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Detection of Recurrent Copy Number
Alterations in the Genome: a Probabilistic

Approach

Oscar M. Rueda and Ramon Diaz-Uriarte

Abstract

Copy number variation (CNV) in genomic DNA is linked to a variety of human
diseases (including cancer, HIV acquisition, autoimmune and neurodegenerative
diseases), and array-based CGH (aCGH) is currently the main technology to lo-
cate CNVs. Several methods can analyze aCGH data at the single sample level,
but disease-critical genes are more likely to be found in regions that are common
or recurrent among samples. Unfortunately, defining recurrent CNV regions re-
mains a challenge. Moreover, the heterogeneous nature of many diseases requires
that we search for CNVs that affect only some subsets of the samples (without
prior knowledge of which regions and subsets of samples are affected), but this is
neglected by current methods.

We have developed two methods to define recurrent CNV regions. Our meth-
ods are unique and qualitatively different from existing approaches: they detect
both regions over the complete set of arrays and alterations that are common only
to some subsets of the samples and, thus, CNV alterations that might character-
ize previously unknown groups; they use probabilities of alteration as input (not
discretized gain/loss calls, which discard uncertainty and variability) and return
probabilities of being a shared common region, thus allowing researchers to mod-
ify thresholds as needed; the two parameters of the methods have an immediate,
straightforward, biological interpretation. Using data from previous studies, we
show that we can detect patterns that other methods miss and, by using probabili-
ties, that researchers can modify, as needed, thresholds of immediate interpretabil-
ity to answer specific research questions.



These methods are a qualitative advance in the location of recurrent CNV regions
and will be instrumental in efforts to standardize definitions of recurrent CNVs
and cluster samples with respect to patterns of CNV, and ultimately in the search
for genomic regions harboring disease-critical genes.



Background

Copy number variations (CNVs) are often defined as DNA segments longer than 1 kb for which copy

number differences are observed when comparing two or more genomes [1, 2]. CNVs have turned out to be

much more abundant than previously thought [3–5] and have been linked to many different types of

disease, including cancer, HIV acquisition and progression, autoimmune diseases, and Alzheimer and

Parkinson’s disease [4–7]. Identification of CNVs in individual samples nowadays uses mainly array-based

Comparative Genomic Hybridization (aCGH), encompassing ROMA, oaCGH (including Agilent,

NimbleGen, and many non-commercial, in-house oligonucleotide arrays), BAC, and cDNA arrays [8,9], and

SNP-based arrays [10,11]. Location of CNVs in individual samples, however, is only the initial step in the

search for “interesting genes”. The regions more likely to harbor disease-critical genes are those that are

recurrent among samples [9, 12–14]. In this context, we can define a CNV common region (CNVCR) as a

set of contiguous genes (a region) that, as a group, shows a high enough probability (or evidence) of being

altered (e.g., gained) in at least some samples or arrays (thus the usage of terms such as “common” or

“recurrent”). Unfortunately, although many methods exist for analysing a single array of CGH (e.g., see

references in [15,16]), few papers deal with the problem of integrating several samples and finding common

regions of alteration: merging data from several samples to define CNVCRs remains a challenge [2], both

methodologically and conceptually.

One the most serious problems of existing methods is the inability to find common regions over subset of

samples: existing methods try to find regions that are common to all the arrays in the sample and, thus,

presuppose that a disease is homogeneous with respect to the pattern of CNVs. It is known, however, that

many complex diseases, such as cancer [26] or autism “(...) consist largely of a constellation of rare, highly

penetrant mutations” (p. S4 in [3]): we can observe a similar phenotype but we could arrive at this

phenotype from several alternative DNA copy number alterations. Thus, it is absolutely crucial to

differentiate between two different scenarios. In one scenario, we consider all the samples (subjects or

arrays) in the study as a homogeneous set of individuals, so we want to focus on the major, salient,

patterns in the data and thus we will try to locate regions of the genome that present a constant alteration

over all (or most of) the samples. This is what existing methods for the study of CNVCR try to do. In a

second scenario, we suspect that the subjects are really a heterogeneous group. What we really want here

is to identify clusters or subgroups of samples that share regions of the genome that present a constant

alteration. In other words, we want to detect recurrent alterations in subtypes of samples when we do not

know in advance which are these recurrent alterations nor the subtypes of samples. This second scenario is
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arguably much more common than the first one in many of the diseases where CNV studies are being

conducted. In this second scenario, using an algorithm appropriate for the first scenario (one that, by

construction, tries to find alterations common to most arrays) is clearly inappropriate: it does not answer

the underlying biological question, risks missing relevant signals, and leads to conceptual confusion. A few

methods [12,13,18,25] can, under certain circumstances, find recurrent regions defined over a subset of the

samples, but this is highly dependent on the amplitude of the alteration and the signal to noise ratios (e.g.,

pp. 1483–1484 in [25]); it is more an accidental by-product of very large alterations, and not an explicit

objective of these methods per se. Thus, a method that directly and explicitly addresses the second

scenario is sorely needed: it is the only way to obtain CNVCR under sample heterogeneity

In addition to being appropriate only for the first scenario (homogeneous samples), existing methods

present other limitations. Most of the methods [12,13,17–22] try to find CNVCRs using, as starting point,

the discrete output from an aCGH segmentation algorithm in the form of the classification of every probe

into gained, normal or lost. By using this discretized output, these methods discard any possible measure

of the uncertainty of these estimates; as a consequence, a gain for which there is strong evidence will have

the same weight in subsequent calculations as another gain for which there is less certainty. Moreover, the

majority of these methods ignore within- and among-array variability in aCGH ratios as they use a

common threshold for all probes and arrays. Finally, some algorithms (e.g., [22]) weight the amplitude or

magnitude (e.g., log2 ratio) of an alteration by the number of samples: we can obtain the same summary

statistic from, say, 10 probes with a ratio of 1 as from 1 probe with a ratio of 10, but these are two clearly

distinct biological scenarios. More generally, this scheme implicitly equates evidence of alteration with

magnitude of alteration and makes it harder to detect small (but almost sure) amplitude alterations shared

by many samples relative to large amplitude alterations shared by fewer samples. A few other methods

perform the segmentation and search for CNVCR in the same step [23–25]. In [25], in addition to not using

nor returning probabilities, elaborate and heuristic approaches are required to search over possible

thresholds and adjustments for multiple testing. In [23] copy numbers of contiguous probes as treated as

independent, which is clearly biologically unrealistic. Hidden Markov Models are used by [24], but the

number of states is restricted to four; therefore, all the gains are grouped into a single state with a common

mean, which is biologically unreasonable, and makes it impossible to differentiate between samples with

moderate amplitude changes and large-amplitude changes.

Existing methods, therefore, have serious limitations and it is necessary to develop new approaches that

fulfill the following three major requirements. First, we want to explicitly differentiate between the two
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scenarios in the last paragraph. As a consequence, we want to be able to locate either regions common to

most of the arrays or regions which might be common to only a subset of the arrays. Second, we want to

preserve the uncertainty in the state of a probe (probability of alteration), and we want to return

probabilities, as a probability is the single most direct answer to the question “is this region altered over

this set of arrays?” (a p-value does not directly answer this question, but rather provides support against a

specific null hypothesis). Third, we want that, biologically, the meaning of the regions found be immediate,

and depend on few parameters of straightforward interpretation.

