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Modeling Multilevel Sleep Transitional Data
Via Poisson Log-Linear Multilevel Models

Bruce J. Swihart

Abstract

This paper proposes Poisson log-linear multilevel models to investigate popula-
tion variability in sleep state transition rates. We specifically propose a Bayesian
Poisson regression model that is more flexible, scalable to larger studies, and
easily fit than other attempts in the literature. We further use hierarchical ran-
dom effects to account for pairings of individuals and repeated measures within
those individuals, as comparing diseased to non-diseased subjects while minimiz-
ing bias is of epidemiologic importance. We estimate essentially non-parametric
piecewise constant hazards and smooth them, and allow for time varying covari-
ates and segment of the night comparisons. The Bayesian Poisson regression is
justified through a re-derivation of a classical algebraic likelihood equivalence of
Poisson regression with a log(time) offset and survival regression assuming piece-
wise constant hazards. This relationship allows us to synthesize two methods
currently used to analyze sleep transition phenomena: stratified multi-state pro-
portional hazards models and log-linear models with GEE for transition counts.
An example data set from the Sleep Heart Health Study is analyzed.
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SUMMARY
This paper proposes Poisson log-linear multilevel modelenestigate population variability in sleep
state transition rates. We specifically propose a Bayesissen regression model that is more flexible,
scalable to larger studies, and easily fit than other attemnpthe literature. We further use hierarchical
random effects to account for pairings of individuals argested measures within those individuals, as
comparing diseased to non-diseased subjects while mimgimdas is of epidemiologic importance. We

estimate essentially non-parametric piecewise constaatrdls and smooth them, and allow for time vary-
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2 B. SWIHART ET AL.

ing covariates and segment of the night comparisons. The®ay Poisson regression is justified through
a re-derivation of a classical algebraic likelihood eqléwae of Poisson regression with a log(time) offset
and survival regression assuming piecewise constant d&zahis relationship allows us to synthesize
two methods currently used to analyze sleep transitiong@ena: stratified multi-state proportional haz-
ards models and log-linear models with GEE for transitionrds. An example data set from the Sleep

Heart Health Study is analyzed.

Keywords Bayesian, multi-state, recurrent event, competing hgarchical, stratified, survival analysis

1. INTRODUCTION

Hypnograms are time series of a subjestsep statefrom a single night’s sleep. In this manuscript we
consider methods for the analysis of hypnogram data. Wesfocumethods that scale to large cohort
studies and complex covariance structures. We show howriegr random effect models can be derived
and used to synthesize existing methods for analyzing tygamotransition data from large cohort studies
and extend it to multilevel settings, unearthing data fesstwelassical measures bury. We further discuss
model-based methods for exploratory data analysis. Wealvéth a motivating discussion of two subjects

from the community based cohort study prompting this work.

1.1 Motivating example

Summaries of the measurement of sleep for two subjects witimsically different sleep behavior can
highlight or mask these differences. To illustrate, Subfe®f Figure 1 has severe Sleep Disordered
Breathing (SDB, discussed further below), as indicated ®spiratory disturbance index (RDI) of 52.28

apneic or hypopnic events per hour, while Subject B doesRbDi 0.57). Each subject was monitored
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Modeling Multilevel Sleep Transitional Data Via Poissorgtlbinear Multilevel Models 3

overnight during sleep via a polysomnogram for eight holing classical summary of their sleep states,
sleep architecture, is similar across the two subjectsjeBti spent 69, 16, 15 and Subject B spent 70,
16, 14 percent of the night in the Non-Rapid Eye Movement (NIRERapid Eye Movement (REM) and
Wake states, respectively. Whereas their sleep architeistgimilar, the temporal evolution of their sleep
may not be. Sleep for an individual is often visualized witiphograms, which are time series of sleep
states, depicting states of sleep on the x-axis and time #lesp onset on the y-axis. Subject A and B
have similar sleep architecture yet dissimilar hypnogréses Figure 1). For example, in the zoomed-in
portion around hour 7, we see a critical difference in theatian of REM sleep for each subject. Subject
As duration in REM sleep is broken into small chunks, wher8abject B’s is uninterrupted. This is a
feature that sleep architecture cannot capture.

We have described population variations of this phenomenore fully elsewhere (Swihart et al.,
2008). Despite severe sleep related disease, sleep atahiteemains consistent at the population level.
Thus any statistical analysis of sleep architecture as suneaf sleep quality may not account for sleep
fragmentation, even in extreme comparisons of severegpsiisordered breathing diseased subjects to
healthy.

In our motivating example, Subject A's sleep is more fragtadrihan Subject B’s, with 83 overall
transitions between states. Subject B had 47 transitiotagah While, summaries of the overall transition
rate are useful, closer study of specific transition typesyteld important epidemiological information
and directionality of associations with health outcomexfdn et al., 2009). A summary of the hypnogram
by frequency of transition types for the two subjects is ibl&al. There are 15 as many transitions from
REM to NREM for Subject A than Subject B.

We make both scientific and methodologic contributions ia ffaper. From a scientific perspective,
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4 B. SWIHART ET AL.

we 1) develop and substantiate transition rates as an iafibrenpopulation measure for sleep compar-
isons, 2) report population variations in transition rdtmsdifferent segments of the night, 3) utilize a
very large dataset of sleep biosignals fre8400 subjects, and 4) reduce bias in our results via matching
From a methods standpoint, we 1) set forth a framework to Hmnasleep of a population of individuals
as a multi-state survival analysis problem with randomatfe2) re-derive and employ a classical alge-
braic equivalence between survival analysis and Poisgression within this framework, 3) smooth the
piecewise constant hazards, and 4) accomplish all of thtsnelative computational ease.

