the 32 possible longitudinal compliance patterns and

let κm be the estimated probability of exhibiting the mth longitudinal compliance pattern.

We consider the χ2-type statistics:

Sobs =
∑
m

(Gobs
m −Nκm)2

Nκm(1− κm)
and Srep =

∑
m

(Grep
m −Nκm)2

Nκm(1− κm)
(4)

where Gobs
m is the observed statistics and Grep

m is the repeated statistic obtained from draws

of the parameters generated by the Gibbs sampler. The PPD p-value is then given by

∑
l I[(Sobs)l < (Srep)l]∑

l 1

where (Sobs)l and (Srep)l denote the Sobs and Srep from lth Gibbs draw, respectively. A PPD

p-value close to 0.50 indicates good fit of the model to the data.
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3 RESULTS

In the PROSPECT study, 320 subjects were in clinics that were randomized to intervention,

and 278 were in clinics that were randomized to the standard care. All subjects at each time

point that have not dropped out of the study and have HAMD measures are considered for

the analysis. At the 4-month follow-up, 234 remained of those randomized to standard care

and had HAMD measures, and 253 remained of those randomized to the intervention and

had HAMD measures. Of those 253 who were randomized to the intervention, 30 received

the standard care instead, and no one randomized to the standard care was observed to

have received the intervention as the intervention would not have been accessible to them.

At the 24-month follow-up, 151 were left of those randomized to the standard care and had

HAMD measures, and 170 remained of those randomized to the intervention and had HAMD

measures. Of those 170, 48 received the standard care instead. We assume that dropouts and

missing outcomes are occurring at random (MAR; Little and Rubin 2002). We include the

baseline HAMD score and baseline suicidal ideation in modelling the outcome because we are

interested in the change in HAMD from baseline in each subject and because randomization

failed to balance proportions of subjects with suicidal ideation between the control and the

intervention groups at baseline (Bruce et al. 2004). ITT analysis and AT analysis will be

performed in addition to analysis based on the superclass model for comparison.

3.1 ITT analysis

In an ITT analysis, we ignore the treatment that subjects actually received, and look at the

effect of randomization on the outcome. In this analysis, we fit a linear mixed effects model

with random subject-level intercepts, and we control for baseline HAMD score and baseline

suicidal ideation. Table 1 shows that the effect of being randomized to meet with health

specialists is strongest during the first four months of the study with an average of a 3-point

reduction in the HAMD score. The effect diminishes until the 24-month follow-up where

we see an increase in reduction of HAMD score in those that were randomized to meet the
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health specialists relative to those that were randomized to the usual care.

An ITT effect can provide biased estimates of the direct effect of the intervention when

subject noncompliance is present and not accounted for in the analysis. It may not reflects

the effect of the intervention because the subjects’ randomization status is not necessarily

the same as the actual treatment received.

3.2 AT analysis

In an AT analysis, we ignore the subject randomization status, and look at the effect of

the actual intervention received on the outcome. In this AT analysis, we also fit a linear

mixed effects model controlling for baseline HAMD score and baseline suicidal ideation,

with subject-level random intercepts. The AT analysis result is shown in Table 1. The effect

of actually meeting the health specialists is the strongest during the first four months of

the study. The effect diminishes until the 24-month follow-up where we see an increase in

reduction of HAMD scores in those who met with the health specialists relative to those who

did not. In contrast to the ITT effect, the AT effect is significant over the entire observation

period.

AT estimates of the effect of the intervention may also be biased in the presence of noncom-

pliance or confounders related to the treatments and the outcome (Heitjan 1999). When we

ignore the randomization, the groups may no longer be comparable.

3.3 Superclass Model

In this section we consider the application of our extension of the Imbens and Rubin (1997)

method to a longitudinal case where randomization stays constant over time but the treat-

ment received could vary. We consider a transient model, where outcomes are only dependent

on current compliance behavior and not prior compliance behavior. Under the conditional

independence assumption for the compliance classes given compliance superclass, estimates
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obtained under the transient model are equal to those obtained under a non-transient model

as shown in the Appendix. The effect of interest is the principal effect of treatment assign-

ment on the outcome within a compliance superclass controlling for baseline HAMD score

and baseline suicidal ideation:

E[Yij(Zi = 1)|Ui = k]− E[Yij(Zi = 0)|Ui = k] =
∑

η′
πkjη′(Qi)× (λjη′1 − λjη′0) (5)

In PROSPECT, those randomized to the usual care have no access to the health specialists;

hence, there are only two possible compliance classes: complier and never-taker. We include

baseline HAMD score in modelling the compliance probabilities.

