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Nested Markov Compliance Class Model in
the Presence of Time-Varying Noncompliance

Julia Y. Lin, Thomas R. TenHave, and Michael R. Elliott

Abstract

We consider a Markov structure for partially unobserved time-varying compliance
classes in the Imbens-Rubin (1997) compliance model framework. The context is
a longitudinal randomized intervention study where subjects are randomized once
at baseline, outcomes and patient adherence are measured at multiple follow-ups,
and patient adherence to their randomized treatment could vary over time. We pro-
pose a nested latent compliance class model where we use time-invariant subject-
specific compliance principal strata to summarize longtudinal trends of subject-
specific time-varying compliance patterns. The principal strata are formed using
Markov models that related current compliance behavior to compliance history.
Treatment effects are estimated as intent-to -treat effects within the compliance
principal strata.
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SUMMARY
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classes in the Imbens-Rubin (1997) compliance model framework. The context is
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1 Introduction

In randomized intervention studies where interventions are administered repeat-

edly, subject adherence to the randomized treatment may vary over time. We

consider a longitudinal compliance class model that uses nested principal stratifi-

cation structure to characterize longitudinal compliance patterns over time within

which intent-to-treat effects are estimated. We consider a Markov structure for the

time-varying subject compliance behavior. We illustrate the model with analy-

sis of the “Prevention of Suicide in Primary Care Elderly: Collaborative Trial”

(PROSPECT) study (Bruce et al. 2004).

The PROSPECT study was a randomized intervention study targeted at elderly

patients in primary care clinics with depression. There were two treatment groups:

usual care and the intervention. In the usual care group, patients received stan-

dard care. In the intervention group, patients were assigned to meet with health

specialists who educated patients, their families, and physicians about depression,

treatment, and monitored adherence to treatment. Primary care clinics were

randomized to the treatments rather than individual patients to prevent contam-

ination of treatments between patients within the same clinic and for practicality.

Patients were followed for two years from the initial randomization. Clinical de-

pression outcome and adherence to randomized treatment were measured at 4, 8,

12, 18, and 24 months. There were 598 patients in the study. The clinical out-

come of interest is the severity of depression measured by the Hamilton Depression

Score (HAMD). The mean HAMD score at baseline is 18.1 with a standard devia-

tion of 6.0. We consider an all-or-none treatment adherence measured by whether

patients met with the health specialists at least once since the previous follow-

up period. We are interested in investigating the effect of the intervention on

depression severity controlling for treatment non-adherence.

http://biostats.bepress.com/upennbiostat/art11
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In randomized intervention studies where subjects do not always adhere to the

treatment to which they are randomized, subject noncompliance could confound

the relationship between the treatment and the outcome. Therefore, it is im-

portant to account for subject noncompliance when estimating the effect of the

treatment using principal stratification strategies (Frangakis and Rubin, 1999,

2002). Angrist et al. (1996) and Imbens and Rubin (1997) proposed to use

compliance classes to describe subject compliance behaviors within which intent-

to-treat (ITT) contrasts are made to estimate the causal effect of the treatment

on the outcome.

In cross-sectional studies with two treatment arms, experimental treatment and

control treatment, there are four possible compliance classes: compliers, always-

takers, never-takers, and defiers. Compliers are those that would adhere to the

treatment to which they are assigned; always-takers are those that would seek

to receive the experimental treatment regardless of their treatment assignment;

never-takers are those that would opt to receive the control treatment regardless of

their treatment assignment; and defiers are those that would refuse the treatment

to which they are assigned and choose to receive the other treatment. In this

study design, subject compliance classes are latent. An individual assigned to

the experimental treatment and receives the experimental treatment could be a

complier or an always-taker; an individual assigned to the experimental treatment

but receives the control treatment could be a never-taker or a defier; an individual

assigned to the control treatment and receives the control treatment could be a

complier or a never-taker; and an individual assigned to the control treatment but

receives the experimental treatment could be an always-taker or a defier.

In studies, such as PROSPECT, where those assigned to the control treatment

have no access to the experimental treatment, there are only compliers and never-

takers. Always-takers do not exist in such study designs because those randomized
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to the control treatment cannot receive the experimental treatment, and defiers

do not exist for the same reason. The compliance classes for those assigned to

the experimental treatment in this study design are observed. Subjects assigned

to and receive the experimental treatment are compliers; subjects assigned to the

experimental treatment but choose to receive the control treatment are never-

takers. The compliance classes for those assigned to the control treatment are

unobserved.

In this paper we propose an extension of the cross-sectional model in Imbens

and Rubin (1997) to longitudinal settings. Yau and Little (2001) extended the

Imbens and Rubin (1997) model to a longitudinal randomized intervention study

where unemployed subjects received preventive intervention and their employment

and mental health outcomes were measured. Although outcomes were measured

repeatedly over time, the intervention was only administered once in the beginning

of the study. Therefore, adherence to intervention was only recorded once and did

not vary over time. Our proposed model allows treatment adherence to vary over

time.

In longitudinal randomized intervention studies where treatments are applied re-

peatedly, subject treatment adherence could vary over time. In Frangakis et al.

(2004), the randomized distance between the needle exchange truck and subjects’

residence could change over time, and subject needle exchange behavior could also

vary over time. HIV (human immunodeficiency virus) seroconversion status were

recorded at multiple follow-ups. The goal of the analysis was to determine the

effect of exchanging needles on HIV seroconversion, taking into account the his-

tory of compliance behaviors. This model differs from our proposed model in two

ways: 1) we do not allow randomization status to change over time; 2) we propose

a nested model structure that uses subject-specific time-invariant principal strata

to summarize subject-specific time-varying compliance behavior.

http://biostats.bepress.com/upennbiostat/art11
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In the presence of time-varying compliance behaviors, it may be useful to consider

longitudinal compliance behavior patterns when examining longitudinal outcomes.

