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Group Additive Regression Models for
Genomic Data Analysis

Yihui Luan and Hongzhe Li

Abstract

One important problem in genomic research is to identify genomic features such
as gene expression data or DNA single nucleotide polymorphisms (SNPs) that are
related to clinical phenotypes. Often these genomic data can be naturally divided
into biologically meaningful groups such as genes belonging to the same path-
ways or SNPs within genes. In this paper, we propose group additive regression
models and a group gradient descent boosting procedure for identifying groups of
genomic features that are related to clinical phenotypes. Our simulation results
show that by dividing the variables into appropriate groups, we can obtain better
identification of the group features that are related to the phenotypes. In addition,
the prediction mean square errors are also smaller than the component-wise boost-
ing procedure. We demonstrate the application of the methods to pathway-based
analysis of microarray gene expression data of breast cancer and gene-based ge-
netic association analysis of type 1 diabetes. Results from analysis of two breast
cancer data sets indicate that the pathways of Metalloendopeptidases (MMPs) and
MMP inhibitors, as well as cell proliferation, cell growth and maintenance are im-
portant to breast cancer relapse and survival. Results from analysis of a set of non-
synonymous SNPs on chromosome 6 confirmed a few genes that are associated
with type 1 diabetes.
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Abstract

One important problem in genomic research is to identify genomic features such as gene

expression data or DNA single nucleotide polymorphisms (SNPs) that are related to clinical

phenotypes. Often these genomic data can be naturally divided into biologically meaning-

ful groups such as genes belonging to the same pathways or SNPs within genes. In this

paper, we propose group additive regression models and a group gradient descent boosting

procedure for identifying groups of genomic features that are related to clinical phenotypes.

Our simulation results show that by dividing the variables into appropriate groups, we can

obtain better identification of the group features that are related to the phenotypes. In ad-

dition, the prediction mean square errors are also smaller than the component-wise boosting

procedure. We demonstrate the application of the methods to pathway-based analysis of

microarray gene expression data of breast cancer and gene-based genetic association anal-

ysis of type 1 diabetes. Results from analysis of two breast cancer data sets indicate that

the pathways of Metalloendopeptidases (MMPs) and MMP inhibitors, as well as cell prolif-

eration, cell growth and maintenance are important to breast cancer relapse and survival.

Results from analysis of a set of nonsynonymous SNPs on chromosome 6 confirmed a few

genes that are associated with type 1 diabetes.

Keywords: Linear models, Accelerated failure time models, Variable importance, Microar-

ray, Single nucleotide polymorphisms, Boosting.

1 Introduction

New high-throughput technologies are generating various high-dimensional genomic data for

investigating complex biological systems and complex phenotypes. These data also provide an

opportunity for identifying pathways and genes that are related to various clinical phenotypes.

One great challenge in studying the relationship between genomic data and phenotypes is to deal
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with the high-dimensionality of such data. The “curse of dimensionality” makes most traditional

statistical methods unsuitable or inefficient for analyzing such genomic data. However, it is

important to note that although the genomic data are high-dimensional, they are intrinsically

low dimensional, implying that we should expect a small number of genes that are related to

the phenotype of interest. In addition, many high-dimensional genomic data can be naturally

grouped into small sets based on current biological knowledge. For example, when analyzing

microarray gene expression data, one can group genes into functionally similar sets as in Gene

Ontology (GO) (2000) or into known biological pathways such as the KEGG pathways (Kanehisa

and Goto, 2002). The gene expression levels of these genes can be used to characterize the activity

levels of the pathways, which may in turn affect the phenotypes. When one analyzes large-scale

SNP data, one can group the SNPs within the intragenic and regulatory regions of a given gene

into a group and perform gene-based association analysis (Neale and Sham, 2004). The SNPs

within a gene can be used to characterize the functionality of this gene. The focus of this paper

is to develop group additive regression (GAR) models for identifying these groups of the genomic

variables related to complex phenotypes.

Methods from machine learning or statistical learning literature have gained great popularity

in analysis of genomic data, especially microarray gene expression data. Among these, boosting

(Freund, 1995; Freund and Schapire, 1996) and random forest (Breiman, 2001) are the two most

successful and practical methods and have been demonstrated to perform well in building predic-

tive models using high-dimensional genomic data (Dettling and Bühlmann, 2003; Li and Luan,

2005; Wei and Li, 2006). Friedman, Hastie and Tibshirani (2000) made an insightful connec-

tion between boosting and additive logistic regression modeling and showed that the boosting

procedure is an optimization method for finding a classifier minimizing a particular exponen-

tial loss function in the framework of additive modeling. Friedman (2001) proposed a general

gradient descent boosting (GDBoosting) framework which can be applied to various regression
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models. Focusing on regression and L2 loss functions, Bühlmann and Yu (2003) proposed a

novel component-wise boosting procedure based on cubic smoothing splines or least squares

and demonstrated its effectiveness in the presence of high-dimensional predictors. Recently,

Bühlmann (2006) proposed a component-wise L2 boosting procedure in a high-dimensional lin-

ear model setup and proved a consistent result on prediction; allowing the predictors to grow

exponentially faster than the sample sizes under the sparsity conditions.

