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Coronary Evaluation Using Multi-detector
Spiral Computed Tomography Angiography:

Statistical Design and Analysis

William F. McCarthy, Douglas R. Thompson, and Bruce A. Barton

Abstract

Contrast-enhanced multi-detector row spiral computed tomography (MDCT) has
been introduced as a method for non-invasive visualization of coronary artery
stenosis. To determine the diagnostic accuracy of MDCT coronary angiography,
as compared to the “gold standard” invasive coronary angiography, sensitivity and
specificity are estimated (95% Confidence Intervals). Three separate levels of es-
timation are computed: at the patient level, at the coronary artery level, and at the
coronary artery segment level. We review the methodology for the estimation of
sensitivity and specificity of non-clustered binary data (patient level analysis) and
present a methodology for the estimation of sensitivity and specificity that consid-
ers the patient as a cluster and the coronary arteries (or coronary artery segments)
as the diagnostic units of the study (DUOS) within each cluster. We also present
how to estimate the weighted kappa for the comparison of ordinal measures of
stenosis when non-clustered and clustered data are considered and the mean dif-
ference for the comparison of continuous measures of stenosis when non-clustered
and clustered data are considered. Finally, we present a methods for determining
the statistical precision of estimates sensitivity and specificity, weighted kappa
and mean difference when clustered data are considered.



  

I. Introduction 
 
Contrast-enhanced multi-detector row spiral computed tomography (MDCT) has been introduced as a method for non-invasive 
visualization of coronary artery stenosis. To determine the diagnostic accuracy of MDCT coronary angiography, as compared 
to the “gold standard” invasive coronary angiography, sensitivity and specificity are estimated (95% Confidence Intervals). 
Three separate levels of estimation are computed: at the patient level, at the coronary artery level, and at the coronary artery 
segment level. We review the methodology for the estimation of sensitivity and specificity of non-clustered binary data (patient 
level analysis) and present a methodology for the estimation of sensitivity and specificity that considers the patient as a cluster 
and the coronary arteries (or coronary artery segments) as the diagnostic units of the study (DUOS) within each cluster. 
We also present how to estimate the weighted kappa for the comparison of ordinal measures of stenosis when non-clustered 
and clustered data are considered and the mean difference for the comparison of continuous measures of stenosis when non-
clustered and clustered data are considered. Finally, we present a methods for determining the statistical precision of estimates 
sensitivity and specificity, weighted kappa and mean difference when clustered data are considered. 
 
The conventional binomial variance estimate [Equations 1.10, 1.11], which assumes that all measurements are independent, 
will not be valid for calculating the variance of sensitivity and specificity of clustered binary data. As an example, consider the 
assessment of sensitivity. When considering clustered binary data, the point estimate of sensitivity [Equation 1.15] gives the 
same estimate that would result if we had ignored the clustering, assumed independence, and used the conventional binomial 
point estimate [Equation 1.8]. However, if the variance of the sensitivity is estimated using the conventional binomial variance 
estimate [Equation 1.10], the variance will be underestimated if the correlation between the diagnostic units is positive (i.e., the 
estimated variance will be smaller than the true variance) or will be overestimated if the correlation between the diagnostic 
units is negative (i.e., the estimated variance will be larger than the true variance). The most likely scenario for our study is that 
the correlation between the diagnostic units is positive. A positive correlation indicates that if one diagnostic unit tests as a true 
positive (true negative) in a particular cluster, the probability of testing other diagnostic units in the same cluster as true 
positives (true negatives) will increase. To correct for this underestimated/overestimated variance problem (bias), a ratio 
estimator for the variance of clustered binary data has been derived [Equation 1.16] (Cochran, 1977; Rao and Scott, 1992). 
 
In a talk presented by J M Bland to the RSS Medical Section and the RSS Liverpool Local Group, 12 NOV 2003, Bland noted 
that the magnitude of the effect of clustering is measured by the design effect, Deff, given by the following: Deff = 1 + (n - 
1)(ICC) where n is the number of observations in a cluster and ICC is the intra-cluster correlation coefficient. The ICC is the 
correlation between pairs of subjects chosen at random from the same cluster. If n=1, cluster size one, in other words, no 
clustering, then Deff=1, otherwise Deff will exceed 1 (this assumes a positive correlation between pairs of subjects). In 
analysis, if we analyse the clustered data as if there were no clusters, the variances of the estimates must be multiplied by Deff, 
hence the standard error must be multiplied by the square root of Deff.  
 
II. Definitions and Terms 
  
The sensitivity of a diagnostic test is its ability to detect the condition of interest when it is present in patients. 
  
The specificity of a diagnostic test is its ability to exclude the condition of interest in patients without the condition. 
 
The diagnostic unit of study (DUOS) is the smallest “unit” that is tested (Beam, 1998). 
 
Gold standard: we determine the true condition status by means of a gold standard – “a source of information completely 
different from the test or tests under evaluation and which tells us the true condition status of the patient” (Zhou et al, 2002). 
For this paper, we shall say there is concordance between the test being evaluated and the “gold standard” if the same 
(identical) coronary artery or same (identical) coronary artery segment has the event of interest by both the test being evaluated 
and the “gold standard”. For example, if coronary artery segment 4 is determined to be positive by the test being evaluated as 
well as by the “gold standard”, we have concordance. 
 