In our superclass model we use priors that are not informative for the Bayesian MCMC

algorithm because we do not have strong a priori inclinations. We assume

α ∼ MV N (0, Σα = diag(9/4, 0.04)) for intercepts and coefficient for the effect of baseline

HAMD score on compliance class probabilities following Garrett and Zeger (2000) and Ten

Have et al. (2004). The difference in the variance component in the prior reflects the differ-

ent scaling of the covariates. A larger variance is used for binary covariates (intercept) and

a smaller variance is used for continuous covariates (baseline HAMD score). We assume a

noninformative prior (p1, ..., pK) ∼ Dirichlet(1, ..., 1) for the compliance superclass proba-

bilities. We assume a diffuse prior on the coefficients for the within-compliance class effect

of randomization, baseline HAMD score, and baseline suicidal ideation on the outcomes,

β ∼ MV N(µβ = 0, Σβ = 1000× I). In this analysis, we assume a model with subject-level

intercepts and assume the conjugate prior Σϕ ∼ Inv−χ2 (νϕ = 1, Γ = 1/10). We also assume

a conjugate prior for the variance of the random errors, σ2 ∼ Inv − χ2 (νσ = 1, ψ = 1/10).

Identifiability of the α parameters is checked by comparing the prior and posterior distrib-

utions (Garrett and Zeger 2000).

We assume there are three compliance superclasses. Goodman (1974) suggests that we can

only identify at most 3 latent compliance superclasses given we have dichotomous compliance

classes for 5 time points.
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We run 3 MCMC chains of 5,000 iterations after discarding 5,000 iterations of burn-in. To

deal with possible label switching of the latent classes from one iteration to another, we use

the algorithm proposed by Stephens (2000) to ensure that the labels of latent classes in one

iteration is equivalent to the labels in other iterations. To assess the convergence of the

chains, we calculate the R̂ statistic (Gelman et al. 2004, pp.296-297) which is the square

root of the ratio between the weighted average of the within- and between-chain variance

and the within-chain variance. R̂ = 1 is considered convergence, and R̂ < 1.1 is acceptable;

our maximum value of R̂ was 1.04.

Table 2 shows the compliance probabilities at each follow-up within each compliance super-

classes given an average HAMD of 18.1. We see that the probability of membership in the

complier class is low in the first superclass, and it decrease over the first year then stabilizes

in the second year. We will call this superclass “low compliers”. In the second superclass, the

probability of compliance starts high then rapidly decreases over time. We will call this su-

perclass “decreasing compliers.” In the third superclass, the probability of compliance is near

1, and remains high for the first 18 months, then drops off slightly in the last 6 months. We

will call this last superclass “high compliers.” The posterior probabilities and their associated

95% credible interval of membership in the low compliers, decreasing compliers, and high

compliers superclasses are 0.19(0.12,0.26), 0.07(0.00,0.14), and 0.74(0.67,0.80), respectively.

The posterior mean and 95% credible interval for the log odds of complier class member-

ship with an one-point increase in baseline HAMD score is 0.04(-0.004,0.08). It suggests

that patients with more severe depression at baseline, indicated by higher baseline HAMD

scores, are more likely to be compliers than never-takers compared to those with less severe

depression at baseline.

