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Recovery of the Baseline Incidence Density in
Censored Time-to-Event Analysis

Mikel Aickin

Abstract

Abstract Time-to-event analyses are often concerned with the effects of explana-
tory factors on the underlying incidence density, but since there is no intrinsic
interest in the form of the incidence density itself, a proportional hazards model
is used. When part of the purpose of the analysis is to use actual cumulative in-
cidence for simulation, or for providing informative visual displays of the results,
an estimate of the baseline incidence density is required. The usual method for
estimating the baseline hazards in Cox’s proportional hazards analysis yields val-
ues that are of little use, and furthermore no standard deviations of the estimates
(SDE?s) are available. In this article we present an alternative approach to recover-
ing an estimate of the baseline incidence density that yields smooth estimates as
well as smooth estimates of SDEs. We illustrate the method on a large dataset of
inter-visit times for individuals in a diabetes registry, and indicate how it can be
used to incorporate different baseline incidence densities in the analysis of differ-
ent subgroups. Keywords: proportional hazards, exponential regression, survival
analysis, diabetes
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Abstract

Time-to-event analyses are often concerned with the effects of explanatory factors on the
underlying incidence density, but since there is no intrinsic interest in the form of the
incidence density itself, a proportional hazards model is used. When part of the purpose
of the analysis is to use actual cumulative incidence for simulation, or for providing
informative visual displays of the results, an estimate of the baseline incidence density is
required. The usual method for estimating the baseline hazards in Cox’s proportional
hazards analysis yields values that are of little use, and furthermore no standard
deviations of the estimates (SDEs) are available. In this article we present an alternative
approach to recovering an estimate of the baseline incidence density that yields smooth
estimates as well as smooth estimates of SDEs. We illustrate the method on a large
dataset of inter-visit times for individuals in a diabetes registry, and indicate how it can be
used to incorporate different baseline incidence densities in the analysis of different
subgroups.
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Introduction

The proportional hazards model (Cox 1972) is widely used to assess the effects of
factors of interest on the time to a target event, without having to worry about the form of
the underlying hazard function. There are, however, some instances in which one
requires the fitted hazard function itself. In the application that motivated this research,
we wanted to obtain hazard functions for individuals in a large diabetes registry (Brown
et al. 1999) in order to construct a model for the progression and sequellae of this disease.
To operate such a model, it is necessary to be able to simulate state transitions using
actual hazard functions. Specifically, the model takes the general form

R(t) = Ro(D)exp(x'B)

where R(t) is the cumulative incidence function for an individual with covariate vector x,
[ is the parameter vector of covariate effects, and Ry is the baseline cumulative incidence
function. (We prefer “incidence” to “hazard”, since the target event in this kind of
analysis need not be undesirable.) Given that the above person has not experienced the
event by time t, the probability of him/her doing so in the next interval to t+dt is

P[t<T<t+dtIT>t] = 1 - exp(-(R(t+dt)-R(t)))

which can often be approximated by 1 - exp(-r(t)dt) where r(t) is the incidence density.
The incidence density is related to the baseline incidence density ry by r(t) = ro(t)exp(x’p).

Kalbfleisch and Prentice (1980) gave a method of estimating ro(t) for each
individual in the sample (at the time t when they experienced the event), evidently as a
selection from among several previously proposed procedures. This method has been
widely cited, and it is used in the Stata® software that we have employed here (Stata
Press 1997). An example of these estimates appears in Figure 1. The data here are the
times in days between the first and second post-diagnosis medical encounters among
1000 members of the KPNW Diabetes Registry (Brown et al. 1999). As part of a
simulation of the behavior of diabetes patients we wanted to be able to generate the times
of medical visits in a realistic way, and the first task was to understand how the times
between visits changed in distribution with the passage of time. Because we also wanted
to include their effects, the proportional hazards analysis included an indicator of male
gender, and the age at diagnosis for these Type 2 diabetics. A graph of the incidence
estimates from the same data, by the method to be proposed here, appears in Figure 2, and
the underlying cumulative incidence function estimates appear in Figure 3. The hazard
estimates in Figure 1 show several features which call for improvement. First, they
exhibit a substantial amount of variability, as well as an indication of multiple branches
suggesting different hazard functions, which is characteristic of this method. In contrast,
the method we propose generally presents the incidence density as a smooth curve, Figure
2 being typical. Moreover, standard deviations of the hazard estimates in Figure 1 are not
offered, while in Figure 2 we show smoothed versions of confidence limits. Finally, the
hazards in Figure 1 show a marked tendency to increase as the data upon which they are
based grows sparser, while our estimates decrease, a pattern that would be indicated by
the underlying cumulative incidence function of Figure 3.
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Hazards by the Customary Method
\ \