Results
Two different approaches for finding CNVCRs

Here we provide an intuitive understanding of our two different approaches. Further details are provided

below.

Our first method, pREC-A (probabilistic recurrent copy number regions, common threshold over all

arrays), finds only those regions that, over the complete set of arrays, show an average (over arrays)

probability of being altered that is above a predefined threshold. When using pREC-A we only need to

provide one threshold, pa, the minimal probability of alteration of a region over a set of arrays. pa is

chosen by the researcher, but generally cannot be too stringent (e.g., will rarely be larger than 0.80)

because even with a large number of arrays, only a few arrays without that alteration will prevent finding

the region (as we are averaging over arrays).

Our second method, pREC-S (probabilistic recurrent copy number regions, subsets of arrays), identifies

common regions over subsets of arrays; alternatively, we can think of this algorithm as identifying subsets

of arrays that share regions of alteration. The regions of alteration found might not be common to most

arrays, but within each array in the identified subset, the regions of alteration will have a probability of

being altered above a threshold (pw). When using pREC-S, therefore, the user needs to provide two

thresholds, pw, the minimal probability of alteration of a region in every array in the selected subset, and

freq.array, the smallest number of arrays (i.e., the smallest size of the subset of arrays) that share a

common region. Here we will often use more stringent thresholds for probability (e.g., pw = 0.90), because

those high probabilities might be attained over a highly homogeneous and small subset of arrays. We can

use the output of pREC-S as the basis for clustering and to display patterns of groupings of arrays; an

example is shown in section .

For both methods, we will use probabilities of alteration as returned, for example, by our RJaCGH

3

Hosted by The Berkeley Electronic Press



method [15]. RJaCGH is a Hidden Markov Model-based approach that returns probabilities of alteration of

probes and segments; no hard thresholds are imposed, and thus the user decides what constituted sufficient

evidence (in terms of probability of alteration) to call a probe gained (or lost). We have shown [15,16] that

our method performs as well as, or better than, competing methods in terms of calling gains and losses,

and the relative advantage of our method increases as the variability in distance between probes increases.

It is essential to understand that the probabilities that we use are not the marginal probabilities of

alteration but the joint probabilities of alteration of a region of probes (see details in “Methods”). Our

approach incorporates both within- and among-array variability (as it is based on the hidden process of

alterations and uses the probability of every probe in every array): we use the information on the certainty

of each call of gain/loss (i.e., the probability) in all computations of CNVCR. Therefore, our approach is

qualitatively different from using the same threshold over all probes and arrays. See further details in

“Methods”. Moreover, using probabilities of alteration (instead of magnitude of change), in addition to

differentiating between evidence of alteration and estimated fold change, prevents inter-array differences in

range of log2 ratios and tissue mixture to get confounded with evidence of alteration. Finally, note that we

use at most two parameters and that their biological meaning is immediate: probability of alteration, and

number of samples that share an alteration (the later only needed for pREC-S).

Algorithms

Before we can develop algorithms for the two approaches, pREC-A and pREC-S, we will need to develop

methodology that will allow us to: 1) compute the joint probability of alteration of an arbitrary sequence

of probes; 2) combine that probability over arrays. The first two parts of this section detail this machinery

before showing the details of the algorithms. For the rest of this section, please bear in mind that we are

always referring to probabilities of alteration, and never to p-values. We are working on a Bayesian

framework and are estimating posterior probabilities; we are not conducting hypothesis tests.

Computation of the joint probability of an arbitrary sequence of probes in an array

To find altered regions, that is, sets of contiguous probes, we have to compute the joint probability of

alteration for a sequence of probes. In other words, we need to compute, for each array i = 1, ...r, the

probability that a subset of consecutive probes is, for example, gained (the problem for losses is

equivalent). That is, if we denote as Si the state of probe i and with 1 the state ’gain’, we are interested in

P (Sj = 1, . . . , Sj+p = 1) for a subset of p probes.
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Using RJaCGH (or other methods) we can compute the probability for every probe to belong to any of the

states of gain and to any of the states of loss. The problem of these probabilities is that they are marginal

probabilities: they are the probability of the event of an alteration of a probe without considering the

alteration of other probes, in particular of neighboring probes. But the states of the probes are not

independent [15], and thus the probability of alteration of a region (within an array) can not be computed

simply as the product of the probability of the individual probes.

With HMM it is customary to obtain the most likely path of hidden states using the Viterbi algorithm

which returns the maximum a posteriori sequence (MAP). The Viterbi algorithm, however, does not return

any distributional statements about the states of the path [27]. It is straightforward, however, to compute

the marginal probabilities of the state of a probe or the joint probabilities of an arbitrary sequence of

probes, because the sequence of hidden states conditioned on the parameters of the HMM is a Markov

Chain [27]. For instance, we could compute the probability that the first three probes are jointly gained:

P (S1 = 1, S2 = 1, S3 = 1) using straightforward conditional probabilities as

P (S1 = 1)P (S2 = 1|S1 = 1)P (S3 = 1|S2 = 1), and these conditional probabilities can be computed by

backward-smoothing. The problem is that the classification of probes or regions into states given by these

two approaches (Viterbi and backward-smoothing) does not always coincide, leading to inconsistencies. For

example, we might obtain a sequence of hidden states with maximum marginal probabilities that is not the

same as we obtain with Viterbi; that sequence might even contain two consecutive altered probes that can

not be jointly altered [28]. This is a common problem that can arise when using maximum likelihood

approaches to HMM.

To avoid these problems, we can use, as RJaCGH does, Markov Chain Monte Carlo (MCMC) instead of

ML. With MCMC, however, we can not average the conditional probabilities obtained through the MCMC

iterations, because that would break the Markovian property [29], as we are averaging over different runs

with (potentially) different parameters. For instance, suppose we want to compute the probability that the

first three probes are jointly gained: P (S1 = 1, S2 = 1, S3 = 1). We cannot compute

P (S1 = 1)P (S2 = 1|S1 = 1)P (S3 = 1|S2 = 1), with those conditional probabilities obtained by averaging

over the multiple MCMC runs. What we can do, instead, is compute the probability of an alteration for

any arbitrary sequence as the frequency of that sequence being altered in the MAPs from each of the

MCMC draws. For the previous example, we would count in how many MAPs (from Viterbi) we found

S1 = S2 = S3 = 1. We must note that, in this case, we are not obtaining the real distribution of the hidden

states per se, but the distribution of the hidden states as members of the maximum a posteriori hidden
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sequence [30]. That is, we do not sample from the distribution of the hidden states, but from the

distribution of the MAP. This is coherent with the classification method used with just one array, as every

sequence is only accounted for if it has been part of the MAP sequence, and thus this is a stronger

requirement as the regions obtained have always been part of the MAP.

Finally, the above scheme can be applied both to models that assign to hidden states probabilities of being

altered of either 1 or 0, and to models that assign to hidden states probabilities of being altered between 0

and 1.