Subjects with different compliance trajectories may differ in treatment outcomes.

We may make inferences on different longitudinal compliance patterns and the

longitudinal outcomes associated with those patterns. In a study like PROSPECT

where there are two possible compliance classes and 5 follow-up visits, we have

32 (25) possible compliance patterns. It may be impractical and not clinically

meaningful to look at the longitudinal outcomes in all of the 32 patterns. Hence,

it may be more helpful to have summary measures of the longitudinal compliance

patterns in the data, and look at longitudinal outcomes within broader latent

classes.

This paper extends a nested latent class model proposed by Lin et al. (in prepara-

tion) to accommodate time-varying latent compliance classes by specifying broader

principal strata that summarize the compliance classes. The nested latent class

model involves two levels of compliance class models. The first level uses subject-

specific time-varying compliance classes to describe the time-varying treatment

adherence; the second level uses subject-specific time-invariant compliance “su-

perclasses” to summarize the longitudinal patterns of compliance classes. The ITT

effect of the intervention stratified on compliance superclass, or principal effect

(Frangakis and Rubin 2002), is estimated to control for longitudinal subject treat-

ment noncompliance. The model assumes that compliance classes at each time

point within an individual are independent from each other conditional on the

individual’s compliance superclass and baseline covariates. In other words, know-

ing the compliance superclass and subject baseline characteristics, the history of

compliance behaviors does not provide any more information on the compliance

behaviors. This may be a strong assumption which we now propose to assess with

a Markov model for the time-varying compliance classes.

Hosted by The Berkeley Electronic Press
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Collins and Wugalter (1992) first proposed latent transitional models to model

dynamic latent classes where subjects advance through a sequence of latent stages

and to look at the relationship between the latent stages. The model estimates

the probabilities of remaining in the same stage or advancing to the next stage

conditional on previous stage. This method was applied to the process of math

learning (Collins and Wugalter, 1992) and stages of smoking cessation (Velicer

et al., 1996). Extensions by Reboussin et al. (1999), Humphreys and Janson

(2000), and Reboussin et al. (2002) incorporated covariates to estimate the latent

transitional probabilities using logistic regression. This latent transitional model

was also extended to accommodate multiple indicators for estimating latent stages

(Reboussin et al., 1998) and mixed outcomes (Miglioretti, 2003).

Markov transition models have been used to study cost effectiveness of depression

treatments in treating patients with major depression (Nuijten et al., 1995; Revicki

et al., 1995). In behavioral health studies where treatments may be dynamic, it

may be important to consider previous treatment adherence to better characterize

course of treatment. Previous adherence to treatments may provide insights on

how patients would respond to treatments in the future.

In this paper, we extend the longitudinal nested compliance class model in Lin

et al. (in preparation) and relax the conditional independence assumption of

the compliance classes given compliance superclass and baseline covariates. We

assume a first-order Markov structure for the compliance classes given superclass

and baseline covariates where compliance behaviors are assumed to depend on the

compliance class in the previous time point. Modelling the Markov structure of

the time-varying compliance classes will allow us to: 1) utilize information from

history of compliance to predict compliance behaviors; 2) examine how history of

compliance relate to compliance behavior.

http://biostats.bepress.com/upennbiostat/art11
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We will define notation, discuss assumptions, principal effect, the parametric

model, parameter estimation, the handling of missing outcomes, and assessment

of model fit in Section 2. Then we will proceed to discuss the analysis results in

Section 3, and finally make concluding remarks in Section 4.

2 Nested Compliance Class Model

2.1 Notation

Let Zi denote the randomization status for subject i where i = (1, · · · , N), and

Zi ∈ (0, 1) for randomized to the usual care and the intervention group, respec-

tively. Similarly, let Dij denote the time-varying treatment received for subject i

at time j where j = (1, 2, 3, 4, 5) for 4, 8, 12, 18, and 24 months, respectively, and

Dij ∈ (0, 1) for usual care and intervention, respectively. Note that Zi does not

have the subscript j because we are restricting to designs where randomization

does not change over time. Let Yij denote the observed outcome for subject i at

time j. We use Z, D, Y to denote vectors of Zi, Dij, and Yij.

Following Little and Rubin (2000), we use Yij(Z) to denote the partially latent

potential outcome, outcome that would have been observed, for subject i at time

j if randomized to treatment Z. Let Cij denote membership of the partially

latent compliance classes for subject i at time j. In the PROSPECT study, since

those randomized to the usual care group have no access to the intervention, there

are only two possible compliance classes: compliers and never-takers; therefore,

Cij = (c, n). We use C to denote the vector of Cij.

The proposed principal stratification strategy uses compliance “superclasses” to

summarize the longitudinal compliance patterns in the data within which we can

stratify on and compare potential outcomes. It precludes the confounding when

Hosted by The Berkeley Electronic Press
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stratifying on observed post-randomization compliance patterns. Let Ui denote

membership of the latent superclass for subject i, where Ui = (1, · · · , K) for

assumed K numbers of latent superclasses. We use U to denote the vector of Ui.

Subject-level baseline covariates Ai and Qi are used in modelling the outcome

and compliance probabilities, respectively. We use A and Q to denote the vector

of Ai and Qi.

We use upper case letter to denote random variables or indices of potential out-

comes (e.g. Yij(Z)), and lower case letter to denote realized or observed values of

the random variables or indices (e.g. Zi = z).