This paper proposes Poisson log-linear multilevel modaeisvestigate population variability in tran-
sition rates. We specifically propose a Bayesian Poissaessiipn model that is more flexible, scalable
to larger studies, and easily fit than other attempts in teediure (Sinha, 1993; Clayton, 1991; Sinha &
Dey, 1997; Sargent, 1998; Fahrmeir & Klinger, 1998; Sarge®97; Kneib & Fahrmeir, 2007; Swihart
et al., 2008). We further use hierarchical random effecéstmunt for pairings of individuals and repeated
measures within those individuals, as comparing diseasedrt-diseased subjects while minimizing bias
is of epidemiologic importance. We estimate essentially-parametric piecewise constant hazards and
smooth them, and allow for time varying covariates and segmiethe night comparisons. The Bayesian
Poisson regression is justified through a re-derivation caasical algebraic likelihood equivalence of
Poisson regression with a log(time) offset and survivatesgion assuming piecewise constant hazards.
This relationship allows us to synthesize two methods ctiyeused to analyze sleep transition phe-
nomena, stratified multi-state proportional hazards mo(Eherneau & Grambsch, 2000) and log-linear
models with GEE (Swihart et al., 2008) for transition couMsreover, our suggested Poisson multilevel
modelling is more flexible than partial-likelihood basedltinstate proportional hazards models and GEE

models for transition counts by allowing for nested randdface structures and easily handling time-
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Modeling Multilevel Sleep Transitional Data Via Poissorgtlbinear Multilevel Models 5

varying covariates. We demonstrate that the computattmmaen of these models is manageable and that
the methods can be extended to large cohort studies. Fittalproposed multilevel models yield random
effect predictions of transition risk.

In the next two subsections, a brief yet grounding overviéwhe science of sleep, sleep data ex-
traction, history of statistical approaches to this typgbénomena, and exploratory data analysis on
hypnogram data is given. To close out the introduction isrenfdation of the set-up and challenges of

analyzing these rich data.

Subject A Subject A
= =
o o |-H—| H
= = “ “
(0] 1 2 3 4 5 6 7 8 6.75 7 7.25
Subject B Subject B
= =
'I H 'I ’I_HJ
= =
(o] 1 2 & 4 5 6 7 8 6.75 7 7.25

Fig. 1. Left panels, 8 hour sleep hypnograms of Subjects ABrRlight panels, zoomed half-hour portions of the
corresponding left panel. On all hypnograms, the x-axisesgnts the states of sleep (N: Non-REM, R: REM, and
W: Wake) a subject can occupy. The y-axis is time of nighthwibeing sleep onset, thus a hypnogram is a state-time

graph, showing the trajectory of sleep for an individual.
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6 B. SWIHART ET AL.

Previ ous state

Subj ect A Subj ect B
Current state N R W N R W
Non- REM ( N) 625 15 24 652 1 19
REM (R) 19 138 0 3 155 2
Wake (W 21 4 119 18 4 111

Total epochs 665 157 143 673 160 132
Total in hours 5.54 1.31 1.91|5.61 1.33 1.10
Sl eep Architecture (% 69 16 15 70 16 14

Table 1. Cross Tabulation of Pairwise Contiguous EpochSidnject A and B.

1.2 Biosignals of sleep

Polysomnography is a multi-faceted sleep monitoring psecé polysomnogram (PSG) is a collection
of simultaneous time series that are the measured biologjigaals related to sleep. The signals that
comprise a polysomnogram include the electroencephatodEEG), electro-oculogram (EOG), elec-
tromyogram (EMG), electrocardiogram (ECG), airflow, chexsti abdominal effort, oxyhemoglobin sat-
uration, and body position. A PSG summarizes sleep behavidris the gold standard for diagnosing
somniopathy (sleep disorders), such as SDB and restlesy/teljome. The data from a PSG study is
voluminous and complex. Hence feature extraction is ugyeiformed. The previously mentioned RDI
or apnea/hypopnea index is an example of clinical featueel irs diagnoses and sleep epidemiological
research.

The hypnogram decomposes the PSG into a time series of sktep sia visual classification. The
typical six stages of sleep used in this decomposition acsvkras the R and K system, as put forth by
Rechtschaffen and Kales in 1968 and updated by the Americaény of Sleep Medicine (AASM)
in 2007 (Rechtschaffen & Kales, 1968). Recently, computgrrithms are supplanting sleep physicians
for the task of translating the simultaneous curves of thiggoonnogram into the six stages of sleep

(Penzel & Conradt, 2000). The summarization that occuradsfold: 1) continuous time is discretized
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Modeling Multilevel Sleep Transitional Data Via Poissorgtlbinear Multilevel Models 7

into sequential bins, usually 30 seconds, called “epochd’2 within each epoch the information across
all time series is combined to declare one of the six stagasteep. The six stages are: Wake, Stage 1,
Stage 2, Stage 3, Stage 4, and Rapid Eye Movement (REM). (Ftage 1, Stage 2, Stage 3, Stage 4 are
grouped into the stage of Non-Rapid Eye Movement (NREM),ravention we adopt in our analysis to
limit the number of state-to-state transitions under adersition.

A sleeper passes through these states in a recurrent fastsiop times throughout the night. We
note that, even though there is a typical progression betwtses, each of th@) possible transitions
usually occur at least once over the course of a night’s slBepugh possessing limitations, the R and
K system facilitates a tremendous data reduction, produmie discrete-time discrete-state process, the
hypnogram, from many continuous-time and continuous statte series.

The hypnogram for an individual is easily visualized andalisus included in a sleep report. It shows
that, even when summarized by the R and K system, sleep igyalyramic discrete-time discrete-state
stochastic process, where a transition from any state ippaateto any other of the six states in the next
epoch is possible. Each state has the possibility of beisiged for various durations at various times
throughout the entire run of the night.

The typical and traditional sleep report also includessl@ehitecture, which is the percentage of
total sleep time spent in each stage of sleep; this is thentealosummary of the hypnogram. Sleep
architecture is an aggressive summarization of the dataeisénse that it reduces the entire hypnogram
to seven numbers. Specifically, sleep architecture sumsadiiemporal and transition information from
the hypnogram. The crudeness of sleep architecture’sigéearof one’s sleep has been limiting for the
study of sleep fragmentation and sleep continuity. (Hesetinuity of sleep is the concept of remaining in

a state or a class of states of sleep for a number of contigeymaehs and fragmentation is the disruption
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8 B. SWIHART ET AL.
of this contiguity.)

