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Nonparametric Pathway-Based Regression
Models for Analysis of Genomic Data

Zhi Wei and Hongzhe Li

Abstract

High-throughout genomic data provide an opportunity for identifying pathways
and genes that are related to various clinical phenotypes. Besides these genomic
data, another valuable source of data is the biological knowledge about genes
and pathways that might be related to the phenotypes of many complex diseases.
Databases of such knowledge are often called the metadata. In microarray data
analysis, such metadata are currently explored in post hoc ways by gene set en-
richment analysis but have hardly been utilized in the modeling step. We propose
to develop and evaluate a pathway-based gradient descent boosting procedure for
nonparametric pathways-based regression(NPR) analysis to efficiently integrate
genomic data and metadata. Such NPR models consider multiple pathways si-
multaneously and allow complex interactions among genes within the pathways
and can be applied to identify pathways and genes within pathways that are re-
lated to variations of the phenotypes. These methods also provide an alternative
to mediating the problem of a large number of potential interactions by limiting
analysis to biologically plausible interactions between genes in related pathways.
Our simulation studies indicate that the proposed boosting procedure can indeed
identify relevent pathways and genes within pathways. Application to a gene ex-
pression data set on breast cancer distant matastasis identified that Wnt, apoptosis
and cell cycle regulated pathways are more likely related to the risk of distant
metastasis among lymph-node-negative breast cancer patients. We also observed
that by incorporating the pathway information, we achieved better prediction for
cancer recurrence.
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SUMMARY. High-throughout genomic data provide an opportunity for identifying pathways

and genes that are related to various clinical phenotypes. Besides these genomic data, another

valuable source of data is the biological knowledge about genes and pathways that might be

related to the phenotypes of many complex diseases. Databases of such knowledge are often

called the metadata. In microarray data anlysis, such metadata are currently explored in post

hoc ways by gene set enrichment analysis but have hardly been utilized in the modeling step.

We propose to develop and evaluate a pathway-based gradient descent boosting procedure for

nonparametric pathways-based regression (NPR) analysis to efficiently integrate genomic data

and metadata. Such NPR models consider multiple pathways simultaneously and allow complex

interactions among genes within the pathways and can be applied to identify pathways and genes

within pathways that are related to variations of the phenotypes. These methods also provide

an alternative to mediating the problem of a large number of potential interactions by limiting

analysis to biologically plausible interactions between genes in related pathways. Our simulation

studies indicate that the proposed boosting procedure can indeed identify relevant pathways

and genes within pathways. Application to a gene expression data set on breast cancer distant

metastasis identified that Wnt, apoptosis and cell cycle regulated pathways are more likely re-

lated to the risk of distant metastasis among lymph-node-negative breast cancer patients. We

also observed that by incorporating the pathway information, we achieved better prediction for

cancer recurrence.

KEY WORDS: Microarray; SNPs; Gradient descent boosting; Tree; Gene set enrichment

analysis; Additive models.
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1 Introduction

New high-throughput technologies are generating many types of high-dimensional genomic and

proteomic data in biomedical research. Important examples include microarray gene expression

data measuring mRNA transcripts of about 25,000 genes in cells and single nucleotide poly-

morphisms (SNPs) array data on genotypes of over 500K SNPs. One important application of

such data is to identify genes, their interactions, and pathways that might be related to various

clinically relevant phenotypes, such as risk of developing cancers or outcomes from cancer treat-

ments. One great challenge in studying the relationship between genomic data and phenotypes

is to deal with high-dimensionality of the data and to model complex interactions between genes.

Many new statistical and computational methods have been or are still being developed to solve

this problem of ”curse of dimensionality.” Important recent developments include support vector

machine (SVM) (Vapnik, 1998) and random forest methods (Breiman, 2001), which have gained

much popularity in building predictive models and in identifying genes that are related to clinical

phenotypes.

One limitation of all these popular approaches is that the methods are developed purely

from computational or algorithmic points without utilizing any prior biological knowledge or

information. For many complex diseases, especially for cancers, much biological knowledge or

pathway information is available from many years of intensive biomedical research. The large

body of information is now available, primarily through databases on different aspects of the

biological systems. Such databases are often called metadata, which means data about data.

Examples of such metadata include the gene ontology (GO) database (Gene Ontology Consor-

tium, 2001), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and

Goto, 2000), and other pathways databases available on the internet (e.g., www.superarray.com,

www.biocarta.com). Currently, information derived from metadata such as known biological

knowledge has been used primarily to select promising candidates for genetic risk characteriza-
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tion and for studying gene-gene and gene-environment interactions in genetic association studies.