2.2 Assumptions

We make the randomization (Rubin, 1978), stable unit-treatment value (SUTVA;

Rubin, 1986), and model assumptions to identify causal model parameters. We

assume that potential outcomes, latent compliance classes, and latent compli-

ance superclasses (which are assumed to be baseline characteristics) are indepen-

dent of randomization assignment status conditional on baseline covariates. We

make the no interference assumption of the SUTVA and assume that the po-

tential outcome of an individual is not influenced by the treatment assignment

of another individual. We also make the consistency assumption of the SUTVA

which assumes that the potential outcome of a certain treatment will be the

same regardless of the treatment assignment mechanism. It implies that the ob-

served outcome is a function of the potential outcomes and treatment assignment:

Yij = Zi ∗ Yij(1) + (1 − Zi) ∗ Yij(0). The SUTVA assumption is violated when

there are interference between subjects or when there are versions of treatments

not represented by the treatment indicator variable.

http://biostats.bepress.com/upennbiostat/art11
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2.3 Principal Effects

We utilize compliance superclasses to summarize the longitudinal compliance pat-

terns, and estimate ITT effects stratified on these superclasses. A compliance

superclass is a latent subject-level principal stratum that is time-invariant, and

is considered to be a pre-randomization characteristic which would allow us to

model potential outcomes.

Our effect of interest is the principal effect of treatment assignment on the outcome

within a compliance superclass at time j:

E[Yij(1)|Ui = k]− E[Yij(0)|Ui = k] (1)

It is an ITT contrast stratified on the compliance superclass. It allows us to

consider the effect of treatment randomization controlling for longitudinal com-

pliance behavior. Since the superclasses defined here create baseline principal

strata summarizing longitudinal compliance behaviors and do not represent spe-

cific longitudinal compliance patterns, the ITT contrasts sacrifice straightforward

causal interpretations.

The principal effect can be defined by observed outcomes under the randomization

and the SUTVA consistency assumption:

E[Yij(Z = 1)|Ui = k]− E[Yij(Z = 0)|Ui = k]

= E[Yij(Z = 1)|Zi = 1, Ui = k]− E[Yij(Z = 0)|Zi = 0, Ui = k] (2)

= E[Yij|Zi = 1, Ui = k]− E[Yij|Zi = 0, Ui = k]

The first equal sign follows from the randomization assumption, which says that

randomization is independent of baseline characteristics (e.g. potential outcomes)

Hosted by The Berkeley Electronic Press
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conditional on baseline covariates (e.g. compliance superclass). The second equal

sign follows from the SUTVA consistency assumption which implies that the ob-

served outcome given treatment assignment z is the potential outcome for treat-

ment assignment Z = z.

2.4 Parametric Model

Lin et al. (in preparation) proposed a conditional independence (CI) model where

longitudinal compliance classes within an individual were assumed to be inde-

pendent given compliance superclass and baseline covariates. Under the current

proposed method we relax the CI assumption. We assume compliance classes are

dependent on the compliance classes at one or more previous time points, the

compliance superclass, and baseline covariates.

Following Lin et al. (in preparation), we assume outcomes within individuals are

independent given randomization, time-varying compliance class, baseline covari-

ates, and subject-level random effect.

(
Yij|Ci1, · · · , Cij, Zi = z,Ai,Wi,λ, ζ(t, j),γ,ϕi, σ

2
)

ind∼ N(µijz, σ
2) (3)

µijz =

j∑
t=1

[∑

η′
I(Cit = η′, Zi = z)λtη′zζ(t, j)

]
+ AT

i γ + WT
i ϕi

where λ denotes the vector of λtη′z parameters for t ≤ j that describe the

compliance-class specific ITT effect of the treatment on the outcome, and ζ(t, j)

modifies that ITT effect at time t on the outcome at time j that we will dis-

cuss more later. The conditional mean of the outcome has three components:

compliance class-specific effect of randomization, the effect of baseline covariates,

and the subject-specific random effects to account for within-subject correlation

in the outcomes. The compliance class-specific effect of randomization on out-

http://biostats.bepress.com/upennbiostat/art11
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come is represented by
∑j

t=1

[∑
η′ I(Cit = η′, Zi = z)λtη′zζ(t, j)

]
. The effect of

the baseline covariates on the outcome is represented by AT
i γ where Ai denotes

the vector of baseline covariates of subject i, and the column vector γ denotes the

corresponding coefficients. The random effects ϕi is used to account for within-

subject correlation in the outcomes, where Wi denotes the random effect design

matrix for subject i. Previous analysis indicated that the within-clinic correlation

was small (0.075), hence was ignored in this analysis. In this paper, we consider

a random subject-level intercept model.

In some studies, it may be reasonable to consider decay of treatment effects over

time. For example, the concentration of drugs in the body diminishes over time

and may not completely dissipate before the next administration. Therefore, it

would be important to model the decay of effect of the previous treatment when

estimating the effect of the treatment. In the PROSPECT study we may consider

the decay of the effect of previous compliance behavior on the outcome. It is

conceivable that information ascertained in meetings with health specialists may

have lasting effects on the subjects and their treatment outcomes. We can use the

parameter ζ(t, j) to modify the relationship between compliance behavior at time

t on the outcome at time j. We can assume a transient relationship where the

outcome is only dependent on the current compliance behavior (i.e. ζ(t, j) = I(t =

j)); assume a non-transient relationship where ITT effect is dependent on current

and all prior compliance behavior (i.e. ζ(t, j) = I(t ≤ j)); or assume a decaying

relationship where the outcome is dependent on current and all prior compliance

behavior, but the effect diminishes as time lag increases (i.e. ζ(t, j) = e−τ(j−t)

where τ > 0). Preliminary analysis of the data using a decay model suggested

τ →∞, or a transient relationship between compliance behavior and ITT effect.

Hosted by The Berkeley Electronic Press
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Hence, we consider the transient model:

µijz =
∑

η′
[I(Cij = η′, Zi = z)λjη′z] + AT

i γ + WT
i ϕi (4)

Departing from Lin et al. (in preparation), we propose a Markov compliance

class (MCC) model for the time-varying compliance classes, where the compli-

ance classes are dependent on past compliance behavior. Following Lin et al.

