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Abstract

High-throughput functional proteomic technologies provide a way to quantify the
expression of proteins of interest. Statistical inference centers on identifying the
activation state of proteins and their patterns of molecular interaction formalized
as dependence structure. Inference on dependence structure is particularly im-
portant when proteins are selected because they are part of a common molecular
pathway. In that case inference on dependence structure reveals properties of the
underlying pathway. We propose a probability model that represents molecular
interactions at the level of hidden binary latent variables that can be interpreted
as indicators for active versus inactive states of the proteins. The proposed ap-
proach exploits available expert knowledge about the target pathway to define an
informative prior on the hidden conditional dependence structure. An important
feature of this prior is that it provides an instrument to explicitly anchor the model
space to a set of interactions of interest, favoring a local search approach to model
determination. We apply our model to reverse phase protein array data from a
study on acute myeloid leukemia. Our inference identifies relevant sub-pathways
in relation to the unfolding of the biological process under study.
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Modeling Protein Expression and Protein Signaling Pathways

Abstract

High-throughput functional proteomic technologies provide a way to quantify the expres-

sion of proteins of interest. Statistical inference centers on identifying the activation state

of proteins and their patterns of molecular interaction formalized as dependence structure.

Inference on dependence structure is particularly important when proteins are selected be-

cause they are part of a common molecular pathway. In that case inference on dependence

structure reveals properties of the underlying pathway. We propose a probability model that

represents molecular interactions at the level of hidden binary latent variables that can be

interpreted as indicators for active versus inactive states of the proteins. The proposed ap-

proach exploits available expert knowledge about the target pathway to define an informative

prior on the hidden conditional dependence structure. An important feature of this prior is

that it provides an instrument to explicitly anchor the model space to a set of interactions

of interest, favoring a local search approach to model determination. We apply our model

to reverse phase protein array data from a study on acute myeloid leukemia. Our inference

identifies relevant sub-pathways in relation to the unfolding of the biological process under

study.

Keywords: AML; Graphical Models; Mixture Models; POE; RJ-MCMC; RPPA.
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1 Introduction

In this article we consider the statistical analysis of high throughput protein expression

data. We focus on the identification of patterns of protein interactions capitalizing on both

a molecular interrogation protocol called reverse phase protein array (RPPA) technology and

prior biological pathway knowledge.

RPPAs (Tibes et al. 2006) represent a high-throughput proteomic technology that pro-

vides a quantification of the expression for specifically targeted proteins selected from molec-

ular pathways. Unlike traditional microarrays in which thousands of gene probes are im-

mobilized on glass or fabric slides and are hybridized against samples from individuals,

in RPPA one immobilizes individual samples on the slides and hybridizes them against a

single antibody that recognizes only one protein. This is why the technology is named

reverse phase. Figure 1 presents an image of RPPA, in which 40 individual patient sam-

ples containing whole cellular protein repertoires are printed in 40 batches. Each batch

can be recognized as a square of four-by-four dots. For quantification purposes, each sam-

ple is diluted serially in eight steps so that the resulting strength of the dilutions are full

strength, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128 of the full strength. Duplicates are

produced for each dilution, resulting in a total of 16 spots for each sample, shown as the

four-by-four square on the slide. Each slide is probed with an antibody that represents

one specific protein. The antibody can be detected by amplified fluorescent, colorimet-

ric, or chemiluminescent assays. After each slide is hybridized against the antibody, signal

intensities for all the samples on the slide are measured by scanning the slide using a spe-

cially designed scanner. Quantification of each sample is based on the intensities of the 16

spots. In our application we base our analysis on results obtained from the SuperCurve soft-

ware (http://bioinformatics.mdanderson.org/Software/OOMPA). Currently, researchers
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are able to deposit over a thousand patient samples on one RPPA, making the technology

particularly attractive for pathway analysis. In general the availability of protein-specific an-

tibodies remains a limitation of RPPA, but this issue lies outside the scope of this manuscript.

Statistical research in the estimation of dependence patterns has mainly centered on

Bayesian networks (Friedman 2004; Jansen et al. 2003; Pittman et al. 2004; Sebastiani and

Ramoni 2005). Other recent attempts on network models include the work on finding differ-

entially expressed gene-sets (often belonging to a genetic pathway) by Efron and Tibshirani

(2006) and Newton et al. (2007). Recent extensions to this framework (Shojaie and Michaai-

lidis, 2009 and 2010) show how the introduction of explicit prior information about gene-gene

interactions improves power in the differential analysis of gene-sets. The innovative work by

these authors still stops short of modeling specific interaction among the genes. In fact, in

the setting of estimating gene-gene interactions, recent contributions have highlighted how

well-established computational techniques often perform poorly in very high dimensional

settings (Dobra et al. 2004, Scott and Carvalho 2008). In this regard, some progress has

been reported when the analysis is carried out using convenient probabilistic schemes like

Gaussian Markov random fields (Scott and Carvalho 2008; Wong et al. 2003; Jones et al.

2005), or functional transformation schemes (Telesca et al. 2009).