For microarray gene expression data, the most commonly used approach for pathway analysis is

to identify pathways that are over-represented by differentially expressed genes. Some popular

tools include GENMAPP, CHIPINFO, GOMINER and ONTO-TOOLS. Such gene set enrich-

ment analyses (GSEA) are of course very informative and are potentially useful (Tian et al.,

2005) for identifying pathways that might be related to the disease phenotypes. However, such

information has not been utilized in the modeling stage for identifying genes, their interactions,

and pathways that are related to the phenotypes. In addition, such GSEA analysis considers

pathways separately. Since many complex phenotypes are believed to be associated with activity

levels of multiple pathways, new statistical methods are required to consider multiple pathways

simultaneously and to allow complex gene-gene interactions within pathways.

We propose in this paper to develop and evaluate a novel gradient descent boosting proce-

dure for nonparametric pathways-based regression (NPR) analysis in order to efficiently integrate

genetic or genomic data and metadata. Our approach utilizes both statistical methods and bio-

logical knowledge in reducing the dimensionality of the problem and in building pathways-based

regression models. Compared to GSEA analysis, our NPR model considers multiple potential

pathways simultaneously. In such an NPR modeling framework, known biological pathways are

treated as first level regression units, and the genes within the pathways are treated as the second

level regression units, where the genomic data, such as the expression levels of genes or SNPs data

in a given pathway, are used to characterize the activity of the pathways and the activity levels

across many pathways are related to the phenotypes by a regression model. This provides a nice

biological interpretation of the resulting regression models. In addition, the NPR also provides

an alternative of mediating the problem of a large number of potential interactions by limiting

analysis to biologically plausible interactions between genes in related pathways. In general, risk

interactions are more plausible between genes involved in a physical interaction, found in the
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same pathways, or involved in the same regulatory network (Carlson et al., 2004).

Boosting was introduced in the machine learning literature by Freund (1995) and Freund and

Schapire (1996) and has demonstrated great empirical success on a wide variety of specially high-

dimensional prediction problems, including analysis of microarray gene expression data (Dettling

and Buhlmann, 2003; Horton et al., 2005; Li and Luan, 2005). From the perspective of numerical

optimization on function space, Friedman (2001) proposed a gradient descent boosting (GDB)

procedure and demonstrated that such a procedure can be regarded as a stage-wise fitting of the

additive models. We propose an extension of Friedman’s GDB procedure to perform GDB by

pathways for fitting the proposed NPR models using regression trees as weak learners. We also

provide scores for assessing the relative importance of the genes and pathways.

The rest of the paper is organized as follows: we first introduce the NPR models. We then

present a general pathway-based GDB procedure for identifying such NPR models for both

the logistic regression model and the Cox proportional hazards model. We present simulation

studies and analysis of a breast cancer distance metastasis data set to demonstrate and evaluate

the proposed methods. Finally, we give brief discussion of the methods and results.

2 Nonparametric Pathway-Based Regression Models

Suppose that we have K pathways whose activities may be related to the phenotype of interest.

Assume that there are pk genes involved in the kth pathway. We allow that some genes belong

to multiple pathways and let p be the total number of genes involved in the K pathways and

therefore p ≤
∑K

k=1 pk. Suppose that we have n independent individuals and we let yi denote

the phenotype (can be continuous, categorical, or censored survival data) for the ith individual.

For binary phenotype, let yi = 1 if the ith individual has the phenotype and -1 otherwise. For

censored survival outcome, let yi = (ti, δi), where ti is time to event or censoring and δi is an

event indicator. Let x
(k)
ij be the genomic measurement of the jth gene in the kth pathway for

4
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the ith patient, x
(k)
i = {x(k)

i1 , · · · , x(k)
ipk
} be the vector of the genomic measures of the genes in

the kth pathway for the ith patient, and let xi = (x
(1)
i , · · · , x(K)

i ) be the vector of the genomic

measurements of all the p genes. Here the genomic measurements can be SNP data or gene

expression data. Our goal is to relate the phenotype data Y to X = {X(1), · · · , X(K)} in order

to identify the pathways that are related to the phenotype and to identify genes and their

interactions that determine the pathway activities.