It has been conjectured that sleep continuity may be an itapbcharacteristic of sleep’s role in
health, especially in the study of sleep disordered bregthnd its connections to health outcomes (Nor-
man et al., 2006; Punjabi et al., 1999; Bonnet & Arand, 208B)B is a condition where the airway of the
throat collapses at least partially, possibly fully, anid ttollapse stimulates an involuntary response from
the sympathetic nervous system: an arousal. An arousal oftest does not awaken an individual, but
does usually place the sleep process into a state closeattoftivakeful consciousness. These arousals
are compiled into indices such as the RDI or apopnea-hypiowea (AHI) as arousal events per hour.
Traditionally, the degree of severity of SDB is accorded tpaaticular range of values for one of the
aforementioned indices. An index of less than 5 would ofterabknowledged as no-SDB and greater
than 30 as severe SDB.

It has been shown that sleep architecture does not nedgshfieir between no-SDB and SDB groups
(Swihart et al., 2008). This motivates research for a bettieric of sleep fragmentation, for models that
can utilize the temporal and transition information of tiyphogram and enable more powerful inferences
on the role of sleep and adverse health outcomes.

The structure of the hypnogram lends itself well to muléitstsurvival models, for which we provide
a brief literature review. Sinha (1993) built upon the woflGtayton (1991) in modeling multiple event
time data and gave an excellent discourse on the develomheatvival analysis. Sinha & Dey (1997)
give a review of the flexibility and implementation of semigaetric multi-state survival models, giving
five ways to model (with assumptions) the non-parametritgfahe survival model; however, left to the
discussion and future work the methodology of clustereiiti'a and competing risks. Sargent (1998)

outlines a framework for hierarchical Cox proportional fuas regression that leaves the baseline free of
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Modeling Multilevel Sleep Transitional Data Via Poissorgtlbinear Multilevel Models 9

assumptions due to the utilization of the partial likelid@nd provides exemplary general notation of the
likelihood in preparation for Bayesian modeling. Fahrng&kKlinger (1998) apply a multi-state survival
model with a likelihood derived via counting processes éepldata which requires integration. They ad-
vance the art of modeling time varying covariates in a mathite framework from that of Sargent (1997).
Further work with the counting process likelihood with timerying covariates using mixed models has
been put forth by Kneib & Fahrmeir (2007).

One of the first uses of survival analysis involving sleep 8B was to model hypersomnolence and
showed that the more severe the degree of SDB, the greatdayfiene sleepiness, as evinced by sleep
latency time (Punjabi et al., 1999). Norman et al. (2006)ussgametric survival analysis on “sleep runs,”
where the R and K system was summarized from six states ttwastvake and sleep, and demonstrated
that the degree of SDB corresponds to distinct levels ofpstemtinuity, as represented by a unidimen-
sional estimate. To isolate the effects of SDB on sleep feagation, Swihart et al. (2008) fit a log-linear
model on the relative frequencies and a multi-state pramuat hazards survival model for the hazard
ratios describing sleep difference between matched SDBaf8DB groups.

All aforementioned methods take for granted the R and K systieclassification. This summarization
of the PSG to the hypnogram perhaps discards useful slesgttomal information on arousals and con-
tinuity. While methods for analyzing the PSG, such as the Big@al (see Crainiceanu et al., to appear in
2009), may fill in important gaps in the R and K summarizatige,focus exclusively on the hypnogram

data and do not consider the remaining PSG signals.
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1.3 Exploratory Data Analysis and Exploratory Models

The previous section went through a brief overview of thestlgyment of survival analysis and the science

of sleep and SDB. This section demonstrates features of émelR system data for 102 matched subjects,

51 with SDB and 51 no-SDB (matching details appear lateeegharchitecture shows the percent of night

in REM is statistically different, with the SDB group at 17rpent, no-SDB at 21 (Table 2).

Vari abl e SDB  no-SDB p-val ue
RDI 40. 532 2.114 0.000
BM 30.275 30.247 0.972
Age 61.804 61.804 1.000
Race (% White) 92.160 92.160 1.000
Sex (% Male ) 66.667 66.667 1.000
Total Sleep Tine 351.397 357.466 0.593
Sl eep Efficiency 81.941 83.364 0.743
% Ni ght in Stage 1 5. 750 5.577 0.815
% Night in Stage 2 62. 693 59.109 0.121
% Night in Stage 3 or 13. 647 13.908 0.904
% Ni ght in REM 17.909 21.406 0.002

Table 2. Sleep Architecture

To investigate the distribution of transition frequencytppe, we can summarize all contiguous pairs

of epochs by a transition type of evi ous state — current state. Doing so gives a feel for

which transitions are rare and possibly affected by SDB.ifgtance, it appears the transitidake —

REM(WR) is the least frequent among all pairwise classificatifmm both groups, yet the SDB group has

over 1.5 times as many such transitions (Table 3).

Collapsing the R and K system into two states of Wake and Steejgan plot the probability of each

group being asleep by epoch. Doing so shows similaritiewdxt the two groups, but reveals that the

no-SDB group stays asleep longer (Figure 2).

We begin to explore temporal transition models using exgttoy two-stage random effect approxima-
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Fig. 2. Probability of being asleep over epochs, by diseasepy

tions by fitting subject-specific regression models thenganng the fitted parameters across subjects.
Specifically, exploratory transition models can be cortderd by using a baseline category logit model
(Agresti, 2003), predicting the stage of the next epochrgibe current epoch’s stage (Liang & Zeger,

1993). That is, we fit the model

log{P(Yit = k| Yi1—1)/P(Yit =1|Y; 1)} = Bi + Tir202 + Tit303,

separately for each subject, whérg is the state (taking valuds= 1, 2,3 for W, N, R) for subject at

Previ ous state

Di sease Controls
Current state N R W N R W
Non- REM (N) 28, 058 124 1,561 | 27, 968 161 1,284
REM ( R) 249 6,023 151 364 7,515 96

Wake (W 1,423 274 7,298 1,070 293 8169
Total epochs 29,730 6,421 9,010 | 29,402 7,969 9,532
Total in hours 247.75 53.51 75.08 | 245.02 66.41 79.58

Table 3. Cross Tabulation of Pairwise Contiguous Epochsibgde Group
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12 B. SNIHART ET AL.
epocht and the design matrix;;; = I(Y; ;—1 = j).