In the case of RPPA data, the curse of dimensionality is somewhat mitigated by the

fact that the technology looks at a limited set (typically < 200) of proteins for expression

and activation states, which represents a fraction of the estimated 4 million proteins and

activation states thought to occur in the human proteome. Furthermore, in typical protocols,

one is not dealing with the n << p paradigm, as large sample sizes can easily be analyzed. On

the other hand, when investigating dependence, some issues that are inherently associated

with high throughput molecular interrogation persist. (1) The sampling distribution of

proteomic abundance is usually non-Gaussian, rendering the convenient Gaussian graphical
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models framework inadequate as a model for protein interactions. (2) RPPA experiments

often target specific biologic pathways; it is therefore important that the prior specification

exploit available prior information on such targeted pathways.

We address issue (1) following the formalism introduced by Telesca et al. (2010), modeling

the sampling distribution of protein abundance as a heavy tailed mixture distribution, and

defining dependence at a hidden level, between binary indicators of inactive and active states.

Addressing (2) defines a key feature of the proposed model, as our formulation introduces an

informative prior, that assigns high prior probability mass to the model space surrounding

the target pathway. Mukherjee and Speed (2008), for example, suggest a similar approach

in the context of Gaussian DAGs. Our approach is also comparable to that described by

Airoldi et al. (2007) in a data integration context. From a methodological perspective, we

extend the work of Telesca et al. (2010) in two fundamental directions. First, we introduce

a fully general dependence prior between hidden multivariate binary random quantities, and

second, we propose a framework for Bayesian model determination that allows a local search

for interactions, penalizing the model space as a function of a discrepancy measure between

the target pathway and random departures from its graphical topology.

The rest of this article is structured as follows. We introduce the proposed analysis framework

and probability model in § 2. Statistical inference based on MCMC sampling from the

posterior distribution of interest is discussed in § 3. In § 4 we illustrate our approach

through the analysis of an RPPA data set from a set of patients diagnosed with acute

myeloid leukemia (AML). We conclude with a critical discussion of our contribution in § 5.

5
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2 Dependent Mixture Model

We consider protein expression data in the form of a G × T matrix Y = [ygt], with the

generic element ygt denoting the observed molecular expression for protein g in sample t, so

that g = 1, . . . , G and t = 1, . . . T . The sampling model for Y is defined conditionally on a

latent variable egt, representing an indicator of class membership in a mixture density and is

described in § 2.1. We argue that egt is likely to represent the biologically meaningful signal

of protein activation better than the noisy row intensities ygt. A key feature of the model is

a graphical model G to parametrize a dependent prior on e = [egt]. The graph G reflects the

dependence structure between proteins. The strength of this dependence is indexed by an

additional set of parameters β. In summary the probability model is defined as:

p(Y, e,β,G) = p(Y | e)︸ ︷︷ ︸
2.1

p(e | β,G)︸ ︷︷ ︸
2.2

p(β | G) p(G)︸ ︷︷ ︸
2.3

. (1)

Underbraced numbers indicate the subsections where each submodel is discussed below.

2.1 Sampling Model – p(Y | e)

We assume that the sampling distribution of ygt has heavy tails and follows a mixture of a

normal distribution and two scale mixtures of uniform distributions. Let egt denote a latent

trinary indicator, egt ∈ {−1, 0, 1}, indexing three possible distribution functions. Also, let

ỹgt = ygt − (αt + µg), denote a normalized measure of relative abundance, corrected for a

protein specific effect µg and a sample specific effect αt. Using f(·) to generically denote a

probability density function, we write the sampling distribution of ỹgt as:

f(ỹgt | egt) = f−1(ỹgt)I(egt = −1) + f0(ỹgt)I(egt = 0) + f1(ỹgt)I(egt = 1), (2)

where f−1(·) = U(−k−g , 0), f0(·) = N(0, σ2
g), f1(·) = U(0, k+

g ), k±g > 0 and I(A) denotes an

indicator of the event A. Such normal–uniform mixtures have been previously introduced
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by Parmigiani et al. (2002) and Dean and Raftery (2005) for the robust analysis of high

throughput cDNA microarrays. Recently, Telesca et al. (2010) have extended the original

formulation of Parmigiani et al. (2002), defining mixing proportions via a multivariate probit

link.

Conditional on et = (egt, g = 1, . . . , G) the observed abundance measurements ygt are

exchangeable in (2). Later, in Section 2.2 we will exploit the trinary indicators egt to

model conditional dependence between protein abundance measurements. For each protein

g, the marginal distribution of eg = (eg1, ..., egT )′ is trinomial with T possible trials, support

{−1, 0, 1} and probabilities π−g = p(egt = −1), π+
g = p(egt = 1) and π0

g = 1− (π+
g + π−g ).

In the foregoing formulation, σ2
g denotes the variance of the baseline distribution for

protein g. The mixture distribution models overdispersion relative to f0(·) through the tail

parameters k−g and k+
g . We will require that min(k−g , k

+
g ) > 5σg to account for heavy tails in

the proteomic distribution of abundance. More precisely, marginalizing over κ±g the sampling

model (2) is heavy tailed compared to the central normal distribution.

We propose the following conditionally conjugate hierarchical normal prior for the remain-

ing parameters in (2): µg ∼ N(mµ, τ
2
µ), 1/σ2

g ∼ Ga(γσ, λσ), αt ∼ N(0, τ 2
α), 1/k−g ∼ Ga(γk, λk)

and finally 1/k+
g ∼ Ga(γk, λk). Additionally, we will require

∑T
t=1 αt = 0, for likelihood iden-

tifiability.

