
Collection of Biostatistics Research Archive
COBRA Preprint Series

Year  Paper 

Modeling Multilevel Sleep Transitional Data
Via Poisson Log-Linear Multilevel Models

Bruce J. Swihart∗

∗Johns Hopkins University, bruce.swihart@gmail.com
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/cobra/art64

Copyright c©2009 by the author.



Modeling Multilevel Sleep Transitional Data
Via Poisson Log-Linear Multilevel Models

Bruce J. Swihart

Abstract

This paper proposes Poisson log-linear multilevel models to investigate popula-
tion variability in sleep state transition rates. We specifically propose a Bayesian
Poisson regression model that is more flexible, scalable to larger studies, and
easily fit than other attempts in the literature. We further use hierarchical ran-
dom effects to account for pairings of individuals and repeated measures within
those individuals, as comparing diseased to non-diseased subjects while minimiz-
ing bias is of epidemiologic importance. We estimate essentially non-parametric
piecewise constant hazards and smooth them, and allow for time varying covari-
ates and segment of the night comparisons. The Bayesian Poisson regression is
justified through a re-derivation of a classical algebraic likelihood equivalence of
Poisson regression with a log(time) offset and survival regression assuming piece-
wise constant hazards. This relationship allows us to synthesize two methods
currently used to analyze sleep transition phenomena: stratified multi-state pro-
portional hazards models and log-linear models with GEE for transition counts.
An example data set from the Sleep Heart Health Study is analyzed.
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SUMMARY

This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep

state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible,

scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical

random effects to account for pairings of individuals and repeated measures within those individuals, as

comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We

estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time vary-
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2 B. SWIHART ET AL .

ing covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through

a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset

and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize

two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional haz-

ards models and log-linear models with GEE for transition counts. An example data set from the Sleep

Heart Health Study is analyzed.

Keywords: Bayesian, multi-state, recurrent event, competing risk,hierarchical, stratified, survival analysis

1. INTRODUCTION

Hypnograms are time series of a subject’ssleep statesfrom a single night’s sleep. In this manuscript we

consider methods for the analysis of hypnogram data. We focus on methods that scale to large cohort

studies and complex covariance structures. We show how log-linear random effect models can be derived

and used to synthesize existing methods for analyzing hypnogram transition data from large cohort studies

and extend it to multilevel settings, unearthing data features classical measures bury. We further discuss

model-based methods for exploratory data analysis. We begin with a motivating discussion of two subjects

from the community based cohort study prompting this work.

1.1 Motivating example

Summaries of the measurement of sleep for two subjects with intrinsically different sleep behavior can

highlight or mask these differences. To illustrate, Subject A of Figure 1 has severe Sleep Disordered

Breathing (SDB, discussed further below), as indicated by arespiratory disturbance index (RDI) of 52.28

apneic or hypopnic events per hour, while Subject B does not (RDI 0.57). Each subject was monitored

http://biostats.bepress.com/cobra/art64



Modeling Multilevel Sleep Transitional Data Via Poisson Log-Linear Multilevel Models 3

overnight during sleep via a polysomnogram for eight hours.The classical summary of their sleep states,

sleep architecture, is similar across the two subjects: Subject A spent 69, 16, 15 and Subject B spent 70,

16, 14 percent of the night in the Non-Rapid Eye Movement (NREM), Rapid Eye Movement (REM) and

Wake states, respectively. Whereas their sleep architecture is similar, the temporal evolution of their sleep

may not be. Sleep for an individual is often visualized with hypnograms, which are time series of sleep

states, depicting states of sleep on the x-axis and time fromsleep onset on the y-axis. Subject A and B

have similar sleep architecture yet dissimilar hypnograms(see Figure 1). For example, in the zoomed-in

portion around hour 7, we see a critical difference in the duration of REM sleep for each subject. Subject

A’s duration in REM sleep is broken into small chunks, whereas Subject B’s is uninterrupted. This is a

feature that sleep architecture cannot capture.

We have described population variations of this phenomenonmore fully elsewhere (Swihart et al.,

2008). Despite severe sleep related disease, sleep architecture remains consistent at the population level.

Thus any statistical analysis of sleep architecture as a measure of sleep quality may not account for sleep

fragmentation, even in extreme comparisons of severely sleep disordered breathing diseased subjects to

healthy.

In our motivating example, Subject A’s sleep is more fragmented than Subject B’s, with 83 overall

transitions between states. Subject B had 47 transitions intotal. While, summaries of the overall transition

rate are useful, closer study of specific transition types can yield important epidemiological information

and directionality of associations with health outcomes (Laffan et al., 2009). A summary of the hypnogram

by frequency of transition types for the two subjects is in Table 1. There are 15 as many transitions from

REM to NREM for Subject A than Subject B.

We make both scientific and methodologic contributions in this paper. From a scientific perspective,
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4 B. SWIHART ET AL .

we 1) develop and substantiate transition rates as an informative population measure for sleep compar-

isons, 2) report population variations in transition ratesfor different segments of the night, 3) utilize a

very large dataset of sleep biosignals from∼6400 subjects, and 4) reduce bias in our results via matching.

From a methods standpoint, we 1) set forth a framework to viewthe sleep of a population of individuals

as a multi-state survival analysis problem with random effects, 2) re-derive and employ a classical alge-

braic equivalence between survival analysis and Poisson regression within this framework, 3) smooth the

piecewise constant hazards, and 4) accomplish all of this with relative computational ease.