In order to take into account and to utilize the group structure of the genomic data and to

utilize prior biological knowledge, Wei and Li (2006) proposed a nonparametric pathway-based

regression model and a modification of the GDBoosting procedure in order to identify pathways

that are related to clinical phenotypes, where they used regression trees (Breiman and others,

1984) as base learners. Although trees are very flexible in modeling potential interactions among

the variables, the resulting model from GDBoosting is a linear combination of many small trees,

which can be difficult to interpret in terms of variable importance. In this paper, we propose a

group gradient descent boosting (G-GDBoosting) procedure for identifying groups of variables

that are related to the phenotypes in the framework of GAR models using least squares or

regularized least squares as base learners. Such a procedure results in GAR models with explicit

expressions of the estimators and a natural way of defining the importance of a group of variables

to the phenotypes. Such importance scores can then be applied to rank the importance of the

groups of variables in a regression modeling framework.

The rest of the paper is organized as follows. We first introduce the GAR models. We then

present the G-GDBoosting procedure for fitting the GAR models. We present simulation studies

to evaluate the methods and to compare the results with the component-wise boosting procedure.

We also present results from analysis of several real genomic data sets. Finally, we present a

brief discussion of the results and methods.

3
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2 Group Additive Regression Models

Suppose that there is a total of p genomic variables that can be divided into K groups whose

activities might be related to the phenotype of interest. We allow some variables to belong

to multiple groups. Here the groups can be different pathways or functional sets when the

variables are the gene expression levels. The groups can also be genes where SNPs with genes

are the respective variables. Let the vector x = (x1, x2, . . . , xp)
T represent all the p variables,

where the superscript T represents the transpose. Let the kth group have pk variables, denoted

by {xk1, xk2, . . . , xkpk
}, where {k1, k2, . . . , kpk} ⊂ {1, 2, . . . , p}. Note that p ≤ ∑K

k=1 pk. Let

x(k) = (xk1, xk2, . . . , xkpk
)T , k = 1, . . . , K be the vector of the genomic data and y represent the

phenotype.

We assume that the phenotype, y, is related to the genomic data x by through the following

GAR model,

y =
K∑

k=1

Fk(x(k)) + ε (1)

where ε is the noise term, Fk(x(k)) is the group effect as determined by the genomic data x(k) of

the kth group. This model assumes additive effects of different groups on the phenotype y. One

simple GAR model is to assume that Fk(x(k)) is modeled as a linear model,

Fk(x(k)) =
K∑

k=1

βT
k x(k) (2)

where βk is a vector of coefficients corresponding to the genomic data in the group k. Alterna-

tively, in order to model the interactions of genomic data within a group, we can assume the

following model for Fk(x(k)),

Fk(x(k)) =

pk∑

l=1

βklxkl +
∑

l 6=l′
βkll′xklxkl′ (3)

where βkll′ measures the interaction effect between two genomic features within the kth group.

In analysis of real data sets, when K is large, we should expect sparsity of the models, i.e., we

4
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should expect that many of Fk(x(k)) should be zero. The question is how to identify the groups

with Fk(x(k)) 6= 0.

3 A Group Gradient Descent Boosting Procedure with

Least Square as Weak Learners

Suppose that we have n i.i.d. samples. Let yi represent the phenotype, x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
p )T

represent the genomic measurements for the ith individual and let x
(i)
(k) = (x

(i)
k·1, x

(i)
k·2, . . . , x

(i)
k·pk

)T

be the genomic measurements in the kth group for the ith individual. The sample data set

{yi, x
(i)}n

i=1 follows the GAR model,

yi = F (x(i)) + εi, i = 1, . . . , n,

where {εi, i = 1, . . . , n} are noises and F (x(i)) =
∑K

k=1 βT
k x

(i)
(k). We first introduce the following

notation:

XT
(k) =

(
x

(1)
(k), . . . , x

(n)
(k)

)
, a matrix of pk by n, k = 1, . . . , K,

X =
(
X(1), . . . , X(K)

)
, a matrix of n by

K∑

k=1

pk,

Y = (y1, . . . , yn)T , an n−dimensional vector,

ε = (ε1, . . . , εn)T , an n−dimensional vector,

H(k) = X(k)

(
XT

(k)X(k)

)−1
XT

(k), a square matrix of order n, k = 1, . . . , K,

B(k) =
(
XT

(k)X(k)

)−1
XT

(k), a matrix of pk by n, k = 1, . . . , K.

