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Sensitivity of the Hazard Ratio to
Non-Ignorable Treatment Assignment in an

Observational Study

Nandita Mitra and Daniel F. Heitjan

Abstract

In non-randomized studies, estimation of treatment effects generally requires ad-
justment for imbalances in observed covariates. One such method, based on the
propensity score, is useful in many applications but may be biased when the as-
sumption of strongly ignorable treatment assignment is violated. Because it is
not possible to evaluate this assumption from the data, it is advisable to assess
the sensitivity of conclusions to violations of strong ignorability. Lin et al [1]
have implemented this idea by investigating how an unmeasured covariate may
affect the conclusions of an observational study. We extend their method to assess
sensitivity of the treatment hazard ratio to hidden bias under a range of covariate
distributions. We derive simple formulas for approximating the true from the ap-
parent treatment hazard ratio estimated under a specific survival model, and assess
the validity of these formulas in simulation studies. We demonstrate the method
in an analysis of SEER-Medicare data on the effects of chemotherapy in elderly
colon cancer patients.
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Abstract 
 
In non-randomized studies, estimation of treatment effects generally requires adjustment 

for imbalances in observed covariates.  One such method, based on the propensity score, 

is useful in many applications but may be biased when the assumption of strongly 

ignorable treatment assignment is violated.  Because it is not possible to evaluate this 

assumption from the data, it is advisable to assess the sensitivity of conclusions to 

violations of strong ignorability.  Lin et al [1] have implemented this idea by 

investigating how an unmeasured covariate may affect the conclusions of an 

observational study. We extend their method to assess sensitivity of the treatment hazard 

ratio to hidden bias under a range of covariate distributions.  We derive simple formulas 

for approximating the true from the apparent treatment hazard ratio estimated under a 

specific survival model, and assess the validity of these formulas in simulation studies. 

Hosted by The Berkeley Electronic Press



2

We demonstrate the method in an analysis of SEER-Medicare data on the effects of 

chemotherapy in elderly colon cancer patients. 

 

Keywords: propensity score, accelerated failure time model, sensitivity analysis 

 

* Corresponding author

http://biostats.bepress.com/upennbiostat/art5



3

1. INTRODUCTION 

In randomized studies, there are, on average, no systematic differences in 

observed or unobserved covariates between treatment arms.  In observational studies, 

where investigators do not control treatment assignment, the treated and control groups 

can differ in ways that significantly affect the outcomes under study.  Large differences, 

if not properly controlled for, can severely bias estimated treatment effects. 

Traditional methods for dealing with this problem include stratification, matching, 

and model-based covariate adjustment.  Unfortunately, these methods all have their 

shortcomings:  Matching fails when one cannot identify subjects who match on all 

important covariates; this can occur even when there are only a few such covariates.  

Stratification may fail when the number of strata is so large that not all strata contain both 

treated subjects and controls.  Because the number of strata increases exponentially with 

the number of covariates, there is a risk of having such non-informative strata even when 

the number of covariates is quite small. Traditional model-based adjustment avoids these 

problems but depends on correct specification of the model relating the treatment and the 

covariates to the outcome.  This can involve a perilous extrapolation if the distributions 

of the covariates in the comparison groups do not overlap substantially [2]. 

Rosenbaum and Rubin [3] introduced a new class of methods, based on the 

propensity score, for dealing with these problems. The propensity score is the conditional 

probability of assignment to a treatment given a vector of observed covariates.  If one 

groups the subjects into strata based on their propensity scores, then treatment and control 

groups within the strata are balanced with respect to these observed potential 

confounders.  Theoretical arguments show that subclassification into five propensity 
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score strata is usually adequate to remove over 90% of the bias [4]. Because exact 

adjustment using the propensity score will on average remove all of the bias, one can use 

propensity scores as a basis for matching, stratification, and regression adjustment.  The 

method offers distinct advantages because it allows one to control for numerous 

covariates simultaneously by matching or stratifying on a single scalar variable [5]; this 

greatly simplifies model building and estimation.  

Yet no adjustment method, even propensity scores, can completely eliminate potential 

bias from imbalance on covariates that do not appear in the data set.  Hence, it is 

important to investigate how variations in assumptions about unmeasured confounders 

may affect study conclusions.  This is the role of sensitivity analysis.  

In observational studies we use sensitivity analysis to investigate how biases of 

various magnitudes affect inferences about treatment effects [6].  We posit a parameter, 

call it Γ, that measures the magnitude of the departure from a randomized experiment.  