2.2 Modeling Dependence – p(e | β,G)

We model dependence between proteins using the formalism of graphical models (Lauritzen

1996). A graph G = {V,E} is an algebraic structure, composed of a set of vertices V and a set

of edges E ⊆ V ×V . When the set of vertices V represents a collection of random quantities,

the edge structure E is often used to identify the full set of conditional independence relations

between the components of V via, what is often called, the global Markov property associated

7
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with G (Besag 1974). Details, including whether edge set E is allowed to include directed

edges, i.e., ordered pairs of nodes, or only undirected edges, i.e., unordered pairs, depend on

the specific graphical model and are discussed below.

Regulatory relationships between proteins may include causal loops and dynamic recip-

rocal regulation (See Figure 2). This motivates the assumption that the set of conditional

dependence relationships characterizing protein interactions is well represented by a class of

graphical models known as Reciprocal Graphs (Koster 1996). These graphs allow for directed

(e.g. a → b) and undirected edges (e.g. a− b), loops (e.g. a → b, b → c, c → a) and recip-

rocal relationships (e.g. a → b, b → a), where a, b, c ∈ V . Provided there are not directed

edges between vertices of the same undirected path (e.g. a − b, b − c, c → a), this class of

models has a clear causal interpretation and equivalent Markov classes may be defined via

graphical moralization (Lauritzen 1996, Koster 1996).

Our notation G = {V,E} defines a reciprocal graph. Each G corresponds to one and only

one moral (undirected) graph Gm = {V,Em}, where Em represents the set of undirected

edges moralized from E. While we use a directed graph G to interpret the pathway diagram,

in the absence of a time-course experiment, the data can only inform about an equilibrium

distribution. For the development of the sampling model it therefore suffices to consider

the implied conditional independence structure of the equilibrium distribution. We will

represent this by Gm. We proceed in the following way. We start with a prior on G, this

induces a prior on Gm. Conditional on Gm we define a sampling model for the observed data.

Finally, posterior updating provides the desired posterior inference on G. In this process it

is important to note that we only learn about the featurs of G that would change Gm.

This process parallels inference in an ANOVA model that can only inform about identifiable

contrasts. The prior on the directed graph can be thought of as prior regularization.

The mapping G → Gm is via the moralization procedure. Henceforth notation with
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superscript m will always refer to the moralized graph. The mapping is not one-to-one, as the

same undirected graph may correspond to different directed structures, (Markov equivalence,

Lauritzen 1996). In Gm standard Markov random field (mrf.) properties apply (Besag 1974).

In particular, if we denote ne(g) as the set of neighbors of protein g (a ∈ ne(b) if and only if

{a, b} ∈ Em), then it is assumed that the abundance of protein g is conditionally independent

of any other protein, given its neighbors ne(g).

We specify a joint distribution over the latent indicators et = (e1t, ..., eGt)
′, (t = 1, ..., T ),

that is consistent with the Markov structure spanned by a given reciprocal graph G, through

its moral representation Gm. We first reduce the trinary egt to a binary indicator zgt. We

do so because in RPPA studies researchers usually focus on protein activations. We thus

define an auxiliary indicator zgt = 2I{egt = 1} − 1 ∈ {−1, 1}, which we will use to describe

dependence across proteins.

Next we construct a joint probability model for zt = (zgt, g = 1, . . . , G). The reduc-

tion to the multivariate binary vector zt greatly simplifies this modeling step. Following

the arguments of Hammersley and Clifford (1971) and of Besag (1974), given G and the

neighborhood structure encoded in a moral graph Gm, the joint distribution p(zt) can be

defined in its full generality through the complete conditional probabilities p(zgt | z(\g,t)).

More precisely, let exp[Q(zt)] ∝ p(zt), then there exists an expansion of Q(zt), unique on

Ω = {−1, 1}G and of the form:

Q(zt) =
∑

1≤g≤G

zgtHg(zgt)+
∑

1≤g≤h≤G

zgtzhtHgh(zgt, zht)+. . .+z1tz2t · · · zGtH1,2,...,G(z1t, z2t, ..., zGt).

(3)

The Hammersley Clifford theorem (Besag 1974) postulates that while the H–functions may

be chosen arbitrarily, for any set of labels (1 ≤ g, h, ..., s ≤ G), Hg,h,...,s may be non–null if

and only if the set of proteins labeled (g, h, ..., s) forms a clique in the moral graph Gm. A

9
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clique is a subset of proteins in which each pair of proteins is connected by an edge.

The binary nature of zgt allows us to, without loss of generality, replace any non–null

H–function with a single arbitrary parameter (Besag 1974, Cox 1972) and we can therefore

write:

Q(zt) =
∑

αgzgt +
∑

βghzgtzht + · · ·+ β1,2,...,Gz1tz2t · · · zGt. (4)

The foregoing formulation is a representation result for any multivariate distribution p(z).

Later, conditioning on a particular graphical model G will substantially reduce the number of

terms appearing in (4). In fact, when considering p(zt | G), the function Q(zt | G) will only

include sets of vertices forming cliques in the moralized graph Gm. Finally, the definition of

a joint distribution over the original trinary indicators et is completed with the conditional

probability p(egt = −1 | zgt = −1) = exp(γg)/{1 + exp(γg)}, (g = 1, ..., G).