(in preparation), we assume that compliance superclass is an underlying fac-

tor that drives subject compliance over time. We model compliance class at

the first time point conditional on compliance superclass and baseline covari-

ates Qi using logit models: P (Ci1 = η|Ui = k,Qi) = ωkη(Qi) and ωkη(Qi) =

exp(α0kη + α1ηQi)/[
∑

η′ exp(α0kη′ + α1η′Qi)] where
∑

η ωkη(Qi) = 1 ∀k. We con-

strain α0kη and α1η for one of the compliance class η to be 0 for identifiability.

We assume subject compliance superclass (Ui = k) ∼ Multinomial(1, pk), where
∑

k pk = 1. Compliance superclass between subjects are assumed to be indepen-

dent: f(U) =
∏N

i=1 f(Ui = k) for k = 1, · · · , K where f(.) denotes the distribution

function.

We utilize latent transitional models (Collins and Wugalter, 1992) to model the

Markov process of compliance classes across time. In this paper we consider

a non-stationary first-order Markov compliance model. The number of model

parameters in multiple-order Markov models increase exponentially without ad-

ditional constraints such as stationarity. Because of the lack of good predic-

tors of compliance transitions, we assume that there are no associated covari-

ates. Covariates can be incorporated using logit models as in Reboussin et

al. (1999) and Humphreys and Janson (2000). We assume the compliance

class transitions (Cij = η|Ci,j−1 = η′, Ui = k) ∼ Multinomial(1, πkjη′η), where
∑

η πkjη′η = 1 ∀k, j, η′. The joint distribution of the compliance classes given

http://biostats.bepress.com/upennbiostat/art11
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compliance superclass then becomes:

P (Ci1, · · · , Ci5|Ui,Qi) = P (Ci1|Ui,Qi)P (Ci2|Ci1, Ui) · · ·P (Ci5|Ci4, Ui) (5)

If the compliance class and compliance superclass memberships, and the missing

outcomes are known, the joint distribution of the complete data for subject i given

the model specifications is as follows:

f(Yi1, · · · , Yi5,ϕi, Ci1, · · · , Ci5, Ui|Zi,Ai,Qi,Wi,θ)

= f(Yi1, · · · , Yi5|ϕi, Ci1, · · · , Ci5, Ui, Zi,Ai,Qi,Wi,θ)×
f(ϕi|Ci1, · · · , Ci5, Ui, Zi,Ai,Qi,Wi,θ)×
f(Ci1, · · · , Ci5|Ui, Zi,Ai,Qi,Wi, θ)f(Ui|Zi,Ai,Qi,Wi,θ) (6)

= f(Yi1, · · · , Yi5|Ci1, · · · , Ci5, Zi,Ai,Wi, λ, γ, ϕi, σ
2)×

f(ϕi|Σϕ)f(Ci1, · · · , Ci5|Ui,Qi)f(Ui)

where θ = (λ, γ, σ2, Σϕ)

2.5 Estimation

We use a Bayesian Markov Chain Monte Carlo (MCMC) method to estimate

model parameters. Let β = [λ1c0, · · · , λ5n1, γ]T denote the fixed effects. We as-

sume the conjugate priors β ∼ MV N(µβ, Σβ) and σ2 ∼ Inv−χ2(df = νσ, ψ). We

assume ϕi ∼ MV N(0, Σϕ) for the subject-level random effects, and the hyper-

prior Σϕ ∼ Inv−Wishart(df = νϕ, Γ). For compliance superclass and compliance

class probabilities, we assume the priors (p1, · · · , pK) ∼ Dirichlet(a1, · · · , aK),

α ∼ MV N(0, Σα), and (πkjη′c, πkjη′n) ∼ Dirichlet(bc, bn) ∀k, j, η′. Gibbs sam-

pling (Geman and Geman, 1984; Gelfand and Smith, 1990; Imbens and Rubin,

1997; Gelman et al., 2004) is used to otbain draws from the posterior distributions

of the parameters. The posterior distributions from which the model parameters
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are drawn are presented in the Appendix. The posterior distribution (α|C,U,Q)

where α = [α01c, · · · , α0Knα1c,α1n] is not of a known parametric form. Therefore,

we use the Metropolis-Hasting algorithm (Hastings, 1970, Gelman et al., 2004) to

draw the α parameters.

2.6 Missing Outcome Imputation

There are missing outcomes (Yij) present in the PROSPECT data. We assume a

latent ignorable missing data mechanism (LIMD; Peng et al., 2004) for the missing

outcomes, which assumes missing at random given latent compliance class and

covariates. At each iteration of the MCMC procedure, we impute the missing

outcomes conditional on compliance classes, treatment randomization, baseline

covariates, and subject-level random effects. We draw missing outcome Y mis
ij

for subject i at time j from its predictive distribution given current values of

parameters Cij, λjηz, γ, ϕi, σ2, and vector of observed outcomes Yobs.

(Y mis
ij |Yobs, Cij, Zi = z,Ai,Wi, λjηz,γ,ϕi, σ

2) ∼ N(µ∗ijz, σ
2) (7)

µ∗ijz =
∑

η′
[I(Cij = η′, Zi = z)λjη′z] + AT

i γ + WT
i ϕi

2.7 Model Fit Assessment

We compare the fits of the MCC model to the CI model in Lin et al. (in prepa-

ration) by comparing the posterior predictive distributions (PPD; Gelman et al.,

2004) of the time-varying compliance classes between the MCC and the CI models.

