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Shrinkage Estimation of Expression Fold
Change As an Alternative to Testing
Hypotheses of Equivalent Expression

Zahra Montazeri, Corey M. Yanofsky, and David R. Bickel

Abstract

Research on analyzing microarray data has focused on the problem of identifying
differentially expressed genes to the neglect of the problem of how to integrate
evidence that a gene is differentially expressed with information on the extent of
its differential expression. Consequently, researchers currently prioritize genes
for further study either on the basis of volcano plots or, more commonly, accord-
ing to simple estimates of the fold change after filtering the genes with an arbi-
trary statistical significance threshold. While the subjective and informal nature
of the former practice precludes quantification of its reliability, the latter practice
is equivalent to using a hard-threshold estimator of the expression ratio that is
not known to perform well in terms of mean-squared error, the sum of estimator
variance and squared estimator bias. On the basis of two distinct simulation stud-
ies and data from different microarray studies, we systematically compared the
performance of several estimators representing both current practice and shrink-
age. We find that the threshold-based estimators usually perform worse than the
maximum-likelihood estimator (MLE) and they often perform far worse as quan-
tified by estimated mean-squared risk. By contrast, the shrinkage estimators tend
to perform as well as or better than the MLE and never much worse than the
MLE, as expected from what is known about shrinkage. However, a Bayesian
measure of performance based on the prior information that few genes are differ-
entially expressed indicates that hard-threshold estimators perform about as well
as the local false discovery rate (FDR), the best of the shrinkage estimators stud-
ied. Based on the ability of the latter to leverage information across genes, we
conclude that the use of the local-FDR estimator of the fold change instead of
informal or threshold-based combinations of statistical tests and non-shrinkage



estimators can be expected to substantially improve the reliability of gene priori-
tization at very little risk of doing so less reliably.
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Shrinkage estimation of expression fold change as an alternative
to testing hypotheses of equivalent expression

Zahra Montazeri1, Corey M. Yanofsky1, David R. Bickel1;2;�

ABSTRACT

Research on analyzing microarray data has focused on the problem of iden-
tifying di¤erentially expressed genes to the neglect of the problem of how to
integrate evidence that a gene is di¤erentially expressed with information on the
extent of its di¤erential expression. Consequently, researchers currently prioritize
genes for further study either on the basis of volcano plots or, more commonly,
according to simple estimates of the fold change after �ltering the genes with
an arbitrary statistical signi�cance threshold. While the subjective and informal
nature of the former practice precludes quanti�cation of its reliability, the latter
practice is equivalent to using a hard-threshold estimator of the expression ra-
tio that is not known to perform well in terms of mean-squared error, the sum
of estimator variance and squared estimator bias. On the basis of two distinct
simulation studies and data from di¤erent microarray studies, we systematically
compared the performance of several estimators representing both current prac-
tice and shrinkage. We �nd that the threshold-based estimators usually perform
worse than the maximum-likelihood estimator (MLE) and they often perform far
worse as quanti�ed by estimated mean-squared risk. By contrast, the shrinkage
estimators tend to perform as well as or better than the MLE and never much
worse than the MLE, as expected from what is known about shrinkage. How-
ever, a Bayesian measure of performance based on the prior information that
few genes are di¤erentially expressed indicates that hard-threshold estimators
perform about as well as the local false discovery rate (FDR), the best of the
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shrinkage estimators studied. Based on the ability of the latter to leverage in-
formation across genes, we conclude that the use of the local-FDR estimator of
the fold change instead of informal or threshold-based combinations of statistical
tests and non-shrinkage estimators can be expected to substantially improve the
reliability of gene prioritization at very little risk of doing so less reliably.

Subject headings:

1. Introduction

1.1. Background

The accumulation of high-dimensional functional genomics data to solve biological prob-
lems as basic as reconstructing regulatory gene networks and as applied as understanding
commercially important traits in crop species poses daunting obstacles to valid interpreta-
tion. Much research e¤ort has been directed toward developing methods of reliably analyzing
data for which there are hundreds or thousands of variables of interest. Transcriptional (gene
expression) microarrays provide the main example, with measurements of thousands of genes,
but the same statistical problems also plague metabolomic and proteomic studies. The large
numbers of genes are especially problematic in the case of testing for each gene the null hy-
pothesis that it is equivalently expressed across groups as opposed to di¤erentially expressed:
thousands of genes pose an extreme multiple comparisons problem for the most commonly
used framework of hypothesis testing. While fully Bayesian approaches comply with the
likelihood principle and thus clearly do not require adjustments for multiple comparisons,
their inferences about each comparison might be improved by leveraging information across
other comparisons (Scott and Berger 2006a); this prospect also motivates empirical Bayes
methods of estimating local or global false discovery rates (Efron et al. 2001; Bickel 2004b,
2005).

To address the multiple comparisons problem in the Neyman-Pearson framework of hy-
pothesis testing, substantial progress has been made in methodology for controlling Type I
(false positive) error rates such as family-wise error rates and false discovery rates (Van der
Laan et al. 2004). (The logic behind adjusting p-values for multiple comparisons also ne-
cessitates correcting estimated e¤ect sizes in multiple comparisons problems. Bickel (2004a,
2008) developed such corrections to estimated levels of di¤erential gene expression while
others developed such corrections for genome-wide linkage scans (Sun and Bull 2005; Sun
et al. 2006).)