Combining regions over arrays

Once we have computed the probability that the above region is altered, for our first algorithm, pREC-A,

we need to know how to average over the arrays to get a probability of alteration for that region over a set

of arrays. Many HMM models (RJaCGH included) will model each array with a different HMM, to reflect

the fact that they can have different characteristics, such as dispersion. Thus, for each array, we have a

(potentially different) stochastic process for the log-ratios. Once the data are summarized as states (gain,

loss, no-change), however, they are comparable across arrays as we are using the same approach to label

probes as gained/lost/not-changed. In other words, a value of Sj = 1 has the same meaning regardless of

the array. Thus, we can average directly all the probabilities for every array (the averages might be

weighted if there are differences in the reliability or the precision of different arrays). Therefore, the

probability that a given region of the genome is altered over a set of arrays is computed as:

P (Si = 1, . . . , Si+p = 1) =
r∑

j=1

P (Si = 1, . . . , Si+p = 1|arrayj)P (arrayj) (1)

where different P (arrayj) allow us to use different weights for different arrays (and, of course, the

P (arrayj) are scaled, if needed, so that
∑

j P (arrayj) = 1).

For notational convenience, when there is only one probe, we define

P (Si = 1) =
r∑

j=1

P (Si = 1|arrayj)P (arrayj) (2)
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pREC-A: Finding regions with a probability of alteration of at least pa

The following algorithm finds all the regions with an average (average over all arrays) probability of

alteration of at least pa. After the algorithm we provide a detailed explanation.

Start← 11

while Start ≤ TotalNumberOfProbes do2

P1← P (SStart = 1);3

if P1 ≥ pa then4

End← Start + 1;5

while End ≤ TotalNumberOfProbes do6

P2← P (SStart, . . . , SEnd = 1);7

if P2 < pa then8

break out of the while loop;9

else10

P1← P2;11

End← End + 1;12

UpdateRegionA(Start, End− 1, P1);13

Start← End;14

else15

Start← Start + 1;16

Algorithm 1: pREC-A algorithm

The search for common regions starts on the first probe of every chromosome. If the average probability of

alteration over arrays fulfills the pa criterion (line 4) we examine if we can add probes to this region, until

no further probes can be added to the region, which is equivalent to P2 falling below pa (line 8). If the

probe we considered as Start does not fullfill pa, the next probe is considered as starting probe (line 16).

The function UpdateRegionA (called in line 13) adds a region to the set of regions already stored.

UpdateRegionA records the first and last probes of the region (Start and End− 1) and the average

probability of the region (P1, as computed in line 3 or P2 as computed in line 7). This function can only

be called if at least the probe Start fulfills the pa criterion (as the call is inside the “If” condition in line

4). We can call UpdateRegionA either if we are at the end of a chromosome (so there are no further probes

to consider for extending a region: line 6 is not satisfied) or if the probe we just considered for addition to

the region results in the average probability of the region (P2) to drop below pa (line 8). The rest of the

algorithm is mostly in charge of appropriately updating Start, End, P1, and P2, so that we can directly

call UpdateRegionA (line 13) with the same arguments and without further conditional checks. Note that

calling UpdateRegionA with End− 1 (and not End) is what we want to do to ensure that the correct last

probe of a region is recorded, regardless of whether we reach line 13 from line 8 or from exiting the while
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loop (line 6).

Computationally, when finding P2 (line 7), and for a given Start, we do not need to repeatedly compute

P2 over all probes of a region: it is much faster to simply update the P2 probability as we add one probe

at a time at the end of the region (i.e., as we increase End).

Line 14 ensures that, when we cannot add any probes to a region (because the probability falls below pa),

the probe that will be considered as Start candidate for the next region is the one immediately following

the End of the last accepted common region. As a consequence, this algorithm ensures that a probe that

has a marginal probability higher that the threshold will always be part of a region (at least it will be a

region itself), but does not uniquely define the regions (uniqueness is guaranteed for probes). For example,

suppose we are interested in finding regions of gain of at least 0.90 probability. We can have the following

situation with three probes:

P (S1 = 1) = 0.95

P (S1 = 1, S2 = 1) = 0.90

P (S1 = 1, S2 = 1, S3 = 1) = 0.89

P (S3 = 1) = 0.95

P (S2 = 1, S3 = 1) = 0.90

Our algorithm would return two regions, {S1, S2} and {S3}. But the regions {S1} and {S2, S3} are also

valid. Accounting for these effects computationally will slow down the algorithm and, biologically, it is of

no relevance because all three probes are always included in the set of regions.

Of course, the joint probability of all regions returned by this algorithm is not necessarily larger than the

threshold pa: each region has a probability of at least pa, but this does not guarantee that, jointly, all

regions have a probability of at least pa.

This algorithm is the one that is most similar to other existing approaches in objective. Notice, however,

the simplicity of our algorithm, and the straightforward interpretation of its parameters.

pREC-S: Finding all the regions shared by at least freq.array arrays where each region in each array has a
probability of at least pw

We are imposing two thresholds: 1) pw, the minimum joint probability, within array, for each region; 2)

freq.arrays, the minimum number of arrays that share the alteration. Notice that pw in this algorithm is
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different from pa in the previous algorithm (where averaging over arrays is used).

for Start← 1 to TotalNumberOfProbes do1

SetArrays A← φ ;2

for array ← 1 to TotalNumberOfArrays do3

if P (SStart = 1|array) ≥ pw then4

SetArrays A← SetArrays A ∪ array;5

if |SetArrays A| ≥ freq.arrays then6

End← Start + 1;7

while End ≤ TotalNumberOfProbes do8

SetArrays B ← φ;9

foreach candidate array in SetArrays A do10

if P (SStart, . . . , SEnd = 1|candidate array) ≥ pw then11

SetArrays B ← SetArrays B ∪ candidate array;12

if |SetArrays B| < freq.arrays then13

break out of the while loop14

else15

if |SetArrays B| < |SetArrays A| then16

UpdateRegionS(Start, End− 1, SetArrays A);17

SetArrays A← SetArrays B;18

End← End + 1;19

UpdateRegionS(Start, End− 1, SetArrays A);20

Algorithm 2: pREC-S algorithm

The logic of this algorithm is very similar to that of pREC-A, above. The function UpdateRegionS (called

in lines 17 and 20) adds a region to the set of regions already stored. Adding a region means storing the

first probe of the region (Start), the last probe of the region (End− 1), and the arrays that compose the

region (those in SetArrays A). (Because of the way that End and SetArrays A are updated, End and

SetArrays A are always the correct arguments to this function). The function UpdateRegionS, however,

must check that the region to be added is not a subset of some previously added region. Suppose in the

run that started with probe S2 we found the region ((S2, S3, S4), (A1, A2)). Now, in the run that starts

with probe S3 we find the region ((S3, S4), (A1, A2)); obviously, the newly found region is simply a

completely contained subset of the previously found region, and we should not add this newly found region

as a new region.

The conditions in lines 4 and 11 refer to one of the conditions of the algorithm: an array can only be

considered part of a common region if the probability of the given sequence of probes (starting at Start

and ending at End or, in the one-probe case, starting and ending at Start) is larger than pw. Likewise, the

conditions in lines 6 and 13 refer to the second condition: at least freq.arrays arrays must fulfill that the
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sequence has a probability larger than pw.

Line 16 represents the condition where the number of arrays that fulfill the condition when we add a probe

decreases. In other words, at step t, with End = Start + t, we had a set of arrays that fulfilled pw. As soon

as we add a new probe (i.e., “stretch” the region by one probe, so we are at step t + 1 with

End = Start + t + 1), at least one array no longer satisfies pw. This means that at step t we had one

common region over a set of arrays to which we cannot add another probe. Therefore, as soon as the

number of arrays in SetArrays B becomes smaller than SetArrays A, we know we found a common

region in the previous step, and we have to update the set of regions.

Line 18 is needed to allow capturing subsequent decreases (if there were any) in the number of arrays that

meet the condition as we keep enlarging the region by adding probes.

