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A Bayesian shared component model for
genetic association studies

Juan J. Abellan, Carlos Abellan, and Juan R. Gonzalez

Abstract

We present a novel approach to address genome association studies between sin-
gle nucleotide polymorphisms (SNPs) and disease. We propose a Bayesian shared
component model to tease out the genotype information that is common to cases
and controls from the one that is specific to cases only. This allows to detect the
SNPs that show the strongest association with the disease. The model can be ap-
plied to case-control studies with more than one disease. In fact, we illustrate the
use of this model with a dataset of 23,418 SNPs from a case-control study by The
Welcome Trust Case Control Consortium (2007) with 2,000 patients with diabetes
type 1, 2,000 with diabetes type 2 and a control group with 3,000 individuals. We
carry out a simulation study to assess the sensitivity and specificity of our model
to detect SNPs with excess risk. Our results show that the method we propose here
can be a very useful tool for this type of studies. The model has been implemented
in the bayesGen library of the R statistical package.
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Abstract

We present a novel approach to address genome association studies between single nucleotide
polymorphisms (SNPs) and disease. We propose a Bayesian shared component model to tease out
the genotype information that is common to cases and controls from the one that is specific to cases
only. This allows to detect the SNPs that show the strongest association with the disease. The model
can be applied to case-control studies with more than one disease. In fact, we illustrate the use of this
model with a dataset of 23 418 SNPs from a case-control study by The Wellcome Trust Case Control
Consortium (2007) with 2 000 patients with diabetes type 1, 2 000 with diabetes type 2 and a control
group with 3 000 individuals. We carry out a simulation study to assess the sensitivity and specificity
of our model to detect SNPs with excess risk. Our results show that the method we propose here
can be a very useful tool for this type of studies. The model has been implemented in the bayesGen

library of the R statistical package.
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1 Introduction

The main goal of genetic association (GA) epidemiological studies is to assess the potential relationship
between genotype and phenotype, typically a disease. The genotype information of an individual is
contained in the single nucleotide polymorphisms (SNP) from genes that might be related to the disease
of interest. From a statistical point of view, the problem has been traditionally addressed with simple
hypothesis testing. However, the number of SNPs that can be considered in a given case-control study
can be really large (hundreds of thousands), especially considering the latest advances in laboratory
techniques. Testing association between individual SNPs and disease becomes ‘mass’ hypothesis testing.
This in turn poses the multiple-comparison problem in hypothesis testing so that individual p-values need
to be corrected to keep the false discovery rate (FDR) under control. There are popular statistical tools
that carry out this type of analysis (see e.g. Gonzalez et al., 2007). The appeal of this approach is its
simplicity because tests are quick and easy to apply.

Another common characteristic in GAs is the relative small number of individuals compared to the
number of SNPs. This large p small n problem prevents the use of standard statistical techniques such
as logistic regression modes. More sophisticated regression-like methods have been proposed recently in
the literature to overcome these limitations. These techniques address the problem by considering SNPs
as independent variables and the disease group as response variable. The aim is to find the SNPs that
best explain disease risk. Kooperberg et al. (2001) proposed a logic regression method that searches
for presence/absence combinations of SNPs that best explain disease risk. Sha et al. (2004) suggest
using Bayesian stochastic search variable selection in probit regression models. Their method is based on
trans-dimensional models fitted with reversible jump Markov chain Monte Carlo (RJMCMC) techniques.

∗Author for correspondence: abellan jua@gva.es
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Hoggart et al. (2008) propose a Bayesian-inspired stochastic search variable selection algorithm that uses
a penalised maximum likelihood approach to estimate regression coefficients in logistic regression.

