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A Flexible Semi-Parametric Approach to
Estimating a Dose-Response Relationship: the

Treatment of Childhood Amblyopia.

David A. Stephens and Erica E M Moodie

Abstract

In a study of a dose-response relationship, flexibility in modelling is essential
to capturing the treatment effect when the mean effect of other covariates is not
fully understood, so that observed treatment effect is not due to the imposition
of a rigid model for the relationship between response, treatment, and other vari-
ables. A semiparametric additive linear mixed (SPALM) model (Ruppert et al.
2003) provides a tractable and flexible approach to modelling the influence of
potentially confounding variables. In this paper, we present pure likelihood and
Bayesian versions of the SPALM model. Both methods of inference are readily
implementable, but the Bayesian approach allows coherent propagation of uncer-
tainty in the model, and, more importantly, allows prediction of future experi-
mental results for as yet untreated individuals, thus allowing an assessment of the
merits of different dosing strategies. We motivate the use of the methodology with
the Monitored Occlusion Treatment of Amblyopia Study (MOTAS), which inves-
tigated the relationship between duration of occlusion and improvement in visual
acuity.



1 Introduction

In many study settings, the inter-relationships between an outcome, a predictor of
interest such as a treatment, and several other (potentially confounding) covariates are
not well understood. Under such situations, it may be neither desirable nor important
to explicitly explain the associations between outcome and any covariates other than
the pre-specified predictor of interest, and yet we wish to avoid the potential for bias in
the estimation of the treatment effect due to rigid assumptions about the relationship
between the outcome and other variables.

In this paper, we analyze the data from a recent observational study of the treatment
of childhood amblyopia - a common ophthalmological condition, where the visual
acuity of one eye is compromised - by occlusion (patching of the fellow eye); in this
study, there is clear scope for non-linear relationships, as the amount of occlusion
dose received is potentially influenced by continuous child-specific factors such as age
(Stewart et al. 2004). We use semiparametric additive linear mixed (SPALM) models as
tools for estimating potentially non-linear covariate effects.

1.1 Quantifying dose-response over time: an analysis strategy

Two related models are of interest when analyzing longitudinal data. The first (absolute-
level) model assumes a repeated measures structure; each participant provides repeated
time-varying covariate data over a number of intermediate measurements as well as
a final, end-of-study measurement. The second (interval-level) model takes as the
response the change in visual acuity between successive measurements.

In this paper, we mainly focus on the interval-level data: the outcome is taken to be
the change in response between successive measurements in a longitudinal study. That
is, we set our attention to estimating the short-term effect of occlusion by examining
the improvement in visual acuity that may be attributed to the number of hours that
an eye patch was worn in the previous two-week interval. It is equally possible to
consider change in visual acuity as a function of total (cumulative) dose in the interval-
level analysis, or to use SPALM in an absolute-level data context; we also briefly present
analyses along these lines. However, it is widely believed in the ophthalmic community
that changes to the eye, and therefore improvements in visual acuity, are maintained
so that short-term effects are in fact the quantities which are of interest to researchers.

With data in this form, a linear mixed-effects regression model provides a good
means of initial analysis, with selection of influential covariates or interactions carried
out using the Bayes Information Criterion (BIC) (see, for example, Schwarz (1978) and
Kass & Raftery (1995) for definition and discussion). The covariance structure was
selected based on exploratory plots of residuals. Potentially confounding relationships
between covariates and treatment are then modelled flexibly using semiparametric
additive linear mixed (SPALM) models (see, for example, Ruppert et al. (2003)). The
analysis methods are demonstrated in the context of the MOTAS data.
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1.2 Structure of Paper

The paper is structured as follows: section 2 provides details of our motivating exam-
ple. Section 3 describes linear and semiparametric mixed models using a frequentist
approach, with estimation carried out using maximum likelihood and restricted max-
imum likelihood methods. A Bayesian version of the SPALM approach is described
and implemented in 4. The Bayesian approach necessitates the use of a novel prior
structure on the mixed effects components. The Bayesian analysis readily facilitates a
study of the impact of different dosing strategies; we present such a study in section
4.5. In section 5, we provide a brief presentation of the absolute-level data. Section 6
concludes.