We only reach line 17 if we exit the while loop (line 8). This can happen in two ways: either because we no

longer fulfill freq.arrays (line 15) or if there are no further probes to consider because we are at the end of

the chromosome. In the first case, we know we have to add the sequence in the previous iteration (so the

argument End− 1 is correct, as it was End which lead to failing the condition in line 13). In the second

case, we have to add the sequence up to the last probe (and again End− 1 is the correct argument as we

increased End in line 19).

Analogous to what happened in pREC-A, computing P (SStart, . . . , SEnd = 1|candidate array) (line 11)

requires only an update, not computing the probability of the complete set of probes each time.

In any specific implementation, it is not necessary to explicitly do assignments as in lines 2 and 9. In our

current C implementation, we use two additional variables (one for the vector that represents SetArrays A

and one for the vector that represents SetArrays B) that tell us how many valid elements there are in

each set, and we only access and use up to those valid elements. Likewise, the set union operation as in

lines 5 and 12 can instead be implemented as an assignment to a specific position of a vector. Similar

comments apply to line 18. For instance, we could rewritte lines 4 and 5 as:

valid elements← 0;1

if P (SStart = 1|array) ≥ pw then2

valid elements← valid elements + 1;3

SetArrays A[valid elements] = array;4

valid elements is also the cardinality of the set. (Note that in C and other languages that index arrays

starting at 0 we would increase valid elements after the assignment to SetArrays).

This algorithm has no equivalent in alternative methods.
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Simple numerical example: pREC-A

Suppose we have fit a model to six probes and four arrays and, after using RJaCGH’s model averaging, we

have obtained the marginal probabilities of gain shown in Table . We want to use pREC-A with pa = 0.6.

First, we average the probability for probe 1 for the four arrays:

P (S1 = Gain) =
0.17 + 0.16 + 0.08 + 0.16

4
= 0.14

As it does not reach the threshold of 0.6, S1 can not belong to a region. We do the same for S2, obtaining

0.35. For S3 the averaged probability is 0.97, so the first region will include this probe. To see if we can

extend this region to the next probe, we compute for every array the joint probability of probes 3 to 4 to

be gained. This probability is not shown in the table above (which shows only marginal probabilities) but

is obtained as explained above (see section “Computation of the joint probability of an arbitrary sequence

of probes in an array”): the relative frequency of a sequence in the MAPs from all the MCMC samples.

P (S3 = Gain, S4 = Gain) =
0.97 + 1 + 0.07 + 0.99

4
= 0.76

As it is over the threshold, we join S4 to the region.

Now we check if S5 can be joined too. We compute the joint probability of gain for the probes 3 to 5

(again, the joint probability is computed from the relative frequency of this sequence in the MAPs from all

the MCMC samples):

P (S3 = Gain, S4 = Gain, S5 = Gain) =

0.97 + 0.15 + 0.06 + 0.99

4
= 0.54

As it does not reach 0.6, S5 will not be part of the region, so we get:

Region 1: {(S3, S4)}.

Now we keep on searching from probe 5. S5 does not have a marginal probability higher than the

threshold, so it will not form any region. But S6 will:

P (S6 = Gain) =
0.17 + 1.00 + 0.92 + 1.00

4
= 0.77

So it will form its own region. As there are no more probes, the regions found are {(S3, S4), (S6)}.

Note that boundaries of regions need not be common over arrays: the algorithm finds the common regions.

For instance, the left boundary of the first region of gain of sample A2 is located in probes S2, whereas the
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boundary for all the other three samples is located in S3. Thus, S2 is excluded from the first common

region: a region that spanned {(S2, S3, S4)} would not reach, over all four arrays, the required pa = 0.6.

Simple numerical example: pREC-S

We use the same data as above. We want to find all regions where at least two arrays have a joint

probability of gain of at least 0.9 (note that we raise the probability threshold because we do not ask that,

on average, all arrays reach it, but at least two of them do). In other words, we are using pREC-S with

freq.arrays = 2 and pw = 0.90. Line numbers below refer to the lines in the algorithm.

We start on S1, but there is no array that reaches the threshold of 0.9 for that probe (i.e., the condition in

line 4 is not fulfilled for any array). We iterate (line 1) to the next probe, S2, but the threshold is reached

only in Array 2, and we imposed that there should be at least 2 arrays. Thus, condition in line 6 is not

met. We iterate to the next probe, S3. Here, when we iterate over all the arrays (line 3) we find all of the

arrays reach the threshold, so in line 5 we end up with SetArrays A = (A1, A2, A3, A4).

As the condition in line 6 is fulfilled we try to increase the region by one probe: we set End to S4 (line 7)

and enter the “while” loop (line 8) as we are not yet at the end of the total number of probes.

After looping over all four arrays (line 10) we find that line 11 is only fulfilled for Arrays 1, 2 and 4:

P (S3 = Gain, S4 = Gain|A1) = 0.97

P (S3 = Gain, S4 = Gain|A2) = 1.00

P (S3 = Gain, S4 = Gain|A4) = 0.99

P (S3 = Gain, S4 = Gain|A3) < 0.90

Note that the last expression is obvious since P (S4 = Gain|A3) = 0.07.

Therefore (from the iteration over line 12) we have SetArrays B = (A1, A2, A4). We still fulfill the

condition about freq.arrays in line 13, but the new set of arrays contains fewer than before (line 16) which

means that in the step before a region was found. We call UpdateRegionS so that the region

((S3), (A1, A2, A3, A4)) is stored, and we set SetArrays A = (A1, A2, A4) (line 18). We increase End to

S5 (line 19), and consider it as the end of the new possible region. Iterating again (line 10) we find

P (S3 = Gain, S4 = Gain, S5 = Gain|A1) = 0.97

P (S3 = Gain, S4 = Gain, S5 = Gain|A4) = 0.99

P (S3 = Gain, S4 = Gain, S5 = Gain|A2) < 0.90
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As above, this means that in the previous step we found a region (line 16 is true). Therefore, we call

UpdateRegionS to store the region from the previous step: ((S3, S4), (A1, A2, A4)). We increase End to

S6 and find

P (S3 = Gain, S4 = Gain, S5 = Gain, S6 = Gain|A1) < 0.90

P (S3 = Gain, S4 = Gain, S5 = Gain, S6 = Gain|A4) = 0.99

(3)

Now, the condition in line 13 is true, because only one array satisfies being over pw. We break out of the

while loop (line 15) and we UpdateRegionS in line 20, so we store the region from the previous step:

((S3, S4, S5), (A1, A4)).

We continue iterating over Start (line 1), so now Start = S4. Repeating the steps above we would find a

first region ((S4), (A1, A3, A4)), and a second region ((S4, S5), (A1, A4)). However, when executing

UpdateRegionS, we would find each of these regions is a subset of a previously found region

(((S4), (A1, A3, A4)) of ((S3, S4), (A1, A3, A4)); ((S4, S5), (A1, A4)) of ((S3, S4, S5), (A1, A4))).

When we iterate over Start to Start = S5, we find only the region ((S5), (A1, A4)) which is again a subset

of a previously found region.

Finally, we set Start = S6. We find (lines 3 and 4) that pw is satisfied by arrays A2, A3, A4, so we end up

with SetArrays A = (A2, A3, A4). We fullfill the requirement about freq.arrays, but in line 8, however,

we find we are at the end of the total number of probes, so we do not enter that loop (lines 9 to 19 are

skipped). We therefore call UpdateRegions, and add the region ((S6), (A2, A3, A4)). (Note that the call to

UpdateRegions in line 20 with End− 1 is correct, since we increased End one position over S6 in line 7).