Table 3 presents the posterior means and credible intervals of (5), the ITT effect of random-

ization on the outcome within each compliance superclass controlling for baseline HAMD

and baseline suicidal ideation. The ITT contrast within the low compliers shows a large

decrease in the HAMD score at 4 months, suggesting that those in clinics randomized to

the intervention show greater improvement in depression than those in clinics randomized to
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the usual care. Never-takers receive the usual care regardless of their randomization status;

therefore, the ITT effect at 4 months in the low complier superclass is likely to be largely

contributed by the direct effect of randomization. We also see a reduction in HAMD scores

in the ITT contrasts within decreasing compliers and high compliers, who are highly com-

pliant at 4 month, suggesting that meeting the health specialists when randomized to the

intervention may be effective in improving the status of depression. At 24 months, we see

the largest reduction in HAMD in the ITT contrast of the high complier superclass. These

findings suggest that although being in clinics randomized to the intervention, or having ac-

cess to the health specialists, may help improve depression initially, subjects need to actually

meet with the health specialists to benefit from the intervention longitudinally.

We compare the fit of the posterior predictive distribution (PPD) of the longitudinal compli-

ance class patterns in those randomized to the intervention under the two-superclass model

to that under the three-superclass model. The PPD p-value for the two-superclass model

is 0.003, and is 0.046 for the three-superclass model. This gives evidence that the three-

superclass model has a better fit to the data than the two-superclass model.

3.4 Simulation Study

We simulated 100 data sets of 400 subjects each with complete 5 follow-up visits assum-

ing there are two superclasses: increasing-noncompliers, whose compliance probabilities are

0.50, 0.40, 0.30, 0.20, and 0.10 from the first visit to the fifth visit; steady-compliers, whose

compliance probabilities are 0.90 throughout all the visits. We assume equal probabilities of

being increasing-noncompliers and steady-compliers. We also assume the variances σ2 = 22

and Σϕ = 25. We simulated the data under β = (5.84, 2.79, 5.23, 2.38, 3.65, 2.12, 3.51,

1.65, 2.46, 1.49, 3.56, 2.21, 1.96, 1.16, 2.73, 3.51, 1.70,−0.04, 2.38, 2.43, 0.44) which corresponds

to ITT effects in the increasing-noncompliers as -2.950, -1.728, -1.236, 0.464, and -0.129 from

the fist visit to the last visit, and ITT effects in the steady-compliers as -3.030, -1.563, -1.008,

-0.642, and -1.561. We analyze the simulated data assuming the correct model structure.
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The means of the estimated compliance probabilities, the compliance superclass probabilities,

and the ITT effect within each superclass of the simulated data sets are presented in Table 4.

Our estimation procedure seems to perform well in estimating the compliance probabilities

and the compliance superclass probabilities. The estimated values are very close to the true

values from which the data is simulated. The estimated ITT effects within superclasses also

seem reasonable relative to the true values. Table 5 presents the coverage of the 95% credible

intervals of the estimates. It shows good coverage for the compliance probability and ITT

effect estimates. We see an over-coverage of the compliance superclass probability estimates.

A binary variable is expected to have the largest variance when the probability of “success”

is at 0.5. Therefore, we expect the variance of the compliance superclass probabilities to be

the largest when the true probability of being in one of two classes is 0.5.

4 DISCUSSION

The proposed model extends the methods in Imbens and Rubin (1997) and Yau and Little

(2001) to longitudinal data where randomization is constant through time but the compli-

ance behavior may vary over time. Similar to Frangakis et al. (2004), the proposed model

accommodates time-varying latent classes. However, unlike Frangakis et al. (2004), we do

not allow randomization to vary over time. Another difference between the proposed model

and the model in Frangakis et al. (2004) is that we utilize a nested latent class structure

to summarize longitudinal time-varying compliance behaviors and estimate principal effects

within the time-invariant subject-specific compliance superclasses. The proposed method

allows us to make ITT contrasts controlling for longitudinal compliance behaviors by strat-

ifying on the compliance superclasses. If we were to compare outcomes stratified on specific

patterns of compliance over time, it may result in too many comparisons to be of any prac-

tical use, or we may run into problems with small sample sizes in some of the patterns.

Furthermore, the Imbens and Rubin (1997) framework allows us to assess the direct effect

of randomization on the outcome. Although utilizing the superclasses provide convenient

summaries of the longitudinal compliance patterns, we lose the ability to have clear causal
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interpretations of the stratified ITT contrasts.