Here we assume that the phenotype is related to the total activity level across multiple

pathways through an additive model,

F (X) =
K∑

k=1

Fk(X
(k)), (1)

where Fk(X
(k)) can be interpreted as the activity level associated with the kth pathway as

determined by the genomic measurements of the pk genes in this pathway. We assume that

conditioning on the genes of the pathways, the pathway activities across the K pathways are

additive. For example, for a binary phenotype such as disease status or normal versus cancerous

tissues, we can assume a generalized linear model such as a logistic model for Y ,

Pr(Y = 1) =
exp(2(F (X) + γZ))

1 + exp(2(F (X) + γZ))
, (2)

where Y = 1 for diseased individual and Y = −1 for normal individual, Z is the vector of other

patient-specific covariates which is modeled parametrically with coefficients γ. For the censored

survival phenotype, we can assume that the hazard function at time t given the observed genomic

data X is modeled as

λ(t|X, Z) = λ0(t) exp(F (X) + γZ), (3)

where λ0(t) is the baseline hazard function and Z is a covariate vector and γ is the corresponding

risk ratio parameter.

The main motivation of these models is that we aim to model complex interactions between

genes within pathways nonparametrically, rather than assume particular parametric forms for
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functions Fk(X
(k). We use the term ”nonparametric pathway-based regression” to particularly

emphasize this point, i.e., the genetic and pathways effects are modeled nonparametrically. It

is obvious that without any constraints on the functions Fk(X
(k)), model (2) or (3) is not iden-

tifiable. In the next section, we propose a general pathway-based gradient descent boosting

procedure to identify such NPR models with the particular form of (2) or (3).

3 A Pathway-Based GDB procedure for the NPR models

We propose to extend the GDB procedure of Friedman (2001) to obtain an additive model with

the form of model (1) using regression trees (Breiman et al., 1984) as base learners. Regression

trees provide a flexible way of modeling dependency between responses and the predictors and

have been widely used in the context of boosting methods (Friedman et al., 2001; Friedman,

2001). We also propose several statistics for assessing the importance of the genes and pathways

that are related to the phenotype of interest.

3.1 A pathway-based GDB procedure for the NPR models

The key idea of our proposed extension of the boosting procedure of Friedman (2001) is that

instead of performing gradient boosting over all the p genes, we perform gradient descent boosting

over genes in each of the K pathways separately. We first consider the case when no other

covariates are included in model (2) or (3). Let L(yi, F (xi)) be a loss function for the ith

observation, which depends on the type of the phenotype. For binary phenotype and model (2),

the loss function can be defined as

L(y, F (x)) =
n∑

i=1

L(yi, F (xi)) =
n∑

i=1

log(1 + exp(−2yiF (xi))), yi ∈ {−1, 1}. (4)

This is also the loss function used by Friedman et al. (2001) for LogitBoost and by Friedman

(2001) for his GDB procedure. For survival phenotype, the loss function can be defined as

6
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negative of the partial likelihood based on model (3),

L(y, δ, F (x)) =
n∑

i=1

L(yi, δi, F (xi)) = −
n∑

i=1

δi{F (xi) − log(
n∑

j=1

1{yj≥yi} exp(F (xj)))}. (5)

This loss function is used in Li and Luan (2005) and Gui and Li (2005).

Extending the GDB procedure of Friedman (2001), our proposed pathway-based GDB pro-

cedure for the NPR models involves the following steps:

A Pathways-based GDB Procedure for the NPR models

1. Initialization, F (0)(X) = 0, F
(0)
k (X(k)) = 0, k = 1, · · · , K.

Repeat, for m = 1 to M (boosting steps) do:

2. Calculating the gradients w.r.t. each function Fk(X
(k)) over observed samples,

ỹi = −
[

∂L(yi,F (xi))

∂Fk(x
(k)
i )

]
F (X)=F (m−1)(X)

, i = 1, · · · , n, k = 1, · · · , K.

3. Fitting trees to the gradient vector using x(k), let hk(x
(k)
i ; a) be the base learner procedure,

(a(k), β(k)) = argmina,β

∑N
i=1[ỹi − βhk(x

(k)
i ; a)]2, k = 1, · · · , K,

Let k∗ = argmink

∑N
i=1[ỹi − β(k)hk(x

(k)
i ; a(k))]2.

4. Line search over ρ for the pathway k∗ selected in step 3,

ρm = argmin
∑n

i=1 L(yi, F
(m−1)(xi) + ρhk∗(x

(k∗)
i ; a(k∗))).