It is easy to see that H(k) and B(k) are projection matrices and “hat” matrices determined by the

variables in the kth group. Based on these notations, we present the following group gradient

descent boosting (G-GDBoosting) algorithm:

5
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A Group Gradient Descent Boosting Algorithm

Initialization. Set m ← 0, and β̂
(m)
k = β̂

(0)
k = 0, k = 1, . . . , K. Consequently,

F̂ (m)(x) = F̂ (0)(x) =
K∑

k=1

(
β̂

(0)
k

)T

x(k) = 0,

Ŷ (m) = Ŷ (0) =
(
F̂ (0)(x(1)), . . . , F̂ (0)(x(n))

)T

= 0,

Û (m) = Û (0) = Y − Ŷ (0) = Y.

Step 1. Select an index, im ∈ {1, . . . , K}, such that the imth group mostly explains the current

residual Û (m) by linear regression. More specifically, im is chosen by the following equation,

im = argmin1≤k≤K‖Û (m) −H(k)Û
(m)‖2,

where ‖ · ‖ represents the conventional Euclidean L2 norm.

Step 2. Update the current estimates of coefficient vectors {β̂(m)
1 , . . . , β̂

(m)
K },

β̂
(m+1)
k = β̂

(m)
k , k 6= im, β̂

(m+1)
im

= β̂
(m)
im

+ ρBimÛ (m),

where ρ is the learning rate.

Step 3. Continue the updates,

F̂ (m+1)(x) = F̂ (m)(x) + ρBimÛ (m)x(im) =
K∑

k=1

(
β̂

(m+1)
k

)T

x(k),

Ŷ (m+1) =
(
F̂ (m+1)(x(1)), . . . , F̂ (m+1)(x(n))

)T

,

Û (m+1) = Y − Ŷ (m+1).

Step 4. Set m ← m + 1, go to Step 1 unless m + 1 = M . The final estimate is

F̂ (M)(x) =
K∑

k=1

(
β̂

(M)
k

)T

x(k).

This algorithm is a special case of the general gradient descent boosting procedure of Friedman

(2001). The key difference is in Step 1, where instead of all the variables being used to build

6
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the base learners as in Friedman (2001), we build the base learners using only the variables

within the groups and select the group that fits the residuals the best. At each boosting step, at

most one new group is added to the model; the algorithm can, therefore, be used to select the

relevant groups. In addition, if all the groups include only one variable, the algorithm becomes

the component-wise boosting algorithm proposed in Bühlmann (2006). Since the base learners

are linear, it can be easily verified that the following recursive formula holds for Ŷ (m) and β̂
(m)
k

at the mth boosting step:

Ŷ (m) = ÂmY,

β̂
(m)
k = D̂

(m)
k Y,

for k = 1, . . . , K, m = 0, . . . , M , where {Âm, D̂
(m)
k , k = 1, . . . , K}M

m=0 are given by the following

recursive formula,

Â0 = 0, Âm = I − (I − ρHi0) · · ·
(
I − ρHim−1

)
, m = 1, . . . , M,

D̂
(0)
k = 0, k = 1, . . . , K,

D̂
(m)
k = D̂

(m−1)
k , k 6= im−1, k = 1, . . . , K,

D̂
(m)
k = D̂

(m−1)
k + ρBim−1

(
I − Âm−1

)
, k = im−1, m = 1, . . . , M,

where I is the identity matrix of order n. Based on this recursive formula, for a chosen indices

{i0, i1, . . . , im−1}, we have the following expression for the hat matrix,

D̂
(m)
k =

∑

{l: 0≤l≤m−1,il=k}
ρBk

(
I − Âl

)
, k = 1, . . . , K, m = 1, . . . ,M.

This hat matrix is used to define the effective degrees of freedom of the associated boosting

procedure used in our AIC definition (see Section 3.2).
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3.1 Group gradient descent boosting with penalized least squares as

base learners

The G-GDBoosting procedure with least squares as weak learners involves the inverse of matrix
(
XT

(k)X(k)

)
. If the number of variables in some groups is larger than the sample size, or the

variables within one group are highly correlated,
(
XT

(k)X(k)

)
can be singular or near singular, so

the previous algorithm cannot be applied directly. To mediate this problem, we propose to apply

a ridge regression or penalized least square regression in place of the ordinary least regressions

as base learners in the proposed G-GDBoosting procedure. More specifically, we re-define the

matrices H(k) and B(k) used in the G-GDBoosting procedure as the following:

H
(λ)
(k) = X(k)

(
XT

(k)X(k) + λI
)−1

XT
(k), a square matrix of order n, k = 1, . . . , K,

B
(λ)
(k) =

(
XT

(k)X(k) + λI
)−1

XT
(k), a matrix of pk by n, k = 1, . . . , K,

where I is an identity matrix and λ is a tuning parameter for L2 penalized estimation. The

G-GDboosting algorithm remains the same as that presented in a previous section with H(k) and

B(k) being replaced by H
(λ)
(k) and B

(λ)
(k) .

3.2 Criteria for stopping the boosting iterations

Boosting needs to stop at a suitable number of iterations to avoid overfitting. One approach

is to use cross-validation to find the best step number m that yields the best prediction result.