This paper proposes Poisson log-linear multilevel models to investigate population variability in tran-

sition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable

to larger studies, and easily fit than other attempts in the literature (Sinha, 1993; Clayton, 1991; Sinha &

Dey, 1997; Sargent, 1998; Fahrmeir & Klinger, 1998; Sargent, 1997; Kneib & Fahrmeir, 2007; Swihart

et al., 2008). We further use hierarchical random effects toaccount for pairings of individuals and repeated

measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias

is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and

smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian

Poisson regression is justified through a re-derivation of aclassical algebraic likelihood equivalence of

Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards.

This relationship allows us to synthesize two methods currently used to analyze sleep transition phe-

nomena, stratified multi-state proportional hazards models (Therneau & Grambsch, 2000) and log-linear

models with GEE (Swihart et al., 2008) for transition counts. Moreover, our suggested Poisson multilevel

modelling is more flexible than partial-likelihood based multi-state proportional hazards models and GEE

models for transition counts by allowing for nested random effect structures and easily handling time-
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varying covariates. We demonstrate that the computationalburden of these models is manageable and that

the methods can be extended to large cohort studies. Finally, the proposed multilevel models yield random

effect predictions of transition risk.

In the next two subsections, a brief yet grounding overview of the science of sleep, sleep data ex-

traction, history of statistical approaches to this type ofphenomena, and exploratory data analysis on

hypnogram data is given. To close out the introduction is a formulation of the set-up and challenges of

analyzing these rich data.

Subject A

0 1 2 3 4 5 6 7 8

N
R

W

Subject B

0 1 2 3 4 5 6 7 8

N
R

W

Subject A

6.75 7 7.25

N
R

W

Subject B

6.75 7 7.25

N
R

W

Fig. 1. Left panels, 8 hour sleep hypnograms of Subjects A andB; Right panels, zoomed half-hour portions of the

corresponding left panel. On all hypnograms, the x-axis represents the states of sleep (N: Non-REM, R: REM, and

W: Wake) a subject can occupy. The y-axis is time of night, with 0 being sleep onset, thus a hypnogram is a state-time

graph, showing the trajectory of sleep for an individual.
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6 B. SWIHART ET AL .

Previous state
Subject A Subject B

Current state N R W N R W
Non-REM (N) 625 15 24 652 1 19

REM (R) 19 138 0 3 155 2
Wake (W) 21 4 119 18 4 111

Total epochs 665 157 143 673 160 132
Total in hours 5.54 1.31 1.91 5.61 1.33 1.10

Sleep Architecture (%) 69 16 15 70 16 14

Table 1. Cross Tabulation of Pairwise Contiguous Epochs forSubject A and B.

1.2 Biosignals of sleep

Polysomnography is a multi-faceted sleep monitoring process. A polysomnogram (PSG) is a collection

of simultaneous time series that are the measured biological signals related to sleep. The signals that

comprise a polysomnogram include the electroencephalogram (EEG), electro-oculogram (EOG), elec-

tromyogram (EMG), electrocardiogram (ECG), airflow, chestand abdominal effort, oxyhemoglobin sat-

uration, and body position. A PSG summarizes sleep behaviorand is the gold standard for diagnosing

somniopathy (sleep disorders), such as SDB and restless legsyndrome. The data from a PSG study is

voluminous and complex. Hence feature extraction is usually performed. The previously mentioned RDI

or apnea/hypopnea index is an example of clinical feature used in diagnoses and sleep epidemiological

research.

The hypnogram decomposes the PSG into a time series of sleep states via visual classification. The

typical six stages of sleep used in this decomposition are known as the R and K system, as put forth by

Rechtschaffen and Kales in 1968 and updated by the American Academy of Sleep Medicine (AASM)

in 2007 (Rechtschaffen & Kales, 1968). Recently, computer algorithms are supplanting sleep physicians

for the task of translating the simultaneous curves of the polysomnogram into the six stages of sleep

(Penzel & Conradt, 2000). The summarization that occurs is two-fold: 1) continuous time is discretized

http://biostats.bepress.com/cobra/art64
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into sequential bins, usually 30 seconds, called “epochs” and 2) within each epoch the information across

all time series is combined to declare one of the six stages ofsleep. The six stages are: Wake, Stage 1,

Stage 2, Stage 3, Stage 4, and Rapid Eye Movement (REM). Often, Stage 1, Stage 2, Stage 3, Stage 4 are

grouped into the stage of Non-Rapid Eye Movement (NREM), a convention we adopt in our analysis to

limit the number of state-to-state transitions under consideration.

A sleeper passes through these states in a recurrent fashionmany times throughout the night. We

note that, even though there is a typical progression between states, each of the
(

6
2

)

possible transitions

usually occur at least once over the course of a night’s sleep. Though possessing limitations, the R and

K system facilitates a tremendous data reduction, producing one discrete-time discrete-state process, the

hypnogram, from many continuous-time and continuous-state time series.

The hypnogram for an individual is easily visualized and usually is included in a sleep report. It shows

that, even when summarized by the R and K system, sleep is a very dynamic discrete-time discrete-state

stochastic process, where a transition from any state in an epoch to any other of the six states in the next

epoch is possible. Each state has the possibility of being visited for various durations at various times

throughout the entire run of the night.

The typical and traditional sleep report also includes sleep architecture, which is the percentage of

total sleep time spent in each stage of sleep; this is the canonical summary of the hypnogram. Sleep

architecture is an aggressive summarization of the data in the sense that it reduces the entire hypnogram

to seven numbers. Specifically, sleep architecture sums over all temporal and transition information from

the hypnogram. The crudeness of sleep architecture’s description of one’s sleep has been limiting for the

study of sleep fragmentation and sleep continuity. (Here, continuity of sleep is the concept of remaining in

a state or a class of states of sleep for a number of contiguousepochs and fragmentation is the disruption
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8 B. SWIHART ET AL .

of this contiguity.)