For instance, suppose that a subject who is at level 1 of an unmeasured binary confounder 

has Γ times the probability of a subject who is at level 0 of being on the treatment arm.  

For 1=Γ , there is no hidden bias and the treatment assignment probabilities equal ½.  

For 2=Γ , matched subjects differ in their chances of receiving the treatment by a factor 

of 2, making one twice as likely as the other to receive the treatment.  If small departures 

from 1=Γ alter the conclusions of a study, then the study is said to be sensitive to 

hidden bias; if conclusions change only for large values of Γ, then results are insensitive. 

Note that sensitivity to small hidden biases does not imply that such biases are present, 

but that, if present, they can seriously alter conclusions. 
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Rosenbaum and Rubin [7] proposed methods for assessing the sensitivity to an 

unobserved binary covariate in observational studies where the outcome is binary. Lin et 

al. [1] extended these methods by deriving formulas to assess sensitivity to an unobserved 

normal covariate.  Rosenbaum has also developed methods for analyzing sensitivity in 

matched case-control studies [8] and for matching with multiple controls [9].  

Several studies in the 1980’s investigated the effect of omitted covariates and 

misspecification of regression models in the context of survival analysis.  Gail et al. [10] 

showed that when important covariates are omitted, certain nonlinear regression models 

lead to biased treatment effect estimates in randomized experiments. However, they 

found that for moderately censored data, when important covariates are omitted, 

treatment effect estimates from exponential survival models are less biased than those 

obtained from Cox proportional hazards models.  Similarly, Chastang et al. [11] 

demonstrated that the effect of omitted covariates in survival models is modest unless the 

covariates are strongly prognostic. Solomon [12] investigated whether the choice of 

model family is critical in interpreting the importance of covariates in models of survival 

time and concluded that treatment effect estimates are approximately proportional under 

the Cox model and the accelerated failure time model so that qualitative inferences are 

robust to misspecification.  Lagakos and Schoenfeld [13] investigated the effects of 

misspecifying a proportional hazards regression model on the partial likelihood score test 

when comparing two randomized treatments and found that omitting a balanced covariate 

has a negligible effect on the size of the score test but there is substantial reduction in 

power when the covariate effect is strong. Moreover, Struthers and Kalbfleisch [14] 

found that ignoring one of two independent covariates results in an attenuation of the 

Hosted by The Berkeley Electronic Press



6

effect of the other covariate. Similarly, a study by Bretagnolle and Huber [15] supported 

the conclusions from previous studies by showing that in the Cox regression model, the 

effect of covariates included in the model are underestimated when other covariates are 

omitted. Subsequently, in the 1990’s Hougard et al. (1994) and Keiding et al. [16] 

introduced a frailty model framework for describing the effect of omitted covariates. 

Their work suggested that accelerated failure time models may be better in accounting for 

heterogeneity in survival times due to unobserved or omitted covariates.  

In this article, we extend the methods of Lin et al. [1] by deriving simple formulas 

for approximating the true from the apparent treatment hazard ratio estimated from a 

Weibull accelerated failure time model under a range of assumptions about the 

distribution of the omitted confounder.  We use Monte-Carlo simulations to assess the 

accuracy of these approximations, and we apply our method to SEER-Medicare data to 

investigate the sensitivity of the treatment effect of chemotherapy on survival in elderly 

colon cancer patients. 

 

2.  STRONGLY IGNORABLE TREATMENT ASSIGNMENT 

Causal inferences flow from models for the potential responses an individual 

could manifest under different treatments.  Using the notation of Rosenbaum [17], let r0

represent the response that one observes if the subject receives the control treatment, and 

r1 be the response that one observes if the subject receives the experimental treatment.  

Because each subject receives only one treatment (z = 1 or 0), one observes r1 for only 

those subjects who receive treatment (i.e., z=1), and r0 for only those subjects who 

receive control.  Although we can only conjecture about the causal effect of the treatment 
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for an individual, r1-r0, we can aspire to estimate the average causal effect, which is the 

difference between the average responses to treatment and control in a randomly selected 

subject: 

 )( 01 rrE − . (2.1) 

Treatment assignment is defined to be strongly ignorable if the response (r0,r1) is 

conditionally independent of the treatment assignment z given the observed covariates x,

and the probability of receiving each treatment is positive: 

)|Pr()|Pr()|,Pr( 1010 xxx z,rrz,rr = (2.2) 

and 

 1)|1Pr(0 <=< xz , x∀ . (2.3) 

For example, in the simplest randomized trial, subjects are assigned to treatment or 

control by the flip of a fair coin; that is 21)|1Pr( == xz . Thus treatment assignment is 

strongly ignorable because the randomization probability is constant for all units 

regardless of the value of x. In more complicated randomized designs, randomization 

probabilities may depend on the values of observed covariates, but strong ignorability 

holds as long as these covariates are included in x.