o
.06
o
© o
o
o
© o
© o
©, 9 o o°
04 o ° o © o °
© © o o) OO
o
3 2o ° 8
% o © o @59
© o
o
s o o &
GO ® & & o
.02 ° & & & &
o °® © @O ® ®
© O ¢) dj@p @
o o o5
C@QOOQO °
© o ®
Ruu)
© (O8]
0 —
I I I I I
0] 100 200 300 400
Time in Days
Figure 1. Hazards estimated at each event time, for 1000 times between medical encounters by newly-
diagnosed type 2 diabetes patients.
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Figure 2. Incidence density estimates and confidence intervals; same data as Figure 1.

http://bi ostats.bepress.com/cobra/art67




Cumulative Incidence Function and 90% CI by Proposed Method
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Figure 3. Cumulative incidence estimates (dots), smoothed estimate, and smoothed confidence bound; same
data as Figure 1.

The intention of the remainder of this article is to explain the proposed method of
estimation, and to illustrate its use in an investigation of the time-between-encounters in
the KPNW Diabetes Registry.

Computational Method

Our aim is to estimate Ry(t) at any particular chosen value of t. We do this by
constructing the probability model for the data available at time t, employing the
assumptions of Cox’s proportional hazards model. In fact, we will use part of the output
of a proportional hazards analysis to help with the maximum likelihood estimation of
Ro(t)

The first step of our method consists of a standard Cox proportional hazards
analysis, which produces for each individual i the fitted value of exp(x'p). For
convenience, we abbreviate this value by &;. Let a time t be selected arbitrarily, and
consider the estimation of Ry = Rg(t). Let C(t) be the cumulative incidence function of
the censoring mechanism. At time t, our individual is in one of three conditions:
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(1) censored before t, probability = 1 - exp(-C(t))

(2) not censored but experienced the event before t, probability =
exp(-C())(1-exp(-Roei))

(3) neither of the above, probability = exp(-C(t) - Rog;)

We interpret the cumulative incidence function R(t) that is commonly estimated in these
analyses to be the conditional cumulative incidence of experiencing the event before t
given that one was not censored before t. We also take the values g produced by the Cox
proportional hazards analysis as given. Consequently, given that individual 1 was not
censored before t, his/her probabilities of experiencing the second and third events above
are 1-exp(-Ryg;j) and exp(-Rpg;). It follows that the log likelihood is

L= ZIH(l —e N ) ~ > Ree,

(D 2)

where the sum(1) is over all event times up to t, and the sum (2) is over all times (event or
censoring) after t. The likelihood equation is, therefore,

Rog;
z Res, 28

o 1-e @)
The Newton-Raphson iterative computation procedure becomes

—Ros 8Ze—ROs
R PORGES Y F) s

) ) (1 ( Rots )

A starting value for Ry that we have used successfully is the number of events
experienced before t divided by the sum of all ;. The term in the denominator on the
right is the negative second derivative of the log likelihood, and its inverse is therefore an
estimator of the variance of Ry:

gle Roti
R, |= e R
Var[ 0] /% (1 _ e_ROEi )2

It is worth noting in passing that the likelihood equation can easily be manipulated into
the form

Z—ROI-ZS

) NESS

from which it follows automatically that the estimates of R increase with t.
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The values of Ry(t) can be estimated at pre-selected times, only at times of events,
or at all times appearing in the dataset. The only reason to select one rather than the other
is the number of values desired and the computer time involved. For convenience, we
assume Ry(t) estimated at every time in the dataset. This provides values that can be used
in subsequent exponential regression analyses. This latter model postulates R(t) =
t exp(x'p), but once we have estimates of Ry(t) in hand, we can declare Ry(t) to be the
“time” variable in the exponential regression, obtaining a model that is formally
equivalent to the original proportional hazards specification, but using the exponential
regression method. Note that we would center all explanatory variables (x) at their means
for the proportional hazards part of the analysis, so that zero (the mean) would be a
sensible value of the covariates at which one might want to estimate the baseline
incidence. In the subsequent exponential regression, we might well choose not to do this,
so that the implementation in a simulation could use the natural values of the variables,
without having to know the means.