Practitioners commonly use a p-value corrected for multiple testing in the same way

http://biostats.bepress.com/cobra/art60



�3 �

as they would use an uncorrected p-value of a lone test; the assumption is that the p-value
after correction may be treated as if it were a p-value that needed no correction. This is seen
whenever a corrected p-value less than the conventional 5% level is interpreted as evidence
against the null hypothesis; see, e.g., Craandijk and Schreuder (1979) and Dudbridge and
Gusnanto (2008). If the (possibly corrected) p-value is less than the chosen threshold, a
su¢ ciently high estimate of the average expression fold change across two conditions (com-
monly from a treatment condition to a control condition) �ags a gene as a candidate for
further investigation, with the fold change estimated using the sample mean. For example,
the geometric mean expression ratio is estimated by the antilogarithm of the di¤erence of
log-transformed sample means across the two conditions. If, on the other hand, the p-value
exceeds the threshold, the estimate is considered unreliable and the gene will not be consid-
ered further. Thus, genes not found to have statistically signi�cant changes in expression
are placed in the same category as those with small changes that are statistically signi�cant.
This practice of e¤ectively treating genes with high p-values as if it were known that they
are not di¤erentially expressed, while not ideal, is nonetheless a reasonable use of limited
resources that permit pursuing only a small subset of the thousands of genes represented on
a microarray.

In 1925, no one could have anticipated the need in the face of thousands of hypotheses
to treat statistically signi�cant results of extremely small e¤ect sizes in exactly the same
way as non-signi�cant results, and yet R. A. Fisher then laid the logical foundation of the
way investigators in the post-genomic era test hypotheses of di¤erential gene expression and
act on the results of the tests. He convincingly argued that a treatment�s e¤ect size or
parameter value is not even worth estimating if the accompanying p-value exceeds 0:05: "It
is a useful preliminary before making a statistical estimate... to test if there is anything to
justify estimation at all" (Fisher 2006, p. 300). His signi�cance tests provided the scienti�c
community with a simple way to determine whether or not there is su¢ cient data to infer
that an observed e¤ect would also appear in replicated experiments. Subsequent advances
in statistics made possible by the computer revolution raise the prospect of moving beyond
the ubiquitous practice of relying on a fold change estimate only if a sharp signi�cance level
has been achieved.

1.2. Shrinkage as an alternative to current practice

Research on analyzing microarray data has focused on the problem of identifying di¤er-
entially expressed genes to the neglect of the equally important problem of estimating the
level at which a gene is di¤erentially expressed. As a result, even many of the most reliable
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methods for the analysis of gene expression microarray data have a common failure: strong
evidence that an expression fold change or ratio di¤ers from 1, as indicated by a high level
of statistical signi�cance, does not indicate that the expression ratio di¤ers by a biologically
signi�cant amount from 1 (Bickel (2004a), Lewin et al. (2006)). A common approach to
the problem is to select genes on the basis of a volcano plot like Figure 1, a graph of the
statistical signi�cance (p-value on � log10scale) versus the estimated expression ratio (e.g.
Jin et al. (2001) , Chen et al. (2007)). However, this plot-based determination of which
combinations of p-values and estimates merit gene selection is subjective, and it de�es the
automation that e¢ cient screening requires.

Current solutions that do automate prioritization include those that either use the p-
value to prioritize those genes that pass expression ratio estimate thresholds, a practice
lacking theoretical and empirical justi�cation, or use the expression ratio estimate to pri-
oritize those genes that has a p-value threshold, a practice reminiscent of Fisher�s method
that enjoys some empirical support (e.g. Guo et al. (2006)). Such hard-threshold methods
include those comparing a corrected p-value, estimated global or local false discovery rate,
or approximate posterior probability to a some arbitrary or subjective value � that sharply
separates low-priority genes from high-priority genes. Since a gene may be at the top or
the bottom of the priority list depending on whether its p-value or expression ratio estimate
is slightly above or slightly below the chosen threshold �, hard thresholding has the same
e¤ect as does replacing all fold-change estimates of low-priority genes with 1, regardless of
the measure p of statistical signi�cance (Figure 2). A less arbitrary approach "shrinks"
the estimate of the fold change toward 1 to the extent that the variability is too high for
precise estimation. This shrinkage approach to estimating levels of di¤erential expression
has been applied to microarray data using fully Bayesian (Theilhaber et al. 2001; Newton
et al. 2004; Ishwaran and Rao 2003) and mixture-model (Gusnanto et al. 2005; Kauermann
and Eilers 2004) estimators. More recently, the expression ratio was estimated via empirical
Bayes (Bickel 2008; Hwang et al. 2009) and frequentist model averaging (Bickel and Yanofsky
2009) procedures. (Shrinkage properties of estimators of gene expression variance (Smyth
2004; McCarthy and Smyth 2009), gene-gene correlation (Schäfer and Strimmer 2005), and
di¤erential expression p-values (Ghosh 2006) have also been studied.) For a given gene,
shrinkage toward equivalent expression results in an estimate of the expression ratio close
to the maximum-likelihood estimates in the case of a small p-value, an estimate close to 1
in the case of a large p-value, and, unlike hard thresholding, in an intermediate estimate in
the case of an intermediate p-value but without requiring subjective de�nitions of "small,"
"large," and "intermediate," as a soft-threshold approach would require. In this way, genes
are automatically prioritized for further study on the basis of a single score, the shrinkage
estimate of the fold change. For practical use in both basic and applied biological research,
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Fig. 1.� Volcano plot for an experiment on breast cancer cells, estrogen treatment versus
control at 48 hours. The dashed lines correspond to some popular thresholds used to prioritize
genes in the upper-left and upper-right rectangles for further study. See Section 3.2 for details
regarding the data set.

a single score that contains the relevant information would often be preferred to the two
scores needed for the volcano plot.

Section 2 presents a selection of representative hard-threshold and shrinkage methods
of microarray data analysis for the identi�cation of genes that are di¤erentially expressed
across experimental or observational conditions. The performance of these estimators is
systematically studied by simulation in Section 3.1 and by empirical validation in Section
3.2. Finally, Section 4 provides an interpretation of the results.