In summary, we have mapped G to Gm, and then indexed all possible joint probability

models on et that respect the conditional independence structure represented in Gm by (4).

2.3 Priors Over Interaction Parameters and Graphical Structures – p(β | G) p(G)

We introduce an informative class of priors for the unknown graph G. In words, our prior

model is based on a pathway diagram that summarizes substantive prior information about

the biochemical pathway of interest. First we interpret the pathway diagram as a known

and fixed reciprocal graph G0 = {V,E0}. Here we assume that the biochemical pathway is

displayed as a set of nodes corresponding to proteins and edges between nodes. We assume

that all edges are directed. In general, a reciprocal graph could also include undirected edges,

subject only to the constraint that there be no directed edges between nodes of the same

(undirected) pathway component (Koster, 1996). We do not make use of this feature in our

implementation, as all edges in the original pathway are indeed directed.

Conceptually we write: p(G) ∝ f{d(G0,G)}, where d(·, ·) is a discrepancy measure and
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f ′ ≤ 0, so that graphs that deviate from G0 are assigned a lower prior probability. A similar

approach was introduced by Mukherjee and Speed (2008) for Gaussian DAGs.

Let Ac denote the complement of set A and define d(G0,G) = |Ec∩E0|+δ |E∩Ec
0|, δ > 1.

Here |E| identifies the number of edges in a graph G = {V,E}. This defines a discrepancy

measure d(G0,G) as the weighted sum of edges dropped from G0 and edges added to G0. If we

assume for a moment δ = 1, then d(G0,G) reduces to the number of changed edges relative

to G0. A weight δ > 1 allows to include a notion of parsimony by using an increased penalty

for adding edges compared to dropping edges. For a given d(·, ·), we assume that

p(G | ϕ) ∝ f{d(G0,G)} = ϕd(G0,G), (5)

where we assume ϕ ∼ B(aϕ, bϕ). The prior (5), with δ = 1, is equivalent to assuming ex-

changeable coin flips to determine each edge, with odds of matching edges in G0 equal to ϕ.

Similar probability models have been shown to provide in several contexts automatic mul-

tiplicity correction in the posterior (Scott and Berger 2008). For any given ϕ, the expected

density of a graph 1 G is computed as d̄ (G | ϕ) =
(
|Ec

0|
ϕδ

1+ϕδ
+ |E0|

1+ϕ

)
1

G(G−1)
, which is a de-

creasing function of δ. Furthermore, the distribution of the graph density d(G | ϕ) has mode

at |E0|
G(G−1)

and variance decreasing with δ. A key property of (5) is therefore the informative

nature of the prior, maximized at the prior guess G0, leading to posterior simulation being

a local exploration of the model space. This is in sharp contrast to alternative approaches

that allow for global model exploration by using prior probability models that are far more

diffuse over the model space. If desired, further structural restrictions are easily incorporated

in this framework by introducing changes in d(G0,G). For example, this function could be

defined in ways that force the inclusion of a subset of edges, say E∗0 , or in ways that introduce

discrete cut-offs to the overall model size.

1The density of a reciprocal graph G is defined as d(G) = |E|
G(G−1) .
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Our model is completed by defining normal priors over the interaction parameters (βgh, βghk, ...),

(∀ g < h < k · · · ), so that βu | G ∼ N(ηu, σ
2
β), for any generic index u of the parameter vector

β. The mean value ηu is used to represent an important feature of typical molecular pathway

representations. Pathway diagrams usually include a distinction between stimulatory and

inhibitory interactions. In Figure 2, for example, edges between proteins are labelled with

an arrowed-tip (i→ j) if interactions observed a priori are of a stimulatory nature and with

a bullet-tip (—•) if prior interactions are inhibitory.

We formalize the definition of stimulatory and inhibitory relationships, following the

framework introduced in § 2.2 and focusing on second order interactions parameters βgh,

(g < h). More precisely, indexing protein activation with binary indicators zgt ∈ {−1, 1},

we assume that protein g stimulates the activation of protein h if p(zgt = 1 | zht = 1) >

p(zgt = 1|zht = −1). Similarly, for inhibitory relationships we assume p(zgt = −1 | zht =

1) > p(zgt = −1|zht = −1). It is easy to verify that these definitions motivate the choice of

ηu > 0 for stimulatory and ηu < 0 for prior inhibitory interactions. In the absence of prior

information, ηu is simply set to 0.

For reference, we summarize the complete model. Let λg = (κ−g , κ
+
g , sg)

′; we have:

Sampling model: ỹgt | egt = e,λg ∼ fe(ỹgt), ỹgt = ygt − (αt + µg)

Autologistic: p(zt | G,β) ∝ exp{
∑

g αgzgt +
∑

(g,h)∈Em βghzgtzht}

Graphical model prior: p(G | ϕ) ∝ ϕd(G0,G)

Hyperprior: βij | G ∼ N(ηij, σ
2
β), (i, j) ∈ Em

where the trinary indicator egt is an elaboration of the binary indicator zgt for activation,

with log p(egt=−1|zgt=−1)

p(egt=0|zgt=−1)
= γg and egt = 1 when zgt = 1.
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3 Posterior Computation and Inference

3.1 Stochastic Search and MCMC Computation

We are interested in identifying patterns of molecular interactions, as informed by a prior

pathway. The full model is determined by mixture membership indicators e, a conditional

dependence configuration summarized in a graph G, MRF parameters β and a collection of

parameters θ, which we assume contains all remaining random quantities with the excep-

tion of Y. Our inference centers on the posterior distribution p(e,G,β,θ |Y ), which fully

summarizes the available evidence on protein abundance and protein expression profiles sim-

ilarities.