2 MOTAS: The Monitored Occlusion Treatment of Amblyopia
Study

2.1 Amblyopia and its Treatment

Amblyopia is the most common childhood vision disorder, affecting 1-5% of children.
The condition is characterized by reduced visual function, and usually affects only
one eye. It has been associated with up to a three-fold increased lifetime risk of
serious vision loss of the fellow eye (Rahi et al. 2002). Amblyopia can be differentiated
into several types, the most common of which are anisometropic, strabismic, and
mixed. A standard treatment for the condition is occlusion therapy, that is, patching
of the functioning fellow eye. Perhaps surprisingly, the apparent beneficial effect of
occlusion therapy has never been well quantified, partly due to difficulty in the accurate
measurement of the occlusion dose.

The Monitored Occlusion Treatment of Amblyopia Study (MOTAS) (Stewart et al.
2004) study was carried out between 2001 and 2003, at three hospitals in London, United
Kingdom. MOTAS was not the only study to examine the effectiveness of occlusion
(see, for example, PEDIG (2003)); however, all previous studies measured compliance
by parental report. The MOTAS study was revolutionary as for the first time the
amount of occlusion therapy that each child received was accurately recorded using
an electronic monitor. This pioneering study offered the possibility of quantification of
the magnitude of the dose effect in the improvement in vision.

2.2 Study Design and Implementation

The MOTAS design and a full description of the study base have been published
previously (Stewart et al. 2002, Stewart et al. 2004). Prior to study entry, all children
had a full ophthalmic assessment. Those who required spectacles entered the refractive
adaptation phase; the remainder entered the occlusion phase directly. Children in
refraction were prescribed to full-time spectacle use for 18 weeks, and scheduled for
vision re-assessment at six week intervals. Children still considered amblyopic began
occlusion and were prescribed six hours of occlusion daily. That is, the same dose was
assigned to all individuals in the occlusion phase of the study.
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The study enrolled a total of 116 children aged between 36 and 100 months over
a period of two years; of these, 29 did not to meet the study’s eligibility criteria or
refused any occlusion. Information from these children who refuse all patching is not
pertinent to a study of treatment by occlusion; consequently, this attrition is assumed
to be non-informative. We analyze the information of 87 children; of these, 18 saw their
amblyopia resolved in the refractive adaption phase and did not enter the occlusion
phase of the study. The remaining 69 were prescribed occlusion for six hours a day,
but received varying occlusion doses because of partial compliance. The duration of
follow-up was also variable, as children were considered to have completed the study
once visual acuity ceased to improve. The decision to end occlusion was made in a
pragmatic fashion, after two inflexions in a plot of acuity against time or after identical
acuity measurements were observed on three consecutive visits. All of the 87 children
who entered one or both phases of the study and did not refuse occlusion remained in
the study until visual acuity stabilized.

Visual acuity was measured on the logarithm of Minimum Angle of Resolution
(logMAR) scale; improvement is indicated by a decrease in logMAR. Occlusion doses
were recorded to the nearest minute by an occlusion dose monitor (ODM) (Fielder et al.
1994). The ODM consists of an eye patch with two small electrodes attached to its
under-surface connected to a battery-powered data logger. At each visit, data from
the ODM was downloaded to a PC and parents were given the opportunity to review
their child’s compliance. The ODM records each separate interval during which the
child wears the monitor; we restrict attention to simple functions of the total dose (in
minutes) and the length (in days) of the interval between clinic visits. Visual function
and monitored occlusion dose were recorded at approximately two-week intervals
until acuity ceased to improve.

Profile plots of individual visual acuity trajectories over successive visits to the
clinician are depicted in Figure 1. These indicate that a piecewise linear model of
response is a reasonable foundation for our statistical models.