Doing this yields fitted values that for the probabilitiesha&ing in a stage of sleep one epoch later
conditional on the stage experienced in the previous efdsing three stages of sleep and applying this
model to an individual yields a 8 3 transition matrix with the off-diagonal entrié¥Y;; = k | Y; ;1 =
k"). We apply this model to each individual of the diseased grangh the non-diseased group and plot
comparative histograms of the probabilities of 6 differeansition types (contiguous epochs of the same
state do not consitute a transition). This exploratory nhedercise allows for identification of different

distributions of transition probabilities between theedise groups (Figure 3).

WN — SDB m= 0.0486 , std dev= 0.0241 NW — SDB m= 0.1295, std dev= 0.0806 NR — SDB m= 0.0395, std dev= 0.0246

i i -]
ﬂmmmﬂwﬂnﬂmm nnm 2 H_Hﬂﬂﬂ]mﬂmm
WN — no SDB m= 0.0372, std dev= 0.0135 NW — no SDB m= 0.1103, std dev= 0.0612 NR — no SDB m= 0.0205, std dev= 0.0183
¥ ] LI
M”‘({mem ] u_:l]]{h_:l{m:l:l}nrrrr”m m i 2 |:|.|I|:|:|:|:|:|:|:h]ﬂﬂnnnn P
RN — SDB m= 0.0086 , std dev= 0.004 RW — SDB m= 0.0123, std dev= 0.0144 WR — SDB m= 0.0441 , std dev= 0.0359
.
= £ = £ =4
oo o mﬂﬂm Jallldham o o . 5
RN — no SDB m= 0.0126, std dev= 0.0067 RW — no SDB m= 0.0072, std dev= 0.0086 WR — no SDB m= 0.0395, std dev= 0.0261
@ -
%ﬂﬂﬂﬂm%n 5 L il anllann

Fig. 3. Multinomial Model Expected Probabilities of Trati@n by transition-type and disease status

We investigated the inclusion of non-linear non-transisibtrends (by epoch) by including natural
spline terms. These yield subject-specific time varyingophilities of being in a certain stage in that
particular epoch. The multinomial model mandates thatritbabilities add to one, and plotting the three

probabilities for an individual over epochs shows the traffe of the probability of being in a certain
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Modeling Multilevel Sleep Transitional Data Via Poissorgtloinear Multilevel Models 13

stage. Below is the probability simplex values for a disdaséject, as well as for a non-diseased subject
(Figure 4). Note for the diseased individual how fragmentednight becomes with frequent tradeoffs
in probability of being in Wake and NREM, and the overall lafkREM probability. Note for the non-

diseased individual, the cyclic nature of REM probability.

NREM NREM

Puotebiy o stage
Protebiy o stage

epoch epoch

Pobaby o stage
Pobaby o stage

eeeeeeeeeeee

Potaby o stage
Pobaby o stage

eeeeeeeeeeee

Fig. 4. The first column is an individual with SDB, the proHapiof being in the stage by epoch, for one night. The
second column is an individual without SDB. Top - NREM, MiddIREM, Bottom - Wake.

Viewing several R and K systems can be done with Lasagna (@iggsre 5) (our term for advocating
heatmaps over traditional spaghetti plots Swihart et @lbet submitted). Each horizontal “layer” across

time is a subject’s R and K system condensed to Wake, NREM, Riall Absorbed, with color represent-
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14 B. SNVIHART ET AL.
ing the subject’s sleep state for that epoch. The plots durekeal that no-SDB subjects are not without
long stretches of wakefulness in the course of the night aradwehole experience more REM sleep than

the SDB group. These plots are good for visualizing the ditaudtiple hypnograms.

Lasagna Plots of R and K systems

51 9DB subjects

51 00-SDB subjects

Hour from Sleep Onset

Fig. 5. Lasagna plot for SDB (top) and no-SDB (bottom).Waaek, NREM-Red, REM-Green, Absorbed-Yellow.

1.4 Setup and challenges

The sleep transition rate data to be modeled is complex. ngged solution is anulti-state, recurrent
event, competing risk, hierarchical, stratified survivabdel fit using Poisson hierarchical models. To
elaborate, it isMulti-stateas there’s more than the traditional 2-states (i.e., ale@d, wake/sleep, etc.)
in typical survival modelsRecurrent evenbecause no state is absorbing and all can ré@ompeting
risk because options exist for the state to which one will trasi{from Non-REM to Wakeor from
Non-REM to REM).Hierarchical because of nesting of times-to-event within individuald andividuals

nested within matched pairStratifiedin such a way to render piecewise constant hazards, tramgitpe

http://biostats.bepress.com/cobra/art64



Modeling Multilevel Sleep Transitional Data Via Poissorgtloinear Multilevel Models 15

specific inferences between diseased and non-diseasetfarghce on segment of night dependence
of the transition-specific effects of diseased and nonadisé. Our models are necessarily complex to
capture the fine structure of the transition processes tigitrbe of interest. Oversimplification of data,
as shown in our first example, can be and is misleading in mpplcations.