Therefore, we end up with the regions:

Regions = {((S3), (A1, A2, A3, A4)), ((S3, S4), (A1, A2, A4)), ((S3, S4, S5), (A1, A4)), ((S6), (A2, A3,

A4))}

We can see the regions obtained in Figure . In contrast to pREC-A, boundaries need not be common over

arrays; with pREC-S differences in boundaries will lead to different subsets and different regions (for

instance, that is why the common region (S3, S4) includes only samples A1, A2, A4, but not A3).

We can also use the output of this algorithm as the basis for clustering and to display patterns of

groupings of arrays. We can measure similarity between two arrays as the number of common probes in

CNVCRs between those two arrays or, alternatively, as the number of common regions (where the same

probe might belong to more than one region) between two arrays. Once similarity is measured, we can
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immediately apply any clustering method of our choice. An example is show in Figure . At this stage,

clustering is mainly a device for representing patterns of similarity, since the grouping of arrays with

respect to recurrent CNVs is the very output of the pREC-S algorithm.

Implementation and testing

The algorithms above are part of the freely available and open-source RJaCGH R package (available from

the R repositories), which uses R and C (the later, dynamically loaded from within R). For storage and

efficiency reasons, we do not save directly all of the Viterbi paths (i.e., each Viterbi from each iteration of

the MCMC sampler) but only the jumps in paths and the counts of different paths. This requires less

storage, allows for faster access to the information and computation of the joint sequence, and of course

permits reconstructing all of the sequences. The Viterbi paths are obtained as part of the regular execution

of the C code for RJaCGH, saved in R as gzipped files, and read back by the C functions for pREC-A and

pREC-S only once.

Execution time in all the examples of the paper is negligible: all the examples of pREC-A execute in less

than 5 seconds. Execution time for pREC-S goes up to 160 seconds for the examples from [31] but less

than 4 seconds for the remaining examples. (All these timings from a workstation with and AMD 280

processor running Debian GNU/Linux).

Testing was carried out by comparing the output from the algorithms with manually computed examples.

Code for the examples and comparisons is included in the repository for the package

https://launchpad.net/rjacgh/main.

Examples with real data and comparison to other approaches

All the examples below were analysed with RJaCGH, thus providing the probabilities of alteration. We

focus in the examples not on the RJaCGH results per se, but rather on the common regions detected. Our

examples use arrays of BAC because these are four “classic” sets of data that have been analyzed before

with other approaches. Our methods, however, can also be applied to other platforms, including custom

and commercial oligonucleotide arrays and SNP arrays.

Colorectal cancer example (Nakao et al.)

Nakao et al. [32] analyze 125 colorectal tumors. They apply a segmentation method based on a threshold

and then find common regions of alteration studying the frequency of alterations. Rouveirol et al. [18]
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apply both of their algorithms for minimal common regions to the same data.

We have applied our first method, pREC-A, and found, with a probability of at least 0.35, basically the

same regions of alteration. As we can see in Table and the frequency plot of alterations (Figure ), most of

the reported differences come from regions with a probability (or frequency, in the case of [32]) in the limit

of 35% (the same threshold that [32] uses). The only remarkable case is the gain in 11q which has a much

lower probability in our analysis, probably because that alteration is based on a single BAC and the

segmentation analysis used in [32] is based on a threshold and therefore is more likely to be affected by

outliers. We can obtain more detail by focusing on regions at least 0.5 probability, as shown in Table . The

results are also similar to [18], but they only provide a small excerpt in their paper, so direct comparisons

are difficult to make.

Breast cancer example (Pollack et al.)

Pollack et al. [31] analyze data from 44 breast tumors and 10 cancer cell lines. They search for common

regions of alteration and then compare the frequency of aberrations in each arm of every chromosome as a

function of other variables such as tumor grade, estrogen receptor (ER) and TP53 mutations. Rouveirol et

al. [18] also analyze these data, though they restrict their study to 37 tumors and only give brief details

about the regions obtained. We have applied our second method, pREC-S, to the 44 tumors to examine if

there is any similarity in the alterations shared by the groups of arrays defined by those variables. We have

computed common regions of at least 0.50 probability of alteration (Gains or Losses) shared by at least two

arrays (i.e., freq.array = 2, pw = 0.50).

To compare our approach with the results of [31], and to gain more insight on the patterns of CNVCR and

their relationship to the other three variables (tumor grade, ER, TP53), we have defined a simple statistic

to measure within-group CNVCR homogeneity. Let Yij be the number of probes that array i and array j

have altered in common, k a group of arrays (typically, with some common characteristic), nk the number

of different pairs of arrays in a given group k and n−k the number of different pairs formed by arrays in

group k and arrays in a different group. Let us define

Ȳk =
∑

i,j∈k

Yij

nk

Ȳ−k =
∑

i/∈k,j∈k

Yij

n−k

That is, Ȳk is the average number of common altered probes between two arrays of group k, and Ȳ−k is the
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average number of common altered probes between one array of group k and other in a different group. We

define the proportion of common alterations shared by the group k as Ȳk/Ȳ−k. This index measures the

homogeneity of the genomic alterations within a subset of arrays compared to the alterations shared with

arrays of other group. If this index is greater than 1, the arrays of this group share more alterations

between themselves than arrays of different groups do. If this index is 0, no alterations are shared between

any two arrays in the group. A value of ∞ means that no alteration is shared between arrays of this group

and others. We can compute this index for the groups defined by the three variables tumor grade, ER, and

TP53 mutations.

In Table we see that the gains in chromosomes 4 and 5 and the losses in chromosome 8 are very

homogeneous in the estrogen receptor negative samples. Table shows that the gains in chromosomes 2 and

10 and the losses in chromosomes 17 and 21 are more homogeneous in tumors harboring TP53 mutations.

Finally, Table also shows differences in the pattern of homogeneity of alterations with respect to the grade

of the tumor. We can also show in a figure the similarity within and between groups by plotting the

number of common alterations. Figure shows the gains in chromosome 8.

These results are not easy to compare with [31], because they define the regions and compare subgroups at

chromosome arm resolution, while our method works at BAC resolution. Furthermore, they consider every

chromosome arm as altered or not without taking into account the number of altered probes in it. Instead

of only comparing subgroups according to the number of alterations, we can try to examine the data

further by analyzing how homogeneous each group is over the whole genome (not chromosome by

chromosome, as in previous tables). This is shown in Table . When we divide arrays according to tumor

grade, Grade I and Grade III show high homogeneity within groups, meaning that the alterations are

consistent in arrays within those grades. Arrays of grade II, however, show much more heterogeneity,

sharing many aberrations with arrays of Grade I and/or Grade III. This is an indication that arrays of

Grade II can be classified in one of the other two groups according to the pattern of alterations. In Figure

we see an example: four arrays of Grade II are very similar to the arrays of Grade III.

Colorectal cancer example (Douglas et al.)

Our algorithms to detect common regions may also be used to compare directly the probability of

alteration between groups of samples. Douglas et al. [33] present data from 37 primary cancers. Seven show

microsatellity instability (MSI) and 30 show chromosomal instabillity (CIN). (For a a definition of genetic

alterations, see [34]). They call alterations using a threshold-based method and compare their frequency

16

http://biostats.bepress.com/cobra/art43



between the two types using a chi-square statistic. van de Wiel and van Wieringen [21] analize the same

data using a dimension reduction technique (CGHRegions) over the alterations detected by DNACopy [35].