It has been conjectured that sleep continuity may be an important characteristic of sleep’s role in

health, especially in the study of sleep disordered breathing and its connections to health outcomes (Nor-

man et al., 2006; Punjabi et al., 1999; Bonnet & Arand, 2003).SDB is a condition where the airway of the

throat collapses at least partially, possibly fully, and this collapse stimulates an involuntary response from

the sympathetic nervous system: an arousal. An arousal mostoften does not awaken an individual, but

does usually place the sleep process into a state closer to that of wakeful consciousness. These arousals

are compiled into indices such as the RDI or apopnea-hyponeaindex (AHI) as arousal events per hour.

Traditionally, the degree of severity of SDB is accorded to aparticular range of values for one of the

aforementioned indices. An index of less than 5 would often be acknowledged as no-SDB and greater

than 30 as severe SDB.

It has been shown that sleep architecture does not necessarily differ between no-SDB and SDB groups

(Swihart et al., 2008). This motivates research for a betterrubric of sleep fragmentation, for models that

can utilize the temporal and transition information of the hypnogram and enable more powerful inferences

on the role of sleep and adverse health outcomes.

The structure of the hypnogram lends itself well to multi-state survival models, for which we provide

a brief literature review. Sinha (1993) built upon the work of Clayton (1991) in modeling multiple event

time data and gave an excellent discourse on the developmentof survival analysis. Sinha & Dey (1997)

give a review of the flexibility and implementation of semiparametric multi-state survival models, giving

five ways to model (with assumptions) the non-parametric part of the survival model; however, left to the

discussion and future work the methodology of clustered frailties and competing risks. Sargent (1998)

outlines a framework for hierarchical Cox proportional hazards regression that leaves the baseline free of

http://biostats.bepress.com/cobra/art64
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assumptions due to the utilization of the partial likelihood and provides exemplary general notation of the

likelihood in preparation for Bayesian modeling. Fahrmeir& Klinger (1998) apply a multi-state survival

model with a likelihood derived via counting processes to sleep data which requires integration. They ad-

vance the art of modeling time varying covariates in a multi-state framework from that of Sargent (1997).

Further work with the counting process likelihood with timevarying covariates using mixed models has

been put forth by Kneib & Fahrmeir (2007).

One of the first uses of survival analysis involving sleep andSDB was to model hypersomnolence and

showed that the more severe the degree of SDB, the greater thedaytime sleepiness, as evinced by sleep

latency time (Punjabi et al., 1999). Norman et al. (2006) used parametric survival analysis on “sleep runs,”

where the R and K system was summarized from six states to justtwo: wake and sleep, and demonstrated

that the degree of SDB corresponds to distinct levels of sleep continuity, as represented by a unidimen-

sional estimate. To isolate the effects of SDB on sleep fragmentation, Swihart et al. (2008) fit a log-linear

model on the relative frequencies and a multi-state proportional hazards survival model for the hazard

ratios describing sleep difference between matched SDB andno-SDB groups.

All aforementioned methods take for granted the R and K system of classification. This summarization

of the PSG to the hypnogram perhaps discards useful sleep transitional information on arousals and con-

tinuity. While methods for analyzing the PSG, such as the EEGsignal (see Crainiceanu et al., to appear in

2009), may fill in important gaps in the R and K summarization,we focus exclusively on the hypnogram

data and do not consider the remaining PSG signals.

Hosted by The Berkeley Electronic Press
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1.3 Exploratory Data Analysis and Exploratory Models

The previous section went through a brief overview of the development of survival analysis and the science

of sleep and SDB. This section demonstrates features of the Rand K system data for 102 matched subjects,

51 with SDB and 51 no-SDB (matching details appear later). Sleep architecture shows the percent of night

in REM is statistically different, with the SDB group at 17 percent, no-SDB at 21 (Table 2).

Variable SDB no-SDB p-value
RDI 40.532 2.114 0.000
BMI 30.275 30.247 0.972
Age 61.804 61.804 1.000
Race (% White) 92.160 92.160 1.000
Sex (% Male ) 66.667 66.667 1.000
Total Sleep Time 351.397 357.466 0.593
Sleep Efficiency 81.941 83.364 0.743
% Night in Stage 1 5.750 5.577 0.815
% Night in Stage 2 62.693 59.109 0.121
% Night in Stage 3 or 4 13.647 13.908 0.904
% Night in REM 17.909 21.406 0.002

Table 2. Sleep Architecture

To investigate the distribution of transition frequency bytype, we can summarize all contiguous pairs

of epochs by a transition type ofprevious state → current state. Doing so gives a feel for

which transitions are rare and possibly affected by SDB. Forinstance, it appears the transitionWake →

REM (WR) is the least frequent among all pairwise classifications for both groups, yet the SDB group has

over 1.5 times as many such transitions (Table 3).

Collapsing the R and K system into two states of Wake and Sleep, we can plot the probability of each

group being asleep by epoch. Doing so shows similarities between the two groups, but reveals that the

no-SDB group stays asleep longer (Figure 2).

We begin to explore temporal transition models using exploratory two-stage random effect approxima-
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Fig. 2. Probability of being asleep over epochs, by disease group.

tions by fitting subject-specific regression models then comparing the fitted parameters across subjects.