When treatment assignment is strongly ignorable given x, we may obtain 

unbiased estimates of the average treatment effect, )( 01 rrE − , by matched sampling on 

x, subclassification on x, or covariance adjustment for x. First note that if a randomly 

selected treatment unit (z = 1) is compared to a randomly selected control unit (z = 0), the 

expected difference in response is 

 )0|()1|( 01 =−= zrEzrE , (2.4) 
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which does not, in general, equal the average treatment effect of (2.1).  Rosenbaum and 

Rubin [7] demonstrated that strongly ignorable treatment assignment can lead to unbiased 

estimates of the average treatment effect by considering the case of simple matched 

sampling.  In this procedure, one randomly samples a value of x from the population and 

then samples a treatment unit and a control from all units with this value of x. The 

expected difference in outcomes is then 

 { }),0|(),1|( 01 xxx =−= zrEzrEE (2.5) 

where {}⋅xE is the expectation with respect to the distribution of x in the population.  

This does not generally equal the average treatment effect (2.1), but if we have strong 

ignorability, then (2.4) is equal to 

 { })|()|( 01 xxx rErEE − (2.6) 

which does equal (2.1). 

Rosenbaum and Rubin [7] have shown that if treatment assignment is strongly 

ignorable given x, then it is strongly ignorable given the propensity score, and moreover 

that in applications, where the exact propensity score is unknown, estimated propensity 

scores will serve as well.  Although in observational studies we cannot directly test strong 

ignorability, by assessing the sensitivity of key inferences to departures from it we can 

determine the robustness and credibility of our conclusions.  

 

3.  CONFOUNDING IN THE ACCELERATED FAILURE TIME MODEL 

The accelerated failure time (AFT) model provides an intuitive and flexible 

alternative to the Cox model in many applications [18].  In an AFT model, the covariates 

act multiplicatively on the time scale, implying that they affect the speed at which a 
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subject proceeds along the time axis [19].  When the predictor is a binary indicator of 

assignment to a test therapy, the survival time of a treated patient is thus a multiple of the 

survival time of an otherwise equivalent control, and so the effect of treatment is to either 

slow or accelerate the passage of time. Most simply, the model is 

)()( tStS CT φ=

where )(tST and )(tSC are the survivor functions for subjects in the treated and control 

groups, respectively, and φ is the treatment effect.  Thus values of φ less then 1 

correspond to acceleration in the time to an event for the treated subject. The 

corresponding relationship between the hazard functions is 

)()( tt CT φλφλ = .

Now let Z be the treatment indicator (1 if treated, 0 if not), X a set of measured 

covariates, U an unmeasured confounder, and T the survival time of interest. The AFT 

hazard function, conditional on (Z,X,U), is 

 

}'exp(exp(),,|( {0' )tUzZUZUZt z XX)X θγβλθγβλ ++×++=

where )(0 ⋅λ is a baseline hazard function and ),,,( 10 θγγβ are regression parameters.  

Here 0γ and 1γ are the effects of U for the control and treated groups, respectively.  

Similarly, the AFT hazard function, conditional on (Z,X) only,  is 

 





 +×+= tZZZt )exp()exp(),|( '**0*'** XXX θβλθβλ
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where )(*0 ⋅λ is a baseline hazard function and ),( ** θβ are regression parameters.  Lin et 

al. [1] call this the “reduced” model. β and *β are the true and apparent exposure 

effects, respectively.  Because we can estimate *β from the observed data, our goal is to 

determine the relationship between β and *β .

To completely determine an AFT model one needs to specify a probability 

distribution for the survival times.  A common choice is the Weibull with scale parameter 

α and shape parameter ψ , whose baseline hazard function is  

 10 )( −= ψψαλ tt .