5. Updating the function with ν being the learning rate,

F
(m)
k∗ (X(k∗)) = F

(m−1)
k∗ + νρmhk∗(x

(k∗)
i ; a(k∗)) ,

F (m)(X) = F (m−1)(X) + F
(m)
k∗ (X(k∗)).

end For

end Algorithm

where M is the number of iterations, which serves as a shrinkage parameter and can be determined

by cross-validation, F (m)(X) denotes the function F (X) and F
(m)
k (x(k)) denotes the function

Fk(x
(k)) at the mth boosting step. Note that when K = 1, this algorithm reduces to the boosting
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algorithm of Friedman (2001). In this algorithm, the gradients in step 2 of the generalized

boosting algorithm are

ỹik = −
[
∂L(yi, F (xi))

∂Fk(x(k))

]
F (X)=Fm−1(X)

= 2yi/(1 + exp(2yiFm−1(xi)))) (6)

for the logistic model (2)and

ỹik = δi −
n∑

j=1

δj1{ti≥tj}
exp(Fm(xi))∑n

r=1 1{tr≥tj} exp(Fm(xr))
,

for the Cox model (3). Note that these gradients are the same for each different pathway k.

The key difference from the GDB algorithm of Friedman (2001) is found in step 3 and 4, where

the calculation is done on a pathway by pathway basis. Step 3 aims to identify the pathway

that gives the best fit of the negative gradients using the base learner. This effectively utilizes

the known pathway information and reduces the dimensionality from considering all the genes

to only considering those genes in a given pathway. In steps 4 and 5, the functions are updated

by adding the tree corresponding to the k∗th pathway selected in Step 3. For many models, Step

4 simply reduces to a regression problem with a case weight.

In order to model interactions between genes in a given pathway, we propose to use a J-

terminal node regression tree (Breiman et al., 1984) as the base learning procedure in Step 3 of

the algorithm for each pathway. For pathway k, each regression tree itself has the additive form

hk(X
(k); {b(k)

j , R
(k)
j }J

j=1) =
J∑

j=1

b
(k)
j I(X(k) ∈ R

(k)
j ),

where {R(k)
j }, j = 1, · · · , J are disjoint regions that cover the space of all joint values of the

variables X(k), and a(k) = {b(k)
j , R

(k)
j }J

j=1 in the general boosting algorithm for the NPR models

(Step 4). The boosting procedure with regression trees as base procedures inherits the favorable

characteristics of trees such as robustness, and flexibility in modeling interactions (Breiman et

al., 1984). In addition, trees tend to be quite robust against the addition of irrelevant input

variables and therefore serve as internal feature selection (Friedman, 2001; Breiman et al., 1984).

J controls the size of the tree, which is often chosen to be small.
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Finally, if covariates Z are included in the NPR models (3) or (2), we can iterate between

updating the parametric parameters γ by minimizing the loss function with F (X) fixed and

updating the nonparametric term F (X) using the proposed boosting procedure.

3.2 Identification of important pathways and genes

We propose to apply cross-validation on the error rates for the logistic model (2) or the cross-

validated partial likelihood to determine the number of boosting steps M . After M is determined

and the function Fk(X
(k)) is estimated, we can address the issue of identifying relative importance

of genes to the activity level of each pathway and identifying important pathways that are related

to the phenotypes in the proposed NPR modeling framework. Although single trees are highly

interpretable (Breiman et al., 1984), the final function F (X) identified by the pathways-based

TGD procedure is a linear combination of trees and must therefore be interpreted in a different

way. For a single tree T , Breiman et al. (1984) proposed to use

I2
l (T ) =

J−1∑
t=1

î2t I(v(t) = l) (7)

as a measurement of relevance for each predictor variable Xl for a tree with J nodes, where

the sum is over the J − 1 internal nodes, I(.) is an indicator function and v(t) is the splitting

variable associated with the tth node. This score is basically the summation of the empirical

improvement î2t in squared error risk as a result of a split at node t over the J − 1 internal nodes

of the tree. For models of additive tree expansions obtained from M boosting steps, Friedman

(2001) suggested an importance score for the lth variable as

I2
l =

1

M

M∑
m=1

I2
l (Tm), (8)

which is simply an average of the importance scores over the M trees obtained during the M

boosting steps.

9

http://biostats.bepress.com/upennbiostat/art6



The importance scores defined by equations (7) and (8) can equally be applied to the addi-

tive trees obtained from the proposed pathways-based boosting procedure for the NPR models.