In cohort studies of sleep transitional phenomena, “tines’ $everal meanings which can lead to con-
siderable confusion. We focus on three important distimstiin the discussion of time: duration in state
(DIS) time, stopwatch accruing cumulative (SAC) time, aochl wall clock (LWC) time. To elucidate,
consider an example: a subject falls asleep when the alayok dn her night stand displays 10:00PM,
say. She goes through various states of sleep, and at 11:23jgms REM sleep. At 11:30pm she exits
REM sleep. Consequently, her DIS time for this transitiofd iminutes, her SAC time was 83 minutes
when she entered REM, 90 minutes upon exiting. The LWC tinteeoentering into REM was 11:23PM,;
of her egress, 11:30PM. Each of these are important, as Dktare the times-to-event and SAC times
help in the segmentation of the night which allows for infere for time-varying transition effects. LWC
time is useful to study diurnal effects; for example it hasrbehown to be important in the studying of
sudden death from cardiac causes and sleep disorderetdibge@@ami et al., 2005).

We implement the model using MCMC/Gibbs sampling. We shatdlsegmented SAC time analysis
amounts to little adjustment in the model form via minor npatétions of the likelihood. Such segmented
SAC time analysis is a vast improvement over the past raviifstedion approach of fitting separate
models in different portions of the night (Swihart et al.03).

The multiple stratifications on transition type, DIS and S#@e interacted with disease status can
easily make for high dimension parameterizations as webiasing combinations. Following recent

research in smoothing (Di et al., to appear in 2009; Craarceet al., to appear in 2009), we propose a
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16 B. SNVIHART ET AL.

fine level of binning and allow a smoothing/penalty to prexa@rer-parameterization, a strategy similar to
the correlated pieces approach (Sinha & Dey, 1997; Sarfje88).

Matching is necessary as the data are observational andmpidgic confounding of the disease
effect is of concern. The number of subjects in the Sleep tHégalth Study (SHHS) dataset motivating
this manuscript allow for well populated, well selected-gumbups for the desired comparisons. Matching
is performed via propensity scores (Rosenbaum & Rubin, 1983

The paper continues with the following sections: Model, lenpentation, Application, Results, Dis-

cussion, and Appendix.

2. MODEL

We develop a model in the most general form for the Poissoreseptation of the hypnogram. As for
notation,; = 1, ..., I indexes individualyj = 1, ...J; indexes the transitions chronologically= 1, ..., S
denotes the transition-type = 1, ..., K segments SAC timé{®) = 1, ..., L, is the transition-type specific
binning of the hazardy; is the vector of multiplicative random effects;, as the log of the elements in
w;, IS a vector of additive frailties;; is the vector of covariates to linearly combine with thelfi@s, ;

is the vector of covariates to linearly combine with the fixicts. BinaryY;;s.; is one if the transition
occurred in thek!” segment of SAC time, in th&” bin of the binned hazard for transition-type0
otherwise. Binary;;x; is a very useful design variable in the competing risks fdrités one if the;*"
transition for individuali is possible as type in the segmenk and bini, 0 otherwise. To be thorough,
Yiiski = 0ijsk = 1 for the possible and observed transitiofy;s,; = 0, 655, = 1 for possible and
censored, and not possibig;,;; = 0 Nonnegative;; is the duration in state time until th@" transition

occurs for individuak. Nonnegative;;.; is the amount of time;; intersected thé" bin of the hazard
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Modeling Multilevel Sleep Transitional Data Via Poissorgtloinear Multilevel Models 17
for transition-types for transitionj occurring in thek!” segment of the night anEs,k,l tijskiOijski = tij,
analogous to Laird & Olivier (1981).

Note that the definition of “segment” of total SAC time is seittfspecific and “ragged” in a sense. If
at;; started in one segment and ends in another, the segntenthich it is assigned in its entirety is the
greatest (latest) one. With that stated, the binning of S@essedes that of the DIS: total SAC time is
divided into K segments (i.e. K=2 implies 1st half and 2nd b&hight). Then the DIS times are assigned
in their entirety to one of the segments. Then the DIS timespartitioned amongst thé*) = 1, ..., L,
bins. Now, the established relation between survival datktlae Poisson likelihood will be reanimated in
the outlined framework (Holford, 1976, 1980; Laird & Olivjel981). Let the hazard for transition-type
s, segment: and binl behgy (tijse | i, 2i, i) = hoski (tijskl)ezm*z?“i, wherez; andz; are covariates
that do not depend on transition, SAC time, or DIS time, bulgaould. A superscripf denotes a
transpose.

The hazard is defined as

Jort(tijsns oy ziswi)  for(bijshis T, 2o, Uq)
Skt (tijskt; Tis ziswi) 1 — Fap(tijor; i, zis )

hri (tijsk | @i, 23, uq) =

where fori (tijskis Tis Zis Wi)s Sski(Lijskl; Tis Zis i), @nd Fegy (tijski; T4y zi, ui) are the density, survivor,

and distribution functions associated with the survivdiimes. The conditional likelihood is therefore:

Oijskl

',:]F

ITIT1I

i=1j=1s=1

gUiie

(tijskis T, i, i) V9" {1 = F(tijsn; @i, 25, wi) } Y90

Siis
z_]skl» Tiy Ziy uz)y e {S( ijskls Liy Ziy uz)}] ekt (21)

i ,":]N ==
H :wf

e

Consider the instance whelres hosp (tijsk1) = 11ski; hence the strata-specific hazard does not depend

ontime ¢;;sx) and thusf is the exponential density. Utilizin§(¢; s ; @i, 2, u;) = exp{jg”s“1 h(r; x;, 2, u;)dr},
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18 B. SNVIHART ET AL.

the conditional likelihood simplifies to

I J S K L.

T T ijs0ijs skt +2]; i
H II H H I I {exp(pskt + ] B+ 2] wi) 922154 exp{—0jspitijspret s T Faem O T2 igenti )
i=1j=1s=1 k=1 [(s)—1

Taking the log and summing over

I K
T T, . .
= Z Z Z Z Mokt (tskt + 27 B + 2] uy) — epsrit@iBtzivitlogTisk) (2.2)

Noting the general form of the log likelihood far~ Poissong) is proportional tawlog(¢) — ¢, (2.2)
could arise from a Poisson log-linear model with= exp{ i1 + 2] 3 + 2] u; + log(Tisr1)}. Formally

written, the conditional model is:
. T T, .
Miskl | fskls @i, B i, Wi, Disky ~ POissOfiettsrt T Atz vitloa(Tie)]

which is very similar to the Gail, Santner, and Brown rat maamyrtumor example (however, in the rat-
tumor model considered there, the log offset of aggregates at riskl';;x; did not need to be included
since it was the same for each rat) (Ibrahim et al., 2001).