In the PROSPECT study, we found a relationship between baseline depression severity and

compliance behaviors. Those with more severe depression at baseline, indicated by higher

HAMD score, are more likely to be compliers than never-takers than those with less severe

depression. It is sensible that those with more severe depression would be more cooperative

in working with their physicians to improve their condition, and be more willing to adhere

to the treatment to which they are randomized. Those with less severe depression may not

feel the need for treatment; hence, reject intervention when it is available to them.

We identified three types of longitudinal compliance profiles in the analysis: 1) low com-

pliance; 2) decreasing compliance and 3) high compliance. The ITT contrasts at each time

point within superclasses suggest that there may be a direct effect of randomization initially,

but those who are more compliant and met with health specialists when randomized to the

intervention showed greater improvement in depression than those who are less compliant

at the end of the study. This suggests that meeting with health specialists is effective in

improving depression. Although those who did not comply when randomized to the inter-

vention still showed reduction in the HAMD score early in the study, those who complied

were able to benefit from meeting with the health specialists and showed greater reduction

in the HAMD score longitudinally. An advantage of our approach over a cross-sectional ITT

analysis, and over even a cross-sectional principal stratum analysis, is that we were able to

identify a latent class of highly compliant individuals whose ITT effects at later time peri-

ods were greater than those estimated through conventional approaches, consistent with a

hypothesis of treatment benefit.

The proposed nested latent class model also allows us to examine the direct effect of ran-

domization. In groups with large proportion of never-takers, such as in our low complier

superclass, the ITT effects are likely due to the direct effect of randomization rather than the

effect of the actual intervention. In the PROSPECT study, we found evidence of direct effect

of randomization early on but the effect diminished over time. In large clinical randomiza-

tion studies, clustered randomization are often performed due to concerns of contamination
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between subjects in the same cluster randomized to different treatment groups. Our result

suggests that with adequate run-in time for the intervention, the effect of randomization

becomes minimal. It may be acceptable to randomize individual subjects within clusters

given sufficient follow-up time.

The simulation results show that our estimation method produces reasonable estimates with

generally good coverage when the underlying assumptions are correct. The over-coverage of

the compliance superclass probability estimates seems to indicate that our estimates may be

too conservative.

In our analysis we assume three compliance superclasses, the maximum number of latent

classes that can be identified when the dichotomous “outcomes” (in this case the compliance

class membership) are available (Goodman 1974). However, our model fit analysis using

PPD-probabilities showed that while model fit for the 3-superclass model (p=0.046) was

better than for the 2-superclass model (p=0.003), it was still less than ideal. Hence we are

currently exploring Markov Chain models for the compliance classes as a richer model than

the “conditional independence” model considered here.

Beyond relaxing the conditional independence assumption of compliance classes across time

given superclass and covariates, we can also consider incorporating other covariates in mod-

elling the compliance classes and superclasses to identify better predictors of compliance. If

clinicians can identify patients who are likely to comply to treatment over time and those less

likely to comply, then they may be able to target patients with particular attributes or tailor

treatment for different patients to optimize treatment adherence and treatment outcomes.

The reviewers raised an important issue of the effect of prior outcomes on compliance be-

haviors. In this analysis we model the joint distribution of the compliance classes and the

outcomes as a product of the joint distribution of compliance classes and joint distribution

of the outcomes conditional on the joint distribution of the compliance classes:

f(Yi1, · · · , YiJi
, Ci1, · · · , CiJi

) = f(Yi1, · · · , YiJi
|Ci1, · · · , CiJi

)f(Ci1, · · · , CiJi
)

This allows us to incorporate the relationship between compliance classes and prior outcomes,
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though this relationship is not modelled explicitly. Alternatively we can model the joint

distributions as a time series:

f(Yi1, · · · , YiJi
, Ci1, · · · , CJi

)

= P (Ci1)P (Yi1|Ci1)P (Ci2|Yi1, Ci1)P (Yi2|Ci1, Ci2, Yi1) · · ·
P (CiJi

|Yi1, · · · , Yi,Ji−1, Ci1, · · · , Ci,Ji−1)P (YiJi
|Ci1, · · · , CiJi

, Yi1, · · · , Yi,Ji−1)

However, examining this model raised the issue of identifiability in a potential outcomes

framework, and it is not clear how one would construct meaningful ITT contrasts in this

setting. Nonetheless, it would be valuable to explore the relationship between prior outcomes

and compliance behaviors in future work.
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5 Appendix

5.1 Proof within-superclass ITT effects are the same under the
transient, non-transient, and decay models assuming compli-
ance classes at each time points are conditionally independent
from each other given compliance superclass.