Let Gm denote the number of individuals in the mth of the 32 possible longitudinal

compliance patterns and let κm be the estimated probability of exhibiting the mth

http://biostats.bepress.com/upennbiostat/art11
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longitudinal compliance pattern. We consider the χ2-type statistics:

Sobs =
∑
m

(Gobs
m −Nκm)2

Nκm(1− κm)
and Srep =

∑
m

(Grep
m −Nκm)2

Nκm(1− κm)
(8)

where Gobs
m is the observed statistics and Grep

m is the repeated statistic obtained

from draws of the parameters generated by the Gibbs sampler. The PPD p-value

is then given by:

∑
l I[(Sobs)l < (Srep)l]∑

l 1
(9)

where (Sobs)l and (Srep)l denote the Sobs and Srep from lth Gibbs draw. A PPD

p-value close to 0.50 indicates good fit of the model to the data.

3 Results

We demonstrate the MCC model with the PROSPECT data and compare the

results to the CI model assuming three superclasses. There are unrecorded treat-

ment received (Dij) in the data, of which we assume are 0, or have not met with

health specialists. Imputation of missing outcomes is as described in Section 2.6.

In the PROSPECT study, those randomized to the usual care group do not have

access to the intervention; therefore, there are only two compliance classes: com-

pliers and never-takers. Goodman (1974) suggests that we can only identify at

most 3 latent compliance superclass given 5 dichotomous compliance classes. Lin

et al. (in preparation) showed that the 3-superclass CI model fits the data better

than the 2-superclass CI Model. Our effect of interest is the effect of the health

specialists on the severity of depression. More specifically, we are interested in the

principal ITT effect of the intervention on the outcome stratified on compliance

Hosted by The Berkeley Electronic Press



7/5/06 15

superclass.

E[Yij(Z = 1)|Ui = k]− E[Yij(Z = 0)|Ui = k]

=
∑

η′
(λjη′1 − λjη′0) P (Cij = η′|Ui = k) (10)

In this analysis we let Ai be the baseline HAMD score and baseline suicidal

ideation. We want to control for the baseline HAMD because we are interested

in the change in HAMD scores from baseline. Treatment randomization failed to

balance the proportion of subjects with baseline suicidal ideation in the treatment

groups; therefore, we want to control for it in modelling the outcome. We let Qi

be the baseline HAMD score in estimating the compliance probabilities in the CI

model and in estimating the initial compliance probabilities in the MCC model.

We use noninformative priors in the Bayesian MCMC estimation of the model

parameters since we do not have strong prior inclinations. Following Garrett

and Zeger (2000) and Ten Have et al. (2004) we assume α ∼ MV N(0, Σα =

diag(50, 4)). The difference in variance component in the priors reflect the differ-

ent scaling of the covariates. A larger variance is used for binary covariates (i.e.

intercept) and a smaller variance is used for continuous covariates (i.e. baseline

HAMD score; Garrett and Zeger, 2000, Ten Have et al., 2004). The identifia-

bility of the α parameters are checked by comparing the prior and the posterior

distributions (Garrett and Zeger, 2000). We assume the prior (πkjη′c, πkjη′n) ∼
Dirichlet(0.01, 0.01)∀k, j, η′ for the transitional probabilities. This is equivalent to

adding 0.01 subject to each of the (Ci,j−1 = η′, Cij = η|Ui = k) groups. We assume

β ∼ MV N(µβ = 0, Σβ = 1000× I) and σ2 ∼ Inv−χ2(νσ = 1, ψ = 1/10). For the

random effect variance parameter we assume Σϕ ∼ Inv − χ2(νϕ = 1, Γ = 1/10).

We assume the prior (p1, · · · , pK) ∼ Dirichlet(1, · · · , 1), assigning a priori 1 sub-

ject to each of the K superclasses.
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We used the Gelman-Rubin R̂ statistic (Gelman et al., 2004, pp.296-297) to assess

the convergence of the MCMC chains and R̂ < 1.1 is accepted as evidence of

convergence. We ran 3 chains of the CI model for 10,000 iterations each and the

first 1,000 iterations was discarded as burn-in, and we ran 3 chains of the MCC

model for 150,000 iterations each and the first 75,000 iterations was discarded as

burn-in. The maximum R̂ was 1.05 and 1.08 for the CI and the MCC models,

respectively.

We will present the results under the CI model as specified in Lin et al. (in

preparation), then the results under the MCC model, follow by comparison of the

two models. We can assess the conditional independence assumption made under

the CI model by comparing the fit of the CI model to the fit of the MCC model

to the data. We also compare the results under different model assumptions for

the time-varying compliance classes.

3.1 Conditional Independence Model

For comparison, results under the CI model as described in Lin et al. (in prepa-

ration) are displayed in Tables 1 and 2. Table 1 shows the time- and superclass-

varying compliance probabilities from the CI model assuming the average baseline

HAMD of 18.1, and table 2 shows the ITT effect of randomization on the out-

come within each compliance superclass controlling for the baseline HAMD and

baseline suicidal ideation.

Table 1 shows that the first superclass under the CI model consists of subjects who

are noncompliant at the 4-month follow=up and become even more noncompliant

for the remainder of the study (low compliers). The second superclass consists

of subjects who are highly compliant for the first 3 months and rapidly become

noncompliant (decreasing compliers). The third superclass consists of subjects
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who are highly compliant but become slightly less compliant at the last follow-up

visit (high compliers). About 28% of the subjects in the PROSPECT study are

low compliers with 95% credible interval (0.23,0.33), 16%(0.12,0.22) are decreasing

compliers, and 56%(0.50,0.62) are high compliers.

[Table 1 about here.]

The posterior mean and the 95% credible interval of the log odds of compliance for

every unit increase in baseline HAMD is 0.003(-0.04,0.05) suggesting those with

more severe depression at baseline (higher baseline HAMD) are more likely to

comply to treatment assignment than those with less severe depression at baseline.