Thus the hazard in a Weibull AFT model, conditional on (Z,X,U) is 

 

X) X '1 exp(),,|( ψθψγψβψαλ ψ ++= − UZtUZt z (3.1) 

 

and the hazard for the reduced AFT model, conditional on (Z,X), is 

 

)exp(),|( '**1 XX ψθψβψαλ ψ += − ZtZt (3.2) 

 

In conventional notation, let )|( ⋅tf be the conditional density function of T and 

)|( ⋅tS be the conditional survival function of T, and let ),|( XZuF be the distribution 

function of U given Z and X. The hazard function can be written as follows: 
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∫
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∞−

∞

∞−==
),|(),,|(

),|(),,|(
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To determine the relationship between β and *β , we derive the hazard given Z and X

under the full model (3.1) directly from (3.3), then match terms with the apparent hazard 

under the reduced model, given in (3.2).  Under (3.1), the numerator in (3.3) is 

 ),|(),,|(),|),|(),,|( XXXXX ZudFuZtSuZ,(tZudFuZtf∫ ∫
∞

∞−

∞

∞−
= λ

{ }1 ' 'exp( exp  exp( ( | ,X)z zt Z u t Z u dF u Zψ ψα ψ ψβ ψγ ψθ α ψβ ψγ ψθ
∞

−

−∞
= + + − + +∫ X) X)

 

The denominator is 

 

{ }'

( | , X, ) ( | ,X)

exp  exp( ( | ,X)z

S t Z u dF u Z

t Z u dF u Zψα ψβ ψγ ψθ

∞

−∞
∞

−∞
= − + +

∫
∫ X)

 

Therefore, the hazard function in (3.3) can be rewritten as 

 

),;(exp(),|( '1 XXX Zth)ZtZt ψθψβψαλ ψ += − (3.4) 
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where  
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Once one estimates ψ (the shape parameter of the Weibull distribution) and 

specifies the distribution of U, one can use (3.4) to determine an explicit formula for the 

hazard function.  In section 3.1, we derive an explicit formula for the hazard function 

assuming that the unknown confounder follows a Gamma distribution. In sections 3.2, 

3.3 and 3.4, we present similar formulas for normal, binomial and Poisson confounders.  

Derivations appear in the Appendix.  

 

3.1  Unknown Gamma Confounder 

Assume that, conditional on Z and X, the confounder U is Gamma with shape 

X,Zη and scale X,Zτ . We rewrite the hazard in (3.4) as follows: 

 

),|()(exp
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If the events are rare then ψα t is small and the hazard simplifies to 
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Furthermore, if U is conditionally independent of X given Z, then under ZZ ηη =X, and 

ZZ ττ =X, , the approximation becomes 
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In (3.5), 0γ and 1γ are the effects of U for the control and treated groups, 

respectively. Furthermore, 0η and 1η are the shape parameters of U, and 0τ and 1τ the 

scale parameters of U, for the control and treated groups, respectively.  We can now 

estimate the true treatment effect β by first estimating the apparent treatment effect 

*β from observed data and then applying (3.5).  This formula also proves that when the 

sensitivity parameters are fixed, the variance of β̂ is the same as that of *β̂ , which 

allows us to easily calculate a confidence interval for β .

3.2 Unknown Normal Confounder 

Now suppose that, conditional on Z and X, the unknown confounder U is 

normally distributed with mean X,Zµ and unit variance.  Then if the events are rare and 

U is conditionally independent of X given Z, under ZZ µµ =X, , the true treatment effect 

is  

( ) ( )






 −+−−≈ 2

0212
0011* ψγψγµγµγββ (3.6) 
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Here 0γ and 1γ are the effects of U for the control and treated groups, respectively, and 

0µ and 1µ are the means of U for the control and treated groups, respectively. 

 

3.3 Unknown Binary Confounder 

Assume that U is binary with success probability X,ZΠ . If U is independent of X

conditional on Z, which implies that X,ZΠ does not depend on X, the treatment effect is   

 ψββ
ψγ
ψγ

)1(
)1(log

000
111

* Π−+Π
Π−+Π

−≈ e
e

(3.7) 

 

Here 1Π and 0Π are the prevalences of the unmeasured confounder in the treated and 

untreated groups, respectively, and 1γ and 0γ are the effects of the unmeasured binary 

confounder in the treated and untreated groups, respectively.  

 

3.4 Unknown Poisson Confounder 

Next suppose that, conditional on Z and X, U is Poisson with mean x,zκ . As 

before, if events are rare and U is conditionally independent of X given Z so that 

ZZ κκ =X, , then 

 

ψ
κκββ

ψγψγ )1()1( 0011* −−−−≈ ee (3.8) 
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Here 0κ and 1κ are the means of U for the control and treated groups, respectively. 