We consider transient, non-transient, and decay models. We are interested in the ITT

contrast within superclass.

E[Yij(Z = 1)|Ui = k]− E[Yij(Z = 0)|Ui = k]

Let λ∗jηz be the compliance class-specific effect of randomization on the outcome for compli-

ance class η at time j when randomized to treatment group z under the transient model, and

λjηz be the compliance class-specific effect of randomization under the non-transient model.

ITT contrast at time j under transient model:

P (Cij = c|Ui = k)(λ∗jc1 − λ∗jc0) + P (Cij = n|Ui = k)(λ∗jn1 − λ∗jn0)

ITT contrast at time j under non-transient model:

P (Ci1 = c|Ui = k)(λ1c1 − λ1c0) + P (Ci1 = n|Ui = k)(λ1n1 − λ1n0) + ...

+P (Cij = c|Ui = k)(λjc1 − λjc0) + P (Cij = n|Ui = k)(λjn1 − λjn0)

= [P (Ci1 = c|Ui = k)λ1c1 + P (Ci1 = n|Ui = k)λ1n1 + ... +

P (Cij = c|Ui = k)λjc1 + P (Cij = n|Ui = k)λjn1] (6)

− [P (Ci1 = c|Ui = k)λ1c0 + P (Ci1 = n|Ui = k)λ1n0 + ... +

P (Cij = c|Ui = k)λjc0 + P (Cij = n|Ui = k)λjn0]
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P (Ci,j−1 = c|Ui = k)λj−1,cz + P (Ci,j−1 = n|Ui = k)λj−1,nz

= [P (Ci,j−1 = c, Cij = c|Ui = k) + P (Ci,j−1 = c, Cij = n|Ui = k)] λj−1,cz

+ [P (Ci,j−1 = n,Cij = c|Ui = k) + P (Ci,j−1 = n,Cij = n|Ui = k)] λj−1,nz

= [P (Ci,j−1 = c|Ui = k)P (Cij = c|Ui = k) + P (Ci,j−1 = c|Ui = k)P (Cij = n|Ui = k)] λj−1,cz

+ [P (Ci,j−1 = n|Ui = k)P (Cij = c|Ui = k) + P (Ci,j−1 = n|Ui = k)P (Cij = n|Ui = k)] λj−1,nz

assuming conditional independence of compliance probabilities given superclass.

P (Ci1 = c|Ui = k)λ1c1 + P (Ci1 = n|Ui = k)λ1n1

= [P (Ci1 = c, Ci2 = c, ..., Cij = c|Ui = k) + ... + P (Ci1 = c, Ci2 = n, ..., Cij = n|Ui = k)] λ1c1

+ [P (Ci1 = n,Ci2 = c, ..., Cij = c|Ui = k) + ... + P (Ci1 = n,Ci2 = n, ..., Cij = n|Ui = k)] λ1n1

summing over all 2j−1 compliance patterns for Ci2 to Cij.

= [P (Ci1 = c, Ci2 = c, ..., Ci,j−1 = c|Ui = k)P (Cij = c|Ui = k) + ...+

P (Ci1 = c, Ci2 = n, ..., Ci,j−1 = n|Ui = k)P (Cij = n|Ui = k)] λ1c1

+ [P (Ci1 = n,Ci2 = c, ..., Ci,j−1 = c|Ui = k)P (Cij = c|Ui = k) + ...+

P (Ci1 = n, Ci2 = n, ..., Ci,j−1 = n|Ui = k)P (Cij = n|Ui = k)] λ1n1

= [P (Ci1 = c|Ui = k)P (Cij = c|Ui = k) + P (Ci1 = c|Ui = k)P (Cij = n|Ui = k)] λ1c1