The posterior probability model is not available in closed form. However, it is conceptually

straightforward to define MCMC simulation from this target distribution. In particular, we

could proceed as usual and draw the parameters of interest sequentially or in random order

from the full conditional posterior distributions of θ, e, β and G. Updating e and θ can be

implemented via standard Gibbs sampling.

Unfortunately, updating β and G remains problematic (Green and Richardson 2002). The

complete conditional posterior for β and G depend on e only indirectly through z. Recall

that we further summarized the trinary indicators e into binary indicators z ∈ {−1, 1}G of

protein activation. The conditional posterior of β is given by

p(β|Y, z,G,θ) = p(β|z,G,θ) ∝ p(z|β,G,θ) π(β|G,θ), (6)

where

p(z|β,G,θ) =
T∏
t=1

exp{Q(zt)}
g(β)

, g(β) =
∑

z

exp{Q(zt)}

and the sum
∑

z is over all 2G possible realizations of z.

The full conditional distribution of β is therefore defined in terms of a partition function

13
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g(β), which requires summation over all possible 2G realizations of zt, for any t = 1, ..., T .

This quantity can be evaluated efficiently only for a very small G. This is often not the case

in RPPA studies, which leaves us with the problem of devising a feasible strategy to update

β. Similar considerations apply for updates involving G, with the further complication that

changes in G define changes in the dimensionality of the parameter vector β.

This problem is well known in the literature on Markov random fields and several solutions

have been proposed, based on ad hoc approximation to the partition function of interest

(Green and Richardson 2002, Friel et al. 2009). In the following we propose a solution based

on MCMC ingenuity and show that, exploiting a transition kernel, that updates mixture

indicators e and dependence parameters β in a joint fashion is possible without calculation

of g(β).

3.2 Updating β

To update β we consider a Metropolis-Hastings (MH) transition kernel that involves also

changes in z and consequently e. For any generic element of β, say βu (u ⊂ {1, · · · ,M}), we

consider a proposal distribution (β′u, e
′) ∼ q(β′u) p(e

′|β′u,β(\u),G,θ) where q(·) is an arbitrary

proposal density and possibly dependent on the previous values βu, whereas p(e|β,G,θ) is

the conditional prior defined in § 2.2. In our implementation, for all i > j = 1, ..., G, we

consider a random walk proposal q(β′ij) =d N(βij, sβ), where sβ is calibrated at burn-in to

achieve acceptance rates between 30% and 70%.

Draws from e′|β′,G,θ may then be obtained easily via a short Gibbs run, based on full

conditionals p(egt|e\g,β′,G,θ). It is easy to verify that for the construction of a standard

Metropolis-Hastings transition kernel the newly proposed values (e′, β′ij) must be accepted

14
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with probability

ρ(βu, e, β
′
u, e

′) = min

{
p(Y | e′,θ)

p(Y | e,θ)

π(β′ij | G,θ)

π(βij | G,θ)

q(βij)

q(β′ij)
; 1

}
. (7)

The structure of the proposal distribution allows for the elimination of the partition function

g(β), at the cost of having to simulate G × T mixture indicators for each βij. Gains in

efficiency could be further achieved considering block updates for the elements of β. Our

approach is similar to that of Møller et al. 2006.

In short, we replace the problem of evaluating the partition function with a problem of

approximate prior simulation. The resulting MCMC provides an approximation to the de-

sired posterior only to the extent to which the prior Gibbs simulation can be considered

a draw from the prior. A systematic discussion of related MCMC schemes appears in An-

driew and Roberts (2009), who also discuss several more elaborate variations of this strategy.

Further precision may be achieved considering exact simulation from e|β,G,θ (Propp and

Wilson 1996), but this would come at a higher computational cost. In fact, the asymptotic

validity of the proposed computation and a favorable comparison to exact sampling methods

have recently been discussed by Liang (2010). A comparative review of alternative compu-

tational strategies associated with similar probability models (Ising and Potts models) has

been compiled by Zhou and Schmidler (2009).

3.3 Updating G via RJ-MCMC

Updating G involves changes in β and its dimensionality. We are therefore faced with two

complications, one associated with the evaluation of the partition function g(β), as explained

above, and the other associated with the need to maintain detailed balance across dimensions.

To solve this problem, we combine the reversible jumps algorithm of Green (1995) with the

approach described in § 3.2. More precisely, we follow Giudici and Green (1999) and propose
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the following transitions:

1. Select an edge (i, j) at random. If (i, j) ∈ E propose its elimination, otherwise if

(i, j) /∈ E propose its birth. This corresponds to moving from the current graph G to

a new graph G ′, with moral representation Gm′.