Alternatively, the trace of the boosting hat matrix Âm can be interpreted as the degree of freedom

of the resulting estimator and a corrected AIC (Hurvich et al., 1998) score function of m can be

defined as

AIC(m) = log(σ̂2) +
1 + trace(Âm)/n

1− (trace(Âm) + 2)/n
,

σ̂2 = n−1‖Y − Ŷ (m)‖2 = n−1‖Û (m)‖2.

8
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Given a large positive integer M0, an estimate of the stopping iteration step number can be

chosen as

M̂ = argmin{1≤m≤M0}AIC(m).

In the case when the penalized least squares are used as base learners, the AIC score function

depends on two arguments: m and λ in L2 regularization. Consequently, the estimate of the

best stopping iteration step becomes

M̂ = argmin{1≤m≤M0, 0≤λ}AIC(m,λ).

3.3 Selection of relevant groups

As noted in a previous section, at each of the boosting steps, the G-GDBoosting algorithm either

updates the groups selected or adds a new group to the model. The groups that are selected by

the algorithm should in general be relevant or important to the phenotypes. We present in the

following a quantitative measurement of the importance of the selected groups to the phenotype.

Based on the simple closed form estimates, β̂
(M)
k = D̂

(M)
k Y , the covariance of the estimates

may be approximated as

cov(β̂
(M)
k ) ≈ σ̂2D̂

(M)
k (D̂

(M)
k )T ,

where σ̂2 is an estimate of the error variance. Based on this approximate covariance estimate, a

sensible way of defining the importance of the group k is by the following importance score for

the kth group,

τ̂k =
1

pk

σ̂−2
(
β̂

(M)
k

)T (
D̂

(M)
k (D̂

(M)
k )T

)−1

β̂
(M)
k , (4)

where a large value of τ̂k would suggest that βk 6= 0, or the kth group is associated with the

phenotype. If the matrix
(
D̂

(M)
k (D̂

(M)
k )T

)
is singular, we modify the definition of the importance

9
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score as the following: we first write

(
D̂

(M)
k (D̂

(M)
k )T

)
= Udiag{λ1, . . . , λpk

}UT ,

where λ1 ≥ λ2 . . . ≥ λpk
are eigenvalues of

(
D̂

(M)
k (D̂

(M)
k )T

)
and U is an orthogonal matrix. In

the singular case, assume the rank of
(
D̂

(M)
k (D̂

(M)
k )T

)
is l(l < pk), then we use the following

matrix

Udiag

{
1

λ1

, . . . ,
1

λl

, 0, . . . , 0

}
UT ,

to replace
(
D̂

(M)
k (D̂

(M)
k )T

)−1

in the formula (4).

4 Group Additive Accelerated Failure Time Models

We now consider the case when there is right-censoring on some of the observations yi. Suppose

that we have a random censoring time c, which is independent of the survival time y and the

covariates x. Let c1, · · · , cn be i.i.d. realizations of c. What is observed is an event-time ti =

min(yi, ci) and a censoring indicator δi = I{yi ≤ ci}, as well as the associated covariate xi.

The observed data are therefore {(ti, δi, xi) : i = 1, · · · , n}. The general accelerated failure time

(AFT) model (Wei, 1992) can be written as

g(ti) = F (xi) + εi, i = 1, · · · , n

where g(·) is the known transformation function (e.g., log transformation), and F (xi) is defined

as in equation (2) or (3). To estimate the function F (xi), one can define a weighted loss function

by the inverse probability of censoring (Robins and Rotnitzky, 1992; van der Laan and Robins,

2002) as

l(F ) =
n∑

i=1

[
(g(ti)− F (xi))

2 δi

Ŝ(ti)

]
=

∑

{1≤i≤n, δi=1}

[
(g(ti)− F (xi))

2 1

Ŝ(ti)

]
, (5)

10
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where Ŝ(·) is the Kaplan-Meier estimate of the survival function for the censoring variable c.

More specifically, if the different elements of set {ti : 1 ≤ i ≤ n, δi = 0} are ordered as

t(1) < t(2) < . . . , < t(q),

then for each u ≥ 0, Ŝ(u) is defined by

Ŝ(u) =
∏

{k: t(k)≤u}

(
1− dk

nk

)
,

where dk is the number of observed censoring at time t(k), or the cardinality of set {i : 1 ≤

i ≤ n, ti = t(k), δi = 0}, nk is the number of individuals at risk of censoring at time t(k), or the

cardinality of set {i : 1 ≤ i ≤ n, ti ≥ t(k)}; when the set {k : t(k) ≤ u} is empty, define Ŝ(u) = 1.

Based on this weighted loss function (5), we can simply modify the previous algorithm by

replacing Û
(m)
i with

Û
(m)
i = −∂l(F (x))

∂F (x)
|F (x)=Fm(xi),

and the least square fit of Xk to Û (m) with a weighted least square fit. In addition, in order to

obtain the closed form estimate of βk and the corrected AIC, we need to replace H(k) with

H(k) = X(k)((WX(k))
T (WX(k)))

−1(WX(k))
T W,

where W is the n × n diagonal matrix with diagonal elements Wii =
√

wi, i = 1, · · · , n and

wi = δi/Ŝ(ti).