The within-superclass ITT contrasts of (10) are shown Table 2. The contrasts

suggest strong direct effect of randomization at the 4-month follow-up in the low

complier superclass, which consists of largely never-takers, who are unlikely to

meet with health specialists regardless of the treatment assigned. The direct

effect of randomization on the outcome could be due to the unblinded nature of

the intervention. The presence of the health specialists in the clinics may influence

the behaviors of the health care providers and patients. The possible direct effect

of randomization seems to dissipate over time. At the end of the first year, only

the high compliers randomized to the intervention group, who are still highly

likely to meet with a health specialist when assigned to the intervention, showed

greater reduction in HAMD relative to high compliers in usual care. At the end of

the 2-year study, none of the superclasses show strong ITT effects on depression.

[Table 2 about here.]
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3.2 Markov Compliance Class Model

The Markov compliance class model relaxes the conditional independence as-

sumption of the time-varying compliance class given compliance superclass and

baseline covariates, and instead, assumes a first-order Markov structure for the

time-varying compliance classes given compliance superclass. Again, we assume

3 compliance superclasses.

The posterior means of the log odds of compliance at 4 months and their asso-

ciated 95% credible intervals within each of the three superclasses controlling for

baseline HAMD under the MCC model are -0.52(-1.87,0.81), -3.61(-15.56,4.37),

and 4.99(1.11,13.69) for the first, second, and third superclass, respectively. This

suggests that at the 4-month follow-up, those in the first and second superclasses

are less likely to comply with their treatment assignment, and those in the third

superclass are more likely to comply with their treatment assignment. In our

model we assume that the association between baseline HAMD and compliance

probability at 4 month is the same across all three superclasses. The log odds of

4 month compliance for a unit increase in the baseline HAMD is 0.07(0.01,0.13)

suggesting that those with more severe depression at baseline are more likely to

comply with treatment assignment.

Table 3 shows the time-varying compliance probabilities when we assume an aver-

age baseline HAMD score of 18.1. The first superclass consists of subjects who are

slightly more likely to comply with assigned treatment at the 4-month follow-up

than not comply, and compliance decreases over time (increasing noncompliers).

The second superclass consists of subjects who exhibit erratic compliance behavior

with abrupt increases and decreases in compliance probabilities (erratic compli-

ers). The third superclass consists of subjects who are highly compliant during

the first 18 months of the study with a slight drop off in compliance during the
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last 6 months (high compliers). The mean posterior probabilities and their associ-

ated 95% credible intervals of membership in the increasing noncomplier, erratic

complier, and high complier superclasses are 0.42(0.25,0.56), 0.04(0.00,0.15), and

0.54(0.42,0.72), respectively.

[Table 3 about here.]

The latent transitional probabilities of the time-varying compliance within each

superclass in Tables 4 shows that increasing noncompliers and high compliers are

more likely to stay in the complier class if they are in the complier class in the

previous time point than if they are in the never-taker class and switch to complier

class. Subjects in the high complier superclass are more likely to transition to the

complier class than subjects in the increasing noncomplier superclass. We do not

see any clear patterns in the transitional probabilities of the erratic compliers.

[Table 4 about here.]

The posterior means and credible intervals of (10), the within-compliance super-

class ITT contrasts, in Table 5 show an ITT effect at 4 months in the erratic

compliers, suggesting a strong direct effect of randomization. The erratic com-

plier superclass consists of mostly never-takers at 4 months, who are unlikely to

meet with health specialists if assigned to the intervention. This direct effects

seems to dissipate over time. We also see an ITT effect in the high compliers at

4 months, suggesting an effect of the intervention. The high complier superclass

consists of almost entirely compliers at 4 months, who are likely to meet with

health specialists if assigned to the intervention. Consistent with the results un-

der the CI model, at the end of the first year we see a greater reduction in HAMD

in the high compliers assigned to the intervention relative to the high compliers
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assigned to the usual care. It suggests that meeting health specialists help im-

prove depression. However none of the superclasses show strong ITT effects on

depression.

[Table 5 about here.]

3.3 Model Comparison

In this section we compare the superclasses identified under the CI and the MCC

compliance class structures. Under both compliance class structures we identified

a superclass of high compliers, who are highly compliant throughout the study

period with slight decrease in time-varying compliance at the last follow-up visit.

We also identified a superclass that exhibits decreasing time-varying compliance;

however, the compliance probability under the CI model starts out much higher

at 4 months and decreases at a faster rate over subsequent visits than the com-

pliance probability under the MCC model. Under the CI model we identified a

superclass of subject who are noncompliant, with no clear time trend in their com-

pliance probabilities. Under the MCC model we identified a superclass of subjects

exhibiting erratic compliance behavior with fluctuating compliance probabilities

and no clear trend in their compliance class transitions.

We saw similar within-compliance superclass ITT effects under both the CI and

the MCC models. The ITT effects were larger in noncompliant subjects than

compliant subjects at the 4-month follow-up suggesting a direct effect of random-

ization early on. This is most evident in the low complier superclass under the CI

model and the erratic complier superclass under the MCC model, both of which

consist of mostly never-takers at 4 months, who exhibit the largest ITT effects.

However, this direct effect seems to dissipate over time. At the 24-month follow-
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up we see the largest ITT effect in the high complier superclass under both the

CI and the MCC models, which consist of mostly compliers. Although none of

the ITT effects were strong in any of the superclasses under both models by the

end of the study.

Assessment of the fit of the posterior predictive distribution to the data using the

χ2-type statistics in (8) suggests that the MCC model has a better fit than the

CI model. The PPD p-value under the CI model is 0.0057 and 0.1549 under the

MCC model.