3 Linear and Semiparametric Mixed Model Analysis

Let the N = 87 patients in the study be indexed by i and the ni post-baseline clinic visits
by j; the initial visit will be denoted visit j = 0. Then Va

i j is the visual acuity for patient
i on visit j on the day denoted ti j. Similarly, let Di j be the (random) occlusion dose (in
hours) observed in interval j; Di j = 0 for the baseline observation in the occlusion phase.
Let Ai j be the child’s age in months at the start of interval j. Let Li j, Pi, and Si denote the
visual acuity at the start of interval, start of phase and start of study, respectively, and
Ti denote the amblyopia type (anisometropic, mixed, strabismic), for patient i. Note
that Li j = Vi j−1. We also considered the covariates Time in Refraction, tR, and Time
in Occlusion, tO = max{0, t − t0}, where t0 represents the start of occlusion, for those
children who enter occlusion. The response, Yi j, is the change visual acuity between
visit j− 1 and visit j (that is, the change during interval j) for patient i: Yi j = Va

i j −Va
i j−1

for j = 1, ...,ni, i = 1, 2, ...,N.
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Figure 1: Profile plots for the individuals in the MOTAS study (top) and for four selected
patients, with the start of occlusion indicated by the dotted line (bottom).
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3.1 Linear Mixed Effects Models Analysis

We begin with the assumption that variation in visual acuity has both a fixed and
random component. Specifically, we assume a linear mixed model with an individual-
specific random intercept at the first interval. That is

Yi j = XT
i jβ + ηi + εi j, (3.1)

where some correlation structure for the residual errors, εi j, of a child is assumed and
ηi and Xi j are presumed independent. Inference for the linear mixed model in equa-
tion (3.1) is achieved using penalized least-squares or likelihood procedures under an
assumption of Gaussian residual errors. In particular, we consider mean models that
include main effects of each of the aforementioned covariates as well as a small number
of first-order interactions. We considered a wide range of covariance structures for the
residual errors, including the general positive definite covariance and the unit corre-
lation models; see Pinheiro & Bates (1996) for full details. On the basis of exploratory
plots of residuals from a rich mean model, we focused on three models for the variance
components; the model with no correlation, an autoregressive (AR(1)) correlation in
interval number, and exponential decay in correlation in length (in days) between mea-
surements. Serial correlation appears to account for relatively little of the variability of
the data (Figure 2), and that autocorrelation decays to zero by four months.

Linear Mixed Model Results: The model was fit in R using the nlme library. The BIC
was used to select an optimal model. The optimal model for the refraction phase was
L + P + T, and for the occlusion phase was D + A + L + P + D.A + D.L + A.L; residual
plots raised no concerns about the fit of the model for the mean. Time on study, t, time
in refraction, tR, and time in occlusion, tO, added little to the fit of the model.

All models for the refraction and occlusion phases assume random intercepts at
the individual level, as in equation (3.1), and for the occlusion phase, the addition of
a random slopes model was also considered (see Diggle et al. (2001) for terminology).
We retain the model with random intercepts and errors which are AR(1) in interval
number: Corr[Yi j,Yi j′] = ρ| j

′− j|. Random slopes were not necessary, nor did other
correlation structures improve the fit of the model. Table 1 gives parameter estimates
for the terms in the final models using REML. The fit of this model yielded estimates of
the residual error standard deviation and the correlation of σ̂ = 0.0735 and ρ̂ = −0.1708.

In the refraction phase, visual acuity measurements suggests that prior to occlusion,
the vision of anisometropic children given spectacles decreases on the logMAR scale (i.e.
improves) on average by 0.085 (0.023, 0.147) between each visit. Strabismic children
exhibit a lesser degree of improvement while children of mixed type do not exhibit
significant improvement. Children who were younger, and/or had higher logMAR at
the start of occlusion and at the start of an interval all improved further for the same
occlusion dose.

Note that age at start of interval, and the interaction between this variable and
visual acuity at start of interval appear in the model, the interaction being highly
significant. Improvement in vision not attributable to the effect of occlusion cannot,
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Figure 2: Variogram of change in visual acuity residuals, with individual points, a
lowess smooth through these points, and the residual variance.

Table 1: Estimates and standard errors for the parameters from a random intercepts
linear mixed effects model with AR correlation.