They then use a Wilcoxon test with FDR correction for the difference between the two levels.

We can first use a moderate threshold, such as 0.35, to find common regions of alteration over arrays.

Thus, we are using pREC-A with pa = 0.35. As expected for this kind of genetic alteration [33] there are

many more gains and losses in CIN cancers than in MSI ones and, in particular, there are very few

common losses in MSI samples. When comparing the type of alterations between both groups, there are

some regions of loss in CIN that correspond to gains in MSI. The main difference lies in chromosome 8,

wholly gained in the MSI group with a joint probability of 0.3993, while in the CIN there is a region lost of

50 clones (also reported in [33]). These patterns are also seen in chromosome 4 and chromosome 21, but

just in a few probes.

To circumvent this contradiction, we used a higher threshold of pa = 0.50 to find the common regions of

gain/loss and then compared the probability of alteration in those regions for the two groups of samples.

We obtained a total of 21 regions of gain and 11 of loss. Due to the unequal size of the groups (30 vs. 7),

we could have bias in detecting alterations that occur only in the smallest group. An easy solution would

be to apply different weights to the groups when computing the probabilities. The lack of common regions

in the MSI group makes this unnecessary. In Figure we can see the common regions with at least 0.50

probability of alteration and the joint probability for those regions for the two groups. The striking

differences between MSI and CIN in chromosome 8 have disappeared, because the gains in the MSI group

do not reach the threshold of 0.50.

Next, for every region (of the 21 regions of gain and 11 regions of loss found above) we computed the joint

probability of alteration for each of the 30 arrays of class CIN and the seven arrays of class MSI and, by

region, we calculated the absolute value of the difference in mean probability between the MSI and CIN

groups. To assess the significance of this statistic, we used a permutation test to obtain a two-sided

p-value. Finally, we applied the FDR method [36] for multiple testing correction (to account for the

multiple testing arising from comparing multiple regions). The regions found significantly different (at 0.05

level) between groups are listed in table : [33] report differences between both groups in gain of

chromosome 20, loss of 18q and the short arm of chromosome 17 and loss of 8p. Our regions do not include

the complete chromosome 20 because the p arm is gained with probability less than 0.5. We found also a

difference in all of chromosome 18, but [33] report some losses in certain clones in the MSI group that we

have not found. The rest of the regions we found are reported in [33] as common regions of alteration but
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with no difference. The later could be related to the higher precision that our method gives, but [33] do

not provide details about frequency of those regions.

Comparing these results to [21], we find some interesting differences. First, almost all of the regions of [21]

are discovered with our method, but their length or the location of the breakpoints sometimes differ. This

difference is probably related to the method of [21], CGHregions: CGHregions is a dimension reduction

method, and thus the complexity of the sample profiles is simplified. Second, two regions in their paper, a

small loss region of only two clones in the 8th chromosome and a big region of 29 clones in chromosome

18th, are not detected by our method because the probability of loss of those regions is just below 0.50 of

probability. Of course, our method allows to adjust the threshold at whichever value is considered

reasonable, and to check how conclusions change with changes in the threshold (as we have shown in this

example). Finally, there are other regions detected by our method that show signficant differences between

the two groups and are not reported in [21], such as losses in chromosome 17 (detected in [33]) and gains in

chromosome 7.

Discussion

We have developed two very different approaches for finding recurrent, or common, copy number variation

regions (CNVCR). The lack of gold standards and the current non-existence of an unambiguous definition

of what a recurrent CNV is [2], and the unique and qualitatively different nature of our approaches from

previous ones, make it difficult to compare the performance of our methods to previous approaches, but at

the same time highlight the relevance of our methods for current and future studies of CNV, their relation

to phenotypic variation, and their usage for subject clustering.

The two methods we have developed share that they use as input probabilities of alteration and return

probabilities. Regardless of whether the input probabilities are obtained from our RJaCGH method [15] or

some other approach, it can be argued that probabilities are much better suited to the task at hand than

p-values or discrete classifications into “gained”, “lost”, “not changed”. By using probabilities as input, we

incorporate uncertainty in the estimates of copy number estates. By returning probabilites and using

probabilities throughout all the analysis, the user can decide the appropriate thresholds (or, even, modify

them depending on context) and define distances between arrays that incorporate the strength of evidence

in favor of alteration. Precisely because of the conceptual simplicity of using probabilities, we can approach

within a unified framework both questions related to “unsupervised problems” (e.g., identify subsets of

regions that are common to subsets of arrays) and to “supervised problems” (e.g., measure how different
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two groups of arrays with respect to recurrent regions of alteration). This unified approach is unique to our

methods, and not shared by any others.

Our first method, pREC-A, searches for general, broad patterns of common gains (or losses) over all the

samples in the study. This is the approach which is most similar to previous ones. This method is well

suited to comparing pre-defined groups of samples. By its very nature (e.g., that an overall pattern is

identified by a mean probability larger than a threshold) this method can only detect regions for which

there is at least moderate evidence (medium probability of alteration) over almost all samples, or very

strong evidence (high probability of alteration) over an important fraction of the samples. Thus, it is easy

to miss regions that are present with very high probability in a small subset of the samples. As well, mixing

in the same sample very heterogenous groups will tend to smooth out the evidence of alteration, so that

few common regions will be found. Alternatively, if there are very different sample sizes (different number

of arrays) in the different heterogenous groups, the detected common regions will often be a subset of the

common regions among the most abundant group. These features can be controlled to answer the specific

study questions. First, as equation 1 (see “Methods”) shows, it is easy to weight different arrays differently,

so as to increase the influence of some arrays in the final analysis. Moreover, if we know in advance that

there are different subgroups of samples, we can use pREC-A independently in the different subgroups;

for instance, when we have already subdivided the subjects in the study into homogeneous groups with

respect to disease (e.g., [37]), and want to locate CNVCRs common to most samples within a subgroup and

possibly different from other subgroups. Finally, as our last example with the data of [33] shows, a user

that understands these features of pREC-A can employ this algorithm to highlight the differences

between subgroups and how these change as we modify the minimum required threshold for the probability

of alteration. In particular, note the easy formulation of a permutation-based test for identifying the

differences in the probabilities of alteration of regions between subgroups. This type of approach might be

even more useful when two or more suspected subgroups are compared against a larger, reference group.

The main advantages of this algorithm are that it is most similar to previous approaches, has a simple

interpretation in terms of global patterns across most of the samples, and requires the specification of only

one parameter. Thus, pREC-A will often be the method of choice if we are trying to relate major, global,

recurrent patterns of CNV to variations in phenotype or to differentiate between subroups of samples.