However, for the final additive trees from the NPR model, we can in fact address more detailed

questions about the role that genes and pathways play in determining the phenotypes. First, for

each pathway k, we can assess the relevant influence of each gene j in this pathway by calculating

the importance scores using the trees constructed based on the kth pathway, i.e.,

Î2
lk =

1

Mk

Mk∑
m=1

I2
l (Tmk),

where Mk is the number of times that the k pathway was selected in Step 3 of the proposed

pathway-based boosting algorithm, and Tmk is the mth tree built based on the kth pathway.

Second, the average of importance scores for genes selected within a pathway, which we call

the pathway importance score, can be used as a measure of importance of this pathway to the

phenotype. As in Friedman (2001), the most influential variable or pathway is given a score of

1, and the estimated importance scores of others are scaled accordingly.

4 Simulation Studies

In order to evaluate the performance of NPR’s ability to identify important pathways and

genes, we designed the following simulation studies, mimicking different possible biological sce-

narios. We assume that there are 50 candidate SNPs, denoted by X1, . . . , X50, where SNPs

X(k−1)∗10+1, . . . , X(k−1)∗10+10 belong to the kth pathway, for k = 1, · · · , 5. We generate Xis inde-

pendently from Bernoulli distribution with probability of 0.25 of being 1. We generate disease

status variable Y based on the following logistic regression model,

Pr(Y = 1|X) =
exp(2F (X))

1 + exp(2F (X))
(9)
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where Y = 1 for disease and Y = −1 for disease-free. We consider four different models with the

following four predictive functions,

F1(X1, . . . , X50) = −0.6 + 0.25X1 + 0.25 ∗ X2 + 0.5(X1 ∗ X2),

F2(X1, . . . , X50) = −0.5 + 0.5(X1 ∗ X2),

F3(X1, . . . , X50) = −0.5 + 0.5((X1 ∗ X2) OR (X11 ∗ X12)),

F4(X1, . . . , X50) = −0.5 + 0.5((X1 ∗ X2) OR (X1 ∗ X12)),

where in function F3 and F4, the OR operator returns value 1 if at least one of the two product

terms is 1. Among these four models, model 1 presents the standard logistic regression model

with two SNPs involved, model 2 assumes that only when there are two mutations on SNP1

and SNP2 from pathway 1 does the disease risk increase, model 3 assumes that there are two

independent pathways involved; and model 4 also assumes that there are two pathways involved

in disease risk; however, it assumes that SNP1 is involved in both pathways. For each model,

the estimated disease rate is about 30%. We simulate data sets of 500 individuals and for each

model, we repeat the simulation 100 times.

In the following analysis, we use the tree of depth three (i.e., at most three terminal nodes)

as the base leaner procedure, which allows for two-way interactions between the variables. Since

models 2-4 include only interaction effects, one would expect that the variable that entered in

the tree at the later stage has a higher improvement score than those entered before. In this

case, we adjust the important scores so that the two variables have the same importance scores.

4.1 Identification of the pathways

The four plots of Figure 1 show the frequencies during the pathway-based boosting procedure in

which each of the five pathways was selected. It is clear that for models 1 and 2, pathway 1 was

selected very frequently, and for models 3 and 4, both pathways 1 and 2 were selected almost
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equally, indicating the importance of these pathways to the risk of the disease. Similarly, the

four plots of Figure 2 show the boxplots of the relative importance scores of the five pathways

over 100 replications. We observed that the relative importance scores are higher for pathway 1

for models 1 and 2, and are higher for pathways 1 and 2 for models 3 and 4, indicating that the

pathway relative scores can indeed reveal which pathways are relevant to the disease risk.

4.2 Identification of the genes

To evaluate how well the proposed importance scores can be used for identifying genes that are

related to the risk of disease, Table 1 shows the percentage of the true SNPs appearing in the

top scoring variables over the 100 replications. For example, SNP1 and SNP2 are the SNPs with

the first or second highest scores in 81% and 82% of the simulations for model 1 and 74% and

75% of the simulations for model 2. Similarly, for model 3, the relative importance scores for

SNP1, SNP2, SNP11 and SNP12 are in general higher than the other SNPs. Among the 100

replications, the SNP1 and SNP2 are among the top four SNPs with the highest scores in 71%

and 71% of the simulations, and SNP11 and SNP12 appeared among the top 4 SNPs in 59% and

58% of the simulations respectively. The SNP1 appeared among the top 3 SNPs in 84% of the

replications for model 4. In addition, for model 4, SNP2 and SNP12 appeared among the top 3

SNPs with the highest scores in 69% and 60% of the replications, respectively. These numbers

indicate that the relative importance scores can indeed capture the importance of the variables

in the estimate of the function F (X).