Phase Term Est. s.e. t.stat p
Refraction Int. -8.509e-2 3.149e-2 -2.702 0.007

L -6.376e-1 4.145e-2 -15.383 0.000
P 4.839e-1 5.405e-2 8.952 0.000
TM 8.313e-2 3.640e-2 2.284 0.023
TS 1.682e-2 3.818e-2 0.441 0.660

Occlusion Int. -5.728e-3 3.473e-2 -0.165 0.869
D -8.645e-4 3.226e-4 -2.680 0.008
A -5.738e-4 4.920e-4 -1.166 0.244
L -5.113e-1 5.557e-2 -9.237 0.000
P 1.234e-1 2.144e-2 5.755 0.000
D.A 1.339e-5 5.063e-6 2.645 0.008
D.L -9.705e-4 2.959e-4 -3.279 0.001
A.L 4.912e-3 9.242e-4 5.315 0.000
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by received ophthalmological wisdom, be observed. However, the observed effect is
marked, and possible explanations for the presence of these terms include a training
effect of repeated visual testing, or the ongoing effect of refractive adaptation.

3.2 Semiparametric Additive Linear Mixed Models Analysis

We now fit a semiparametric additive linear mixed (SPALM) model to attempt to
capture potential non-linearity in the covariate effects. We focus on the potential non-
linearity in the dose covariate. The model we fit is of the form

Yi j = XT
i jβ +

K∑

k=1

fk
(
Xi j

)
+ εi j, (3.2)

where the fk, k = 1, ...,K, are basis functions of the covariates modelled semipara-
metrically; see, for example, Ruppert et al. (2003). We use the linear mixed model
formulation,

Y = Xβ + Zu + ε (3.3)

where

E
[

u
ε

]
= 0 Var[θ] =

(
G 0
0 R

)

and the matrix X contains the fixed effects predictors, Z is the (basis function) design
matrix in the semiparametric representation of the function of f1, . . . , fK.

3.2.1 The Semiparametric Design: The Truncated Spline Basis

In the semiparametric additive model, the matrix Z contains the truncated spline basis
terms, with columns corresponding to knots κk1, . . . , κkM for k = 1, . . . ,K. Typically, the
random effects coefficients for function k are assigned a common Gaussian distribution
so that the matrix G is diagonal; however this is not necessary.

We use truncated spline basis functions to construct the semiparametric specifica-
tion. Generically, for scalar x varying across a data-dependent range, we specify fixed
(but data-dependent) knot positions κk1, ..., κkM, and model function fk as

fk(x) =

M∑

m=1

ukm(x − κkm)q
+ (3.4)

where uk1, ..., ukM are (random effects) coefficients for function k, and the basis function
component (x−κkm)q

+ = max{0, (x−κkm)q}, so that a typical row of Z (an N×KM matrix)
in equation (3.3) takes the form

[
(x − κ11)q

+ (x − κ1M)q
+ . . . (x − κKM)q

+

]
.

We take q = 1 and use 10 knots at the covariate quantiles, with a knot also placed at
zero, giving M = 11. For convenience, we transform (by translation) the covariates so
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that they are non-negative. The function fk in equation (3.4) has vector of coefficients
uk of length M, which are assumed to be independent random effects with common
variance σ2

k , k = 1 . . . ,K. We also assume independence between u1, . . . ,uK, and thus
retain a block diagonal structure for the entire random effect matrix.

The semiparametric model can be fit using lme in R for some choices of the resid-
ual error covariance R, and more generally using numerical procedures for general
covariance specifications.

3.2.2 Inference for the Semiparametric Linear Mixed Model

Suppose, in conjunction with equation (3.3), u ∼ N(0,G) and ε ∼ N(0,R) with u and ε
independent. This model can be interpreted as Y|β,u ∼ N(Xβ + Zu,R) and u ∼ N(0,G),
yielding the marginal model Y|β ∼ N(Xβ,ZGZT + R) (on integrating out u). Let V =
ZGZT + R. Then estimates can be found using the penalized maximum likelihood or
the restricted maximum likelihood (REML), obtained by first integrating out β from the
likelihood Y ∼ N(Xβ,V).

This model has a (model-based) Bayesian interpretation where the unknown param-
eters β and u are assigned independent prior distributions, with β having an improper
uniform prior on Rp, where p = ncol(X), and u assigned the Gaussian prior described
above. In a fully Bayesian approach, G is set as a fixed hyperparameter, or assigned
an informative prior distribution. Here, an empirical Bayes approach is used where
G and the parameters in R are estimated using ML/REML. In section 4.3, the fully
Bayesian approach is described, and the results of using a diffuse and an informative
prior specification for G are compared.