2. Estimators of the level of di¤erential gene expression

Let xi;j represent the natural logarithm of the measured expression intensity for the
ith gene and the jth biological replicate of the control group; likewise, let x0i;j represent the
logarithm of the measured expression intensity for the ith gene in the jth biological replicate
of the treatment group. Let n and n0 represent the number of biological replicates in the
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Fig. 2.� Two equivalent repesentations of hard thresholding, the current approach to prior-
itizing genes on the basis of their expression data. Here, p is a (possibly adjusted) p-value or
(approximate) posterior probability of equivalent expression, and � is a Type I error rate or
other threshold. It can be seen that hard thresholding has exactly the same e¤ect as setting
fold-change estimates to 1 for all genes with non-signi�cant expression data. The proposed
approach instead obviates selection of � by simply setting the priority of each gene equal to
its shrinkage estimate of the fold change.
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control and treatment groups, respectively. Interest focuses on the expected di¤erence of the
di¤erence logarithm of the expression intensity,

�i = E (X
0
i �Xi) ;

where Xi and X 0
i and the random variables of which xi;j and x0i;j are realizations and the

expectation value is the sample space average. The true values of the expression ratio and
fold change are exp (�i) and exp (j�ij), respectively; both quantities are geometric means
over the sample space.

There are two experimental formats �tting the above description. For paired data,
biological replicates are collected and subjected to the treatment and control conditions in a
paired fashion to control variation due to unmeasured factors. By necessity n0 = n and the
di¤erences between paired data values,

yi;j = x
0
i;j � xi;j

contains all of the information about �i in the data. Under the assumption that X
0
i �Xi is

normally distributed, the maximum-likelihood estimate (MLE) of �i is the sample mean of
the di¤erences,

�̂i;MLE = �yi:

For non-paired data, it is assumed that X 0
i and Xi are independent and normally dis-

tributed; the independence assumption is appropriate when the experimental protocol has
excluded systematic errors, perhaps by randomization. The control and treatment groups
may have di¤erent numbers of biological replicates, and the maximum-likelihood estimate of
�i is the di¤erence of the sample means,

�̂i;MLE = �x
0
i � �xi:

Henceforth, we only explicitly write the gene index i when it is needed for clarity.

Of course, the normality assumption never holds exactly, which is why any microarray
data would fail a conventional test of normality given su¢ cient replication. In general,
however, strong distributional assumptions are needed to reduce variance (at the expense of
increased bias) in the context of the low levels of replication typical in microarray studies.
Even for as many as six replicates (n = 6), statistical tests based on the particular assumption
of normality have resulted in better inference than nonparametric tests (Bickel and Yanofsky
2009).
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2.1. Hard-threshold estimators

Given a method of generating p-values to quantify the statistical signi�cance of the
evidence against equivalent expression, the general form for a hard-threshold estimator is,

�̂HT =

�
�̂MLE if p-value < �
0 if p-value � � ; (1)

that is, � is estimated by the MLE if the (possibly adjusted) p-value is smaller than the
signi�cance threshold and by 0 otherwise. Di¤erent methods of generating p-values lead to
di¤erent hard-threshold estimators. In the present analysis we set � = 0:05 for all hard-
threshold estimators.

2.1.1. Statistical signi�cance by error-rate control

The standard measure of statistical signi�cance is a p-value generated using a frequentist
hypothesis test, a procedure which controls the probability of Type I error at level �. The
use of this p-value in equation (1) leads to the raw p-value hard-threshold estimator. The
raw p-value controls the Type I error rate on a per-gene basis, but it will fail to control the
probability that at least one Type I error occurs in the family of all M hypotheses tested.
To control this family-wise error rate, it is typical in di¤erential gene expression experiments
to adjust p-values for multiple comparisons, leading to the adjusted p-value hard-threshold
estimator.

In the present analysis, we computed raw p-values for the above estimators using two-
sided t-tests; for non-paired data, the variance was estimated separately for both groups and
the Welch modi�cation to the degrees of freedom was used. To adjust p-values, we used the
step-down modi�cation of the �idàk single-step adjustment procedure as implemented in the
mt.rawp2adjp function of the R package multtest (Dudoit et al. 2003).

2.1.2. Empirical Bayes methods

A popular alternative to Type I error rate control is the replacement of the p-value
with an empirical Bayes estimate of the local false discovery rate (FDR) (Efron et al. 2001;
Efron and Tibshirani 2002), a concept inspired by Benjamini and Hochberg�s frequentist
FDR control procedure (Benjamini and Hochberg 1995). The R package locfdr (Efron 2004)
computes LFDR (pi;p), the local false discovery rate associated with considering the ith
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gene di¤erentially expressed, where pi is the p-value of the ithgene and p is the vector of
the p-values of all genes; the p-values here are single-tailed. This function estimates the
proportion of equivalently expressed genes to all genes within a small p-value neighborhood.
Like a p-value, it falls in the range [0; 1], and values closer to zero indicate stronger evidence
of di¤erential expression. When used in (1), it leads to the local false discovery rate hard-
threshold estimator.

In the present analysis, we computed p-values for estimation of LFDR (pi;p) using one-
sided t-tests; as before, for non-paired data, the variance was estimated separately for both
groups and the Welch modi�cation to the degrees of freedom was used. See the Supplemen-
tary Information for a description of the estimation of LFDR (pi;p).

2.2. Shrinkage estimators

2.2.1. Frequentist shrinkage estimators

When a reasonably accurate initial estimate �0 is available, it is possible to achieve lower
mean squared error than theMLE by shrinking theMLE toward �0 (Wiilink 2008). Starting
with shrinkage estimators proposed in Thompson (968a) and Mehta and Srinivasan (1971),
Wiilink (2008) proposed two shrinkage estimators, labeled Q1 and Q2, and showed that for
univariate distributions they have smaller means squared error than the sample mean if the
initial guess is appropriate. See the Supplementary Information for the de�nitions of these
estimators.