For the purposes of using cumulative incidence functions in modeling, it is
extremely useful to reduce them to a small number of parameters. Conventional methods
of representing functions by polynomial approximations tend to accentuate variations that
are not statistically or practically meaningful. The method we employ here is based on a
model of the form

R,(0) = B +B,t+ Dot Inffe—

The o and P parameters are fitted by ordinary linear regression. The values 7; are
generally taken for convenience, since there is little information in typical data to provide
precise estimates. Moreover, so long as the m; values are selected reasonably outside the
range of values of t, the fitted functions do not vary much. We have found by practical
experience that it is reasonable to place the m; values as follows:

that is, the 7 values appear A below the minimum t and 2A below the minimum t, and A
above and 2A above the maximum t, where A = tpx-tmin. Thus, the following four values
appear to be adequate in practice:

t—t . +2kA

t—t, . +kA
2kA+t,_ —t

kA+t , —t

‘t_“i‘:

Here, k is the multiplier of the range tyax-tmin, With larger values spreading the n-values
further above and below the actual time values. For k<1 this procedure fits curvature
within the data range quite well, while larger values of k provide increasingly stiffer fitted
functions. The selection of k is not made with any optimality criterion in mind, but rather
with the practical aim of obtaining a stiff estimate of cumulative incidence (that is, one
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that is insensitive to isolated bumps). Experience suggests that k in the range from 1 to 2
work well. With this approach, the values of the incidence density ro(t) can be computed
at any time by

I‘O(t) = Bl +Z

;
t—m,

An estimate of the variance of ro(t) can be provided at any t for which the
corresponding Ry has been estimated. The key observation is that if we let Ry stand for
Ro(tj-1), and 6 = Ro(tj) - Ro(tj.1), then the log likelihood can be written

L= Z:ln(l—f:‘R“Si ) - Z:R()gi + Z‘ln(l—e"agi ) - 2681
(2.3) (2) (3)

(1)

where (1) denotes event times up to .1, (2) denotes event times (and censoring times in
its first appearance above) between t;.; and t;, and finally (3) denotes events and
censorings after t;. From this expression it is obvious that the estimates of Ry and & are
asymptotically independent. This in turn implies

var[0] = var[Ro(t;)] - var[Ro(tj-1)]
and so finally we have approximately
var[ro(t;)] = var[8]/(tj-t;.1)*

This value tends to infinity as the time interval in the denominator shrinks to zero. In
fact, the variance expression on the right pertains to the time average of ry(t) over the
interval from t;; to ;.

Results

The main purpose of the analysis is to produce cumulative incidence functions
that are specific to gender and to age at diagnosis. A complicating feature is that the
patterns of medical encounters may have changed over time, as measured by year of
diagnosis, and may also shift as one considers later encounters. In order to provide a
realistic simulation based on proportional hazards modeling, it is advisable to perform
some check to see that these latter two factors do not affect the proportionality
assumption unduly. A secondary purpose of the analysis is to assess the effects of gender
and age at diagnosis on inter-encounter times, removing potential secular and encounter
number effects.

Figure 4 shows the incidence density plots by year of diagnosis (1980-1996) and
within each plot, by encounter number (1,10,20,30,40,50,60; the later encounter numbers
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are not included in the most recent years). The vertical axis is In-scaled, in order to
visually spread out the early portion of the graphs. The overall impression is one of
homogeneity, with no obvious secular shift. This is re-inforced by Figure 5, which shows
all of the plots of Figure 4 superimposed. The sparse, straight line segments beyond
about 24 weeks largely represent the tail ends of the incidence density curves, where there
are few events, and where the rate is particularly poorly estimated. The relatively dense
clustering of lines suggests both proportionality as well as reasonable homogeneity over

the diagnosis years and encounter numbers.
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Figure 4. Ln incidence densities plotted by encounter number within diagnosis year (yrdx).

The In incidence density was regressed on a fifth-degree polynomial in time, and
diagnosis year and encounter number, and the resulting plot of fitted values is shown in
Figure 6. This figure incorporates the proportionality assumption, and cannot therefore
be used to test it, but the important point is that the visual comparison of Figure 6 with
Figure 5 does not suggest that the former is a gross misrepresentation of the latter.
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Finally, the In incidence density regression was used to obtain fitted values of the
incidence density itself (by applying exp to the predicted values of the In), and then these
were plotted against the actual values, in Figure 7 (for times before 24 weeks). The
correlation between the two (both for all values and for values with times < 24 weeks) is
0.925. Taken together, there appears to be reasonable visual and analytic evidence that
the proportionality assumption would be acceptable for simulating encounters.

pr
(M
|

Figure 7. Agreement between the fitted (pr) and observed (r) values of the incidence density.