3.2.3 Semiparametric Mixed Model Results for MOTAS

Three semiparametric components were used when considering MOTAS: a component
for dose, D, a component for the interaction between D and (translated) Age at Interval,
A − 36, and a component for the interaction between D and visual acuity at start of
interval, L + 0.175. We used 10 fixed knots, with positions determined by covariate
quantiles, but the results were robust to specifications with up to 50 knots. We retained
the covariates suggested by the linear model and examined two covariance structures:
an AR(1) model in interval number and an exponential decay-in-time model. There was
effectively no difference in the resulting estimates of the semiparametric components.

4 Bayesian Approaches

The results of the likelihood-based analysis above have identified key predictors in the
model for changes in visual acuity and quantified the influence of occlusion does on
improvement in vision. We now implement a Bayesian analysis. In this analysis, the
advantages of the Bayesian framework are twofold. First, realistic prior information
can be introduced into the model, and as we demonstrate in section 4.2, this can produce

8

http://biostats.bepress.com/cobra/art20



different inferences compared to the likelihood/empirical Bayes approach that is often
used in mixed model settings. Secondly, the Bayesian framework facilitates a prediction
study that can predict the improvement in visual acuity of hypothetical future children,
thus allowing a comparison of different dosing patterns in terms of ultimate outcome.
In this section, we perform inference using Markov chain Monte Carlo (MCMC), as the
joint posterior distribution for the parameters in the residual covariance model is not
available analytically, and as the prediction of future responses can be achieved in a
very straightforward fashion.

4.1 Bayesian Posterior Calculation for Repeated Measures Data

Consider a linear model formulation using the notation introduced earlier, that is where
Y ∼ N(Xβ,R), where R is a block diagonal error covariance matrix R = diag(R1, . . . ,RN).
For example, the components of R can be specified via the exponential decay or AR(1)
autocorrelation functions. We focus on the former for illustration.

To complete the specification, we use a diffuse (improper uniform) prior specifica-
tion for β and an improper Jeffreys-type prior on the positive parameters in the expo-
nential autocovariance function; i.e., take p

(
β, λ, ζ, ν

)
= (λζν)−1 and derive the posterior

distribution. The joint posterior factorizes into p
(
β, λ, ζ, ν|y) = p

(
λ, ζ, ν|y) p

(
β|y, λ, ζ, ν)

where

p
(
λ, ζ, ν|y) ∝ |M3|−1/2

N∏

i=1

|Ri|1/2
exp

{
−1

2

[
M1 −MT

2 M−1
3 M2

]} 1
λζν

(4.1)

with

M1 =

N∑

i=1

yT
i R−1

i yi M2 =

N∑

i=1

XT
i R−1

i yi M3 =

N∑

i=1

XT
i R−1

i Xi

and β|y, λ, ζ, ν ∼ Np(M−1
3 M2,M3). The posterior distribution in equation (4.1) is not

available analytically, but inference may be carried out using MCMC on the three
parameter joint posterior. We use a Metropolis update on a sweep of the conditionals,
reparameterized onto the log scale, and jointly on the block of the three parameters.
The conditional posterior for β given (λ, ζ, ν) can be sampled directly.

To extend the mixed model, a further level can be added to the hierarchy in some
cases, although this is not sensible for the semiparametric components. For example,
fitting a random effects model similar to that in equation (3.1) is straightforward using
a Gibbs sampler. Denoting by η = (η1, ..., ηN) the vector of child-specific random effects
(intercepts), the posterior of interest becomes the joint distribution p

(
θ, λ, ζ, ν, η, σ2

η|y
)
,

where σ2
η is the (unknown) random effect error variance, which is included in the

MCMC cycle; we might assign an Inverse Gamma prior with parameters 2.5 and 0.25.
Then, conditional on η, the posterior for (θ, λ, ζ, ν) is updated as in the fixed effect
only model, with datum yi j replaced by yi j − ηi. Conditional on (θ, λ, ζ, ν) and σ2