2.2.2. Bayesian shrinkage model

Scott and Berger (2006b) have described a fully Bayesian model for estimating the level
of di¤erential gene expression. The data are treated as a mixture of equivalently expressed
genes whose true log-expression-ratios are zero and di¤erentially expressed genes whose true
log-expression-ratios are normally distributed around zero with variance V ; the proportion
of equivalently expressed genes to all genes is �. Observations are assumed to be normally
distributed with variance �2. In e¤ect, the model assumes that the observed data are drawn
from a mixture of two normal distributions, one with variance �2 and one with variance
�2 + V , both centered at 0. The model achieves shrinkage by two mechanisms: �rst, the
data distribution contains a component explicitly modelling equivalently expressed genes as
having a mean of zero; and second, even given that a gene is di¤erentially expressed, the
prior distribution of its expression is centered at a mean of zero, inducing further shrinkage.
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See Supplementary Information for explicit descriptions of the prior distributions, likelihood
function, and derivations of the posterior distribution of the quantities of interest.

The posterior distribution of the parameters (V; �2; �) can easily be sampled from with
a Markov chain Monte Carlo (MCMC) algorithm; we used Di¤erential Evolution Monte
Carlo (Ter Braak 2006), a Metropolis algorithm which automatically and e¢ ciently gener-
ates proposals with the same covariance structure as the posterior distribution. Taking the
average of Eposterior (�ijV; �2; �) over the MCMC samples of (V; �2; �) yields a Monte Carlo
approximation to Eposterior (�i), the expectation of the marginal posterior distribution of �i.

2.2.3. Local-FDR-based shrinkage estimator

Following Bickel (2008) and Bickel and Yanofsky (2009), we treat the local false discovery
rate as an approximate posterior probability of equivalent expression for the purpose of
estimating the degree of di¤erential expression by the approximate posterior mean. This
shrinkage estimator scales the MLE by the posterior probability that the gene is actually
di¤erentially expressed:

�LFDR shrinkage = [1� LFDR (pijp)] �̂MLE:

3. Quanti�cation of estimator reliability

The simulations and parametric bootstrap sampling procedures described in Subsections
3.1 and 3.2 were used to quantify the performance of each of the estimators described in
Section 2 as follows. The mean-squared error (MSE) for the ith gene was estimated by
the empirical MSE, the sample mean of the squared error over the set of simulations or
bootstrap samples, [MSEi = 1

B

PB
b=1

�b�b;i � �i�2 ; where �i is the true mean used to generate
the simulated data (for bootstrap sampling, it is the MLE from the original data), b�b;i is the
estimate of �i for the b

th simulated or bootstrap sample according to the estimator under
consideration, and B is the number of simulated or bootstrap samples. To quantify the
performance of each estimator, we de�ned the risk associated with using an estimator as its
total MSE over all genes and estimated it by drisk =PM

i=1
[MSEi; where M is the number of

genes. See the Supporting Information for the quanti�cation of uncertainty in drisk due to
bootstrap or simulation sampling.

Bickel and Yanofsky (2009) used cross-validation to estimate the total MSE and the
average of rescaled MSEs of predicted observations; herein, we summarize the MSEs of
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parameter estimates using the total MSE but not the average rescaled MSE because errors
in estimates of genes with higher fold changes are of more consequence than those of genes
with lower fold changes. Since the total MSE tends to give more weight to higher-priority
genes than to those of lower priority, it has the advantage of re�ecting errors in relative
ranking between top-priority genes while e¤ectively ignoring the irrelevant relative ranks of
low-priority genes.

We conclude this section with a Bayesian method of quantifying estimator performance
that leverages prior knowledge that only a few genes have notable di¤erential expression.

3.1. Simulation studies

To compare estimators of di¤erential expression levels, two classes of simulations were
carried out: in one case, half of the simulated genes were equivalently expressed across
conditions, and in the other case, no simulated genes had exactly equivalent expression across
groups although most genes had very small levels of di¤erential expression. In both cases,
simulations were of paired data and yi;j values were simulated directly. For each simulation
type, data sets with 2 and 8 biological replicates were simulated to investigate the e¤ect of
sample size on the estimators in the small-n regime typical of laboratory experiments.

3.1.1. Case with half of the genes di¤erentially expressed

We �rst used the simulation design of M. Langaas and Ferkingstad (2005), drawing
200 independent simulations of 20,000 genes from a multivariate normal distribution, �rst
with n = 2 and then with n = 8. Half of the genes were equivalently expressed, i.e., with
true means set to 0. True means for the di¤erentially expressed genes were drawn from
a symmetric bitriangular density with boundaries log2(1:2) and log2(4): To construct the
covariance matrix, genes were separated into groups of size 100, and pairwise correlations
for all genes within a group were each set to 0.5; correlations were each 0 for pairs of genes
not in the same group. Each gene�s variance was set to 1.

3.1.2. Case of all genes with at least some di¤erential expression

For the case in which most genes have very small but nonzero levels of di¤erential expres-
sion with no sharp distinction between di¤erentially expressed and equivalently expressed
genes, 200 independent simulations of 20,000 genes were drawn from univariate normal dis-
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tributions, again with each sample of size n = 2 for one simulation and n = 8 for another
simulation. Adapting the simulation design of Bickel (2008), the means of the distributions
were

�i =

8<: �
�
10001�i
10000

�8
i 2 f1; :::; 104g�

i
10000

�8
i 2 f10001; :::; 204g

:

The variance of the simulations were chosen to have a similar signal-to-noise ratio as in
actual experiments, which in this case resulted simulation standard deviation of 0.23. (See
the Supporting Information for details.) Re�ecting biological reality, none of the genes is
equivalently expressed, and therefore the null hypothesis that �i = 1 is false for all i and
would be rejected by a test at any positive level � for su¢ ciently large n. For small n,
however, many of the genes with low levels of di¤erential expression will not be identi�ed as
di¤erentially expressed.