 

4.  SIMULATIONS 

In the previous section, we developed formulas to estimate β in the presence of an 

unmeasured confounder with a specified distribution (gamma, normal, binomial, or 

Poisson) assuming an AFT model. We now assess the accuracy of these approximations 

by Monte Carlo.  We generated survival times under the AFT model from (3.1) with 

1)(0 =⋅λ , 1=β , 1=θ , 10 γγ = and a Weibull distribution with scale 1.0=α and shape 

.5.0=ψ We set 30% of the subjects to be in the treated group (Z = 1) and 70% in the 

control group (Z = 0) and assumed that X was normal with mean 1 for the treated group, 

mean 0 for the control group, and variance 1 for both groups.  We generated censoring 

times from the Uniform (0,ω) distribution where ω was chosen to fix the censoring rate.  

Results corresponding to the four models appear in tables 1 through 4.  In each 

simulation, there were 1000 samples, each containing 1000 subjects.  For each sample, 

we calculated the maximum partial likelihood estimate *β̂ under the reduced model and 

then replaced *β in the appropriate formulas by *β̂ to estimate β̂ .

With binary U, our results suggest that (3.7) is a good approximation under a wide 

range of censoring rates.  When U is normal, however, the approximation (3.6) is 

adequate only when the censoring rate is over 90% or when the effect of the unmeasured 

confounder on survival time is small ( 75.0<γ ).  When U is Poisson, the approximation 

(3.8) is satisfactory when the censoring percentage is over 75%.  Finally, when U has a 

gamma distribution, (3.5) is a good approximation when the censoring rate is over 50% 
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or when the effect of U on T is small ( 25.0<γ ).  Overall, if the censoring rate is high or 

the effect of U on T is small, then the approximations are sufficiently unbiased for 

practical purposes. 

 

5.  COLON CANCER STUDY 

The aim was to estimate the effect of adjuvant chemotherapy with 5-flourouracil 

(5FU) in extending survival in older, node-positive colon cancer patients.  Our data 

source was the Surveillance Epidemiology and End Results - Medicare (SEER-Medicare) 

database that links cancer registry information with Medicare claims data [20]. SEER 

collects information on tumor location, stage of disease, and demographics (e.g. age, 

race, sex, and area of residence), together with primary surgical and radiation treatment 

and survival; it covers roughly 14% of the US population. The linked Medicare files 

contain extensive diagnostic, treatment, and cost data.  
We identified all individuals in the database who had a first primary diagnosis of 

colon cancer between 1992 and 1996.  Other selection criteria included: age > 65 years; 

diagnosis of American Joint Cancer Committee (AJCC) stage III colon cancer; no HMO 

enrollment the year before diagnosis (the Health Care Finance Administration does not 

collect claims data from risk-based HMOs) and coverage with both Medicare Parts A and 

B in the year before diagnosis; survival for 120 days beyond the date of diagnosis; and 

confirmed positive regional nodes on surgical resection of the tumor. 

We measured the presence of other illnesses by the Deyo adaptation of the 

Charlson comorbidity index.  For those who died by the end of follow-up (April 15, 
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1999), survival was the interval from the cancer diagnosis date to the Medicare date of 

death. We classified those surviving beyond April 15, 1999 as censored.  

We hypothesized that 5FU treatment would be associated with longer survival, 

but we were concerned that the subjects receiving 5FU would be quite different from the 

others in terms of covariates that are likely to predict survival.  Of a total of 4,768 

patients in the dataset, 2,479 received 5FU and 2,289 did not.  An initial analysis showed 

significant differences in several background covariates (Table 5).  Note, for example, 

that younger, urban and white patients were all more likely to be treated.  

We estimated propensity scores from a logistic regression including 22 potential 

predictors.  A patient’s propensity score is his estimated probability of being treated with 

5FU given his background covariates. We assigned patients to five strata based on 

quintiles of the distribution of the propensity scores.  Patients in the first quintile have the 

lowest propensity scores, indicating that they were the types of patients who were less 

likely to receive 5FU (although some did).  Those assigned to each successive quintile 

were more likely to receive 5FU (although in each case some did not).  

We compared treated and control groups on each of the 22 covariates using a two-

way ANOVA with propensity quintile and treatment group (5FU/no 5FU) as the factors.  