+ [P (Ci1 = n|Ui = k)P (Cij = c|Ui = k) + P (Ci1 = n|Ui = k)P (Cij = n|Ui = k)] λ1n1

P (Ci1 = c|Ui = k)λ1c0 + P (Ci1 = n|Ui = k)λ1n0

= [P (Ci1 = c, Ci2 = c, ..., Cij = c|Ui = k) + ... + P (Ci1 = c, Ci2 = n, ..., Cij = n|Ui = k)] λ1c0

+ [P (Ci1 = n,Ci2 = c, ..., Cij = c|Ui = k) + ... + P (Ci1 = n,Ci2 = n, ..., Cij = n|Ui = k)] λ1n0

= [P (Ci1 = c, Ci2 = c, ..., Ci,j−1 = c|Ui = k)P (Cij = c|Ui = k) + ...+

P (Ci1 = c, Ci2 = n, ..., Ci,j−1 = n|Ui = k)P (Cij = n|Ui = k)] λ1c0

+ [P (Ci1 = n,Ci2 = c, ..., Ci,j−1 = c|Ui = k)P (Cij = c|Ui = k) + ...+

P (Ci1 = n, Ci2 = n, ..., Ci,j−1 = n|Ui = k)P (Cij = n|Ui = k)] λ1n0

= [P (Ci1 = c|Ui = k)P (Cij = c|Ui = k) + P (Ci1 = c|Ui = k)P (Cij = n|Ui = k)] λ1c0

+ [P (Ci1 = n|Ui = k)P (Cij = c|Ui = k) + P (Ci1 = n|Ui = k)P (Cij = n|Ui = k)] λ1n0
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Then equation (6) becomes:

P (Cij = c|Ui = k) [P (Ci1 = c|Ui = k)λ1c1 + P (Ci1 = n|Ui = k)λ1n1+

P (Ci2 = c|Ui = k)λ2c1 + P (Ci2 = n|Ui = k)λ2n1 + ...+

P (Ci,j−1 = c|Ui = k)λj−1,c,1 + P (Ci,j−1 = n|Ui = k)λj−1,n,1 + λjc1]

+P (Cij = n|Ui = k) [P (Ci1 = c|Ui = k)λ1c1 + P (Ci1 = n|Ui = k)λ1n1+

P (Ci2 = c|Ui = k)λ2c1 + P (Ci2 = n|Ui = k)λ2n1 + ...+

P (Ci,j−1 = c|Ui = k)λj−1,c,1 + P (Ci,j−1 = n|Ui = k)λj−1,n,1 + λjn1]

−P (Cij = c|Ui = k) [P (Ci1 = c|Ui = k)λ1c0 + P (Ci1 = n|Ui = k)λ1n0+

P (Ci2 = c|Ui = k)λ2c0 + P (Ci2 = n|Ui = k)λ2n0 + ...+

P (Ci,j−1 = c|Ui = k)λj−1,c,0 + P (Ci,j−1 = n|Ui = k)λj−1,n,0 + λjc0]

−P (Cij = n|Ui = k) [P (Ci1 = c|Ui = k)λ1c0 + P (Ci1 = n|Ui = k)λ1n0+

P (Ci2 = c|Ui = k)λ2c0 + P (Ci2 = n|Ui = k)λ2n0 + ...+

P (Ci,j−1 = c|Ui = k)λj−1,c,0 + P (Ci,j−1 = n|Ui = k)λj−1,n,0 + λjn0]

= P (Cij = c|Ui = k)λ∗jc1 + P (Cij = n|Ui = k)λ∗jn1

−P (Cij = c|Ui = k)λ∗jc0 − P (Cij = n|Ui = k)λ∗jn0

= P (Cij = c|Ui = k)(λ∗jc1 − λ∗jc0) + P (Cij = n|Ui = k)(λ∗jn1 − λ∗jn0)

Therefore, when fitting transient model to non-transient data, we still get unbiased ITT

effect within superclass. A similar proof shows that fitting transient model to data from

decay model would still give us unbiased ITT effect within superlcass.
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5.2 Conditional draws of the Gibbs sampler

Let Yi, denote the column vector of Yij for subject i. For simplicity, Let

Xij = [I(Ci1 = c, Zi = 0), · · · , I(Ci5 = n, Zi = 1),Ai] denote the row vector of the fixed

effect, and Xi denote the design matrix of the fixed effect for subject i with Ji rows. Let

β = [λ1c0, · · · , λ5n1,γ] denote the vector of coefficients corresponding to fixed effect.