3.1.3. Simulation results

Figure 3 shows the results of the simulations in terms of risk relative to the risk of the
MLE. These simulation results complement those of the two-sample simulation study in
which Newton et al. (2004) found that their Bayesian shrinkage estimator of the fold change
has lower MSE than that of the MLE.

3.2. Empirical validation

The estimators were evaluated by a frequentist method (parametric bootstrapping) and
by a Bayesian method (posterior expected loss). The latter would be more appropriate given
the prior knowledge that most genes are equivalently expressed.

3.2.1. Parametric bootstrap

To evaluate the performance of the estimators in the context of real data, we applied
the parametric bootstrap (cf. Van Der Laan and Bryan (2001)) to two experimental data
sets. The �rst data set was from an experiment applying an estrogen treatment to cells
of a human breast cancer cell line (Scholtens et al. 2004) (available from the Bioconductor
project, http://www.bioconductor.org/). Two non-paired biological replicates were collected
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Fig. 3.� Estimated risk for all estimators relative to that of the MLE for the simulated data
sets. The local FDR HT estimator for the �rst row and the adjusted p-value estimator for
the �rst and third rows have relative risks greater than 2.0 and are not plotted.
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for each of the four following states: 10 hours after treatment, 48 hours after treatment,
control after 10 hours, and control after 48 hours. These data provide information about
four di¤erential genes expression levels: 10 hours after treatment versus control at 10 hours,
48 hours after treatment versus control at 48 hours, 48 hours after treatment versus 10 hours
after treatment, and control at 48 hours versus control at 10 hours.

The second data set was a subset of data from the Microarray Quality Control (MAQC)
study (Guo et al. 2006) in which rat liver cells were treated with comfrey. Six non-paired
biological replicates were collected for both the treatment and control conditions. The data
were analyzed on an Applied Biosystems platform, an Agilent platform, and two A¤ymetrix
platforms in di¤erent laboratories, for a total of four sets of di¤erential gene expression level
estimates.

The parametric bootstrap is a strategy for estimating expectations over the sampling
distribution when the parameters of that distribution are unknown. The parameters of
the sampling distribution are estimated and then replicate data sets are sampled from the
sampling distribution with the parameter values �xed to the estimates from the original
data. The parametric bootstrap is preferred to the nonparametric bootstrap (Efron 1979)
for small sample sizes. For the parametric bootstrap analysis, we modeled Xi and X 0

i as
normally distributed and estimated their means and variances using the usual unbiased
estimators, and then generated 200 bootstrap samples for each of the eight possible sets of
di¤erential gene expression levels, four from each experiment. (To save time, 100 bootstrap
samples were used for the hard-threshold estimators for the non-paired data.) The risk of
each estimator was estimated from the resulting bootstrap samples. Figures 4 and 5 show
the results of the bootstrap analyses in terms of risk relative to the risk of the MLE.

3.2.2. Assessment by posterior expected loss

For a given posterior distribution for the parameters, the posterior expected squared
error loss of an estimator can be calculated. The posterior expected squared error loss of
an estimator is the squared di¤erence between its estimate and the posterior mean, plus the
posterior variance,

E posterior

�
(�� �̂)2

�
= [E posterior (�)� �̂]2 + var posterior (�) : (2)

See the Supplementary Material for the derivation of (2).

For the Bayesian shrinkage model, var posterior (�) is estimated as the average of var posterior (�jV; �2; �)
over the MCMC samples of (V; �2; �). For the local-FDR-based shrinkage estimator, there is
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Fig. 4.� Estimated risk for all estimators relative to that of the MLE for the breast cancer
data sets. The relative risk for the adjusted p-value hard-threshold estimator does not appear
in the plot because it was greater than 1.5 in all cases.

Fig. 5.� Estimated risk for all estimators relative to that of the MLE for the MAQC data
sets. The relative risks for the hard-threshold estimators set were not plotted because they
were greater than 1.9 in all cases.
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Fig. 6.� Posterior expected squared error loss under the Bayesian shrinkage model for all
estimators relative to that of the MLE; upper panel shows results for the breast cancer data
sets and lower panel shows results for the MAQC data sets.

no explicitly de�ned posterior distribution, but the local FDR can be interpreted as an ap-
proximation to an e¤ective posterior distribution that has probability mass LFDR (pijp) at
� = 0 and probability mass [1� LFDR (pijp)] at � = �̂MLE. For this posterior distribution,
the variance of the mean is

var posterior (�) = LFDR (pijp) [1� LFDR (pijp)] (�̂MLE)
2 :

Figures 6 and 7 show the total (over all genes) posterior expected squared error loss
relative to that of the MLE for each estimator under the two posterior distributions for each
of the eight real data sets.

4. Discussion and conclusions

We have contrasted hard-threshold approaches representing the current practice of es-
timation following testing (Figure 2) and shrinkage approaches to gene prioritization. The
best hard-threshold estimator performed about as well as the best shrinkage estimator in one
set of simulations, but in the other three sets of simulations, each of the shrinkage estimators
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Fig. 7.� Posterior expected squared error loss under the local FDR model for all estimators
relative to that of the MLE; upper panel shows results for the breast cancer data sets and
lower panel shows results for the MAQC data sets. The relative posterior expected loss for
the adjusted p-value hard-threshold estimator does not appear in the lower panel because it
was greater than 5 in all cases.
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Fig. 8.� Posterior expected squared error loss under the local FDR model for all estimators
relative to that of the MLE; upper panel shows results for the breast cancer data sets and
lower panel shows results for the MAQC data sets. The relative posterior expected loss for
the adjusted p-value hard-threshold estimator does not appear in the lower panel because it
was greater than 5 in all cases.
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proved to be substantially more reliable than each of the hard-threshold estimators (Figure
3). In the bootstrap analyses, we found that for the breast cancer data set (Figure 4), each
estimator except for the raw p-value hard-threshold estimator performed essentially as good
as the MLE. Local FDR shrinkage performed best in each case except for the comparison of
control at 48 hours versus control at 10 hours, for which Q2 shrinkage performed best. For
the MAQC data set (Figure 5), we found that all shrinkage estimators performed essentially
identically to the MLE, and all hard-threshold estimators performed notably worse than the
MLE.