Specifically, exploratory transition models can be constructed by using a baseline category logit model

(Agresti, 2003), predicting the stage of the next epoch given the current epoch’s stage (Liang & Zeger,

1993). That is, we fit the model

log{P (Yit = k | Yi,t−1)/P (Yit = 1 | Yi,t−1)} = βt + xit2δ2 + xit3δ3,

separately for each subject, whereYit is the state (taking valuesk = 1, 2, 3 for W, N, R) for subjecti at

Previous state
Disease Controls

Current state N R W N R W
Non-REM (N) 28,058 124 1,561 27,968 161 1,284

REM (R) 249 6,023 151 364 7,515 96
Wake (W) 1,423 274 7,298 1,070 293 8169

Total epochs 29,730 6,421 9,010 29,402 7,969 9,532
Total in hours 247.75 53.51 75.08 245.02 66.41 79.58

Table 3. Cross Tabulation of Pairwise Contiguous Epochs by Disease Group

Hosted by The Berkeley Electronic Press



12 B. SWIHART ET AL .

epocht and the design matrixxitj = I(Yi,t−1 = j).

Doing this yields fitted values that for the probabilities ofbeing in a stage of sleep one epoch later

conditional on the stage experienced in the previous epoch.Using three stages of sleep and applying this

model to an individual yields a 3× 3 transition matrix with the off-diagonal entriesP (Yit = k | Yi,t−1 =

k′). We apply this model to each individual of the diseased groupand the non-diseased group and plot

comparative histograms of the probabilities of 6 differenttransition types (contiguous epochs of the same

state do not consitute a transition). This exploratory model exercise allows for identification of different

distributions of transition probabilities between the disease groups (Figure 3).
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Fig. 3. Multinomial Model Expected Probabilities of Transition by transition-type and disease status

We investigated the inclusion of non-linear non-transitional trends (by epoch) by including natural

spline terms. These yield subject-specific time varying probabilities of being in a certain stage in that

particular epoch. The multinomial model mandates that its probabilities add to one, and plotting the three

probabilities for an individual over epochs shows the trade-offs of the probability of being in a certain
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stage. Below is the probability simplex values for a diseased subject, as well as for a non-diseased subject

(Figure 4). Note for the diseased individual how fragmentedthe night becomes with frequent tradeoffs

in probability of being in Wake and NREM, and the overall lackof REM probability. Note for the non-

diseased individual, the cyclic nature of REM probability.
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Fig. 4. The first column is an individual with SDB, the probability of being in the stage by epoch, for one night. The

second column is an individual without SDB. Top - NREM, Middle - REM, Bottom - Wake.

Viewing several R and K systems can be done with Lasagna Plots(Figure 5) (our term for advocating

heatmaps over traditional spaghetti plots Swihart et al., to be submitted). Each horizontal “layer” across

time is a subject’s R and K system condensed to Wake, NREM, REM, and Absorbed, with color represent-
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14 B. SWIHART ET AL .

ing the subject’s sleep state for that epoch. The plots quickly reveal that no-SDB subjects are not without

long stretches of wakefulness in the course of the night and as a whole experience more REM sleep than

the SDB group. These plots are good for visualizing the data of multiple hypnograms.

51 
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Fig. 5. Lasagna plot for SDB (top) and no-SDB (bottom).Wake-Black, NREM-Red, REM-Green, Absorbed-Yellow.

1.4 Set up and challenges

The sleep transition rate data to be modeled is complex. Our proposed solution is amulti-state, recurrent

event, competing risk, hierarchical, stratified survivalmodel fit using Poisson hierarchical models. To

elaborate, it isMulti-stateas there’s more than the traditional 2-states (i.e., alive/dead, wake/sleep, etc.)

in typical survival models.Recurrent eventbecause no state is absorbing and all can recur.Competing

risk because options exist for the state to which one will transition (from Non-REM to Wakeor from

Non-REM to REM).Hierarchicalbecause of nesting of times-to-event within individuals and individuals

nested within matched pairs.Stratifiedin such a way to render piecewise constant hazards, transition-type
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specific inferences between diseased and non-diseased, andinference on segment of night dependence

of the transition-specific effects of diseased and non-diseased. Our models are necessarily complex to

capture the fine structure of the transition processes that might be of interest. Oversimplification of data,

as shown in our first example, can be and is misleading in many applications.

In cohort studies of sleep transitional phenomena, “time” has several meanings which can lead to con-

siderable confusion. We focus on three important distinctions in the discussion of time: duration in state

(DIS) time, stopwatch accruing cumulative (SAC) time, and local wall clock (LWC) time. To elucidate,

consider an example: a subject falls asleep when the alarm clock on her night stand displays 10:00PM,

say. She goes through various states of sleep, and at 11:23pmenters REM sleep. At 11:30pm she exits

REM sleep. Consequently, her DIS time for this transition is7 minutes, her SAC time was 83 minutes

when she entered REM, 90 minutes upon exiting. The LWC time ofher entering into REM was 11:23PM;

of her egress, 11:30PM. Each of these are important, as DIS times are the times-to-event and SAC times

help in the segmentation of the night which allows for inference for time-varying transition effects. LWC

time is useful to study diurnal effects; for example it has been shown to be important in the studying of

sudden death from cardiac causes and sleep disordered breathing (Gami et al., 2005).

We implement the model using MCMC/Gibbs sampling. We show that a segmented SAC time analysis

amounts to little adjustment in the model form via minor manipulations of the likelihood. Such segmented

SAC time analysis is a vast improvement over the past raw stratification approach of fitting separate

models in different portions of the night (Swihart et al., 2008).

The multiple stratifications on transition type, DIS and SACtime interacted with disease status can

easily make for high dimension parameterizations as well asbinning combinations. Following recent

research in smoothing (Di et al., to appear in 2009; Crainiceanu et al., to appear in 2009), we propose a
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fine level of binning and allow a smoothing/penalty to prevent over-parameterization, a strategy similar to

the correlated pieces approach (Sinha & Dey, 1997; Sargent,1998).