η, the
posterior for ηi is univariate Gaussian. Finally, conditional on all other parameters, the
posterior for σ2

η is Inverse Gamma.
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A fully Bayesian analysis is also possible for the SPALM model. The posterior
distribution of the covariance parameters is identical to that in (4.1), but with

M1 =

N∑

i=1

yT
i R−1

i yi M2 =

N∑

i=1

CT
i R−1

i yi M3 =

N∑

i=1

CT
i R−1

i Ci = CTR−1C.

where R ≡ R(λ, ζ, ν), and the posterior distribution forθ = [β u]T is multivariate Normal
(dimension p + MK) with mean and variance

µ = (CTR−1C + B)−1CTR−1y Σ = (CTR−1C + B)−1

respectively. In addition, rather than using an improper Uniform prior for β, an in-
formative prior can also be specified. In this case, the calculation proceeds as before,
with the marginal posterior for (λ, ζ, ν) sampled using Metropolis-Hastings, and the
conditional posterior for β (or (β,u)) is multivariate Normal.

4.2 An Informative Prior Specification for the SPALM model

In the SPALM model, the specification of random effects prior matrix G can be engi-
neered to match prior opinion about the nature (that is, smoothness or curvature) of
the modelled function. Consider a single semiparametric component Y = Zu, where
u ∼ N(0,G), so that Y ∼ N(0,ZGZT), and we require a priori that Y ∼ N(0,V0). Then

V0 = ZGZT =⇒ G = (ZTZ)−1ZTV0Z(ZTZ)−1

and G should adopt a data-dependent form, giving a prior that is similar in structure to
the “g-prior” (Zellner 1983). Conditional on knot points κ1, . . . , κM, we can specify any
required prior autocovariance structure. For example, we could specify a prior with
high autocorrelation, thereby encouraging smoothness in the semiparametric compo-
nent. In our analysis, we specify V0 to be a diagonal matrix such that the prior variation
in the semiparametric function is concentrated on the range ±2. This results in a re-
quired prior variance for the dose component to be specified by

G−1 = 10−3



14 13 12 11 11 10 9 8 6 5 2
13 12 11 11 10 9 8 7 6 4 2
12 11 11 10 9 9 8 7 6 4 2
11 11 10 10 9 8 8 7 6 4 2
11 10 9 9 9 8 7 6 5 4 2
10 9 9 8 8 7 7 6 5 4 1

9 8 8 8 7 7 6 5 5 3 1
8 7 7 7 6 6 5 5 4 3 1
6 6 6 6 5 5 5 4 4 3 1
5 4 4 4 4 4 3 3 3 2 1
2 2 2 2 2 1 1 1 1 1 1
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This is a much more precise specification than the noninformative prior we selected.
However, it is much less precise than the prior deduced using the empirical Bayes
procedure based on ML/REML estimation of the components of G; the parameters
(̂σ1, σ̂2, σ̂3) that define the diagonal components of G are (7.589e-08, 2.314e-06, 7.430e-
04). As the prior is design-dependent, this specification is only strictly appropriate
for the fixed-knot case, and will change in a straightforward fashion when the knot
positions change.

The results from an analysis using this informative prior are depicted in Figure
3, where results for the non-informative and empirical Bayes priors are also shown
for comparison. Overall, results are broadly similar when the two fully Bayesian
procedures are used, but the magnitude of the various dose effects are estimated to
be much larger than those estimated using the empirical Bayes procedures. We note
that the deduced empirical Bayes prior has extremely (we argue unreasonably) high
precision for several of the components, and prefer the informative specification.

4.3 Bayesian Semiparametric Modelling Analysis and Results

A semiparametric model similar to the one described in section 3.2 can be fitted in the
Bayesian framework. Most importantly, the model is fundamentally unchanged from
that described in section 3.2; the principal difference in the model specification is the
prior used for the random effects coefficients that are used to construct matrix G. In
an initial analysis, a non-informative prior specification is used, where the diagonal
elements of G are set to be 1010. The results for this prior specification, the empirical
Bayes specification implied by the classical analysis, and the analysis based on the
informative prior specification of section 4.2 are depicted in Figure 3. Qualitatively,
the differences between the prior specifications, and the interaction between dose and
the other predictors are evident. It is clear, for example, that the empirical Bayes prior
appears to shrink the magnitude of effect more towards zero relative to the informative
prior.