As equation (2) makes clear, the posterior expected squared error is its performance
according to the Bayesian model used. Naturally, for a given model, its own posterior ex-
pectation has the minimum posterior expected squared error, as can be seen in Figures 6
and 7. From these �gures, it is apparent that the Bayesian shrinkage model is most like
the frequentist Q1 and Q2 estimators, while the local FDR shrinkage is more similar to
the hard threshold estimators. The fully Bayesian model makes strong assumptions about
the data: �rst, that di¤erent genes have identical sampling variances, and second, that the
log-expressions of di¤erentially expressed genes follow a normal distribution. In contrast,
the local FDR model does not assume identical sampling variances and uses a �exible non-
parametric estimate for the distribution of p-values of di¤erentially expressed genes. Its key
assumption is that most genes are equivalently expressed, an eminently reasonable assump-
tion. Therefore, we regard Figure 7 as a more trustworthy indicator of actual estimator
performance than Figure 6. Given prior knowledge in accord with the assumption of local
FDR shrinkage that most genes are equivalently expressed, these results suggest that the
hard threshold estimators and local FDR shrinkage are superior to the other estimators. The
bootstrap and simulation results suggest that the hard-threshold estimators only perform
well under this assumption, but that local FDR shrinkage performs well even in other cases.

The key observations of the risk estimates are that (i) no hard-threshold estimator ever
had the lowest estimated risk, and they were frequently far worse than the MLE or any
shrinkage estimator, and (ii) the shrinkage estimators often outperform the MLE and are
never much worse. Given the known tendency of shrinkage estimators to perform well in
terms of MSE and the lack of any indication that an estimator sensitive to the value of an
arbitrary threshold would perform well, we conclude that the risk estimates accurately repre-
sent the relative reliabilities of the two classes of estimators except when only a small portion
of genes have substantial di¤erential expression, in which case the posterior expected loss
according to the local FDR model better quanti�es performance. Although hard threshold
estimators were found to be competitive with the local FDR in terms of posterior expected
loss, the latter has the advantage of borrowing strength across all genes rather than arbitrar-
ily controlling Type I error rates. Thus, we recommend the replacement of threshold-based
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prioritization of genes with shrinkage-based prioritization. In particular, local FDR shrink-
age had the best overall performance and is a good default choice, especially when only a
few genes are expected to be di¤erentially expressed at notable levels.

Opportunities for additional research abound. For example, since in Q1 and Q2 we used
the tuning-parameter values preferred by Wiilink (2008), they have yet to be optimized for
microarray data. They can be adjusted to give stronger shrinkage toward equivalent expres-
sion, which would decrease the posterior expected loss used here. Also, in some situations,
researchers may wish to correct estimates of fold change for biases due to confounding (Kerr
et al. 2001) or selection from multiple comparisons (Bickel 2004a, 2008); applying such bias
corrections to the shrinkage estimates we considered invites further study.
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ZM extended Q1 and Q2 to the two-sample case and executed the simulations. DRB con-
ceived the study on the basis of the equivalence between current practice and hard-threshold
estimation. All authors participated in drafting the manuscript.

6. Acknowledgments

We thank Pei-Chun Hsieh for preparing the MAQC data for analysis. The Biobase
package of Bioconductor (Gentleman et al. 2004) facilitated management of the expression
data. This work was partially supported by the Canada Foundation for Innovation, the
Ministry of Research and Innovation of Ontario, and the Faculty of Medicine of the University
of Ottawa. Con�icts of interest : none declared.

7. Availability

R (R Development Core Team 2008) functions for hard-thresholding and shrinkage
estimation of fold change are available from http://www.statomics.com.

http://biostats.bepress.com/cobra/art60



�21 �
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1 Mathematical details

This section �lls in the mathematical details of the estimation of the local
false discovery rate, the frequentist shrinkage estimators, the Bayesian shrink-
age model, the method for choosing the variances in the simulations, and the
derivation of the expression for the posterior expected squared error.

1.1 Local false discovery rate estimation

The �rst step in the estimation of LFDR(pi;p) is the application of a non-
parametric density estimator to z, a vector calculated by applying the normal
quantile function to the values in p (a vector of single-tailed p-values for all
genes),

zi = �
�1 (pi) ;

where ��1 (�) is the normal quantile function (that is, the inverse of the standard
normal distribution function). The density function of the values in z is a
two-component mixture for which one component is standard normal (i.e., the
theoretical distribution of zi under the null hypothesis of equivalent expression)
and the other is unknown:

fz (�) = �'(�) + (1� �) gz (�) ;

in which is fz (�) the density function of the zi values, � is the proportion of genes
which are equivalently expressed, '(�) is the density function of the standard
normal distribution and gz (�) is the distribution of z values for di¤erentially

1
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expressed genes. The density function fz (�) can be estimated using any consis-
tent non-parametric density estimator. The assumption gz (0) = 0 allows � to
be estimated,

�̂ = f̂z (0)
p
2�;

and the local false discovery rate estimate is then the product of �̂ and ratio of
the theoretical null density function to the estimated density function of the zi
values,

LFDR(pi;p) =
�̂'
�
��1 (pi)

�
f̂z (��1 (pi))

: (1)

This expression is the ratio of the density of the null hypothesis component to the
complete mixture density, and therefore estimates the proportion of equivalently
expressed genes at any given p-value.