2. Assume the move in step 1. involves a birth. Propose a set of, say k, new interaction

parameters β′k ∼ q(β′k), in correspondence to new undirected edges in the moral graph

Gm′. In our implementation, we consider a proposal density based on local logistic

regressions. More precisely, if we propose the birth of an interaction parameter βij

involving zi and zj, we define: a =
∑

t I{zit = −1, zjt = −1}, b =
∑

t I{zit =

−1, zjt = 1}, c =
∑

t{zit = 1, zjt = −1} and d =
∑

t I{zit = 1, zjt = 1}. We

calculate β̂ij = log(ad
bc

)/2 and δβ =
√

(1/a+ 1/b+ 1/c+ 1/d). Here β̂ij estimates

the log odds ratio for a logistic regression involving zi and zj. The parameter δβ

is a standard large sample approximation to SE(β̂ij). The proposal density is then

constructed as a Normal approximation to the conditional likelihood surface, so that

q(β′ij) =d N(β̂ij, δ
2
β).

3. Propose new values for the mixture indicators e′ ∼ p(e′|β′,G ′,θ). Draws are made

from the conditional prior defined in § 2.2.

4. Accept steps 1., 2. and 3. with probability ρb(G,G ′):

ρb(G,G ′) = min

{
p(Y | e′,θ)

p(Y | e,θ)

π(G ′)
π(G)

p(β′k)

q(β′k)
; 1

}
.

The reverse move, involving the death of a random edge (i, j), is implemented by setting to

0 the elements of β disappearing from Gm′ and it is accepted with probability ρd(G,G ′) =

1/ρb(G,G ′).
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The transition probability for G includes a proposal for elements of β. One could therefore

drop the transition probability described in §3.1.1, and still maintain irreducibility. However,

without 3.1.1. the resulting MCMC demonstrates far slower mixing.

We conclude by summarizing the overall MCMC. We use notation x−i to indicate the vector

x without the element xi and [x | y, z] to generically indicate a transition probability that

changes x and depends on the currently imputed values of y, z. Each iteration in the proposed

posterior simulation algorithm involves the following transition sequence:

[θ | e, β,Gm,Y], [egt | e−gt,β,Gm,θ,Y], [βij | β−ij, e,θ,Gm], [G | e,β,θ].

4 Simulated Data

We carried out a small simulation experiment to validate inference under the proposed

model, to investigate the impact of prior choices, and to compare with alternative approaches.

Details are reported in the supplementary materials to this paper. In brief, we simulated data

under a model that differs from the proposed model and misspecified our priors on network

structures. Figure 3 summarizes some aspects of this study. Panel (a) validates inference by

comparing the inference on edge inclusion with the simulation truth. The figure shows the

ROC curve for classifying proteins into activated and non-activated. Panel (b) shows ROC

curves for selecting edges in the graph and compares inference under the proposed model,

under GeneNet (Schäfer and Strimmer 2005), and under a model with exchangeable Bernoulli

priors on all edges. Panel (c) shows similar ROC curves under alternative priors with the

proposed model, comparing the proposed informative prior (5), and two non-informative

priors.
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5 Example: Analysis of RPPA Data

5.1 A Study in Acute Myeloid Leukemia

The current classification of AML uses the French-American-British system based on mor-

phological features, along with flow cytometric analysis of surface marker expression, cyto-

genetics, and assessment of recurrent molecular abnormalities. These classification schemes

have prognostic relevance but, with the exception of acute promyelocytic leukemia, they

generally do not alter therapeutic recommendations (Mrozek et al. 2007). Furthermore, the

predictive abilities of prognostic models based on current clinical and laboratory features are

generally low, with less than half of the outcomes explained by these features. Researchers

have recently started to investigate genomic and proteomic features for prognosticating AML.

Proteins within signaling pathways that exhibit heterogeneous expression in AML are often

prognostic, a characteristic that has been studied by researchers such as Kornblau et al.

(2006) and Tanner et al. (2001). These authors find that distinct molecular abnormalities

and patterns of pathway activation in leukemic cells collectively suggest potential targets for

therapeutic intervention. Consequently, knowledge allowing rational evaluation of targeted

therapies on an individualized basis in AML is sorely needed. As part of a knowledge-

learning process, expression levels and activation of a single protein or a limited number of

proteins have been studied by Kornblau et al. (1994), Kornblau et al. (2000), and Kreuter

et al. (2006).

The natural next step is formal inference on different patterns of pathway activation

and modification. This requires inference on the joint probability distribution for multiple

proteins in a pathway. The proposed model and inference approach is built to facilitate such

inference.
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We use data from a large AML study based on RPPA. Specifically, we have probed protein

samples from 531 newly diagnosed, primary refractory, and relapsed AML patients. The

objective of this experiment was to investigate interactions of important protein markers

related to AML. We selected 51 proteins in signal transduction, apoptosis, and cell cycle

regulatory pathways (Figure 2) and studied their expression profiles in all 531 samples. An

important feature of the AML data under study is that the number of samples (n = 531)

is much greater than the number of proteins (p = 51). This feature facilitates principled

model-based inference and model assessment and contrasts inference for RPPA data with

inference for many other high throughput genomic platforms.

The targeted interactions are illustrated in Figure 2, where we present a comprehensive

signaling network map for the selected proteins based on the three pathways. The signaling

network map was developed to show signaling interactions based on published articles from

PubMed searches as well as from the connections map in Signal Transduction Knowledge

Environment (http://www.stke.org).