4 Discussion

In Lin et al. (in preparation), a conditional independence model of the time-

varying compliance classes was proposed that assumes the compliance classes

within an individual are independent given compliance superclass and baseline

covariates. People are creatures of habit. Those that exhibit history of com-

pliance to an assigned treatment may be more likely to comply than those that

exhibit history of noncompliance. In this paper, we proposed a Markov model

of the time-varying compliance classes that assumes the compliance classes at

each time point are dependent on the previous compliance behaviors, compliance

superclass, and baseline covariates.

Under the MCC model we found that those who are more depressed at baseline

are more likely to comply with their treatment assignment at 4 months. The

same trend was also found under the CI model. Patients who are more depressed

may be more eager to treat their depression and be more likely to adhere to their

prescribed treatment. Physicians may also monitor patients with more severe

depression more closely, making sure that the patients adhere to their treatments.
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The proposed MCC model provides information on how treatment compliance

relates to history of compliance that was not considered in the CI model. We

found that most of the subjects in the PROSPECT study who complied to the

treatment assignment in the previous follow-up period were more likely to comply

again than those who were noncompliant during the previous visit.

When we compared the posterior predictive distributions under the MCC and the

CI models to the data, we found that the MCC model fit the data much better

than the CI model. The MCC model is a more flexible model; therefore, we expect

it to have a better fit. Though the PPD p-value under the MCC models is still

away from 0.50. In our future research, we plan to explore covariates related to

compliance superclasses and time-varying compliance classes to improve the fit of

the MCC model.

In our current analysis we model the relationship between baseline depression

severity and compliance at 4 months, which indirectly models the relationship

between baseline depression and longitudinal compliance. It is of clinical interest

to identify patient characteristics that relate to treatment compliance. If clini-

cians can identify patients who are likely to comply to treatment over time and

those less likely to comply, then clinicians may be able to target patients with par-

ticular attributes and tailor treatment for different patients to optimize patient

treatment adherence and treatment outcomes. We are pursuing other predictors

of longitudinal compliance in our current work.

One limitation of our proposed method is that the principal effect does not provide

straightforward causal interpretation. Although the superclasses defined here pro-

vide convenient summaries of the longitudinal compliance patterns, they do not

represent specific compliance patterns. Therefore, the ITT contrasts stratified on

superclasses do not have straightforward causal interpretations.
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5 Appendix: Conditional draws of the Gibbs

sampler

Let Yi and Ci denote the vectors of Yij and Cij for subject i. For notational

simplicity, let Xij = [I(Ci1 = c, Zi = 0), · · · , I(Ci5 = n, Zi = 1),Ai] denote the

row vector of the fixed effect, and Xi denote the design matrix of the fixed effect

for subject i with 5 (number of follow-ups) rows. Let β = [λ1c0, · · · , λ5n1,γ]

denote the vector of coefficients corresponding to the fixed effect.

The distributions from which parameters are drawn at each iteration in the Gibbs

sampling are as follows:

(
β|X,Y,W, ϕ, σ2,µβ, Σ−1

β

) ∼ MV N(µ̂, Σ̂)

µ̂ =
σ−2

PN
i=1 XT

i (Yi−WT
i ϕi)+Σ−1

β µβ

σ−2
PN

i=1 XT
i Xi+Σ−1

β

Σ̂ = (σ−2
∑N

i=1 XT
i Xi + Σ−1

β )−1

(σ2|X,Y,W,ϕ, β, νσ, ψ) ∼ Inv − χ2
(
df = 5N + νσ,

PN
i=1 Fi+νσψ

5N+νσ

)

where Fi =
(
Yi −Xiβ −WT

i ϕi

)T (
Yi −Xiβ −WT

i ϕi

)

(
ϕi|Xi,Yi,Wi,β, σ2, Σϕ,

) ∼ MV N
(
ϕ̂iV̂i, V̂i

)

ϕ̂i =
WT

i (Yi −Xiβ)

σ2

V̂i =

(
WT

i Wi

σ2
+ Σ−1

ϕ

)−1

(Σϕ|ϕ, ω, Γ) ∼ Inv −Wishart

(
df = νϕ + N,

N∑
i=1

ϕT
i ϕi + Γ

)
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(p1, · · · , pK |U, a1, · · · , ak) ∼ Dirichlet(r1, · · · , rK)

r1 =
N∑

i=1

I(Ui = 1) + a1

rK =
N∑

i=1

I(Ui = K) + aK

(πkjη′c, πkjη′n|C, bc, bn) ∼ Dirichlet(sc, sn)

sc =
N∑

i=1

I(Ui = k, Ci,j−1 = η′, Cij = c) + bc

sn =
N∑

i=1

I(Ui = k, Ci,j−1 = η′, Cij = n) + bn

P (Ui = k|Ci,Qi,α, p1, · · · , pk)

∝ pk ×
[∏

η

ωkη(Qi)
I(Ui=k,Ci1=η)

][
5∏

j=2

∏

η′

∏
η

π
I(Ui=k,Ci,j−1=η′,Cij=η)
kjη′η

]

P (Cij = c|Yij, Zi, Dij, Ui, λ,Ai,γ,Wi,ϕi,Qi,α, σ2)

=





π∗∗ijc×φ

�
Yij−(λjc0+AT

i γ+WT
i ϕi)

σ

�

P
η

�
π∗∗ijη×φ

�
Yij−(λjη0+AT

i
γ+WT

i
ϕi)

σ

�� if ∈ Zi = 0, Dij = 0, Ui = k

0 if ∈ Zi = 1, Dij = 0, Ui = k
1 if ∈ Zi = 1, Dij = 1, Ui = k

P (Cij = n|Yij, Zi, Dij, Ui, λ,Ai,γ,Wi,ϕi,Qi,α, σ2)

=





π∗∗ijn×φ

�
Yij−(λjn0+AT

i γ+WT
i ϕi)