Matching is necessary as the data are observational and epidemologic confounding of the disease

effect is of concern. The number of subjects in the Sleep Heart Health Study (SHHS) dataset motivating

this manuscript allow for well populated, well selected sub-groups for the desired comparisons. Matching

is performed via propensity scores (Rosenbaum & Rubin, 1983).

The paper continues with the following sections: Model, Implementation, Application, Results, Dis-

cussion, and Appendix.

2. MODEL

We develop a model in the most general form for the Poisson representation of the hypnogram. As for

notation,i = 1, ..., I indexes individual,j = 1, ...Ji indexes the transitions chronologically,s = 1, ..., S

denotes the transition-type,k = 1, ..., K segments SAC time,l(s) = 1, ..., Ls is the transition-type specific

binning of the hazard,wi is the vector of multiplicative random effects,ui, as the log of the elements in

wi, is a vector of additive frailties,zi is the vector of covariates to linearly combine with the frailties,xi

is the vector of covariates to linearly combine with the fixedeffects. BinaryYijskl is one if the transition

occurred in thekth segment of SAC time, in thelth bin of the binned hazard for transition-types; 0

otherwise. Binaryδijskl is a very useful design variable in the competing risks format. It is one if thejth

transition for individuali is possible as types in the segmentk and binl, 0 otherwise. To be thorough,

Yijskl = δijskl = 1 for the possible and observed transition,Yijskl = 0, δijskl = 1 for possible and

censored, and not possible,δijskl = 0 Nonnegativetij is the duration in state time until thejth transition

occurs for individuali. Nonnegativetijskl is the amount of timetij intersected thelth bin of the hazard
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for transition-types for transitionj occurring in thekth segment of the night and
∑

s,k,l tijsklδijskl = tij ,

analogous to Laird & Olivier (1981).

Note that the definition of “segment” of total SAC time is subject-specific and “ragged” in a sense. If

a tij started in one segment and ends in another, the segmentk to which it is assigned in its entirety is the

greatest (latest) one. With that stated, the binning of SAC supersedes that of the DIS: total SAC time is

divided into K segments (i.e. K=2 implies 1st half and 2nd half of night). Then the DIS times are assigned

in their entirety to one of the segments. Then the DIS times are partitioned amongst thel(s) = 1, ..., Ls

bins. Now, the established relation between survival data and the Poisson likelihood will be reanimated in

the outlined framework (Holford, 1976, 1980; Laird & Olivier, 1981). Let the hazard for transition-type

s, segmentk and binl behskl(tijskl | xi, zi, ui) = h0skl(tijskl)e
xT

i β+zT

i ui , wherexi andzi are covariates

that do not depend on transition, SAC time, or DIS time, but easily could. A superscriptT denotes a

transpose.

The hazard is defined as

hskl(tijskl | xi, zi, ui) =
fskl(tijskl ; xi, zi, ui)

Sskl(tijskl ; xi, zi, ui)
=

fskl(tijskl ; xi, zi, ui)

1 − Fskl(tijskl ; xi, zi, ui)
,

wherefskl(tijskl ; xi, zi, ui), Sskl(tijskl ; xi, zi, ui), andFskl(tijskl ; xi, zi, ui) are the density, survivor,

and distribution functions associated with the survival (DIS) times. The conditional likelihood is therefore:

I
∏

i=1

J
∏

j=1

S
∏

s=1

K
∏

k=1

Ls
∏

l(s)=1

[

f(tijskl ; xi, zi, ui)
yijs{1 − F (tijskl ; xi, zi, ui)}

1−yijs
]δijskl

=
I

∏

i=1

J
∏

j=1

S
∏

s=1

K
∏

k=1

Ls
∏

l(s)=1

[h(tijskl ; xi, zi, ui)
yijs{S(tijskl; xi, zi, ui)}]

δijskl (2.1)

Consider the instance wherelog h0skl(tijskl) = µskl; hence the strata-specific hazard does not depend

on time (tijskl) and thusf is the exponential density. UtilizingS(tijskl ; xi, zi, ui) = exp{
∫ tijskl

0
h(r; xi, zi, ui)dr},
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the conditional likelihood simplifies to

I
∏

i=1

J
∏

j=1

S
∏

s=1

K
∏

k=1

Ls
∏

l(s)=1

{exp(µskl + xT

i β + zT

i ui)}
yijsδijskl exp{−δijskltijskle

µskl+xT

ijsklβ+zT

ijsklui}

Taking the log and summing overj,

=

I
∑

i=1

S
∑

s=1

K
∑

k=1

Ls
∑

l(s)=1

niskl(µskl + xT

i β + zT

i ui) − eµskl+xT

i β+zT

i ui+log(Γiskl) (2.2)

Noting the general form of the log likelihood forn ∼ Poisson(φ) is proportional tonlog(φ)−φ, (2.2)

could arise from a Poisson log-linear model withφ = exp{µskl + xT

i β + zT

i ui + log(Γiskl)}. Formally

written, the conditional model is:

niskl | µskl, xi, β, zi, ui, Γiskl ∼ Poisson[eµskl+xT

i β+zT

i ui+log(Γiskl)]

which is very similar to the Gail, Santner, and Brown rat mammary tumor example (however, in the rat-

tumor model considered there, the log offset of aggregated time at riskΓiskl did not need to be included

since it was the same for each rat) (Ibrahim et al., 2001).