5.2 Data Analysis

Using a desktop scanner at an optical resolution of 1200 dpi, we scanned the hybridized

RPPA slides and saved them as TIFF files. The protein expression intensity of each spot was

measured with an automated software program, MicroVigeneTM (VigeneTech, Inc. North Bil-

lerica, MA). The dilution series of the samples provided a dilution-concentration-expression

curve, providing relative expression intensities that were read off in the linear part of the

curve. We used these numbers for data preprocessing and calculation after standardization

and topographical normalization (for details, refer to the SuperCurve software at

http://bioinformatics.mdanderson.org/Software/OOMPA). Good pre-processing of data

from any high throughput experiments in general, and RPPA data in particular, is critically
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important. We used SuperCurve as the best currently available model-based and principled

implementation of inference to quantify RPPA data.

We estimate protein pathway structure by combining prior knowledge of protein interac-

tion and RPPA measurements. Specifically, given the prior consensus pathway in Figure 2,

we use the proposed probability model to update our prior knowledge, combining the quali-

tative information about the consensus pathway with quantitative information from RPPA

data (Figure 1). We fit the model presented in § 2 to this set of 51 proteins. Reported infer-

ence is based on 500,000 MCMC samples (thinned by 10) after discarding 100,000 samples

for burn-in.

In Figure 4 (left panel) we illustrate the fit of the proposed model to the AML protein

expression data reported in Figure 1. Defining π+
gt = p(egt = 1|Y ) and π−gt = p(egt = −1|Y )

we follow Parmigiani et al. (2002) and define a probability of expression scale p∗gt ∈ [−1, 1].

This quantity represents a univariate posterior summary, designed to relate directly to the

mixture indicator labels egt ∈ {−1, 0, 1} and may be considered as the normalized scale for

raw intensities ygt. Here we show how the original abundance measurement is translated into

a probability of expression on the new scale (p∗). Plotting the raw correlation coefficients

versus the the simple correlation estimated in the p∗ scale (Figure 4, right panel), we note

that the two measures of association are clearly correlated, with a tendency of stronger

agreement towards large absolute values of the correlation coefficients.

Our inference on molecular interaction is based on posterior edge inclusion probabilities,

P{(i, j) ∈ E or (j, i) ∈ E | Y )}. These quantities are estimated directly from the RJ-

MCMC output as the percentage of iterations where the edge is included in the current

graphical structure G. In Figure 5 we represent the posterior edge inclusion probabilities for

all possible protein interactions, against expected posterior interactions E(βij | Y). Solid

diamonds denote edges originally included in the prior pathway G0. Our differential penal-
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ization scheme (δ = 5) favors edges in the target pathway, but still allows for the model to

explore interactions which are not included in the prior. Reporting a final pathway may be

based on several criteria (Telesca et al. 2009). Here we consider the median model (Barbieri

and Berger 2004, Scott and Berger 2008). That is, we select edges with posterior inclusion

probability greater than 0.5.

The selected posterior network is reported in Figure 5. The edge thickness is proportional

to the absolute value of the associated expected posterior interaction parameter E(βij | Y).

We distinguish between stimulatory and inhibitory relationships. Following the argument

introduced in § 2.3, we base our inference on the sign of the posterior mean E(βij | Y ). For

a generic edge index u, a positive posterior mean is interpreted as stimulation, whereas a

negative sign is interpreted as inhibition. In the reported figure, we represent stimulation

with arrows and inhibition with dotted arrowheads.

Our analysis identifies two main sub-pathways (Akt/mTOR and STATs) as groups of

proteins exhibiting significant similarities in their over-abundance patterns across samples.

The Akt/mTOR pathway is known to be a key player in cell growth, proliferation and

survival. Recent literature identifies this pathway as a strong contributor to proliferation

and drug resistance in AML (a comprehensive review is provided by Martelli et al. (2009)).

The second active pathway involves the family of STAT proteins (STAT3 / STAT5). These

molecules are known to act as important regulators in hematopoiesis (blood cells formation)

and their up-regulation via β-catenin (BCAT) has been documented by several authors (Hao

et al. 2006, Boeuf et al. 2001). In the same pathway we also recover key interactions between

the STAT proteins and extracellular-signal regulated kinase (ERK) (Jain et al. 1998). The

important role of Stat5 to AML was also recently noted by Kornblau et al. (2010).

Some of our results are surprising. For example, PTEN.p is inactivated when phosphory-

lated and therefore cannot inhibit AKT phosphorylation. The negative relationship between
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PTEN.p and AKT.p308 seems therefore contrary to canonical expectations (Wan and Hel-

man 2003). The PTEN-AKT pathway is however of great interest in oncology and this

finding may prove useful in the search for possible feedback regulatory interactions or latent

oncogenes (see for example the discussion in Palomero et al. (2008)). Likewise, one would

expect the pAKTs to have an edge with pGSK3 instead of total AKT. On the other hand,

the inferred diagram confirms evidence that, in active form, AKT phosphorylates a wide

variety of downstream substrates. Also the diagram highlights MTOR as a main activator

of the serine P70S6K, possibly contributing to tumor cell survival. Furthermore, the fact

that MTOR signaling is confirmed to operate downstream, makes it a promising therapeutic

target for AML patients (Chen et al. 2010).