The distributions from which parameters are drawn at each iteration in the Gibbs sampling

are as follows:

(
β|X,Y,W,ϕ, σ2,µβ, Σ−1

β

) ∼ MV N(µ̂, Σ̂)

µ̂ =
σ−2

PN
i=1 XT

i (Yi−WT
i ϕi)+Σ−1

β µβ

σ−2
PN

i=1 XT
i Xi+Σ−1

β

Σ̂ = (σ−2
∑N

i=1 XT
i Xi + Σ−1

β )−1

(σ2|X,Y,W, ϕ, β, νσ, ψ) ∼ Inv − χ2
(
df =

∑N
i=1 Ji + νσ,

PN
i=1 Fi+νσψPN
i=1 Ji+νσ

)

where Fi =
(
Yi −Xiβ −WT

i ϕi

)T (
Yi −Xiβ −WT

i ϕi

)

(ϕi|Xi,Yi,Wi,β, σ2, Σϕ, ) ∼ MV N
(
ϕ̂iV̂i, V̂i

)

ϕ̂i =
WT

i (Yi−Xiβ)
σ2

V̂i =
(

WT
i Wi

σ2 + Σ−1
ϕ

)−1

(Σϕ|ϕ, νϕ, Γ) ∼ Inv −Wishart
(
df = νϕ + N,

∑N
i=1 ϕT

i ϕi + Γ
)

In studies where the control group have no access to the intervention, such as the PROSPECT

study, the only possible compliance classes are compliers and never-takers. Therefore πkjc(Qi) =

exp(α0kjc +α1cQi)/[1+ exp(α0kjc +α1cQi)] and πkjn(Qi) = 1/[1+ exp(α0kjc +α1cQi)]. The
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posterior probabilities of compliance class membership is:

P (Cij = c|Yij, Zi, Dij, Ui,λ,Ai,γ,Wi,ϕi,Qi, α, σ2)

=





πkjc(Qi)×φ

�
Yij−(λjc0+AT

i γ+WT
i ϕi)

σ

�

P
η′

"
πkjη′ (Qi)×φ

 
Yij−(λjη′0+AT

i
γ+WT

i
ϕi)

σ

!# if ∈ Zi = 0, Dij = 0, Ui = k

0 if ∈ Zi = 1, Dij = 0, Ui = k
1 if ∈ Zi = 1, Dij = 1, Ui = k

P (Cij = n|Yij, Zi, Dij, Ui,λ,Ai,γ,Wi,ϕi,Qi,α, σ2)

=





πkjn(Qi)×φ

�
Yij−(λjn0+AT

i γ+WT
i ϕi)

σ

�

P
η′

"
πkjη′ (Qi)×φ

 
Yij−(λjη′0+AT

i
γ+WT

i
ϕi)

σ

!# if ∈ Zi = 0, Dij = 0, Ui = k

1 if ∈ Zi = 1, Dij = 0, Ui = k
0 if ∈ Zi = 1, Dij = 1, Ui = k

The posterior probabilities of compliance superclass is:

(p1, ..., pK |U, a1, ..., aK) ∼ Dirichlet(r1, ..., rK)

r1 =
∑N

1 I(Ui = 1) + a1

rK =
∑N

1 I(Ui = K) + aK

Let Ci denote the vector of Cij for subject i, and α denote the vector of α0kjη and α1η. The

posterior probability of compliance superclass membership is:

P (Ui = k|Ci,Qi,α, p1, ..., pK) ∝ pk ×
Ji∏

j=1

∏

η′
πkjη′(Qi)

I(Cij=η′,Ui=k)

Estimation of the parameters is a MCMC process. Note that λjηz is a function of the com-

pliance class, Cij; and α0kjη is a function of the compliance superclass, Ui. The parameters

λjηz, α0kjη, and α1η are updated at each iteration with the latest estimates of Cij and Ui,

which are then used to estimate Cij and Ui in the next iteration.
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7 TABLES

Table 1. ITT and AT Estimates of Treatment Effect and Corresponding 95% Confidence
Intervals (in parentheses).