1.1 Model motivation

In most GA studies, most of the SNPs considered have a similar pattern in cases and controls, and only
a few, if any, are expected to show differences between the two groups, hence suggesting association
with the disease of interest. In other words, cases and controls share allele frequencies for most SNPs.
This leads us to propose here the use of shared component models as a new approach to address GA
studies. These models are inspired in factor analysis (FA), a well-known statistical technique for dimension
reduction in datasets with many variables that are believed to share a lot of information. In standard
FA observed variables are assumed to be the outcome of linear combinations of unobserved (and possibly
unobservable) latent variables called factors plus a residual or specific component unique to each variable.
In the Bayesian framework both the common and specific factors are considered as random effects and are
assigned prior distributions. An interesting characteristic of the Bayesian paradigm is that these priors
may account for potentially complex autocorrelation structures if needed.

Bayesian shared component models have been used in a number of studies in several contexts in recent
years. In finance, Aguilar and West (2000) apply a shared component model with a single common
component in the context of currency exchange rates and introduce temporal autocorrelation in the
common factor. In the context of socio-economic indices, Hogan and Tchernis (2004) apply this type of
models to re-derive the Townsend index of material deprivation (Townsend et al., 1985) using the original
four census variables but accounting for spatial autocorrelation. In epidemiology, these models have also
arisen in a number studies in the context of spatial and spatio-temporal disease mapping to assess what
is common in the geographical and temporal distribution of disease risk (see e.g. Knorr-Held and Best,
2001; Richardson et al., 2006). To the best of our knowledge, this is the first time that this type of models
are used in GA studies.

The rest of the paper is organised as follows: in Section 2 we specify our Bayesian shared component
model; Section 3 illustrates its application to a case study using data from the The Wellcome Trust Case
Control Consortium (2007); in Section 4 we perform a simulation study to assess the sensitivity and
specificity of our model to detect true SNP-disease associations; we conclude with some discussion in
Section 5.

2 Model specification

The data in GA studies typically are counts Xijd of the number copies of the variant allele in the SNP
j = 1, . . . , p of individual i = 1, . . . , n in the disease group d = 1, . . . , D, where say d = 1 is the control
group. Since there are two alleles in each SNP, then Xijd ∈ {0, 1, 2}. This corresponds to the so-called
additive association model, which assumes that disease risk increases with each copy of the variant allele,
so that, if a SNP is associated with the disease, an individual with two copies of the variant allele has
double risk than an individual with just one copy. A simplification of these models are the dominant
(recessive) models in which Xijd ∈ {0, 1} indicating presence of the dominant (recessive) allele.

In what follows, we will assume without loss of generality that we are in the additive scenario where
Xijd ∈ {0, 1, 2}. We will also assume that the SNPs to be analysed are in equilibrium according to the
Hardy-Weinberg principle (Hardy, 1908; Weinberg, 1908). Last, we will assume that all the individuals
in the same disease group have the same chance of having a variant allele in a given SNP. In other words,

Xijd ∼ Binomial(2, πjd) (1)

where πjd is the probability of finding a copy of the variant allele in SNP j in individuals falling in disease
group d. If the SNP j is not associated with the disease, then one would expect πjd to be similar across
disease groups. In contrast, if that SNP is related to one disease group, say d0, the corresponding πjd0

should be different from πjd, d 6= d0.
Let Yjd =

∑njd

i=1 Xijd be the total number of variant alleles found in SNP j and disease group d,
where njd is the number of individuals in disease group d with non-missing information on SNP j. Then,
assuming independence between individuals, from Equation (1) we have
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Yjd ∼ Binomial(2njd, πjd) (2)

We then decompose the variability of the πjd into a component shared by all disease groups plus a
specific component for each disease. More specifically, we assume

logit(πjd) = αd + δd · θj + λjd (3)

where, αd is a group-specific intercept, θj is the component shared by all disease groups (cases and
controls), δd represent the loadings of the common component into each disease group d and λjd are the
disease-specific components.

Expressions (2) and (3) specify the first layer of our Bayesian shared component model. Figure 1
shows a schematic representation of our model for the simple situation where there is just one disease
group besides the control group.