Figure 3 shows the boxplots of the importance scores for each of the 50 variables over 100

replications, indicating that the scores for the true SNPs are much higher than the other variables

in most of the replications. We can clearly see that for model 1 and model 2, the relative

importance scores for SNP1 and SNP2 are in general much higher than the other SNPs. Similarly

for model 3, the importance scores for SNP1, SNP2, SNP11 and SNP12 are higher. For model

12
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4, the importance score for SNP 1 is almost always the highest over 100 replications, indicating

the importance of this SNP.

4.3 Comparison to other methods

As a comparison, we also performed analyses on the simulated data sets using the gradient descent

boosting procedure of Friedman and the popular support vector machine method for feature selec-

tion as implemented in the program package GIST (http://microarray.cpmc.columbia.edu/gist).

Neither of these two methods tried to utilize the pathway information. Table 1 shows the per-

centage over 100 simulations that the relevant SNPs were identified by these two methods. It

is clear that the NPR methods tend to select the relevant SNPs more frequently than these two

methods and the improvement is substantial for models 2, 3 and 4. For model 1, which is the

standard logistic regression model including both main effects and interaction, the SVM seemed

to select the SNP1 slightly better than the NPR method, but the difference is not significant.

In addition, we also observed that the relative importance scores for the relevant variables ob-

tained from the Friedman’s procedure and the SVM are not as large as those obtained from the

NPR. This comparison demonstrated the advantage of the pathway-based boosting procedure

for the NPR models in selecting relevant variables, especially when the models do not follow the

standard logistic regression models.

5 Application to lymph-node negative primary breast can-

cer data set

Wang et al. (2005) reported large Affymetrix-based gene expression profiling for 286 patients

with lymph-node-negative primary breast cancer. These patients were treated between 1980-1995

with age at surgery ranging 26-86 and a median age at surgery of 52 yrs. No patient received
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any adjuvant therapy. During the follow-up period, 180 of these patients were relapse-free at 5

yrs, and 106 of them developed distant metastasis. Gene expression profiling using Affymetrix

HG-133A was performed on all these patients, including 17,819 transcripts that were present

in two or more samples. We merged the Affymetrix probe IDs with SuperArray cancer related

pathways/genes (www.superarray.com) and identified a subset of 245 genes in 33 cancer-related

sub-pathways (see Table 2 for the pathways and the number of genes in each pathway). In

addition, a set of 188 cancer-related genes is also included in our analysis. The numbers of genes

within the pathways range from 2 (e.g., cell-cell adhesion and notch signaling pathways) and 81

genes (e.g., regulation of cell cycle).

We first performed the analysis using the logistic regression model (2). Using 10-fold cross

validation on misclassification error rates, we chose the number of boosting steps to be 75,

which gives an optimal misclassification error rate of 0.29. The left plot of Figure 4 shows

the pathways with high relative scores and also high frequencies that were selected during the

boosting procedure. We found that the Wnt pathway, the pathways related to apoptosis and cell

cycle, and regulation of cell cycle are most likely related to the risk of distant metastasis.

Under the same 10-fold cross validation partitions, we performed analyses using several other

well-known classifiers, including Random Forest, Bagging, Neural Network, BayesNet, Naive

Bayes, Decision Stump, Ada Boosting M1, Logistic regression using the Weka software package

(http://www.cs.waikato.ac.nz/ml/weka/) and SVM using the program GIST. The misclassifica-

tions that result from various procedures are shown in Table 3. It is clear that the NPR outper-

forms almost all of the competitors. This indicates that the pathways and genes selected by the

NPR procedure may indeed be related to the risk of distant metastasis in lymph-node-negative

breast cancer patients.

As a comparison, we also performed the analysis using the Cox model (3) with time to cancer

relapse as the outcome. The right plot of Figure 4 shows the pathways with high importance
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scores and high frequencies of being selected during the boosting procedure. The pathways

identified are quite comparable to those identified using the logistic regression model.