As expected, the two groups were quite similar within quintiles. 

We estimated the effect of treatment on survival separately within each quintile 

(Table 6).  For instance, in quintile 1, the hazard of death for those who received 5FU is 

about 81% of the hazard for those who did not receive 5FU.  Each of the five hazard 

ratios is less than 1, suggesting that 5FU improves survival.  All ratios are significant 

except for quintile 1, which is the stratum least likely to receive 5FU.   
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Next we estimated the treatment effect by an AFT model that included the 

propensity score quintile (to account for the initial imbalance in the measured covariates) 

and age at diagnosis, which was not perfectly balanced even after propensity score 

adjustment.  Our results show that the hazard of death for those who received 5FU is 

about 66% of the hazard for those who did not. 

Although the propensity score adjustment included 22 covariates, which 

presumably captured most of the potential confounding, the possibility still exists that the 

apparent association between treatment and response resulted from some unknown or 

unmeasured covariates that were associated with both treatment and outcome. An 

example of a binary unmeasured confounder in the 5FU study is performance status or 

functional impairment.  Performance status has been linked to survival in cancer patients 

and is likely to be associated with the decision to treat with chemotherapy (i.e., the better 

the status, the more likely a patient is to receive chemotherapy).  Thus it is possible that 

decreased performance status is unequally distributed between the treatments, such that 

its prevalence was higher in the group not treated with 5FU, and that it is associated with 

an increased hazard of death.  This could bias even the propensity-score adjusted 

analysis.  Our methodology allows us to model this in a formal sensitivity analysis.  

We estimated the hazard ratio for 5FU treatment to be 0.66 with a 95% 

confidence interval of (0.60, 0.73).  We assumed in our sensitivity analysis that the 

unmeasured confounder is more prevalent in the group not treated with 5FU and that it is 

associated with decreased survival, which would bias results toward the null.  Important 

parameters in the sensitivity analysis include the prevalence of the unknown confounder 
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in the treated and control groups in addition to the relative hazard of death associated 

with the unmeasured confounder. 

Our analyses (Table 7) show that a binary confounder would need to increase the 

risk of death by at least 50% (hazard of at least 1.5) before it would alter our results.  

Moreover, a confounder with a hazard ratio of 1.5 or greater would have to be 

significantly unbalanced between groups to alter results.  For example, a confounder with 

a hazard of 1.75 would need to be more than 5 times as prevalent in the control group to 

render the treatment effect non-significant.  Thus the beneficial effect of 5FU appears to 

be robust to departures from strong ignorability. 

 

6.  DISCUSSION 

We have demonstrated a methodology for assessing sensitivity of inferences to 

departures from strong ignorability of treatment assignment, within the context of the 

accelerated failure time model for survival.  The adjustments are simple to compute, in 

that they merely require one to fit the AFT model without the confounder, then specify 

the parameters of the confounding process and do a simple linear adjustment.  The range 

of validity of the approximations depends on the model for the confounder, but all are 

valid as long as the fraction of events is small and the effect of the confounder is modest.  

The latter is a less important issue because we are generally more interested in precise 

quantitation of sensitivity to small departures from the strongly ignorable model.  The 

assumption of rare events in the proposed model is not a serious limitation because one of 

the main reasons that observational studies are conducted is precisely because the event 

of interest is rare. Moreover, our simulations suggest that in the case of unmeasured 
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binary confounders, the approximations are adequate even when the fraction of events is 

not small. When the approximation is suspect, one can develop adjustments by 

straightforward simulation approaches.  Although we have applied our method in the 

context of a propensity score analysis, the adjustment formulas apply equally well to an 

AFT model estimated in the context of a matched, stratified or purely model-based 

analysis. 

Our example demonstrates a practical application of the method in a study of 

survival of older colon cancer patients.  Our analysis posited that an underlying binary 

performance status variable, which was not explicitly coded in the dataset, could have 

influenced the decision to administer adjuvant chemotherapy and been predictive of 

outcome.  In other applications, where such a rich array of covariates was not available, 

one might hypothesize that the candidate confounder was some count variable (modeled 

with the Poisson), a symmetric continuous variable (modeled with the normal), or a 

skewed continuous variable (modeled with the gamma).  We have derived adjustment 

formulas for each of these situations. 
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APPENDIX 
 
Unknown Binary Confounder 

Assume that the unknown confounder U is binary with success probability X,ZΠ .