Above,niskl is the count of the number of observed transitions committedduringΓiskl, the total time

at risk for personi, of type s, occuring in segmentk and binl. Accounting forΓiskl is crucial when

modeling relative counts, for if a subject makes twice as many transitions as another but had twice as long

to do so the rate of transitioning is not truly elevated. IfLs = 1, ∀s andK = 1 then (2.2) is equivalent to an

exponential survival model. AsLs → ∞ and the model approaches having a completely non-parametric

piecewise constant hazard for transition-types.

The above arguments illustrates how the likelihood equivalence between piecewise exponential sur-

vival models synthesizes two methods in practice for analyzing sleep transition data; multi-state propor-

tional hazards models and log-linear models. Sandwich variance estimates were used in Swihart et al.
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(2008) to account for within-subject correlation. We instead propose a fully Bayesian approach that uti-

lizes a hierarchical random effect structure.

3. IMPLEMENTATION

For a Bayesian analysis of the model, inference was attainedvia Markov Chain Monte Carlo. We follow

closely the formulation and notation of Sargent (Sargent, 1998). Allowingθω = (x, z, ω, n, Γ) andθu,µ =

(x, z, u, µ, n, Γ), the posterior distribution is proportional to three components:

p( β, u, µ, ξ | θω) ∝ L( β | θu,µ)g( β, u, µ | ξ)q( ξ | ω)

We choose independent priors and hyper-priors, yielding:

p( β, u, µ, ξ | θω) ∝ L( β | θu,µ) ×

gβ( β | ξβ)gfra,set( u | ξfra,set)ghaz( µ | ξhaz) ×

qβ( ξβ | ωβ)qfra,set( ξfra,set | ωfra,set)qhaz( ξhaz | ωhaz).

Addressing each piece, the likelihood

L( β | θu,µ) =

I
∏

i=1

S
∏

s=1

K
∏

k=1

Ls
∏

l(s)=1

eniskl(µskl+xT

i β+zT

i ui)−eµskl+xT
i β+zT

i ui+log Γiskl

and the prior on the regression coefficientsgβ( β | ξβ) = N(0,Σ). We partition the vectorβ into the

elements yielding relative transition rates and those adjusting for covariates,

β = (βtrans, βcov)
T = (β11, ..., βsk, ..., βSK , βcovariate 1, ..., βcovariate p)

T.

We chooseΣ to be a diagonal matrix with only two unique non-zero elements: σ2
trans appearing in the

first SK diagonal spots, and the remaining diagonal spots filled withσ2
cov. Hyperpriorqβ( ξβ | ωβ) =
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Gamma(αtrans, φtrans)Gamma(αcov, φcov), whereξβ = (ξtrans, ξcov) = ( 1
σ2

trans

, 1
σ2

cov
). Equivalent

to setting log-normal priors directly on the individual andpair (set) frailties, we appropriategfra,set( u | ξfra,set) =

N(0, σ2
fra)N(0, σ2

set) and allot the hyperpriorqfra,set( ξfra,set | ωfra,set) = Gamma(αfra, φfra)Gamma(αset, φset),

whereξβ represents(ξfra, ξset) = ( 1
σ2

fra

, 1
σ2

set

). Similar to the prior for the frailties,ghaz( µ | ξhaz) =

N(0, σ2
haz) prior on eachµskl, which is the same as log-normal priors directly on the baseline haz-

ard,h0skl. Lastly qhaz( ξhaz | ωhaz) = Gamma(αhaz, φhaz) serves as the hyper-prior onξhaz where

ξhaz = 1
σ2

haz

.

Which gives the general model:

p( β, u, µ, ξ | θω) ∝

I
∏

i=1

S
∏

s=1

K
∏

k=1

Ls
∏

l(s)=1

P
∏

p=1

eniskl(µskl+xT

i β+zT

i ui)−eµskl+xT
i β+zT

i ui+log Γiskl
×

1
√

2πσ2
trans

e
−

β2
sk

2σ2
trans

1
√

2πσ2
cov

e
−

β2
SK+p

2σ2
cov

1
√

2πσ2
fra

e
−

u2
1i

2σ2
fra

1
√

2πσ2
set

e
−

u2
2i

2σ2
set

1
√

2πσ2
haz

e
−

µ2
skl

2σ2
haz ×

φαtrans

trans

Γ(αtrans)
(

1

σ2
trans

)αtrans−1e
φtrans

σ2
trans

φαcov
cov

Γ(αcov)
(

1

σ2
cov

)αcov−1e
φcov

σ2
cov ×

φ
αfra

fra

Γ(αfra)
(

1

σ2
fra

)αfra−1e

φfra

σ2
fra

φαset

set

Γ(αset)
(

1

σ2
set

)αset−1e
φset

σ2
set ×

φαhaz

haz

Γ(αhaz)
(

1

σ2
haz

)αhaz−1e
φhaz

σ2
haz .

We also consider a smoothing of the hazard bins, in which casewe supplant theµskl priors above

with: ghaz( µ | ξhaz) = N(θskl, σhaz) prior on eachµskl, whereθskl = 0 if l = 1, θskl = µsk(l−1) if

l > 1 This allows bins to be “similar” to each other. This is what werefer to hence forth as the “smoothed”

model.

If no demographic covariates are included in the process (P = 0), any density involving the subscript
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covcan be eliminated from the posterior joint distribution. Likewise, if it is not desired to keep track of

paired/set frailties, then any density involving the subscript setshould be eliminated from the posterior

joint distribution.