σ

�

P
η

�
π∗∗ijη×φ

�
Yij−(λjη0+AT

i
γ+WT

i
ϕi)

σ

�� if ∈ Zi = 0, Dij = 0, Ui = k

1 if ∈ Zi = 1, Dij = 0, Ui = k
0 if ∈ Zi = 1, Dij = 1, Ui = k

where π∗∗ijη =





∏
η′ [ωkη(Qi)πk2ηη′ ]

I(Ui=k,Ci1=η,Ci2=η′) if j = 1∏
η′

∏
η′′ [πkjη′ηπk,j+1,ηη′′ ]

I(Ui=k,Ci,j−1=η′,Cij=η,Ci,j+1=η′′) if 1 < j < 5∏
η′ πk5η′η

I(Ui=k,Ci4=η′,Ci5=η) if j = 5

and φ(S) is the pdf for standard normal distribution evaluated at S
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Table 1: Posterior Means and 95% Credible Intervals (in parentheses) for the
Time- and Compliance Superclass-Varying Compliance Probabilities Assuming
the Average Baseline HAMD of 18.1 and Superclass Probabilities Under the CI
Model.

Low Decreasing High
Time Compliers Compliers Compliers

4-months 0.43(0.33,0.53) 0.99(0.96,1.00) 1.00(0.98,1.00)
8-months 0.01(0.00,0.07) 0.99(0.94,1.00) 1.00(0.99,1.00)
12-months 0.01(0.00,0.04) 0.51(0.36,0.66) 1.00(0.98,1.00)
18-months 0.06(0.02,0.12) 0.11(0.00,0.28) 0.99(0.98,1.00)
24-months 0.04(0.01,0.09) 0.01(0.00,0.07) 0.83(0.77,0.90)

P (Ui) 0.28(0.23,0.33) 0.16(0.12,0.22) 0.56(0.50,0.62)
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Table 2: Posterior Means and 95% Credible Intervals (in parentheses) for the ITT
Contrasts of the Outcome Within Compliance Superclasses Under the CI Model.

Low Decreasing High
Time Compliers Compliers Compliers

4-months -7.54(-10.05,-2.00) -1.35(-3.23,0.10) -1.32(-3.20, 0.09)
8-months -3.39(- 7.24, 0.81) -0.93(-2.78,0.83) -0.92(-2.78, 0.86)
12-months 0.84(- 2.21, 3.95) -0.61(-2.11,1.05) -2.03(-3.86,-0.14)
18-months 1.44(- 1.40, 4.07) 1.28(-1.35,3.85) -1.34(-3.33, 0.64)
24-months 0.04(- 2.58, 2.69) 0.10(-2.61,2.85) -1.50(-3.72, 0.63)
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Table 3: Posterior Means and 95% Credible Intervals (in parentheses) for the
Time- and Compliance Superclass-Varying Compliance Probabilities Assuming
the Average Baseline HAMD of 18.1 and Superclass Probabilities Under the MCC
Model.

Increasing Erratic High
Time Noncompliers Compliers Compliers

4-months 0.66(0.53,0.80) 0.38(0.00,1.00) 0.99(0.88,1.00)
8-months 0.38(0.20,0.56) 0.83(0.07,1.00) 0.98(0.86,1.00)
12-months 0.19(0.00,0.40) 0.32(0.00,1.00) 0.99(0.86,1.00)
18-months 0.10(0.02,0.31) 0.93(0.12,1.00) 0.96(0.76,1.00)
24-months 0.02(0.00,0.07) 0.66(0.00,1.00) 0.88(0.65,1.00)

P (Ui) 0.42(0.25,0.56) 0.04(0.00.0.15) 0.54(0.42,0.72)
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Table 4: Posterior Means and 95% Credible Intervals (in parentheses) of the
Transitional Probabilities Under the MCC model.

Superclass j P (Ci,j = c|Ci,j−1 = c, Ui) P (Ci,j = c|Ci,j−1 = n, Ui)
Increasing 2 0.57(0.34,0.77) 0.01(0.00,0.06)
Noncomplier 3 0.45(0.00,0.77) 0.01(0.00,0.03)

4 0.27(0.00,1.00) 0.06(0.02,0.12)
5 0.10(0.00,0.51) 0.02(0.00,0.05)

Erratic 2 0.67(0.00,1.00) 0.56(0.00,1.00)
Complier 3 0.31(0.00,1.00) 0.48(0.00,1.00)

4 0.64(0.00,1.00) 0.78(0.00,1.00)
5 0.68(0.00,1.00) 0.54(0.00,1.00)

High 2 1.00(0.99,1.00) 0.15(0.00,1.00)
Complier 3 1.00(1.00,1.00) 0.44(0.00,1.00)

4 0.97(0.84,1.00) 0.54(0.00,1.00)
5 0.91(0.76,1.00) 0.46(0.00,1.00)
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TABLES 34

Table 5: Posterior Means and 95% Credible Intervals (in parentheses) for the
ITT Contrasts of the Outcome Within Compliance Superclasses Under the MCC
model.

Increasing Erratic High
Time Noncompliers Compliers Compliers

4-months -5.19(-7.33,-3.04) -8.32(-15.33,-0.76) -1.46(-3.05,-0.04)
8-months -2.70(-5.21,-0.34) -1.39(- 4.71, 0.58) -0.89(-2.57, 0.77)
12-months 0.52(-1.92, 3.13) -0.01(- 3.41, 3.75) -2.10(-3.81,-0.37)
18-months 1.55(-1.05, 4.23) -1.28(- 3.29, 1.48) -1.38(-3.23, 0.50)
24-months 0.48(-2.12, 2.95) -1.31(- 4.57, 2.35) -2.02(-4.53, 0.11)
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