Then  
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where ψ
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Unknown Normal Confounder 

Suppose that, conditional on Z and X, U is normal with mean X,Zµ and unit 

variance.  Then 
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Unknown Poisson Confounder 

Suppose that, conditional on Z and X, U is Poisson with mean x,zκ . We write the 

hazard as 
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As before, if events are rare, then ψα t is small and the formula for the hazard will 

simplify. We also assume that U is conditionally independent of X given Z so that 

ZZ κκ =X, . Under these assumptions, the hazard function is approximately 
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Table 1 
Monte Carlo estimates for the sampling means of β̂ and the coverage probabilities 

for the 95% intervals (two-sided) for ββββ.

β̂ (coverage probability )Censoring γ

Binary   
π0= 0.3, π1= 0.8

Normal 
1,1,0 2

10 === σµµ
Poisson 

20 =κ , 41 =κ
.

Gamma 
20 =η
51 =η ,

5.10 =τ
25.1 =τ

90% 0.25 1.00  0.98 0.99 1.00  
90% 0.50 1.01  0.97 0.97 1.03 
90% 0.75 1.01  0.91 0.97 1.03 
90% 1.00 1.03  0.85 0.96 1.08 
75% 0.25 1.01 0.90 0.96 1.06 
75% 0.50 1.01 0.86 0.92 1.06 
75% 0.75 1.02 0.81 0.89 1.10 
75% 1.00 1.02 0.76 0.88 1.14 
50% 0.25 0.99 0.85 0.85 1.14 
50% 0.50 0.99 0.80 0.81 1.15 
50% 0.75 0.98 0.74 0.79 1.16 
50% 1.00 0.97 0.72 0.73 1.20 
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Table 2 
Normal Confounder. Monte Carlo estimates for the sampling means of β̂ and the 

95% confidence intervals. 1,1,0 210 === σµµ

Censoring γ β̂ 95% CI 

90% 0.25 0.98 (0.86, 1.10) 
90% 0.50 
90% 0.75 
90% 1.00 
75% 0.25 
75% 0.50 
75% 0.75 
75% 1.00 
50% 0.25 
50% 0.50 
50% 0.75 
50% 1.00 

0.97(0.83, 1.11) 
0.91(0.78, 1.04) 
0.85(0.70, 1.00) 
0.90(0.80, 1.01) 
0.86(0.70, 1.02) 
0.81(0.69, 0.93) 
0.76(0.62, 0.90) 
0.85(0.73, 0.97) 
0.80(0.69, 0.91) 
0.74(0.63, 0.85) 
0.72(0.59, 0.85) 
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Table 3 

Poisson Confounder. Monte Carlo estimates for the sampling means of β̂ and the 
95% confidence intervals. Assume 20 =κ and 41 =κ .

Censoring γ β̂ 95% CI 

90% 0.25 0.99 (0.87, 1.11) 
90% 0.50 0.97 (0.84, 1.10) 
90% 0.75 0.97 (0.86, 1.08) 
90% 1.00 0.96 (0.82, 1.10) 
75% 0.25 0.96 (0.80, 1.12) 
75% 0.50 0.92 (0.77, 1.07) 
75% 0.75 0.89 (0.73, 1.05) 
75% 1.00 0.88 (0.73,1.03) 
50% 0.25 0.85 (0.72, 0.98) 
50% 0.50 0.81 (0.68, 0.94) 
50% 0.75 0.79 (0.65, 0.93) 
50% 1.00 0.73 (0.59, 0.87) 
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Table 4 
Gamma Confounder. Monte Carlo estimates for the sampling means of β̂ and the 

95% confidence intervals. Assume 20 =η ,,,, 51 =η , and 210 =τ and 411 =τ .

Censoring γ β̂ 95% CI 

90% 0.25 1.00 (0.88, 1.12) 
90% 0.50 1.03 (0.90, 1.16) 
90% 0.75 1.03 (0.92, 1.14) 
90% 1.00 1.08 (0.94, 1.22) 
75% 0.25 1.06 (0.90, 1.22) 
75% 0.50 1.06 (0.91, 1.21) 
75% 0.75 1.10 (0.94, 1.26) 
75% 1.00 1.14 (0.99, 1.29) 
50% 0.25 1.14 (1.01, 1.27) 
50% 0.50 1.15 (1.02, 1.28) 
50% 0.75 1.16 (1.02, 1.30) 
50% 1.00 1.20 (1.06, 1.34) 
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Table 2 
Comparison of background covariates between treated and untreated groups:

5-FU  
(N=2479) 
mean (sd) 

No 5-FU 
(N=2289) 
mean (sd) 

95% CI for 
Difference in Means

Age at Diagnosis  73.90  (5.10) 78.17  (7.20) (3.88, 4.66)* 
 
Gender (Male) 0.47 (0.50) 0.41 (0.49) (-0.10, -0.04)* 
 
Race     
 White 0.86 (0.34) 0.82 (0.38) (-0.06, -0.02)* 
 Black 0.06 (0.24) 0.08 (0.28) (0.01, 0.04)* 
 Hispanic 0.04 (0.19) 0.03 (0.18) (-0.02, 0.01)  
 Other 0.04 (0.19) 0.06 (0.24) (0.01, 0.04)* 
 
Urban Residence 0.87 (0.33) 0.81 (0.40) (-0.10, -0.05)* 
 
Year of Diagnosis 93.99 (1.43) 93.94 (1.41) (-0.13, 0.04) 
 
Lymph Nodes    
 1-3 nodes 0.66 (0.47) 0.69 (0.46) (0.01, 0.06)* 
 4+ nodes 0.31 (0.45) 0.27 (0.46) (-0.06, -0.01)* 
 unknown  0.03 (0.18) 0.03 (0.18) (-0.01, 0.01) 
 

Deyo-Charlson 
Comorbidity 
(any/none) 

0.33 (0.67) 0.47 (0.86) (0.09, 0.18)* 

* Significant at 0.05 level 
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Table 3  
 Estimates of hazard ratios within quintiles 

Quintile Percentage 
of patients 

treated 

Mean age 
(range) 

Hazard 
Ratio 

95% 
confidence 

interval 
1 11% 87 (73 -101) 0.81 (0.62, 1.05) 
2 38% 80 (67 – 88) 0.55 (0.46, 0.66) 
3 59% 76 (66 – 83) 0.64 (0.54, 0.77) 
4 74% 73 (65 – 79) 0.75 (0.61, 0.92) 
5 83% 69 (65 – 74) 0.71 (0.55, 0.91) 
 

Overall 52% 76 (65 – 103) 0.66 (0.60, 0.73) 
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Table 4  
Assessing the sensitivity of the hazard ratio* to an unmeasured binary confounder: 

 
Prevalence of 
unmeasured 
confounder in 
control group 

Prevalence of 
unmeasured 
confounder in 
5FU group 

Hazard ratio of 
unmeasured 
confounder 

Hazard ratio 
after adjustment 
for unmeasured 
confounder 

95% 
Confidence 
Interval for 
Hazard ratio 

0.9 0.1 3 1.55 (1.41, 1.69) 
0.8 0.1 3 1.44 (1.31, 1.57) 
0.7 0.1 3 1.33 (1.21, 1.45) 
0.6 0.1 3 1.22 (1.11, 1.33) 
0.5 0.1 3 1.11 (1.00, 1.21) 
 
0.9 0.1 2 1.15 (1.05, 1.25) 
0.8 0.1 2 1.08 (0.99, 1.19) 
0.7 0.1 2 1.02 (0.94, 1.12) 
0.6 0.1 2 0.96 (0.88, 1.06) 
0.5 0.1 2 0.90 (0.83, 0.99) 
0.9 0.5 2 0.84 (0.77, 0.92) 
 
0.9 0.1 1.75 1.03 (0.94, 1.13) 
0.9 0.5 1.75 0.81 (0.74, 0.88) 
0.5 0.1 1.75 0.85 (0.77, 0.93) 
 
0.9 0.1 1.5 0.92 (0.84, 1.00) 
0.9 0.5 1.5 0.77 (0.70, 0.84) 
0.5 0.1 1.5 0.79 (0.72, 0.86) 
 
0.9 0.1 1.25 0.79 (0.72, 0.87) 
0.9 0.5 1.25 0.72 (0.66, 0.79) 
0.5 0.1 1.25 0.73 (0.66, 0.80) 
 
0.9 0.1 1.1 0.72 (0.65, 0.78) 
0.9 0.5 1.1 0.69 (0.63, 0.75) 
0.5 0.1 1.1 0.69 (0.63, 0.75) 
* Hazard ratio before adjusting for confounder = 0.66, 95%CI:(0.60, 0.73) 
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