5 Simulation Studies

In this section, we present simulation studies to demonstrate the effectiveness of the proposed

G-GDBoosting procedure for fitting the GAR models. In all the examples, the learning rate

is fixed at ρ = 0.05. In addition, we also compare the results with those obtained using the

component-wise L2 boosting of Bühlmann (2006).

11
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5.1 Description of the models for simulating the data

For all the following simulations, we simulate the x(i) from a uniform distribution [−0.5, 0.5], and

the error εi from a normal distribution N(0, σ2). We consider both low noise variance σ2 = 1 and

high noise variance σ2 = 4 and repeat all the simulations 200 times. We consider the following

four models with different degrees of complexity.

Model 1: For the first model, we assume that there is a total of 25 groups of genes, each including

four genes. We assume that the function in model (1) is generated based on the following GAR

model,

F (x) =
25∑

k=1

αT
k x(k), x(k) = (x4(k−1)+1, . . . , x4k)

T ∈ R4, k = 1, . . . , 25,

where {αk, k = 1, . . . , 25} have the following values

(α1, α2, α3) =




1 −0.5 0.8

1.2 1.3 −1.4

−2 1.5 −1.6

3 2.6 2.7




, αk = 0, k = 4, . . . , 25.

This model implies that only the first three groups are related to the outcome y.

Model 2: The second model is similar to Model 1, except that each group has 10 instead of

only 4 genes, i.e., x = (x1, . . . , x250)
T ∈ R250, and we assume

F (x) =
25∑

k=1

βT
k x(k), x(k) = (x10(k−1)+1, . . . , x10k)

T ∈ R10, k = 1, . . . , 25,

12
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where {βk, k = 1, . . . , 25} have the following values,

(β1, β2, β3) =




α1 α2 α3

0 0 0

...
...

...

0 0 0




, βk = 0, k = 4, . . . , 25.

Again, only the first three pathways are relevant. Different from Model 1, for the first three

groups, we assume that only 4 out of 10 genes are relevant to the outcome y.

Model 3: This model mimics the phenotype heterogeneity, where we assume that half of the

samples are generated from the following GAR model

F (x) = βT
1 x(1) + βT

2 x(2) + βT
3 x(3)

and another half of the samples are generated from the following GAR model,

F (x) = βT
1 x(4) + βT

2 x(5) + βT
3 x(6)

where {βk, k = 1, 2, 3} and {x(k), k = 1, . . . , 25} are the same as in Model 2. In this model, six

groups are relevant to the phenotype y.

Model 4: For model 4, we generate binary data y ∈ {−1, 1} from the following model,

log

(
P (y = 1|x)

P (y = −1|x)

)
= 0.5

10∑
j=1

xj

(
1 +

6∑

k=1

(−1)kx(k)

)

and assume that x = (x1, . . . , x100)
T ∈ R100. In our analysis, we divide the variables into 25

groups, each including four variables, {x(k−1)4+1, · · · , x(k−1)4+4} for the kth group. Different from

the previous three models, Model 4 does not have a simple linear form.

13
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5.2 Identification of the relevant groups

In the following simulations, a sample size of 100 was used for Model 1 and Model 2, 200 was

used for Model 3 and 300 was used for Model 4. Different sample sizes were used due to varying

complexity of the four models. Figure 1 shows the boxplots of the important scores based on the

G-GDBoosting procedure for each of the gene groups based on 200 replications for high noise

variance with σ2 = 4 (similar plots are observed for low noise cases with σ2 = 1). For each of

the four models, it is clear that the relevant gene groups have higher importance scores than

irrelevant gene groups. For Model 1, it is clear that the first three groups have much higher

importance scores than the others (see upper left plot). In fact, in the low noise case, in all

the 200 replications, the first three groups always have the highest importance scores. When

noise variance increases to σ2 = 4, the first three groups are simultaneously selected as the top

three groups in 82% of the replications. Similarly, for Model 2, the first three groups have much

higher importance scores than the others in both low and high noise cases (see upper right plot

of Figure 1). If the top three groups with the highest importance scores are selected, at least

2 and 3 out of the first three groups are simultaneously selected with probabilities of 100% and

99.5% in the low noise situation and 92.5% and 47.5% in the high noise case.

For Model 3, there are 6 gene groups or 24 genes that are related to the response. The bottom

left plot of Figure 1 shows that the first 6 groups have higher importance scores than the other

19 irrelevant groups. If the top six groups with the largest importance scores are selected, at

least 4, 5 and 6 groups out of the first 6 are simultaneously selected with probabilities of 94%,

67% and 9% in the low noise case and 53%, 16% and 2% in the high noise situation.