Above,n;s; is the count of the number of observed transitions commdtethgT’;y;, the total time
at risk for person, of type s, occuring in segment and bini. Accounting forl';sx; is crucial when
modeling relative counts, for if a subject makes twice asyrteansitions as another but had twice as long
to do so the rate of transitioning is not truly elevated. Jf= 1, Vs and K = 1then (2.2) is equivalentto an
exponential survival model. AB; — oo and the model approaches having a completely non-parametri
piecewise constant hazard for transition-tygpe

The above arguments illustrates how the likelihood eqaived between piecewise exponential sur-
vival models synthesizes two methods in practice for aniadygleep transition data; multi-state propor-

tional hazards models and log-linear models. Sandwictameae estimates were used in Swihart et al.
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Modeling Multilevel Sleep Transitional Data Via Poissorgtloinear Multilevel Models 19

(2008) to account for within-subject correlation. We ir&tgoropose a fully Bayesian approach that uti-

lizes a hierarchical random effect structure.

3. IMPLEMENTATION

For a Bayesian analysis of the model, inference was attaiizellarkov Chain Monte Carlo. We follow
closely the formulation and notation of Sargent (Sargedf8). Allowingé,, = (z, z,w,n,I') andd,, ,, =

(z, z,u, u,n, '), the posterior distribution is proportional to three comeots:

P(Byu, 1, & 0,) o< LB | Oup)g( Byu, ] §)q( €| w)

We choose independent priors and hyper-priors, yielding:

p(Bsu, 1, €| 00) o< L( B | Oup) x
gﬁ( 5 | gﬁ)g,fTa,set( u | gfra,set)ghaz( 1% | ghaz) X

QQ( gﬂ | Wﬂ)qf'r‘a,set( gfra.,set | Wfra,set)qhaz( ghaz | whaz)-

Addressing each piece, the likelihood

S K Ls
JI, 0 i Mokt (part +a] Bzl ug)—etskitol S+l uitlon Tisy
(816w =ITIL1I 11 <
s)=1

i=1s=1k=1](
and the prior on the regression coefficients 3 | £g) = N(0,X). We partition the vectop into the

elements yielding relative transition rates and thosesdiljg for covariates,

5 T (6tran57 5cov)T = (5115 e 5sk7 ) ﬂSKa ﬂcovariate LR ﬂcovariate ;}T-

We choose® to be a diagonal matrix with only two unique non-zero elersest, ... appearing in the

first SK diagonal spots, and the remaining diagonal spots filled wth. Hyperpriorgs( &5 | ws) =

Hosted by The Berkeley Electronic Press



20 B. SNVIHART ET AL.

Gamma(atransa ¢trans)Gamma(acov7 (bcov)a Wheregﬁ = (5157”(177,575001}) = (_21—1 %) EqUivalent

Otrans

to setting log-normal priors directly on the individual guelr (set) frailties, we appropriaig, o, set( v | £ fra,set) =
N(07 O'chra)N(O, Uget) and a“Ot the hyperpriqfra,set( gfra,set | wfra,set) - Gamma(afraa ¢fra)Gamma(aseta ¢S€t)!

where¢s represent§ésra, £set) = (s2—, =— ). Similar to the prior for the frailtiesgna. ( 1t | &ha-) =

Ufra set

N(0,032,,) prior on eachus,, which is the same as log-normal priors directly on the basehaz-

ard, hoskr- Lastly gnaz( Ehaz | Whaz) = Gamma(ahaz, dra-) S€rves as the hyper-prior @n,. where

1

ghaz - %

Which gives the general model:

L, P
e

5 K T, T
I I I I | | Niski (porita] B4z ug)—etshtte Az witlos sk X

1s=1k=1(s)=1p=1

p(Bu, 1, & | 6,) o

1

K2

2 2 2
1 _ ﬁz’?k 1 _55K+p “211‘ “21 _ “%kl
e Ttrans ————¢@ 20 cov gf (Tset “haz X
/ 2 / 2
27Tatrans 27Tacov \/ 27T0fra V 27TUset \/ 27T0haz
Xtrans Ptrans Xcov 1 Pcov
trans )atmns leoZians cov (_)O‘C‘W*le"gov X

(atrans) Utzmns (Qcov) " 02y,

X fra Sfra (e ¢
(bf?“a 21 )Offuz*leafnz ¢Se;t —i )O‘S‘fffleﬁz X
F(Oéfra) Tfra F(aset) Oget

Xhaz 1 Phaz
haz )oumz 16 o2

We also consider a smoothing of the hazard bins, in which sessupplant the:; priors above
With: gnaz( 1t | §haz) = N(Oski, Onaz) prior on eachusy, wheredgyy = 01if I = 1, O = psp—1) if
[ > 1 This allows bins to be “similar” to each other. This is whatneger to hence forth as the “smoothed”

model.

If no demographic covariates are included in the proc£ss:(0), any density involving the subscript
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covcan be eliminated from the posterior joint distributionkéwise, if it is not desired to keep track of
paired/set frailties, then any density involving the sulptcsetshould be eliminated from the posterior

joint distribution.

4, APPLICATION

The application makes use of R and K system data from the $leept Health Study (SHHS), a mul-
ticenter study on SDB and cardiac outcomes (Quan et al.,)19ibjects for the SHHS were recruited
from ongoing cohort studies on respiratory and cardiovasalisease. From the first SHHS cohort of
over 6300 subjects, 5614 were identified as having reliaidenéggh quality in home polysomnograms. To
assess the independent effects of SDB on sleep structuratched subset of the 5614 with and without
SDB was selected for the current study. Subjects with seéSB@ were identified as those with a RDI
> 30 events/hour. Subjects without SDB were identified asetvaith an RDI< 5 events/hour. Other
exclusion criteria included prevalent cardiovasculaeds®, hypertension, chronic obstructive pulmonary
disease, asthma, coronary heart disease, history of sanlecurrent smoking.