2.1 Identifability issues

The usual identifiability issues in FA apply to Bayesian shared-component models as well. In particular,
the identifiability of scale of the loadings and the shared component in Equation (3). Since, for any
constant c 6= 0

δd · θj = cδd ·
θj

c

then one needs to fix either one of δd or the variance of the common component σ2
θ to ensure scale

identifiability.
Another identifiability issue comes from the symmetry in the model formulation. Note that, in the

simplest model of two groups, cases and controls, we split the variation of two variables into three
components: θj common to both controls and cases, λj1 specific to controls and λj2 specific to cases.
This decomposition if fine provided that there is enough signal in the data to identify all three terms,
but problems may arise otherwise. To overcome this potential issue, an alternative is the asymmetric
formulation in which the two variables are decomposed into two components: θj , which picks up the
variability in the controls shared with cases and λj2, the differential effect of cases over controls (Figure
1). We opted for the latter formulation.

2.2 Prior distributions

We assigned flat normal prior distributions for the group-specific intercepts αd. For the shared and
specific components we chose zero-mean t distributions with 4 degrees of freedom and unknown variance
parameters σ2

θ and σ2
d (d > 1), respectively. The reason for this choice is the heavy probability tails

of this distribution compared to the normal distribution, which can accommodate sizable departures
from zero in the odds ratios of both the shared and disease-specific allele frequencies. For the loadings
δd, d > 1, we chose flat log-normal distributions whereas we set δ1 = 1 to avoid the scale identifiability
issues mentioned above. The specific prior choice for the model parameter was as follows:

Controls (πj1) Cases (πj2)

@
@
@R

�
�

�	

Shared (θj)

@
@
@R

Case specific (λ2d)

Figure 1: Schematic representation of the shared component model.
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αd ∼ Normal(0, 1000)

θj ∼ t4(0, σ
2
θ)

λjd ∼ t4(0, σ
2
d) (d > 1) (4)

log δd ∼ Normal(0, 100) (d > 1)

δ1 = 1

To complete our model, we chose flat half-truncated normals as hyperpriors for the standard deviations
of the random effects.

σθ, σd ∼ Normal(0, 100) · 1I(0,+∞) (5)

Equations (2), (3), (4) and (5) represent the specific formulation of our shared component model for
GA studies.

2.3 Model implementation

We built an R package called BayesGen with functions to fit the model in Equations (2) to (5). These
functions use in turn Markov chain Monte Carlo (MCMC) simulation techniques as implemented in the
free-software JAGS (http://www-fis.iarc.fr/~martyn/software/jags/), and more specifically in its
R package R2jags (Su and Yajima, 2010). Since MCMC can take too long for large datasets with many
SNPs, we also implemented a slightly different version of our model in R using approximate Bayesian
inference instead of MCMC. Namely, we used the Integrated Nested Laplace Approximation (INLA)
proposed by Rue et al. (2009) as implemented in the INLA package for R (Rue and Martino, 2009). The
model based on INLA replaces the t distributions for Normals. This in principle could shrink sizeable
SNP-disease risk associations more than the original model, but it runs much faster and it can be applied
to genome-wide association studies.

3 Case study

To illustrate the use of our model we applied it to data from TheWellcome Trust Case Control Consortium
(2007). Specifically, we considered 23 418 SNPs from chromosome 12 in 2 000 cases of diabetes type 1,
2 000 cases of diabetes type 2 and 3 000 controls. The original data therefore consisted in a matrix of
variant allele frequencies [Xijd] , Xijd ∈ {0, 1, 2}, of dimension 7 000 × 23 418. Aggregating the counts
of the variant alleles over the individuals in each disease group for each SNP gave rise to a new reduced
matrix [Yjd] of dimension 23 418× 3.

We fitted the model in Equations (2) to (5) to the aggregated data [Yjd] using the JAGS based
functions of BayesGen. Specifically, we ran two chains of 120 000 iterations. We discarded the first 30 000
as burn-in and kept every 90th to reduce autocorrelation in the chains. Inference is therefore based on
(thinned) samples of size 2 000. We assessed convergence using visual checks and the Brooks-Gelman
diagnostic. No symptoms of non-convergence were deected.