For Model 4, we generated 300 samples and repeated simulations 200 times. The lower right

plot of Figure 1 clearly shows that the first three groups have higher importance scores than the

others. Group 3 has smaller importance scores due to the fact that there are only two genes in

this group that are related to the outcome. If the top three groups with the highest importance
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scores are chosen, the probabilities that 1, 2 and 3 relevant groups are simultaneously selected

are 85%, 37.5% and 3%, respectively.

As a comparison, we also examined the behavior of the importance scores when the relevant

groups are not included in the analysis. We report here the results for models with noise variance

σ2 = 4; however, similar results are observed for σ2 = 1. Figure 2 shows the box plots of the

group importance scores over 200 simulations for the four different simulated models considered

when the gene groups in the analysis did not include the relevant groups. Clearly, no groups have

shown higher scores than others, indicating that no groups are more important to the phenotypes

than the others. This indicates that the importance scores can indeed be used for measuring the

importance of the groups to the phenotypes.

5.3 Comparison to component-wise boosting

As a comparison, we present the variable importance scores based on the component-wise gradient

descent boosting procedure of Bühlmann (2006) in Figure 3. This procedure is a special case of

the G-GDBoosting procedure where each group includes only one variable. Comparing to Figure

1, we observe that signals as measured by the variable importance scores are not as clear as those

obtained for groups of variables using the proposed G-GDBoosting procedure. More specifically,

for Model 1, if the top 12 genes with the largest importance scores are selected, the probability

that at least 6, 8, 10 and 12 of the 12 relevant genes are selected among the top 12 genes are

99.5%, 87.5%, 33% and 0% respectively for the low noise variance models and 72.5%, 13.5%,

0% and 0% respectively for the high noise variances. For Model 2, if the top 12 genes with the

largest importance scores are selected, the probability that at least 6, 8, 10 and 12 of the 12

relevant genes are simultaneously selected are 96%, 61%, 4% and 0% respectively in low noise

variance models and become 28%, 2%, 0% and 0% respectively in high noise variance models.

For Model 3, if the top 24 genes with the largest importance scores are selected, the probabilities

15

http://biostats.bepress.com/upennbiostat/art12



that at least 10, 12 and 16 out of the 24 relevant genes are simultaneously selected are 73%, 33%

and 0% respectively in low noise cases, but decrease to 7%, 3% and 0% respectively in high noise

case. Finally, for Model 4, if the top 10 genes with the largest importance scores are selected, the

probabilities that 4, 6 and 8 of the 10 relevant genes are simultaneously selected are 26%, 2% and

0% respectively for high noise variance models. These numbers, when compared with those based

on the G-GDBoosting method, clearly indicate that the component-wise boosting method does

not perform as well in selecting relevant variables. However, the chance of selecting the relevant

groups of genes is higher using the proposed G-GDBoosting procedure, further demonstrating

the advantage of using the group information when selecting the relevant groups of variables.

5.4 Prediction errors

In order to investigate the prediction performance of the G-GDBoosting procedure and to com-

pare the results with the component-wise boosting, for each model, we generated two sets of

training samples of the same sample size as in the previous section, one for low noise variance

and one for high noise variance. We then generated 500 new samples as the testing sets for

Models 1 and 2 and 1000 testing samples for Model 3. Let F̂ (x) be the estimated function in

the GAR model (1) based on the training set; we then computed the mean square error (MSE)

as 1
m

∑m
i=1 |F (x(i)) − F̂ (x(i))|2, where {yi, x

(i)}m
i=1 are the m testing samples. Table 1 presents

the MSEs for the simulated Models 1-3 and two noise variances using both component-wise and

group-wise boosting procedures. We observe that the G-GDBoosting procedure results in smaller

mean MSEs and also smaller variances of the MSEs, further indicating that the G-GDBoosting

method indeed provides better prediction than the component-wise GDBoosting.
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6 Applications to Real Data Sets

In this section, we present applications of the proposed methods to three real data sets, including

two breast cancer microarray gene expression data sets and one type 1 diabetes SNP data set.

6.1 Application to two breast cancer microarray gene expression data

sets

Miller et al. (2005) reported a gene expression profiling study of 251 primary breast cancer

tissues resected in Uppsala County, Sweden from January 1, 1987 to December 31, 1989, using

Affymetrix Chip HG-133A and HG-133B (GEO Accession No. GSE3494). The authors identified

an expression signature for p53 that can be used for predicting the mutation status, transcrip-

tional effects, and patient survival. Among these patients, 236 of them had follow-up information

in terms of time and event of disease-specific survival. The same 245 genes in 33 cancer-related

sub-pathways used in the previous example (see Table 2 for the pathways and the number of

genes in each pathway) were used in our analysis of this data set.

We applied the proposed group gradient descent boosting procedure with L2 penalized least

squares as weak learners for the AFT model and identified that the pathways related to Metal-

loendopeptidases (MMPs) and MMP inhibitors, as well as regulation of cell cycle, cell growth

and maintenance are important to breast cancer-specific survival. In fact, these three pathways

were the only pathways selected during the boosting procedure.