Whether proportionality is adequate for analytic purposes is a slightly different
question, and one that can be addressed by fitting two kinds of models. The first is
exponential regression, with the cumulative incidence function (specific to the diagnosis
year and encounter number) playing the role of “time,” and secondly, a Cox proportional
hazards analysis, which implicitly estimates a single underlying cumulative incidence
function for the entire dataset. We include terms yrdx = diagnosis year - 1980 and
vn=serial number of encounter. (Each individual appears multiple times in this dataset,
but the correlations between the encounter times are exceedingly small.)

The analyses appear in Table 1. In the exponential regressions, it makes virtually
no difference to the effects of interest whether yrdx and vn effects are included or not,
and even the linear effects terms in these variables are nonsignificant, which is of some
note in this dataset of over 72,000 encounter times. The proportional hazards model
(with a single underlying cumulative incidence function) gives more extreme estimates of

9
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both coefficients, the difference amounting to about 1.8 SDEs for the male effect and
about 1 SDE for the agedx effect. The proportional hazards model with linear yrdx and
vn effects shows that they are both significant, and the result of including them is to move
the estimates of the coefficients of interest closer to the values obtained by exponential
regression. We can conclude that the proportional hazards model (with yrdx and vn) or
the exponential regression (without them) are adequate for assessing gender and diagnosis
age effects, and since the latter is simpler to present, and has adjusted for any possible
confounding by time trend or encounter number, it may be the analysis of choice.

Exponential Regression Proportional Hazards
|
Cr | Coef. std. Err. P>|z| | t | Coef. Std. Err. P>|z]|
} | }
male | -.0564492 .0080196 0.000 | male | -.0705685 .0080292 0.000
agedx | .0278315 .0030949 0.000 | agedx | .0308443 .0030903 0.000
_cons | -.1477217 .0195335 0.000 |
|
Cr | Coef. std. Err. P>|z| | t | Coef. Std. Err. P>|z|
} | }
male | -.0563333 .0080402 0.000 | male | -.061260 .008048 0.000
agedx | .0276774 .0031017 0.000 | agedx | .0276288 .0031109 0.000
yrdx | .0006249 .0010574 0.555 | yrdx | .0109975 .0010789 0.000
vn | .0001575 .0002237 0.481 | vn | .0066517 .0002249 0.000
_cons | -.2057665 .0959636 0.032 |
|

Table 1. Statistical analysis by exponential regression (left) and proportional hazards (right).
Male is an indicator, age at diagnosis (agedx) is in decades, year of diagnosis (yrdx) is in years,
and vn is the numeric encounter number.

Conclusions

Interest in recovery of the baseline cumulative incidence goes back at least as far
as Breslow’s (1974) estimate. A number of strategies have been proposed, including
splines (Angelos et al. 1991, Gray 1994, Herndon and Harrell 1995) and kernel density
estimates (Gray 1990). These methods have considerable theoretical appeal, and extend
to the case of non-proportional hazards models, thus providing formal tests of the
proportional hazards assumption. These methods are, however, computationally
intensive those, and understanding their distributional properties requires advanced
methods.

In contrast, the method proposed here requires, in addition to widely available
software routines, only the solution of a simple, one-parameter likelihood problem.
Moreover, the asymptotic likelihood-based analysis is transparent, yielding asymptotic
SDEs for both the cumulative incidence function and its derivative, the incidence density
(averaged over small time windows). One of the continuing problems in incidence
density recovery is the tendency of estimation methods to give the appearance of “bumps”
or other shapes, which scientists would like to interpret as meaningful, when in fact they
reflect either random variability or artifacts of the estimation method. Penalized
likelihood approaches (Gray 1994) are then used, but this leads to the problem of how
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severe the penalty should be, increasing the complexity of the analysis. The proposed
approach produces maximum likelihood estimates of the cumulative incidence function at
certain points, and then uses reasonably stiff modeling functions to smooth the
cumulative incidence function (by regression, or weighted regression), and then to
estimate the incidence density by taking the derivative. This provides enough flexibility
to fit a reasonable range of different forms for the cumulative incidence function, and also
does a reasonable job at suppressing artificial bumps in the incidence density.

As illustrated here, the approach can be used routinely to generate incidence
densities within subgroups. These can be used for judgments about the adequacy of the
proportional hazards model across the subgroups. Perhaps more importantly, if one is
concerned about confounding due to failure of proportional hazards, then the smoothed
cumulative incidence functions in subgroups can be substituted for the “time” variable in
exponential regression, and effect estimates of interest can be computed by what is
essentially proportional hazards, with the hazard function varying by subgroup.
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