4. APPLICATION

The application makes use of R and K system data from the SleepHeart Health Study (SHHS), a mul-

ticenter study on SDB and cardiac outcomes (Quan et al., 1997). Subjects for the SHHS were recruited

from ongoing cohort studies on respiratory and cardiovascular disease. From the first SHHS cohort of

over 6300 subjects, 5614 were identified as having reliable and high quality in home polysomnograms. To

assess the independent effects of SDB on sleep structure, a matched subset of the 5614 with and without

SDB was selected for the current study. Subjects with severeSDB were identified as those with a RDI

> 30 events/hour. Subjects without SDB were identified as those with an RDI< 5 events/hour. Other

exclusion criteria included prevalent cardiovascular disease, hypertension, chronic obstructive pulmonary

disease, asthma, coronary heart disease, history of stroke, and current smoking.

Propensity score matching was utilized to balance the groups on demographic factors and to minimize

confounding. SDB subjects were matched with no-SDB subjects on the factors of age, BMI, race, and

sex. Race and sex were exactly matched, while age and BMI werematched using the nearest neighbor

Mahalanobis technique with a caliper of 0.10. The resultantmatch was 51 pairs that met the strict inclusion

criteria outlined above and exhibiting very low standardized biases, a vast improvement on the imbalance

of BMI between diseased and non-diseased groups of past studies (Swihart et al., 2008). Polar opposites

of SDB severity, isolated from comorbities, were used to increase the likelihood of finding 1) differences

in sleep architecture (see Table 2) and 2) independent effects of SDB on sleep continuity.
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Conceptualizing sleep as a multi-state competing risks process, we analyzed 3-state sleep, collapsing

the four stages of non-REM into one state, “NREM”, leaving the traditional “Wake” and rapid eye move-

ment “REM” states. From any of the three states one may transition into the others producing six possible

transition types: Wake to NREM (WN), NREM to Wake (NW), NREM to REM (NR), REM to Wake

(RW), REM to NREM (RN), and Wake to REM (WR).

In the context of the application,i = 1, ..., 102 indexes individual,s = 1, ..., 6 denotes the transition-

type,k = 1, 2 segments the night,

(L1, L2, L3, L4, L5, L6) = (2, 6, 12, 12, 12, 1)

is the transition-type specific binning of the hazard, whichwas determined by the distinct quantiles of the

duration in state times per transition-types. FindingLs was done iteratively, first attempting to have 12

bins with approximately the same number of transitions of types in them for model stability. The number

12 was selected for its versatility: one pass through the data binning hazards into 12ths and one could

easily construct 12, 6, 4, 3, 2, or 1 piece models by summing number of transtions and total duration in

state time, collapsing 1/12 bins into larger fraction binning. If the types did not yield distinct quanitles

for 12 bins, then bin sizes of 6, 4, 3, 2, and 1 were sequentially tried. The vectorwi = (w1i, w2i) of

multiplicative random effects, the first for individual andthe second for matched pair. The vectorui =

(u1i, u2i), as the log of the elements inwi, is a vector of additive random effects. The vectorzi = (1, 1) in

models with individuals nested within matched pair,(1, 0) for models not accounting for pair. The vector

xi is composed of the design variables and (potentially) the demographic covariates. The design variables

are the 3-way interaction of disease status, thekth segment of the total SAC time, and transition-types.

The design interaction variables require the data to be at the “cross-binned”i − s − k − l level and this

enables the correspondingβ vector to have elementsβsk which quantify the average transition frequency
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of types in thekth segment of the total SAC time for diseased versus non-diseased. In the case ofK = 2,

this allows sampling from the posterior distribution of thecomposite quanitity of the rate ratio between

the two segments of night (exp(βs2)
exp(βs1)

), enabling inference as to whether transition intensitieschange over

the course of sleep.

Models with various combinations of bin smoothing, accounting for pair frailty, and number of in-

cluded demographic covariates are fit. All models were fit with two segments of total SAC time (K = 2)

and the aforementionedl(s). For each model, we ran five chains for 1200 iterations and used the last

200 of each chain, yielding 1000 samples from each relevant full conditional ofβ, ui andµskl (where

ui = log(wi), µskl = log(h0skl) ). Our hyper-parameter values were selected based on Sargent (1998):

ω = (αtrans, φtrans, αcov, φcov, αfra, φfra, αset, φset, αhaz, φhaz)

= (1.1, 0.1, 0.1, 0.1, 1.1, 0.1, 1.1, 0.1, 0.1, 0.1).

5. RESULTS

Upon visual inspection of trace plots, the chains were well mixed and the lag auto-correlation was accept-

able (see Appendix). Convergence monitoring was conductedusing the Brooks and Gelman diagnostic

(Carlin & Louis, 2000; Brooks & Gelman, 1998) (acknowledging the limitations of such convergence

diagnostic measures). A vast majority of these univariate diagnostics are greater than but close to 1, sug-

gesting convergence and appropriately overdispersed starting values. From graphical inspection of the

diagnostic over iterations, a vast majority not only narrowto 1, but also show the stabilization of the

pooled and within interval widths.
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Model Rate Ratios for SDB vs. no-SDB by Transition Type s
Pair No. Night

Smoothed Frailty Covariates Segment WN NW NR RW RN WR
Yes Yes 4 1 0.991.121.28 1.11.251.42 0.560.720.92 1.021.321.73 0.670.931.24 1.572.664.95

2 0.870.981.11 1.111.261.42 0.540.660.81 0.871.071.31 0.740.981.3 0.781.011.32

Yes Yes 2 1 0.991.121.29 1.11.261.43 0.550.710.92 1.011.311.72 0.670.91.23 1.592.694.55

2 0.870.981.10 1.111.271.43 0.530.660.81 0.871.081.33 0.761.001.31 0.781.031.38

Yes Yes 0 1 1.001.131.27 1.111.271.43 0.560.730.93 0.981.301.7 0.70.931.29 1.572.654.36