We also applied the method to another breast cancer gene expression data set as reported

in Sotiriou et al. (2006) (GEO Accession No. GSE2990), including gene expression data from

189 invasive breast carcinomas. Among these 189 patients, 88 of them are from the data set

of Miller et al. (2005), and 101 are patients from the John Radcliffe Hospital (Oxford, UK).

Treating the relapse-free survival time as the outcome in the AFT model, the G-GDBoosting
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procedure also identified the MMP pathway and the cell growth and maintenance pathway as

the two most important pathways related to breast cancer relapse. These two pathways were the

only pathways that were selected during the boosting procedure.

In summary, both data sets identified pathways related to MMPs and MMP inhibitors as

well as cell growth and maintenance as important pathways that are related to cancer-specific

survival. Miller’s data also suggest that the pathway related to cell cycle regulation may also

be related to breast cancer-specific survival. These pathways were also identified by Wei and

Li (2006) using a regression-tree-based boosting procedure. Involvement of these pathways in

breast cancer progression has been reported in the literature. The group of proteins of MMPs are

enzymes capable of degrading extracellular factors that surround a cell’s environment. MMPs can

directly cleave the matrix molecules that cells reside on, process growth factors to an active form,

and mediate cleavage of cell-bound proteins that are exposed on the outside of the cell. Certain

normal physiological processes require the action of these proteinases; however, dysregulation of

MMPs is often seen in many diseases, including breast cancer. In breast cancer and other cancers,

MMP dysregulation enhances tumor blood supply and their activity is necessary for many steps

involved in metastatic spread (Scorilas et al., 2001; Nakopoulou et al., 2003; Pellikainen et al.,

2004).

6.2 Application to type 1 diabetes SNP data set

We also applied the G-GDBoosting procedure to a type 1 diabetes data set reported by Clayton

et al. (2005), where they analyzed 6322 nonsynonymous SNPs (nsSNPs) in 816 cases of type

1 diabetes and 877 population-based controls from Great Britain. The nsSNPs are those SNPs

leading to an amino acid change in protein product, some are deleterious and some are neutral.

Our analysis focused on the nsSNPs on chromosome 6, since there are several known type 1

diabetes-related genes and loci. On chromosome 6, we have 644 nsSNPs that belong to 286
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genes. We used the additive coding for the genotypes. Figure 4 presents the relative importance

scores (normalized to the maximum of the scores) of the genes along chromosome 6. We found

that several genes in the HLA region are important to the development of type 1 diabetes, in

which the TAP2 (transport 2, ATP binding cassette) has the highest relative importance scores.

Other known T1 diabetes -related genes such as MICA, TNF and BAT2 also have relatively higher

importance scores. In addition, one gene close to the IDDM15 region also shows relatively high

importance scores. These results indicate that the G-boosting method can indeed identify genes

known to be associated with the risk of type 1 diabetes.

7 Conclusions and Discussion

In this paper we have proposed group additive regression models and a group gradient descent

boosting algorithm for identifying groups of variables that are related to the phenotypes of

interest. As demonstrated in our applications to analysis of microarray gene expression data,

these methods can be used for identifying groups of genes such as pathways that might be

related to the phenotypes. As the large body of biological information on various aspects of

the biological systems and pathways is available through databases or metadata, it is important

to utilize the information in modeling genomic data, especially in identifying genes and their

interactions and pathways that might be related to the phenotypes. The models proposed have

a natural biological interpretation as pathway activities when gene expression data are used or

genetic effects when SNPs data are used and can be applied to both continuous phenotypes and

censored survival phenotypes. Different from the traditional regression analysis, the proposed

methods naturally incorporate biological pathways or gene structures information. In addition,

our methods consider multiple groups simultaneously. Our simulation studies indicate that when

the variables can be appropriately grouped, our G-GDBoosting procedure results in smaller

predictive mean square errors than the component-wise gradient descent boosting.
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It is worth comparing our methods with some recent work on utilizing the group structures of

the data. An approach close to the proposed work is the average gene expressions for regression

method by Park et al. (2006) where they proposed a two-step procedure that combines hierarchi-

cal clustering and Lasso. By averaging the genes within the clusters obtained from hierarchical

clustering, they define super-genes and use them to fit regression models. This is essentially to

treat the clusters of genes as groups and use simple averages as weak learners. However, instead

of using boosting to select the groups, they use Lasso (Tibshirani, 1995). Yuan and Lin (2006)

recently proposed group-Lars and group-Lasso methods in order to select features as a group

among the predefined sets of variables rather than selecting a single term at a time as in the

original Lars (Efron et al., 2004) and Lasso methods (Tibshirani, 1995). Our G-GDBoosting

procedure can be regarded as an alternative way of selecting groups of variables. Besides the

applications presented in this paper, the G-GDBoosting procedure can also be applied to other

problems as presented in Yuan and Lin (2006).