In contrast to pREC-A, the second method, pREC-S, can detect small subgroups of samples with

respect to common alterations, without being adversely affected by averages over arrays or differences in

number of samples in different subgroups. Moreover, different subgroups can be detected with respect to
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different alterations; for instance, out of a set of arrays A1, A2, . . ., A10, arrays A1, A2, A3, might be

grouped with respect to a common alteration in region R1, and arrays A1, A3, and A4 with respect to a

common alteration in region R2. In this sense, pREC-S resembles biclustering [38], with the advantage

that in pREC-S the objectives and criteria are well defined as “common region over a set of arrays” is

unambiguously defined once the two parameters of the algorithm are chosen. In those disorders that involve

a potentially large set of alterations that lead to the same disease (e.g., [3, 26]), identifying subgroups of

patients with respect to common alterations is of key relevance to pinpoint the possible genetic basis of

disease. The only other method that tries to find such subsets of samples (or regions over subsets) is the

one by [19], but this is a clustering method, and thus the finding of common regions (“markers” in their

terminology) is only a step for the final objective which is clustering samples, not a search conducted

exhaustively for its own sake. Therefore, pREC-S is a qualitatively different algorithm from available ones,

and it addresses a common and distinct need that arises in any study of CNV with heterogeneous samples.

As seen in the results, the usage of this second algorithm allows us to elegantly approach some of the

questions in the second example (breast cancer example, [31]). First, the derivation of a specially tailored

statistic, Ȳk/Ȳb, to answer the relevant questions in this study is straightforward. More importantly, the

second algorithm finds homogeneous subgroups, with respect to alterations, and these differences are

associated with differences in three other markers (estrogen receptor status, TP53 mutation, tumor grade;

see Tables , , , ). In other words, pREC-S finds CNV that differentiate between groups. It must be

emphasized that pREC-S has been applied to the complete set of data after specifying that the

within-array probability of alteration be larger than 0.5 (i.e., pw = 0.50) and that these regions be shared

among, at least, two arrays (i.e., freq.array = 2), but the algorithm is blind to the “labels” of the arrays

regarding the other markers (estrogen receptor, TP53, grade). Therefore, pREC-S allows to find CNV

that differentiate between known groups (as in this case), but its systematic usage also opens the door to

finding patterns of CNV that might differentiate between previously unknown groups. Moreover, there is

no need for the association CNVCRs-marker to be similar among different markers, specially since, as

explained above, different subgroups of arrays can be detected with respect to different CNV recurrence

patterns. These are features unique and characteristic of pREC-S, compared to all the alternative

available methods.

We suggest that pREC-S is the method of choice when there is unknown heterogeneity among arrays in

CNV, and when we want to relate possibly non-identical subsets of samples, defined in terms of recurrent

patterns of CNV, to phenotypic variation. Moreover, routine use of pREC-S even with apparently
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homogeneous groups of samples might help discover possible subtypes of diseases that might generate novel

hypothesis or uncover previously unknown heterogeneities.

pREC-S is also a key method for clustering. Integrative studies that combine CNV data with other data

(e.g., mRNA, SNP) often use clustering of subjects based upon the CNV data (e.g., [39, 40]). The problem

of most of these approaches is that, when clustering based upon the CNV data (either the gain/loss calls or

the smoothed data), the measure of distance or similarity used ignores that some of the data show strong

serial dependence (probes next to each other) whereas some of the data (e.g., probes in different

chromosomes) are independent. Thus, in most cases the distance computed is likely to introduce serious

distortions in the true distances among subjects (see also [19,41]). This problem is in addition to the

aforementioned issues of not integrating variability and uncertainty in the gain/loss calls or smoothed

means. In contrast, by using a biologically motivated and probabilistically based approach to CNV

common regions, such as pREC-S, it will be possible to construct distance metrics and, therefore,

clustering approaches, that make full usage of CNV data when searching for groups of subjects. Fully

developing a method for clustering based upon CNV data is outside the scope of this paper, but we have

presented a simple example to motivate further work.

Moreover, an additional distinct feature of our methods is that both pREC-S and pREC-A have at most

two parameters of straightforward biological interpretation (probability of alteration, number of samples

that share the alteration). An added advantage of the type of input and output used by our methods is

that probabilities allow researchers to modify thresholds as needed, and to easily (and intelligibly) examine

the sensitivity of results to changes in thresholds.

Finally, as both methods are based on a Hidden Markov Model (HMM) with no restrictions on the number

of states [15], it is also immediate to restrict finding CNVCR to alterations above a certain threshold of

amplitude or magnitude of change. The HMM (probabilistically) assigns probes to hidden states, but it is

up to subsequent analysis to later assign those states to specific or interesting “copy number states”. Thus,

we keep the two different concepts of “amplitude (or magnitude) of change” and “evidence of alteration”

separate. Therefore, we allow filtering and customized analysis that can focus only on alterations of a

certain type.

Conclusion

We have developed methods for finding regions of copy number variation (CNV) common to several arrays.

Our methods have an immediate and intuitive biological interpretation, and incorporate both within- and
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among-array variability. Reanalysis of several data sets in the literature show that our methods can indeed

recover patterns previously found but can also uncover additional patterns. Moreover, probabilities allow

researchers to modify thresholds as needed, and to easily examine the sensitivity of results to changes in

thresholds. In addition, the examples show how it is straightforward to derive tailored statistics and

summary measures to answer specific research questions. The development of these two distinct algorithms

highlights a key idea that has often been neglected: recurrent or common CNVs can refer to very distinct

patterns in a group of samples, specially concerning heterogeneity among arrays and probability of

alteration. We expect that these two algorithms will help advance efforts to standardize definitions of

recurrent or common CNV regions, and ultimately the search for genomic regions harboring disease-critical

genes.
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Figure 1 - pREC-S, simple numerical example

Subsets of at least 2 arrays that share common regions of gain of at least 0.90 probability:

freq.arrays = 2, pw = 0.90. Boxes of the same color represent the same region. In circles, the marginal

probabilities of gain. In boxes, the joint probabilities.

25

Hosted by The Berkeley Electronic Press



Figure 2 - Clustering based upon pREC-S

Number of common regions shared by pairs of arrays. In parenthesis, the average length in probes of the

regions. On the left, a dendrogram using hierarchical clustering (complete linkage) with number of

common regions shared by pairs of arrays as similarity measure.
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Figure 3 - Frequency plot of the alterations in 125 colorectal tumor samples in Nakao et al.

The red dots show gains found in more than 50% of the samples, and the green dots losses in more than

50%. The dotted lines show the 33% and the 50% frequency.
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Figure 4 - Chromosome 8 from the Pollack et al. example

Number of regions of gain with at least 0.50 probability shared by at least two arrays (i.e., pREC-S,

freq.arrays = 2, pw = 0.50). The arrays are ordered according to tumor grade. Arrays with grade III share

many more alterations between them than the other arrays. Four arrays with grade II share the same gains

in copy number with tumors of higher grade, so they are probably related. There is one array unidentified.
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Figure 5 - Douglas et al. example.

Joint probability in MSI and CIN alterations for the Common Regions of at least 0.5 probability (i.e.,

pREC-A, pa = 0.5). Along the abscissa, for each chromosome, the position; the coordinate indicates the

probability, with values below 0 indicating loss, and above 0 gain.
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Tables
Table 1 - Simulated data example. Marginal probabilities of being gained.

S1 S2 S3 S4 S5 S6
A1 0.17 0.17 0.97 0.97 0.97 0.17
A2 0.16 1.00 1.00 1.00 0.15 1.00
A3 0.08 0.07 0.93 0.07 0.06 0.92
A4 0.16 0.16 0.99 1.00 1.00 1.00

Table 2 - Common regions in [32]

Results using pREC-A, pa = 0.35. This analysis shows results at cytoband resolution.