1.2 Frequentist shrinkage estimators

The two frequentist shrinkage estimators are,

Q1(h; c) � �0 +
�̂MLE � �0
1 + hR

+ cV; (2)

and

Q2(a; b; c) � �̂MLE � a(�̂MLE � �0) exp
�
� b
R

�
+ cV; (3)

where h, a, b, and c are tuning parameters chosen by the user and

R =
S2=n

(�̂MLE � �0)2
; (4)

V � S=
p
n

1 +R
� sign(�̂MLE � �0): (5)

It was shown that for univariate distributions, Q1and Q2 have smaller means
squared error than the sample mean if the initial guess is appropriate, and that
Q2(0:4; 0:01; 0:5) is suitable (in the sense of minimum MSE) for estimating the
distribution mean when j�� �0j � 3:5�=

p
n.

These shrinkage estimators are suitable for use with paired data but must
be modi�ed for use with non-paired data. In that case, our goal is to shrink
the estimate the di¤erence of the means of two distributions toward 0. We
replace the paired dataMLE with the non-paired dataMLE, set S2 equal to the
unbiased pooled variance estimator (which is appropriate under the assumption
that both distributions have the same variance),

S2 =
(n0 � 1)S2x0 + (n� 1)S2x

n0 + n� 2 ;

and replace n in (4) and (5) with n0 + n.

2
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1.3 Bayesian shrinkage model

The model likelihood has the form,

f
�
wj�2;;�

�
=

MY
i=1

1p
2��2

exp

"
� (wi � �ii)

2

2�2

#
;

in which wi is the measured di¤erential log-expression of the ith ofM genes (for
paired data, wi = �yi; for non-paired data, wi = �x0i � �xi) i is an indicator for
di¤erential expression (i.e., i = 1 indicates equivalent expression and i = 0
indicates indicates di¤erential expression), �i is the log-expression level, and �

2

is the sampling variance of the wi values (assumed equal for all i).
The prior distribution for the model is de�ned by the following distributions:

p
�
�2
�
_ ��2;

p (i = 0j�) = �;
p
�
�iji = 1; V; �2

�
= N (�ij0; V ) ;

in which � is the probability that a gene is equivalently expressed and V is the
variance of the normal prior distribution on �i. Both of these parameters are
estimated from the data, and therefore have prior distributions themselves,

p (�) = 1;

p
�
V j�2

�
_ 1

�2

�
1 +

V

�2

��2
:

The complete posterior distribution is,

p
�
;�; V; �2; �jw

�
_
�
�2 + V

��2�" MY
i=1

�1�i (1� �)i
#
�f
�
wj�2;;�

�
�
Y
iji=1

N (�ij0; V ) :

The parameters  can be summed over and the parameters � are analytically
integrable, so they can be integrated out of the posterior distribution, leaving
the marginal posterior distribution,

p
�
V; �2; �jw

�
_
�
�2 + V

��2�" MY
i=1

�1�i (1� �)i
#
�f
�
wj�2;;�

�
�
Y
iji=1

N (�ij0; V ) :

This distribution can easily be sampled from with a Markov chain Monte Carlo
(MCMC) algorithm; once posterior samples have been obtained, the key quan-
tities of interest for estimating � are,

3
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p
�
i = 0jV; �2; �;w

�
=

"
1 +

1� �
�

r
�2

�2 + V
exp

�
w2i V

2�2 (�2 + V )

�#�1
;

E
�
�iji = 1; V; �2; �;w

�
=

wiV

�2 + V
;

from which we can calculate the posterior distribution of �i unconditional on
i,

E
�
�ijV; �2; �;w

�
= p

�
i = 0jV; �2; �;w

�
E
�
�iji = 0; V; �2; �;w

�
+p
�
i = 1jV; �2; �;w

�
E
�
�iji = 1; V; �2; �;w

�
=
�
1� p

�
i = 0jV; �2; �;w

��
E
�
�iji = 1; V; �2; �;w

�
(6)

=

8<:1�
"
1 +

1� �
�

r
�2

�2 + V
exp

�
w2i V

2�2 (�2 + V )

�#�19=; � wiV

�2 + V
:

Taking the average of E
�
�ijV; �2; �;w

�
over the MCMC samples of

�
V; �2; �

�
yields a Monte Carlo estimate of E (�ijw), the expectation of the marginal
posterior distribution of �i.

1.4 Method for choosing simulation variances

For each real data set, we calculated a gene-wise estimate of the signal-to-noise
ratio,

SNRi =
j�̂ji
�̂i

=
j�x0i � �xijs

n0P
j=1
(x0i;j��x0i)

2
+

nP
j=1

(xi;j��xi)2

n0+n�2

;

that is, the ratio of the absolute value of the MLE and the square root of the
usual unbiased pooled variance estimator. For a global signal-to-noise estimate,
we desired a measure of the signal-to-noise ratio for the gene whose absolute
value of the MLE was at the 90th quantile. Simply taking the SNRi value of
the gene with j�̂ji = j�̂j0:9 (numerical subscripts specifying quantiles) would not
be robust, so we took the median of the estimated signal-to-noise ratios for the
set of genes whose absolute value of the MLE was between the 85th and 95th

quantile,

SNRglobal = median (fSNRk j j�̂j0:85 � j�̂jk � j�̂j0:95g) :
We calculated this global signal-to-ratio estimate for each real data set, and

used the value that was smallest to set the variance of the simulations according
to follows,

j�sim j0:9
�sim

= SNRglobal;

4
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which when rearranged gives,

�2sim =

�
j�sim j0:9
SNRglobal

�2
:

1.5 Derivation of the expression for the posterior expected
squared error

The main text contains the equation,

E posterior

h
(�� �̂)2

i
= [E posterior (�)� �̂]2 + var posterior (�) ; (7)

whose derivation is as follows:

E posterior

h
(�� �̂)2

i
= E posterior

�
�̂2 � 2��̂+ �2

�
= �̂2 � 2�̂E posterior (�) + E posterior

�
�2
�

= �̂2 � 2�̂E posterior (�) + [E posterior (�)]
2 � [E posterior (�)]

2
+ E posterior

�
�2
�

= [E posterior (�)� �̂]2 + var posterior (�) :

2 Quanti�cation of variance due to sampling

drisk =
MX
i=1

[MSEi

=
1

B

BX
b=1

 
MX
i=1

�b�b;i � �i�2
!