There are several issues that deserve further study. First, it is important to study the sensitiv-

ity of the proposed methods to the misspecification of the groups information and misspecification

of the model. The first type of misspecification is that the genes included in the groups do not

really belong to the groups such as the pathways. However, this should not create a big problem

since these wrongly included genes should not be selected by the proposed methods. Another

type of misspecification is that the related genes are not included in the respected groups. The

third type of misspecification is that the relevant groups are not included in the model. However,

it should be noted that all types of regression analysis have such potential misspecification of

the models. Second, the ensemble methods have been proposed mainly for predictive purposes;

however, as demonstrated by Breiman (2001) and Friedman (2001) and also by our simulations,

these methods can also be used for identifying groups of variables that are relevant to the phe-

notypes. Although the relative importance scores used in this paper seem to perform well for
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identifying relevant variables, much future research needs to be done to rigorously investigate

the problem of defining variable importance in the setting of ensemble methods. For example,

important future research should assess the statistical significance of such importance scores, by

using bootstrap or permutations.

In summary, we have proposed a group additive regression framework for identifying pathways

and genes that are related to clinical phenotypes. The methods can be applied to both microarray

gene expression data in the context of pathway-based or gene set-based analysis and SNP data in

the context of gene-based association studies. The methods presented in this paper are especially

attractive in analysis of genome-wide association studies, where we can group the SNPs into

the respective genes and genes into the respective pathways. We are currently exploring such

applications.
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Table 1: Simulation results to compare the predictive performance as measured by the prediction

mean square errors (MSEs), mean, median and variance of MSEs based on 200 testing data sets

are presented for both component-wise gradient descent boosting (C-DGB) and group gradient

descent boosting (G-DGB).

Model 1 Model 2 Model 3

C-GDB G-GDB C-GDB G-GDB C-GDB G-GDB

σ2 = 1 Mean .85 .33 1.34 .82 2.55 2.40

Median .42 .18 .63 .35 1.19 1.12

Variance 1.14 .19 3.34 1.35 13.24 12.02

σ2 = 4 Mean 1.60 .57 5.91 2.23 3.97 2.84

Median .72 .25 2.87 .99 1.70 1.26

Variance 4.49 .58 65.42 8.75 34.92 17.60
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Table 2: Pathways considered in breast cancer data analysis, including the numbers of genes in

each pathway and a description of the pathways. The last set includes 188 genes that do not

belong to a particular pathway.

Pathway ID # of Genes Description

1 18 Anti-apoptosis

2 4 VHLCaspase activation

3 3 DNA damage response

4 24 Factors involved in other aspects of apoptosis

5 8 Induction of apoptosis

6 10 Induction of apoptosis by signals

7 6 Regulation of apoptosis

8 3 Apoptosis others

9 13 Cell cycle arrest

10 4 Cell cycle checkpoint

11 29 Factors involved in other aspect of cell cycle

12 81 Regulation of cell cycle

13 6 Cell differentiation/ cell fate determination

14 63 Cell growth and/or maintenance

15 41 Cell proliferation

16 11 Growth factors

17 46 Regulation of cell proliferation, differentiation, growth and volume

18 10 Cell migration and motility

19 2 Cell-cell adhesion

20 6 Cell-matrix adhesion

21 10 Metalloendopeptidases (MMPs) and MMP inhibitors

22 13 Cell surface receptor-linked signal transduction

23 9 Frizzled and frizzled-2 Signaling Pathways

24 17 G-protein coupled receptor protein signaling pathway

25 2 Insulin receptor signaling pathway

26 4 integrin-mediated signaling pathway

27 29 Intracellular signaling cascade

28 6 JAK-STAT cascade

29 2 Notch signaling pathway

30 3 RAS protein signal transduction

31 4 Rho protein signal transduction

32 13 Small GTPase mediated signal transduction

33 16 Wnt receptor signaling pathway

34 188 Other cancer-related genes
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Figure 1: Simulation results for models 1-4 with σ2 = 4: the boxplots of the variable importance

scores over 200 replications for each pathway based on the G-GDBoosting procedure. Top panel:

Models 1 and 2; bottom panel: Models 3 and 4.
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Figure 2: Simulation results for Models 1-4 with σ2 = 4: the boxplots of the variable importance

scores over 200 replications for each pathway based on the G-GDBoosting procedure when the

relevant pathways are not included in the analysis. Top panel: Models 1 and 2; bottom panel:

Models 3 and 4.
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Figure 3: Simulation results for Models 1-4 with σ2 = 4: the boxplots of the variable impor-

tance scores over 200 replications for each variable based on the component-wise gradient descent

boosting procedure. Top panels: Models 1 and 2; bottom panel: Models 3 and 4.
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Figure 4: Relative importance scores for genes on chromosome 6 for type 1 diabetes. IDDM1,

IDDM8 and DDM15 are the regions that were shown to be linked to type 1 diabetes by linkage

analysis.
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