Table 1 shows the results obtained for the group-specific intercepts αk and the factor loadings δk. The
posterior distributions for δk seem to be quite concentrated and also located close to 1, which confirms
that the two groups of diabetes have frequencies of the variant allele similar to the control group for the
vast majority of the SNPs considered.

Looking into the specific component λj1 for diabetes type 1, we found 60 ‘significant’ SNPs (in
the sense that their corresponding 95% credibility intervals exclude the value 0). Of those, 26 showed
positive association with the disease and 34 exhibited negative association (i.e. the other allele is the one
positively associated with disease). Figure 2 shows that the SNPs related to the disease are located in
three different regions of the chromosome. For diabetes type 2, we found 3 ‘significant’ SNPs all showing
negative association, two in the same region, and the third one isolated in a different region (Figure 2).
Table 2 shows a few of the SNPs associated to both types of diabetes (with at least one representative per
region) and their estimated risks (ORs), 95% credibility intervals and exceedance posterior probabilities).
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Group Parameter OR (95%CI)
Control expα1 0.9561 (0.9225, 0.9815)

Diabetes 1 expα2 0.9559 (0.9222, 0.9811)
Diabetes 2 expα3 0.9559 (0.9224, 0.9814)
Control δ1 1

Diabetes 1 δ2 1.0010 (1.0000, 1.0012)
Diabetes 2 δ3 0.9900 (0.9983, 0.9995)

Table 1: Posterior median and 95% credibility intervals for some model parameters.

Disease SNP OR 95%CI P (OR > 1 | data)
Diab 1 rs11052423 1.14 (1.02, 1.26) 0.9965
Diab 1 rs705698 1.20 (1.08, 1.31) > 0.9999
Diab 1 rs11171739* 1.29 (1.19, 1.39) > 0.9999
Diab 1 rs17696736* 0.75 (0.69, 0.81) < 0.0001
Diab 2 rs7132840 0.89 (0.80, 0.99) 0.018
Diab 2 rs1495377* 0.89 (0.80, 0.99) 0.019
Diab 2 rs10492267 0.14 (0.09, 0.21) < 0.0001

Table 2: SNPs showing association with diabetes types 1 and 2. Posterior median of the odds ratio (OR),
95% credibility intervals, and posterior probability of excess risk P (OR > 1 | data). SNPs marked with
an * were also reported as significant by The Wellcome Trust Case Control Study (2007).

Using 95% credibility intervals to declare a SNP as significantly associated to the disease implies
setting the false discovery rate at 5%, which is too large considering the high number of SNPs in the
case study. We therefore used a much higher coverage value for the posterior credibility intervals of the
λjd, namely 99%. The limits of these intervals typically correspond to tail quantiles from the posterior
distribution. It is difficult to estimate these quantiles from MCMC samples. Therefore, we computed
these intervals using a normal approximation with parameters equal to the posterior mean and variance
of the specific components. We also considered other another ‘rule’ to detect SNPs associated with the
diseases based on the posterior probability that the OR is above 1 P (OR > 1 | data) > pc, where pc is a
cutoff value that we set to 0.99 to keep the false discovery rate low.
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Figure 2: Posterior medians and 95% credibility intervals for the odds ratios of the specific components
for diabetes types 1 (top) and 2 (bottom). Significant SNPs are coloured in red (blue) if the association
is positive (negative).

6

http://biostats.bepress.com/cobra/art75



4 Simulation study

To analyze the sensitivity and specificity of our model, we simulated data under four different scenarios
varying the number of individuals, the number of significant SNPs and the values of the odds ratios
(ORs).

Specifically, we simulated datasets of variant allele frequencies, [Xijd] , Xijd ∈ {0, 1, 2}, with i =
1, . . . , N individuals, j = 1, . . . , 1000 SNPs and d = 2 groups, just case and controls. By changing N and
the number of SNPs with significant association to the disease, we created the following four scenarios:

Case 1.1: Dataset with N=500 individuals in each disease group and 25 of the 1 000 SNPs are significant
with the following OR distribution: four SNPs with very high risk, OR=3; nine with high risk,
OR=2; and the remainder 12 with low risk, OR=1.2. The very high risk is not too realistic, but
we include it rather as a benchmark.