2 0.880.981.11 1.121.271.43 0.530.660.81 0.891.081.31 0.750.991.32 0.771.031.36

Yes No 0 1 0.971.121.29 1.101.241.39 0.550.710.91 1.001.311.69 0.670.911.26 1.622.714.43

2 0.860.971.09 1.101.251.41 0.530.660.82 0.881.071.28 0.750.981.28 0.781.021.35

No No 0 1 0.981.121.26 1.071.221.39 0.530.680.86 0.961.251.61 0.640.871.14 1.572.564.42

2 0.850.961.09 1.101.241.42 0.50.630.78 0.871.051.29 0.720.951.25 0.771.011.33

No Yes 0 1 0.981.111.26 1.091.241.4 0.530.680.87 0.981.251.66 0.650.871.18 1.512.484.24

2 0.860.971.1 1.101.261.41 0.510.640.81 0.861.051.29 0.720.951.24 0.761.011.32

Table 4. Rate Ratios for SDB vs. no-SDB by Transition Type. Blue indicates

diseased transition significantly more than non-diseased. Red indicates

diseased transition significantly less than non-diseased. The tables are

in a format where the elements are the estimates, credible intervals as the

subscripts, the center number the estimate (Louis & Zeger, 2007).

6. DISCUSSION

All models exhibit SDB subjects transitioning significantly more of typeNREM → Wake in both halves

of the night,Wake → REM in the first half of the night, and significantly less of typeNREM → REM for

both segments of the night (Table 4). In other words, given a SDB subject is in NREM, he is more likely

than a no-SDB subject to transition to Wake and less likely totransition to REM regardless of how long

he has been asleep. This is corroboratively linking with findings of SDB subjects having higher all cause

mortality (Punjabi et al., 2009) and increases inNREM→ Wake and decreases inNREM → REM leading

to higher all cause mortality (Laffan et al., 2009).
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Model Relative Rate Ratios for SDB vs. no-SDB
Pair No. of segment 2 vs segment 1 by Transition Type s

Smoothed Frailty Covariates WN NW NR RW RN WR
Yes Yes 4 0.750.871.01 0.570.821.15 0.871.011.18 0.721.081.64 0.660.921.24 0.20.40.71

Yes Yes 2 0.750.871.02 0.590.841.14 0.861.011.18 0.741.141.72 0.690.941.27 0.210.40.72

Yes Yes 0 0.750.871.01 0.620.841.14 0.861.011.18 0.701.081.59 0.670.921.24 0.220.410.7

Yes No 0 0.750.871.02 0.600.821.11 0.861.011.18 0.711.101.62 0.680.941.28 0.210.390.64

No No 0 0.740.861.00 0.610.851.12 0.861.021.19 0.731.111.64 0.670.941.29 0.220.410.67

No Yes 0 0.750.881.02 0.610.851.15 0.871.021.19 0.741.111.66 0.670.961.33 0.230.430.69

Table 5. Comparisons of beta coefficients, 2nd segment of night to 1st

segment. Blue indicates the relative rate of 2nd segment of night for

diseased transitioning compared to the non-diseased is significantly

more than that of the 1st segment. Red indicates the relative rate of 2nd

segment of night for diseased transitioning compared to the non-diseased is

significantly less than that of the 1st segment. The tables are in a format

where the elements are the estimates, credible intervals as the subscripts,

the center number the estimate (Louis & Zeger, 2007).

Given a SDB subject is in Wake he is on average∼ 2.6 times as likely as his no-SDB counterpart

to transition to REM in the 1st half of the night. However, there is no significant difference between the

SDB groups for the WR transition in the second half of the night. The segmented SAC time analysis of

the 2nd half of the night to the 1st shows a reduction of 60% of the disparity between average transition

frequencies of diseased and non-diseased for type WR (Table5). This suggests the second half of the night

has both groups getting to REM from Wake at more simliar ratesthan the first half.

As for the accounting for pairing discussion, (Table 4) shows very little difference between models

differing only by the accounting of pairs. In those comparisons, the magnitudes and directions mirror well,

and the only difference in significant results are due to 95% credible intervals containing 1.00. It appears
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that in this analysis, the gain in parsimony would favor the omission of pairing information (Stuart, 2008).

The model described the sleep hypnogram more fully than thatof traditional sleep architecture, where

only % time in REM differed: SDB 17%, no-SDB 21%. Showing the derivation of the Poisson repre-

sentation provides motivation for a shift in the conceptualization of modeling sleep. The problem can be

thought of as amulti-state, recurrent event, competing risk, hierarchical, stratified survivalmodel or a

Poisson process with the sufficent statistics of number of transitions arising from time at risk for those

transitions. This shift makes concerns about tie handling of DIS times inconsequential. The ability to

piecewise model the hazard, segment the night, and account for transition-type allow for a very flexible

model that can easily incorporate time varying covariates.The model is very scalable, with analysis on

5,614 individuals taking just under 5 hours on a laptop with a1.83 GHz processor.

MCMC allowed us to account for the correlation induced by repeated measurements on the same

individual nested within matched pairs and would facilitate the examination of the heterogeneity in our

population through random intercepts. Heterogeneity of populations is a very crucial topic in epidemio-

logic studies. Through the assumption of exponential survival times we gain a framework that potentially

allows us to eschew/relax parametric assumptions about thehazard. These reasons plus the eloquence of

jointly modeling the frequency of transitions and times to transition make the Bayesian Poisson regression

framework a powerful and flexible tool in modeling sleep as represented by hypnograms.
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Subset of Chains from MCMC Sampling
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