Propensity score matching was utilized to balance the gronglemographic factors and to minimize
confounding. SDB subjects were matched with no-SDB subjentthe factors of age, BMI, race, and
sex. Race and sex were exactly matched, while age and BMI nvatehed using the nearest neighbor
Mahalanobis technique with a caliper of 0.10. The resultzatch was 51 pairs that met the strict inclusion
criteria outlined above and exhibiting very low standaedibiases, a vast improvement on the imbalance
of BMI between diseased and non-diseased groups of pagst{&Ivihart et al., 2008). Polar opposites
of SDB severity, isolated from comorbities, were used togase the likelihood of finding 1) differences

in sleep architecture (see Table 2) and 2) independente®€&DB on sleep continuity.
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22 B. SNVIHART ET AL.

Conceptualizing sleep as a multi-state competing riskege®, we analyzed 3-state sleep, collapsing
the four stages of non-REM into one state, “NREM”, leaving tfaditional “Wake” and rapid eye move-
ment “REM” states. From any of the three states one may tiansnto the others producing six possible
transition types: Wake to NREM (WN), NREM to Wake (NW), NRE® REM (NR), REM to Wake
(RW), REM to NREM (RN), and Wake to REM (WR).

In the context of the application,= 1, ..., 102 indexes individuals = 1, ..., 6 denotes the transition-

type,k = 1,2 segments the night,

(Lla L27 L3a L4a L57 LG) = (27 6a 127 12a 127 1)

is the transition-type specific binning of the hazard, whi@s determined by the distinct quantiles of the
duration in state times per transition-typeFinding L, was done iteratively, first attempting to have 12
bins with approximately the same number of transitions pétyin them for model stability. The number
12 was selected for its versatility: one pass through tha Haining hazards into 12ths and one could
easily construct 12, 6, 4, 3, 2, or 1 piece models by summimgh®u of transtions and total duration in
state time, collapsing 1/12 bins into larger fraction binqilf the types did not yield distinct quanitles
for 12 bins, then bin sizes of 6, 4, 3, 2, and 1 were sequeytiaid. The vectorw; = (wn;, ws;) Of
multiplicative random effects, the first for individual atfte second for matched pair. The vectgr=
(u14,u2;), @s the log of the elementsin, is a vector of additive random effects. The vector (1,1) in
models with individuals nested within matched pé&ir,0) for models not accounting for pair. The vector
x; Is composed of the design variables and (potentially) tmeadgaphic covariates. The design variables
are the 3-way interaction of disease status,iffesegment of the total SAC time, and transition-type
The design interaction variables require the data to beeatdioss-binned? — s — k — [ level and this

enables the correspondifigrector to have elements, which quantify the average transition frequency

http://biostats.bepress.com/cobra/art64



Modeling Multilevel Sleep Transitional Data Via Poissorgtloinear Multilevel Models 23
of types in the k" segment of the total SAC time for diseased versus non-disefsthe case ok = 2,
this allows sampling from the posterior distribution of tt@mposite quanitity of the rate ratio between
the two segments of nigh%), enabling inference as to whether transition intensitlesnge over
the course of sleep.

Models with various combinations of bin smoothing, accomfor pair frailty, and number of in-
cluded demographic covariates are fit. All models were fihwito segments of total SAC timé( = 2)
and the aforementiondd*). For each model, we ran five chains for 1200 iterations and tise last
200 of each chain, yielding 1000 samples from each relewdhtdnditional of 3, u; and ps; (where

u; = log(w;), pskr = log(hoski) ). Our hyper-parameter values were selected based on $6t968):

w = (atran57 ¢tran37 eovs ¢cova A fra, ¢f7‘a7 Uset ¢seta Qhaz, (bhaz)

=(1.1,0.1,0.1,0.1,1.1,0.1,1.1,0.1,0.1,0.1).

5. RESULTS

Upon visual inspection of trace plots, the chains were wetkbahand the lag auto-correlation was accept-
able (see Appendix). Convergence monitoring was condugied) the Brooks and Gelman diagnostic
(Carlin & Louis, 2000; Brooks & Gelman, 1998) (acknowledgitine limitations of such convergence
diagnostic measures). A vast majority of these univariagribstics are greater than but close to 1, sug-
gesting convergence and appropriately overdispersetingtaralues. From graphical inspection of the
diagnostic over iterations, a vast majority not only nartiowl, but also show the stabilization of the

pooled and within interval widths.
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Mbdel Rate Ratios for SDB vs. no-SDB by Transition Type s
Pai r No. Ni ght
Snoot hed Frai | ty Covari at es Segnent VN NW NR RW RN R
Yes Yes 4 1 0.991. 121, 28 1. 11. 251, 42 0. 560. 720. 92 1. 021. 321. 73 0. 670. 931, 24 1. 572. 664, 95

2 0. 870. 981, 11 1. 111. 261, 42 0. 540. 66¢. 81 0. 871. 071, 31 0. 740. 981, 3 0. 781. 011, 32

Yes Yes 2 1 0. 991. 121, 29 1. 11. 261, 43 0. 550. 710, 92 1. 011. 311, 72 0. 670. 91. 23 1. 592. 694. 55
2 0. 870. 981, 10 1. 111. 271. 43 0. 530. 66¢. 81 0. 871. 081, 33 0. 761. 001, 31 0. 781. 031, 38