6 Discussion

As the large body of biological information on various aspects of the biological systems and

pathways is available through databases or metadata, it is important to utilize the information

in modeling genomics data, especially in identifying genes and their interactions and pathways

that might be related to the phenotypes. In this paper, we have introduced a nonparametric

pathway-based regression model and proposed to extend the gradient boosting procedure of

Friedman (2001) to obtain fits of such models. In addition, we have defined relative importance

scores for genes within pathways and relative pathway importance scores in order to identify genes

and pathways that might be related to the phenotypes. We have demonstrated the applications

of such NPR models using both simulations and analysis of a breast cancer data set. Different

from the traditional regression analysis, the proposed methods naturally incorporate biological

pathways information. Different, also, from the commonly used gene set enrichment analysis, our

method considers multiple pathways simultaneously and can easily incorporate other covariates.

The ensemble methods have been proposed mainly for predictive purposes, however, as

demonstrated by Breiman (2001) and Friedman (2001) and also by our simulations, these meth-

ods can also be used for identifying variables that are relevant to the phenotypes. Although the

interpretation of the resulting model is not as easy as that obtained from the traditional logistic

regression or Cox regression, such models are more flexible and require fewer assumptions of the

genetic effects. Although the relative importance scores used in this paper seem to perform well

for identifying relevant variables, much future research needs to be done to rigorously investigate

the problem of defining variable importance in the setting of ensemble methods. For example,

important future research should assess the statistical significance of such importance scores,
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by using bootstrap or permutations. In addition, it is also important to develop methods for

identifying interactions among the variables based on the resulting ensemble of trees. Jiang and

Owen (2002) proposed to apply a quasi-regression idea (An and Owen, 2001) for identifying the

components based on the black-box functions. Similar quasi regression might be developed for

the NPR models to identify important genes and pathways.

Another important issue that deserves further investigation is the sensitivity of the proposed

methods to the misspecification of the pathways information and misspecification of the model.

The first type of misspecification is that the genes included in the pathways do not really belong

to the pathways. However, this should not create a big problem since these wrongly included

genes should not be selected by the proposed methods. Another type of miss-specification is that

the related genes are not included in the respected pathways. The third type of misspecification

is that the relevant pathways are not included in the model. However, it should be noted that

all types of regression analysis have such potential misspecification of the models. In defining

our NPR model, we assume that genes within a pathway can interact; however, the pathways

activities affect the phenotype in an additive model conditioning on the genes that the pathways

include.

In summary, we have proposed a regression framework for identifying pathways and genes

that are related to clinical phenotypes. The model and the pathway-based boosting procedure

can be extended to include pathway specific gene-environment interactions to allow the same

environmental risk factors to interact differently with different pathways. As more genes and

pathways are being identified, we expect to see more applications of the proposed methods and

its future extensions in analysis of genomic data.

16

Hosted by The Berkeley Electronic Press



Acknowledgments

This research was supported by NIH grant ES009911 and a grant from the Pennsylvania Depart-

ment of Health. We thank Mr. Edmund Weisberg, MS at Penn CCEB for editorial assistance.

References

An J, Owen AB (2001): Quasi Regression. Journal of Complexity, 17:588-607.

Breiman L (2001): Random forests. Machine Learning, 45:5-32.

Breiman L, Firedman JH, Olshen RA, Stone C (1984): Classification and Regression Trees.

Wadsworth.

Carlson CS, Eberle MA, Kruglyak L and Nickerson DA (2004): Mapping complex disease loci

in whole-genome association studies. Nature, 429:446-452.

Dettling M and Buhlmann P (2003): Boosting for tumor classification with gene expression data.

Bioinformatics 19, 1061-1069.

Freund Y (1995): Boosting a weak learning algorithm by majority. Information and Computa-

tion, 121: 256-285.

Freud Y and Schapire R (1996): Experiments with a new boosting algorithm. In Machine

Learning: Proceedings of the Thirteenth International Conference, 148-156.

Friedman (2001): Greedy function approximation: a gradient boosting machine. Annals of

Statistics, 29: 1189-1232.

Friedman J, Hastie T and Tibshirani R (2000): Additive logistic regression: a statistical view of

boosting. The Annals of Statistics, 28: 337-407.

17

http://biostats.bepress.com/upennbiostat/art6



The Gene Ontology Consortium (2000): Gene Ontology: tool for the unification of biology.

Nature Genetics, 25: 25-29.

Horton T, Dettling M and Buhlmann P (2005): Ensemble methods of computational inference.

pp#293. In Gentleman R, Carey VJ, Huber W, Irizarry RA and Dudoit S eds Bioinfor-

matics and Computational Biology Solutions Using R and Bioconductor, Springer.