=
1

B

BX
b=1

sseb;

where

sseb =
MX
i=1

�b�b;i � �i�2 :
To quantify uncertainty in drisk over simulations, we considered its variance
vardrisk, which we estimated by

\
vardrisk = 1

B

 
1

B � 1

BX
b=1

(sseb�sseb)2
!
;

where

sseb =

PB
b=1 sseb
B

:
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We computed the ratio
\
vardrisk�drisk�2

for each estimator and each set of simulations (Table 1). For estimators sat-
isfying independence, uncertainty in the risk was negligible in the sense that
\
vardrisk� �drisk�2.

Estimation Case I, n = 2 Case I, = 8 Case II, n = 2 Case II, n = 8
Q1 shrinkage 1.6e-08 2.1e-08 5.9e-09 1.4e-06
Q2 shrinkage 1.0e-08 4.4e-08 2.3e-08 1.3e-07

MLE 4.8e-09 5.0e-09 5.0e-09 5.0e-09
Baysian shrinkage 3.2e-07 9.5e-09 7.7e-07 8.7e-07
Local FDR shrinkage 5.3e-07 1.9e-07 3.9e-06 9.7e-07
local FDR HT 8.5e-07 3.7e-07 3.9e-06 2.2e-06
raw p-value HT 7.0e-07 2.7e-07 2.9e-06 6.2e-07
adj.p-value HT 8.5e-07 5.4e-07 3.8e-06 4.3e-06

Table 1: Estimation of variance for risk estimate for each estimator and each set
of simulation. Case I is the case that half of genes are di¤erentially expressed and
case II refers to the case of all genes with at least some di¤erential expression.

3 Distributions of true means of simulated data

The two �gures below show the logarithms of fold change values used to generate
the simulated data.

6
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Logarithm of the true fold change for the simulation of 20,000 genes where half
of genes are equivalently expressed.

Logarithm of the true fold change for the simulation of 20,000 genes where all
genes have at least some di¤erential expression.

7
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4 Comparison of shrinkage and hard-threshold
estimation

All of the �gures in this section compare the performance of the one of the
best shrinkage estimators, Q2, to the generally best-performing hard-threshold
estimator, the raw p-value hard-threshold estimator. For the simulations, for
each gene the estimators are summarized by their �rst and third quartile over
the 200 simulations. These quartiles are plotted against the true expression
ratio. For the real data sets, the two estimators are plotted on the y-axis and
the MLE is plotted on the x-axis.

4.1 Simulations

True expression ratio versus the �rst and third quartiles of both estimators
over the 200 simulations for the case where half of genes are equivalently
expressed and sample size is 2. When the sample size is small, the
hard-threshold estimator cannot detect any di¤erential expression.
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True expression ratio versus the �rst and third quartiles of both estimators
over the 200 simulations for the case where half of genes are equivalently

expressed and sample size is 8. The hard-threshold estimator tends to collapse
to zero at fold changes between about 1.5 and 3.0. For fold changes greater
than 3.0 it tracks the true expression ratio. The shrinkage estimator has a bias

that increases with the fold change.
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True expression ratio versus the �rst and third quartiles of both estimators
over the 200 simulations for the case where all genes have at least some
di¤erential expression and sample size is 2. The three plots cover di¤erent

ranges of fold changes. The hard-threshold estimator treats fold change below
10 as equivalently expressed and cannot consistently detect di¤erential
expression until the fold change is very large. The shrinkage estimator is

biased away from zero when the true fold change is zero, but tracks the true
fold change fairly closely once the fold change becomes large.
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True expression ratio versus the �rst and third quartiles of both estimators
over the 200 simulations for the case where all genes have at least some
di¤erential expression and sample size is 8. The three plots cover di¤erent

ranges of fold changes. The hard-threshold estimator treats fold change below
1.5 as equivalently expressed and cannot consistently detect di¤erential
expression until the fold change is greater than around 3. The shrinkage
estimator is biased away from zero when the true fold change is zero, but
tracks the true fold change fairly closely once the fold change becomes large.

11

Hosted by The Berkeley Electronic Press



4.2 Real data sets

All �gures of the real data sets display the same pattern: the shrinkage estimator
is a biased version of the MLE, and there is some region within which the hard-
threshold estimator may give an estimate of equivalent expression and beyond
which the hard-threshold estimator is equal to the MLE.

Maximum likelihood estimate versus both estimators for the �rst A¤ymetrix
data set of the Microarray Quality Control experiment.
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Maximum likelihood estimate versus both estimators for the second
A¤ymetrix data set of the Microarray Quality Control experiment.
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Maximum likelihood estimate versus both estimators for the Applied
Biosystems data set of the Microarray Quality Control experiment.
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Maximum likelihood estimate versus both estimators for the Agilent data set
of the Microarray Quality Control experiment.
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Maximum likelihood estimate versus both estimators for the 10 hours after
treatment versus control at 10 hours data set of the breast cancer cell line

experiment.
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Maximum likelihood estimate versus both estimators for the 48 hours after
treatment versus control at 48 hours data set of the breast cancer cell line

experiment.
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Maximum likelihood estimate versus both estimators for the 48 hours after
treatment versus 10 hours after treatment data set of the breast cancer cell

line experiment.
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Maximum likelihood estimate versus both estimators for the control at 48
hours versus control at 10 hours data set of the breast cancer cell line

experiment.
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