Yes Yes 0 1 1.00l. 131, 27 1. 111, 271, 43 0. 560. 730. 93 0. 981. 301, 7 0. 70. 931, 29 1. 572. 654, 36
2 0. 880. 981, 11 1. 121. 271, 43 0. 530. 66¢. 81 0. 891. 081, 31 0. 750. 991, 32 0. 771. 031, 36
Yes No 0 1 0. 971. 121, 29 1. 101. 244. 39 0. 550. 710, 91 1. 001. 311, 69 0. 670. 911, 26 1. 622. T14. 43
2 0. 860. 971. 09 1. 101. 251. 41 0. 530. 660, 82 0. 881. 071, 28 0. 750. 981, 28 0. 781. 021, 35
No No 0 1 0. 981. 121, 26 1. 071. 221, 39 0. 530. 680. 86 0. 961. 251. 61 0. 640. 871, 14 1. 572. 564, 42
2 0. 850. 961, 09 1. 101. 241, 42 0. 50. 630. 78 0. 871. 051, 29 0. 720. 951, 25 0. 771. 011, 33
No Yes 0 1 0. 981. 111, 26 1. 091. 241. 4 0. 530. 680. 87 0. 981. 251, 66 0. 650. 871, 18 1. 512. 484, 24

2 0. 860. 971. 1 1. 101. 261, 41 0. 510. 640, 81 0. 861. 051, 29 0. 720. 951, 24 0. 761. 011, 32

Table 4. Rate Ratios for SDB vs. no-SDB by Transition Type. Bl ue indicates
di seased transition significantly nore than non-di seased. Red indicates

di seased transition significantly | ess than non-di seased. The tables are

in a format where the elements are the estimtes, credible intervals as the

subscripts, the center nunber the estimate (Louis & Zeger, 2007).

6. DISCUSSION

All models exhibit SDB subjects transitioning significanthore of typeNREM — Wake in both halves
of the night Wake — REMin the first half of the night, and significantly less of tyNBEM — REMfor
both segments of the night (Table 4). In other words, give®B Subject is in NREM, he is more likely
than a no-SDB subject to transition to Wake and less likelyaosition to REM regardless of how long
he has been asleep. This is corroboratively linking withifigd of SDB subjects having higher all cause
mortality (Punjabi et al., 2009) and increaseNREM— WAk e and decreases NREM — REMIeading

to higher all cause mortality (Laffan et al., 2009).
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Model Rel ative Rate Ratios for SDB vs. no-SDB
Pai r No. of segment 2 vs segnent 1 by Transition Type s
Snoot hed Frai |ty Covari at es VN NW NR RW RN R

Yes Yes 4 0. 750. 871, 01 0. 570. 821, 15 0. 871. 011, 15 0. 721. 081, 64 0. 660. 921, 24 0. 20. 4o, 71
Yes Yes 2 |o. 750. 871. 02 0. 500. 841, 14 0. 861. 011 18 0. 741. 141, 72 0. 690. 941, 27 0. 210. 4o, 72 |
Yes Yes 0 |o. 750. 871. 01 0. 620. 841. 14 0. 861 011, 15 0. 701. 081, 59 0. 670. 921. 24 0. 220. 410, 7 |
Yes No 0 |o. 750. 871. 02 0. 600- 821, 11 0. 861. 011. 18 0. 711. 101. 62 0. 680. 941, 28 0. 210. 390, 64|
No No 0 |o. 740. 861. 00 0. 610. 851. 12 0. 861 021. 19 0. 731. 111, 64 0. 670. 941. 29 0. 220. 410, ¢7]
No Yes 0 lo. 750. 881. 02 0. 610. 851. 15 0. 871. 021, 19 0. 74l. 111, 66 0. 670. 961. 33 0. 230- 430, 69|

Tabl e 5. Conparisons of beta coefficients, 2nd segnent of night to 1st

segnment. Blue indicates the relative rate of 2nd segnent of night for
di seased transitioning conpared to the non-di seased is significantly
nore than that of the 1st segnment. Red indicates the relative rate of 2nd

segnent of night for diseased transitioning conpared to the non-diseased is
significantly I ess than that of the 1st segnment. The tables are in a fornat
where the elenents are the estimates, credible intervals as the subscripts,

the center nunber the estimate (Louis & Zeger, 2007).

Given a SDB subject is in Wake he is on averag®.6 times as likely as his no-SDB counterpart
to transition to REM in the 1st half of the night. However,rhé no significant difference between the
SDB groups for the WR transition in the second half of the nighe segmented SAC time analysis of
the 2nd half of the night to the 1st shows a reduction of 60%efdisparity between average transition
frequencies of diseased and non-diseased for type WR (Babldis suggests the second half of the night
has both groups getting to REM from Wake at more simliar rétes the first half.

As for the accounting for pairing discussion, (Table 4) skawry little difference between models
differing only by the accounting of pairs. In those compainis, the magnitudes and directions mirror well,

and the only difference in significant results are due to 9%&dible intervals containing 1.00. It appears
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26 B. SNVIHART ET AL.

that in this analysis, the gain in parsimony would favor thassion of pairing information (Stuart, 2008).

The model described the sleep hypnogram more fully tharofitedditional sleep architecture, where
only % time in REM differed: SDB 17%, no-SDB 21%. Showing theridation of the Poisson repre-
sentation provides motivation for a shift in the concephaion of modeling sleep. The problem can be
thought of as amulti-state, recurrent event, competing risk, hieraretjstratified survivaimodel or a
Poisson process with the sufficent statistics of numberaofsitions arising from time at risk for those
transitions. This shift makes concerns about tie handlinBI& times inconsequential. The ability to
piecewise model the hazard, segment the night, and accoutrahsition-type allow for a very flexible
model that can easily incorporate time varying covariaié® model is very scalable, with analysis on
5,614 individuals taking just under 5 hours on a laptop with&3 GHz processor.

MCMC allowed us to account for the correlation induced byesgpd measurements on the same
individual nested within matched pairs and would faciét#te examination of the heterogeneity in our
population through random intercepts. Heterogeneity @iytations is a very crucial topic in epidemio-
logic studies. Through the assumption of exponential sahtimes we gain a framework that potentially
allows us to eschew/relax parametric assumptions aboutahard. These reasons plus the eloquence of
jointly modeling the frequency of transitions and timesremsition make the Bayesian Poisson regression

framework a powerful and flexible tool in modeling sleep ggesented by hypnograms.
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Appendix

Subset of Chains from MCMC Sampling
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