Jiang T and Owen AB (2002): Quasi-regression for visualization and interpretation of black box

functions. Technical report, Department of Statistics, Stanford University.

Kanehisa M and Goto S (2002): KEGG: Kyoto encyclopedia of genes and genomes. Nucleic

Acids Research, 28: 27-30.

Li H and Luan Y (2005): Boosting proportional hazards models using smoothing splines, with

applications to high-dimensional microarray data. Bioinformatics, 21: 2403-2409.

Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane I and Park P (2005): Discovering

statistically significant pathways in expression profiling studies. Proceedings of National

Academy of Sciences, 103: 13544-13549.

Vapnik V (1998): Statistical Learning Theory. Wiley.

Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M,

Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005): Gene-

expression profiles to predict distant metastasis of lymph-node-negative primary breast

cancer. Lancet, 365: 671-9.

18

Hosted by The Berkeley Electronic Press



Table 1: Simulation results: percentage of the true variables that are among the genes with

highest top two scores (for model 1 and 2), top four scores (for model 3) and top three scores (for

model 4) over 100 replications. NPR: proposed pathway-based boosting procedure for the NPR

models; GDB: the gradient boosting procedure of Friedman; SVM: support vector machine.

Model 1 Model 2 Model 3 Model 4

Method X1 X2 X1 X2 X1 X2 X11 X12 X1 X2 X12

NPR .81 .82 .74 .75 .71 .71 .59 .58 .84 .69 .60

GDB .66 .68 .41 .47 .52 .59 .42 .44 .76 .44 .39

SVM .90 .82 .32 .42 .45 .45 .41 .38 .81 .26 .26
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Table 2: Pathways considered in breast cancer data analysis, including the numbers of genes in

each pathway and a description of the pathways. The last set includes 188 genes that do not

belong to a particular pathway.

Pathway ID # of Genes Description

1 18 Anti-apoptosis

2 4 VHLCaspase activation

3 3 DNA damage response

4 24 Factors involved in other aspect of apoptosis

5 8 Induction of apoptosis

6 10 Induction of apoptosis by signals

7 6 Regulation of apoptosis

8 3 Apoptosis others

9 13 Cell cycle arrest

10 4 Cell cycle checkpoint

11 29 Factors involved in other aspect of cell cycle

12 81 Regulation of cell cycle

13 6 Cell differentiation cell fate determination

14 63 Cell growth and/or maintenance

15 41 Cell proliferation

16 11 Growth factors

17 46 Regulation of cell proliferation differentiation growth and volume

18 10 Cell migration and motility

19 2 Cell-cell adhesion

20 6 Cell-matrix adhesion

21 10 Metalloendopeptidases (MMPs) and MMP inhibitors

22 13 Cell surface receptor linked signal transduction

23 9 Frizzled and frizzled-2 Signaling Pathways

24 17 G-protein coupled receptor protein signaling pathway

25 2 Insulin receptor signaling pathway

26 4 integrin-mediated signaling pathway

27 29 Intracellular signaling cascade

28 6 JAK-STAT cascade

29 2 Notch signaling pathway

30 3 RAS protein signal transduction

31 4 Rho protein signal transduction

32 13 Small GTPase mediated signal transduction

33 16 Wnt receptor signaling pathway

34 188 Other cancer-related genes
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Table 3: Comparision of the average misclassification error rates of the NPR method and nine

commonly used procedures based on 10-fold cross-validation for the breast cancer data set.

Classifiers 10-fold error rate

Random Forest .33

Decision Stump .42

Logistic Regression .36

Neural Network .29

Naive Bayes .34

Bayes Net .40

Bagging .35

Ada Boost(M1) .33

SVM .42

NPR .29
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Figure 1: Simulation results: frequencies of the pathways selected during the pathway-based

boosting procedure over 100 replications for each of the four simulated models.
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Figure 2: Simulation results: the boxplots of the relative importance scores for the four pathways

based on 100 replications for each of the four simulated models.
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Figure 3: Simulation results: the boxplots of the relative imporance scores from the NPR models

for each of the 50 variables over 100 replications.
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Figure 4: Results from analysis of breast cancer data set: plot of the frequencies of the path-

ways selected and the pathway importance scores during the boosting procedure for the logistic

regression model (left plot) and the Cox model (right plot).
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