4.4 Relaxing the assumption of fixed knot positions

As a final check of the reported effect magnitude, we relax the assumption that knot
positions in the truncated basis spline SPALM analysis of previous sections are fixed.
We treat the knot positions as further unknown parameters to be estimated, and assign
a prior distribution that states that the knot positions are the order statistics from a
Uniform sample on the range of the variable concerned. Incorporating this into the
MCMC scheme is straightforward; we augment the algorithm described in section
4.1 with a further Metropolis-Hastings step that selects a knot at random, samples a
candidate new knot position from its conditional prior distribution, and performs the
usual accept/reject step.

The results from the MCMC analysis comparing fixed and movable knots (using the
informative prior from 4.2 and an AR(1) residual error structure) are nearly identical to
those using fixed knots, however 95% pointwise credible intervals are slightly wider for
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Figure 3: Estimated semiparametric functions for dose and interactions. Bayesian
median estimates under the three prior structures: non-informative, informative and
empirical Bayes for the SPALM analysis, assuming an AR(1) residual errors structure
for the interval-level data.
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the movable knots analysis. That is, allowing movable knots provides a more honest
reflection of the uncertainty in the model.

4.5 Bayesian Prediction: The Impact of Different Dosing Strategies

The Bayesian analysis is useful as it readily facilitates a study of the impact of differ-
ent dosing strategies. Once a large sample from the posterior distribution has been
obtained, a sample from the posterior predictive distribution can be obtained for fixed
values of the covariates by sampling from the likelihood part of the model, given on
each posterior sample in turn.

We examine the impact of different dosing strategies on two hypothetical children,
one aged 42 months at the start of study, the other aged 60 months. Each child will enter
the occlusion phase of the study with a visual acuity of 0.8 logMAR, and be diagnosed
as of anisometropic type. They could receive 0, 2, 6, and 9 hours of occlusion per day,
over a 12 month period, when the study will end.

The impact of the different dosing strategies for the two children, respectively, is
depicted in the four panels of Figures 4 and 5, where boxplots of samples from the
posterior predictive profiles are plotted; the posterior samples were generated in the
Bayesian linear mixed model analysis of the interval-level data in section 4.1. The
difference between the response profiles under different strategies is evident (the ex-
pected profile under a zero dose strategy is included for comparison). Also, comparing
the results for the two children, the impact of age is striking, with the younger child
improving to a greater degree than the older child under each strategy. Note that even
under a zero dose, there is gradual improvement through the occlusion phase, and
this can be attributed to ongoing time on study/time in occlusion, both of which are
apparently influential predictors in the model. This analysis is illustrative; the impact
for children with varying characteristics can readily be studied in the same way.

5 Analysis of the Absolute-level Data

Had it been scientifically of interest to do so, the data could have analyzed longitudi-
nally by considering the absolute-level data. We briefly describe such an analysis here.
For such an analysis, we take the response to be visual acuity, Va

i j, and denote the total

cumulative dose by the end of interval j for child i by Dc
i j, so that Dc

i j =
∑ j

l=0 Dil.

5.1 A SPALM Analysis of the Absolute-level Data

As in the interval-level analysis, we performed preliminary model-selection using
a standard Gaussian linear model to the set of 684 observations, without any by-
individual grouping. The BIC suggested that the model for the refraction phase was
should include tR +T+S, and for the occlusion phase was tO +S+A+Dc +Dc.A+Dc.tO +
tO.S. The estimated coefficients in the model confirm conventional ophthalmological
wisdom; for cumulative dose, Dc, the interaction between dose and age at interval,
Dc.A, and the interaction between dose and time in occlusion, Dc.tO, the estimates
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Figure 4: Predicted response for different occlusion dosing strategies from the Bayes
analysis in a linear model for interval-level data. Boxplots of 5000 samples of the
posterior predictive profiles for anisometropic children aged 42 months, with initial
visual acuity 0.8. Plots are for 0, 2, 6, and 9 hours of occlusion per day, respectively, in
(a), (b), (c), and (d).
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Figure 5: Predicted response for different occlusion dosing strategies from the Bayes
analysis in a linear model for interval-level data. Boxplots of 5000 samples of the
posterior predictive profiles for anisometropic children aged 60 months, with initial
visual acuity 0.8. Plots are for 0, 2, 6, and 9 hours of occlusion per day, respectively, in
(a), (b), (c), and (d).
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(standard errors) are -9.975e-4 (1.756e-4), 1.121e-5 (2.648e-6) and 1.517e-6 (3.351e-7)
respectively. Thus it appears that visual acuity improves with increasing cumulative
dose, although this improvement is moderated by the age of the child and the time
spent in occlusion.