Gain Loss
Nakao et al. pREC-A Nakao et al. pREC-A
7p 7p - 1p
7q 7q 5q 5q
8q 8q 8p 8p
11q - 17p 17p
- 13q 18 18
20q 20q 21q -

Table 3 - Common regions in [32]

pREC-A, pa = 0.50. Analysis at BAC resolution.

Chrom. Start End #Probes Prob. Alteration
20 32.33 32.33 2 0.5976 Gain
20 32.718 46.643 19 0.5003 Gain
20 47.321 60.461 29 0.5948 Gain
20 63.878 63.878 1 0.5026 Gain
20 64.021 65 2 0.6219 Gain
17 7.518 7.518 1 0.5002 Loss
17 8.17 8.17 1 0.5054 Loss
17 9.118 9.118 1 0.5038 Loss
17 10.004 16.581 5 0.5002 Loss
18 3.731 5.014 3 0.5019 Loss
18 6.251 6.251 1 0.5026 Loss
18 9.188 10.75 2 0.5038 Loss
18 10.862 11.925 3 0.5119 Loss
18 13.559 13.559 1 0.5087 Loss
18 14.77 58.594 15 0.5009 Loss
18 62.332 90 18 0.5438 Loss
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Table 4 - Alterations in [31] by Estrogen Receptor

Values shown: Ȳk/Ȳ−k

Gain Loss
Chrom. ER=’+’ ER=’-’ ER=’+’ ER=’-’
1 0.61 1.16 1.54 0
2 0.12 0 1.93 0.17
3 46.67 0 2.77 0.51
4 0 3.43 0.66 0.65
5 0.21 2.72 0.46 1.37
6 0.12 2.1 0.39 1.4
7 2.27 0.09 0.25 0.85
8 0.5 1.54 0.22 1.52
9 0.55 1.7 1.68 0.11
10 3.62 0 2.06 0
11 2.82 0.19 0.26 0.07
12 11.03 0 0.83 0
13 0.94 0.21 0.38 1.26
14 0.99 0 0.85 0.59
15 0.71 0.3 ∞ 0
16 2.18 0.34 0.72 1.25
17 0.55 1.55 2.14 0.9
18 0.27 1.73 2.61 0
19 1.04 0 1.22 0
20 0.8 0.94 0.58 1.49
21 0.66 0.68 0.92 0.56
22 0.48 0.67 2.09 0
X 1.56 0 0.53 0.38
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Table 5 - Alterations in [31] by TP53 mutations.

Values shown: Ȳk/Ȳ−k

Gain Loss
Chrom. p53=’Wt’ p53=’Mutant’ p53=’Wt’ p53=’Mutant’
1 0.83 0.86 3.96 0.5
2 0 36.71 0.82 0.66
3 0.45 0.79 0.2 1.51
4 0 2.82 0.73 0.73
5 0.17 1.44 1.73 0.51
6 0.12 1.29 0.88 0.74
7 0.55 1.24 1.17 0.5
8 0.3 2.31 0.35 0.96
9 1.46 0.79 0.67 1.13
10 0.2 33.18 1.65 0.25
11 0.63 0.84 0.78 0.14
12 1.51 0 0.14 0.51
13 5.23 0.48 0.63 0.88
14 0.89 0.6 0.04 3.76
15 0.06 1.01 0.26 0.24
16 0.52 1.51 2.32 0.34
17 0.43 1.72 0.63 8.23
18 0.19 2.21 2.24 0.28
19 0.58 0.49 1.14 0.26
20 0.64 1.24 0.52 1.51
21 0.66 0.91 0.35 1.9
22 0.25 1.78 1.6 0.07
X 0 0.71 0.37 1.12
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Table 6 - Alterations in [31] by tumor grade

Values shown: Ȳk/Ȳ−k

Gain Loss
Chrom. Grade Grade Grade Grade Grade Grade

I II III I II III
1 1 0.39 1.04 0 1.07 0.28
2 0 0.03 0 4 0.2 0.53
3 0 2.14 0.02 0.86 0.6 2
4 0 0 0 0 0.65 1.12
5 0 0.01 3.45 0.89 0.57 0.75
6 0 1.59 0.42 1.33 1.06 0.72
7 2.58 0.22 0.75 0 1.52 0.41
8 0 0.47 2.47 0 0.74 0.64
9 5.36 0.32 0.49 0.81 1.06 0.81
10 0 0 1.67 1.87 1.08 0.05
11 0.16 0.47 1.48 0 0.86 0.12
12 0 0.83 0.09 6.33 0.44 0.81
13 1.91 0.14 0.82 0.15 0.34 1.85
14 0 0.6 1.54 0.79 0.25 1.38
15 0 1.05 0.5 0 0.55 0
16 0 0.77 1.32 0 1.4 1.15
17 0 0.29 3.56 0.64 0.11 1.89
18 1.12 0.22 1.47 0.57 1.1 0.47
19 0 1.02 0.36 2.71 2.86 0
20 0 0.39 2.49 0 0.55 1.11
21 1.14 0.68 0.66 1.57 0.71 0.86
22 0 0.39 0.7 0 1.1 0.18
23 0 0 ∞ 1.83 1.57 0.1
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Table 7 - Alterations in [31], genomewide

.

The homogeneity index, Ȳk/Ȳb, is computed over the whole genome, not chromosome by chromosome, as

done in previous tables.

pREC-S
(Homogeneity index)

ER Positive 0.75
Negative 1.12

p53 Wild Type 0.67
Mutant 1.23

Grade I 1.21
II 0.56
III 1.40
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Table 8 - Region differences in Douglas et al.

Regions that differ with respect to copy number alterations between CIN and MSI groups in the data set

from [33]. See text for details of test.

Chrom. Start End #Probes Prob. Alteration p-value FDR-adjusted
alteration p-value

7 254610 2436414 5 0.5493 Gain 0.0001 0.0002
7 3293630 16702590 19 0.5001 Gain 0.0104 0.0166
7 17587872 26210052 9 0.5020 Gain 0.0111 0.0169
7 29279112 30070392 2 0.5195 Gain 0.0042 0.0090
7 35993377 35993377 1 0.5130 Gain 0.0048 0.0090
7 38011390 39281976 2 0.5065 Gain 0.0061 0.0103
7 44307040 44727994 2 0.5045 Gain 0.0053 0.0094

13 19104448 113866204 103 0.5327 Gain 0.0278 0.0404
20 20191940 20191940 1 0.5055 Gain 0.0047 0.0090
20 25023262 25023262 1 0.5441 Gain 0.0006 0.0014
20 29402772 63589868 51 0.5535 Gain < 0.0001 < 0.0001
8 2520596 6933218 10 0.5023 Loss < 0.0001 < 0.0001
8 7938098 28300098 25 0.5040 Loss < 0.0001 < 0.0001
8 28775788 28775788 1 0.5252 Loss < 0.0001 < 0.0001
8 29649361 29649361 1 0.5135 Loss < 0.0001 < 0.0001

17 4824380 10156678 12 0.5072 Loss < 0.0001 < 0.0001
17 12025982 16624989 6 0.5371 Loss < 0.0001 < 0.0001
17 17432136 18029867 2 0.5170 Loss < 0.0001 < 0.0001
18 225168 707954 3 0.5091 Loss < 0.0001 < 0.0001
18 2572772 37207434 41 0.5011 Loss < 0.0001 < 0.0001
18 38298595 75324734 47 0.5531 Loss < 0.0001 < 0.0001
18 76423282 77615559 6 0.5297 Loss < 0.0001 < 0.0001
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