Time ITT Effects AT Effects
4-months -2.97 (-4.20,-1.74) -2.54 (-3.67,-1.41)
8-months -1.58 (-2.84,-0.32) -1.22 (-2.39,-0.04)
12-months -1.32 (-2.63,-0.01) -1.31 (-2.53,-0.09)
18-months -0.66 (-1.98, 0.66) -1.31 (-2.55,-0.07)
24-months -1.42 (-2.83,-0.01) -2.10 (-3.44,-0.77)

Table 2. Posterior Means and 95% Credible Intervals (in parentheses) for the Time- and
Compliance Superclass-Varying Compliance Probabilities Given Average HAMD 18.1 and
Compliance Superclass Probabilities.

Low Decreasing High
Time Compliers Compliers Compliers

4-months 0.37(0.13,0.57) 0.85(0.26,0.99) 0.99(0.97,1.00)
8-months 0.14(0.02,0.35) 0.80(0.23,0.99) 0.99(0.97,1.00)
12-months 0.08(0.02,0.21) 0.51(0.13,0.96) 0.99(0.96,1.00)
18-months 0.13(0.04,0.28) 0.33(0.03,0.94) 0.98(0084,1.00)
24-months 0.14(0.03,0.34) 0.22(0.02,0.92) 0.89(0.82,0.95)
P (Ui = k) 0.19(0.12,0.26) 0.07(0.00,0.14) 0.74(0.67,0.80)

Table 3. Posterior Means and 95% Credible Intervals (in parentheses) for the ITT Effect of
Intervention Within Compliance Superclasses.

Low Decreasing High
Time Compliers Compliers Compliers

4-months -9.00(-12.58,-6.14) -3.19(-10.45,-0.70) -1.53(-2.87,-0.16)
8-months -4.47(- 8.66, 0.17) -1.76(- 2.86, 0.16) -0.88(-2.41, 0.71)
12-months 1.69(- 4.47, 5.56) 0.05(- 2.89, 3.23) -1.84(-3.42,-0.11)
18-months 1.71(- 1.75, 5.01) 1.13(- 2.50, 4.69) -1.23(-2.84, 0.38)
24-months -0.47(- 3.54, 2.54) -0.44(- 3.30, 2.89) -1.62(-3.32,-0.02)
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Table 4. Mean Estimated Compliance Probabilities, Compliance Superclass Probabilities,
and ITT Effect of Intervention Within Compliance Superclasses (true value in parentheses)
From 100 Simulations.

Increasing-Noncompliers Steady-Compliers
Visit P (Cij = c) Effect P (Cij = c) Effect

1 0.51(0.5) -2.99(-2.95) 0.89(0.9) -2.83(-3.03)
2 0.40(0.4) -1.60(-1.73) 0.90(0.9) -1.37(-1.56)
3 0.30(0.3) -0.80(-1.24) 0.89(0.9) -1.27(-1.01)
4 0.20(0.2) 0.91( 0.46) 0.89(0.9) -0.89(-0.64)
5 0.11(0.1) 0.21(-0.13) 0.88(0.9) -1.79(-1.56)

P (Ui = k) 0.50(0.50) 0.50(0.50)

Table 5. Coverage of 95% Credible Intervals for Estimated Compliance Probabilities, Com-
pliance Superclass Probabilities, and ITT Effect of Intervention Within Compliance Super-
classes From 100 Simulations.

Increasing- Steady-
Noncompliers Compliers

Visit P (Cij = c) Effect P (Cij = c) Effect
1 92% 98% 95% 98%
2 97% 99% 96% 99%
3 98% 98% 94% 98%
4 93% 100% 95% 99%
5 97% 99% 92% 99%

P (Ui = k) 100% 100%
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