Case 1.2: Dataset with N=500 individuals per disease group and just two of the 1 000 SNPs significant
with ORs set to 3 and 1.2.

Case 2.1: Similar to case 1.1 but with N=100 individuals, i.e: 1 000 SNPs where 25 of them are significant
with the same OR distribution mentioned above, four SNPs with OR=3; nine with OR=2; and
twelve with OR=1.2.

Case 2.2: Similar to 1.2 but again with N=100 individuals.

The first scenario has a relatively high number of individuals and significant SNPs, ranging from
low risk to very high risk; the second one has again a large number of individuals but a low number of
significant SNPs; the third one has a rather moderate number of individuals a many significant SNPs
and the last one has a moderate number of individuals and a low number of significant SNPs.

We simulated 100 datasets from each scenario and fitted the shared component model to all the
replicates using the BayesGen R package. We then used the two different rules mentioned above to detect
SNPs with significant association to the disease. Rule 1 is the one based on the posterior probability and
Rule 2 uses the credibility intervals.

Figures 3 and 4 show ROC curves obtained for Rule 1 and Rule 2 applied to the four scenarios using
JAGS and INLA, respectively. For a specificity of 90% the sensitivity varies between 70% and 85%
depending on the scenario. In general we can see that the larger the number of individuals the higher the
sensitivity, which in turn is similar for the two actual numbers of significants SNPS considered. We can
also observe that both rules seem to perform similarly, though in most cases Rule 1 shows slightly higher
sensitivity than Rule 2. The model that uses Normal distributions and is fitted with INLA (Figure 4)
seems also to perform slightly better than the one using t4 distributions and fitted with JAGS (Figure
3).

5 Discussion

We proposed a new approach to GA studies based on Bayesian shared component models. We illustrated
its utility on a subset of data from The Wellcome Trust Case Control Consortium (2007) comprising
approximately 23 000 SNPs from 7 000 individuals from three groups, two with diabetes of type 1 and 2,
respectively, and one control. The method proved useful to tease out what is shared by controls and cases
from what is specific to cases from each disease. The model is hierarchical so it should be straightforward
to add further structure at gene or region level if needed.

We considered the additive model of association between SNPs and disease, but our shared component
approach can easily be adapted to the dominant or recessive models where Xijd ∈ {0, 1} by simply as-
suming Xijd ∼ Bernoulli(πjd), which upon aggregation over individuals leads to Yjd ∼ Binomial(njd, πjd)

The models show reasonable values of sensitivity for a specificity of 90%, though these are somewhat
higher for the model that considers Normal distributions for the shared and specific components than
for the model that uses t4 distributions. However, in GA studies the sensitivity typically is set to much
higher values to ensure a low rate of false positives, which decreases the sensitivity.
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We considered t distributions with four degrees of freedom for the specific components because its
heavy tails can esaily accommodate large departures from zero for the λjd. Other priors however can be
considered instead to detect associations between SNPs and disease. A simple alternative is the double
exponential distribution, so that λjd ∼ DoubleExponential(µ, b). Another option, from gene expression
studies, are the spike and slab priors that assume λjd ∼ p · Normal(0, σ2

1) + (1 − p) · Normal(0, σ2
2) with

σ1 small, and σ2 large.
Both models have been implemented in an R package called BayesGen. However, there is a massive

difference in the computation time between fitting the model with the standard MCMC-based approach
and the approximate Bayesian inference based on INLA. For our case study the former took three days
whereas the former took just a few minutes on the same server.

In conclusion, we provided a novel application of Bayesian shared component models that adds to
the methodological toolbox for GA studies. We suggested two different versions of the model and also
implemented them using two different inferential approaches in R to make them available to the scientific
community.
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Figure 3: Using JAGS to fit share component model, this are the ROC curves associated with Rule 1
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