In principal, many parts of the models of earlier sections can be replaced by semi-
parametric components. In this analysis of the absolute-level data, we fit K = 3
semiparametric components for the terms involving dose in the final Gaussian model
selected, namely cumulative dose, Dc, and the interactions between Dc and age at inter-
val, A, and Dc and time in occlusion tO. We transform A by subtracting the minimum
observed age, 36 months.

Figure 6 clearly shows the effect of cumulative dose, and the interaction between
cumulative dose and age at interval, and the non-linear nature of these functions. Note
that the empirical Bayes prior produces markedly different posterior inference from
the non-informative and informative priors constructed similarly to those described in
section 4.3.

5.2 Bayesian SPALM for Absolute-Level Data

A semiparametric model similar to the one described in the previous subsection section
can be fitted in the Bayesian framework. Most importantly, the model is fundamentally
unchanged from that described in section 4.1 and equation (4.1). The principal differ-
ence in the model specification is the prior used for the random effects coefficients that
are used to construct matrix G. In an initial analysis, a non-informative prior specifi-
cation is used, where the diagonal elements of G are set to be 1010. The results for this
prior specification, the empirical Bayes specification implied by the classical analysis,
and the analysis based on an informative prior specification are depicted in Figure 6.
For brevity, we have omitted details of the posterior summaries and focus only on the
semiparametric components.

6 Discussion

The MOTAS study has facilitated, for the first time, the efficacy of occlusion therapy
in the treatment of amblyopia to be quantified. In this paper, we quantified the im-
provement in visual acuity of amblyopic children in refractive adaption, as well as the
dose-response relationship between improvement in vision and occlusion. We studied
the interval-level data. Key determinants of the change in visual acuity amongst the
measured variables were identified. It was evident that occlusion dose was an influ-
ential factor and, using a semiparametric mixed effect model, we were able to identify
and quantify the marginal dose-response impact of dose on visual acuity. The impact
of different levels of occlusion dose per interval was studied.

Our analysis demonstrates that the relationship between dosing and age is complex.
However the pattern of results from both the linear and the semi-parametric analyses
of MOTAS are in line with ophthalmological opinion and practice: higher doses give
greater improvement in vision and the impact is greater in children with inferior vision,
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Figure 6: Estimated semiparametric functions for cumulative dose and interactions.
Estimates from SPALM analyses of the absolute-level data: for cumulative dose Dc,
the interaction Dc.A − 36, and for the interaction Dc · tO. Estimates are from the fully
Bayesian model using non-informative, informative and empirical Bayes priors on the
random effects.
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but the effect is moderated by increasing age of the child. The Bayesian predictive
analysis makes clear the importance of treating occlusion early, as older children require
far greater doses of occlusion to improve or resolve their amblyopia. MOTAS is just
one example where the relationships between dosing and covariates are complex and
not well-approximated with linear forms.

When looking for a dose-response effect, the associations between outcome and
individual characteristics or treatment and these characteristics are not of interest in
themselves. To estimate the dose-response relationship with confidence, modelling
potentially confounding relationships flexibly is key. Semiparametric additive linear
mixed (SPALM) models are of practical value: they are tractable and flexible, particu-
larly when implemented in a Bayesian framework. The splines used in SPALM models
offer a much higher degree of adaptability to the data than linear models, and perhaps
provide better control of confounding effects. The Bayesian implementation of the
SPALM model was readily implementable and allowed for cohesive propagation of the
uncertainty in the model.
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