These unexpected findings may simply represent misidentified relationships or they may

reflect regulatory feedback within the system. At the same time, however, they may define

the basis for genuinely novel discoveries. While this analysis is exploratory in nature, we

believe it provides a principled hypothesis generation instrument for further experimental

investigation. This instrument may prove particularly significant in a disease like AML,

where standard chemotherapy is too often not fully effective and where there is great need

for new therapeutic strategies.

6 Discussion

We have proposed a probabilistic framework for the analysis of RPPA data. We focus on

assessing the probability of protein–protein interactions considering patterns of similarity

characterized by hidden states of activation (as compared to inactive states).

Our probability model makes explicit use of prior information regarding evidence of pro-

tein interactions reported in the literature. This allows for the definition of a prior over

graphical structures that explicitly anchors the model to known patterns of interaction, still
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allowing for a local search of new interaction patterns. Among the appealing features of the

prior defined in this paper is the explicit consideration of edge direction and the possibility

of feedback loops between proteins.

The large sample sizes characterizing RPPA data provide a unique opportunity for prin-

cipled probabilistic modeling. At the same time, we are fully aware that departures from

the multivariate Gaussian framework comes at a technical and computational cost. Particu-

larly, computations involving partition functions, like the one reported in § 3.1 characterize

an entire area of research (Møller et al. 2006, Friel et al. 2009) and they are known to be

potentially problematic in high dimensional settings. The strategy suggested in our paper,

relies on the ability to simulate from a multivariate binary distribution in a fast and reliable

fashion. Therefore, if the number of proteins or samples is very large, one may consider

alleviating the computation burden via parallelization across samples and/or relying on al-

ternative approximation strategies (Besag 1974, Green and Richardson 2002; Friel et al.

2009). While a full review of this problem would be perhaps too ambitious for this appli-

cation, we defer the reader to Zhou and Schmidler (2009) for a comparative discussion of

alternative computational strategies.

On a related subject, it is worth noting that even standard Gaussian Markov random

field representations are not fully immune from computational difficulties as closed form

expressions are usually only available upon assuming very stringent restrictions (decompos-

ability) on the graph topologies admitted for inference (Giudici and Green 1999, Wong et al.

2003, Roverato 2002, Atay-Kays and Massam 2005; among others). In contrast, the general

Hammersley - Clifford representation (Hammersley and Clifford 1971, Besag 1974) does not

prescribe unrealistic restrictions on the graph of interest and provides a very flexible recipe

for the definition of conditional dependence relationships.

Finally, in this article we model dependence between protein assuming that there are
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no significant alterations in patterns of covariation between different subsets of patients.

While this is beyond the scope of this work, our formulation provides a straightforward

basis for methodological extensions aimed at allowing for formal tests of differential pathway

activation, both in a supervised and unsupervised fashion. These possible developments

will be particularly useful in the analysis of proteomic studies of AML, since the disease is

markedly heterogeneous with numerous underlying genetic aberrations and we still lack a

strategy for the treatment of different subtypes of AML based on current knowledge about

genetic markers.
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Figure 1: (a) A typical reverse phase protein array with 40 samples shown as the 40 batches
on the slide. Each batch represents one individual sample with 16 spots, which are the results
of duplicates of 8-step dilutions. (b) Normalized RPPA intensities for 51 proteins and 531
AML patients.
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Figure 2: A protein interaction pathway produced by combining known protein-protein interactions
from the literature. This network wiring diagram shows the connectivity of the receptor tyrosine
kinase to the MAPK, AKT, STAT, BCL2,and p53 signaling proteins. We are able to measure a large
percentage of the molecules using the RPPA for AML patients. The relationships between proteins
suggested in this diagram will be considered as prior information for the proposed probability
model.
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Figure 3: Simulated data. Panel (a) shows ROC curves for the correct classification of into
activated versus non-activated proteins. Panels (b) and (c) show ROC curves for reporting edges
as present or not. In panel (b) we compare different models. In panel (c) we compare alternative
priors under the proposed model.
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Figure 4: RPPA Study: (Left Panel) Centered protein abundance ygt Vs. POE scale intensities
(p∗gt = E(p+

gt− p
−
gt)). (Right Panel) Raw simple correlation estimates Vs. simple correlations in the

POE scale.

http://biostats.bepress.com/cobra/art87



−0.5 0.0 0.5

0.
2

0.
4

0.
6

0.
8

Expected Interaction

In
cl
us
io
n 
Pr
ob
ab
il
it
y

(a)

AKT

MTOR

MTOR.p

NRP1

P70S6K

BAD.p112 GSK3.p

PKCA

AKT.p473 TP53

BAD.p136

PKCA.p

BAK

BAD.p155

BCL2

PTEN.p

AKT.p308

BCAT

STAT3.p705

ERk2.p SRC.p527

STAT3.p727

STAT5.p431

BCLXL

(b)

Figure 5: Panel (a): Posterior expected interactions E(βu | Y) Vs. posterior edge inclusion
probabilities p((i, j) or (j, i) ∈ E | Y). Solid diamonds correspond to edges originally included
in the prior pathway. Panel (b): Median model identified selecting edges with posterior inclusion
probability greater than 0.5. Arrows define stimulatory relationships, whereas dotted arrowheads
define inhibitory relationships. Edge thickness is proportional to the absolute size of the posterior
expected interaction parameters.
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