Stenosis: Narrowing or constriction of a coronary artery (coronary artery segment). 
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Coronary Tree with coronary arteries and coronary artery segments (Wang et al, 2004). 
 

 
 
 
III. Conventional Binomial Estimator Method: Estimation in a Single Sample, Binary-Scale Data 
 
This method is used for the patient level analysis. It is a non-clustered method. As an example, we will use the following 
binary-scale event definition: Event= Patient has a 50% stenosis and Non-event= Else. The same (identical) coronary artery 
or same (identical) coronary artery segment has the event. Only one coronary artery with an event or one coronary artery 
segment with an event is required. Table 1 shows how the non-clustered data for binary diagnostic test results can be displayed. 

≥

 
The true condition status of the patient is determined by the use of the “gold standard”. 
  
The sensitivity and specificity estimates are: 
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The variance of the sensitivity and specificity is the variance of a proportion: 
 

( )
^ ^

^ ^
1 0

3

1 1

(1 ) s sSe Se
Var Se

n n

−
= =   [1.10] 

 
and 
 

( )
^ ^

^ ^
1 0

3

0 0

(1 ) r rSp Sp
Var Sp

n n

−
= =   [1.11] 

 
  

http://biostats.bepress.com/cobra/art22



Table 1. Data Layout for Non-Clustered Binary-Scale Data 

  Test 
Result 

  

True 
Condition 
Status 

Positive 
(T=1) 

 Negative 
(T=0) 

Total 

Present 
(D=1) 

s1  s0 n1

Absent 
(D=0) 

r1  r0 n0

Total m1  m0 N 

 
The usual approach to constructing a confidence interval for a measure of diagnostic accuracy assumes a large sample size (i.e., 
follows a normal distribution asymptotically). This confidence interval is referred to as an asymptotic interval. It has the 
following form: 
 

 ( )^ ^ ^

1 / 2z Varα−Θ− Θ ( ), 
^ ^ ^

1 / 2z Varα−Θ+ Θ   

 [1.12] 

where is the estimate of the accuracy measure (either sensitivity or specificity), 
^

Θ Θ ;  is the upper1 / 2z α− / 2α percentile of the 

standard normal distribution, and is the confidence level.  ( )100 1 %α−
 
Agresti and Coull (1998) have noted that the “Wald [confidence] interval performs poorly unless n is quite large (e.g., Ghosh, 
1979; Blyth and Still, 1983)”. Construction of a confidence interval based on Equation 1.12 and using Equations 1.8 and 1.10 
and Equations 1.9 and 1.11, is based on the Wald confidence interval. 
If the sample size is small, then the confidence limits for the sensitivity are estimated with the following equation (Agresti and 
Coull, 1998): 
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[1.13] 
 
If the sample size is small, then the confidence limits for the specificity are estimated with the following equation (Agresti and 
Coull, 1998): 
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IV. Estimation in a Single Sample: Clustered Binary-Scale Data 
 
As an example, we will use the following binary-scale event definitions: Event= same (identical) coronary artery segment 
vessel with 50% stenosis and Non-Event= else. All coronary artery segments with an event are considered. ≥
 
 

  
Hosted by The Berkeley Electronic Press



Sensitivity and Specificity 
 
If one assesses sensitivity and specificity of a diagnostic test when clustered binary-scaled data is used, the data layout 
presented in Table 1 is modified as follows in Tables 2a and 2b: 

 
Table 2a: Data Layout for the Assessment of Sensitivity 
 
Patient (cluster) No. of TPi No. of Segments (Ni) with Event ^

i
Se  

_

/
i

N N  
_ ^ ^

2 2( / ) ( )
i i

N N Se Se−  

      
      
      
      
 
Each patient is considered a cluster (i=1,2,..,I clusters); within the cluster are a number of segments. 
 
No. of TPi refers to the number of segments that are test positives in cluster i, as determined by the test being evaluated 
(MDCT angiography). 
No. of Segments (Ni) with Event refers to the number of segments that are true positives in cluster i, as determined by the “gold 
standard” (invasive coronary angiography). 

^

iSe = No. of TPi / No. of segments with event (Ni). 
_

/iN N  = the cluster size for patienti / mean cluster size. 
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where 
_

iN
N

I
= Σ is the mean cluster size. 

Table 2b: Data Layout for the Assessment of Specificity 
 
Patient (cluster) No. of TNi  No. of Segments (Ni) without Event ^

i
Sp  

_

/
i

N N  
_ ^ ^

2 2( / ) ( )
i i

N N Sp Sp−  

      
      
      
      
 
Each patient is considered a cluster (i=1,2,..,I clusters); within the cluster are a number of segments. 
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No. of TNi refers to the number of segments that are test negatives in cluster i, as determined by the test being evaluated 
(MDCT angiography). 
 
No. of Segments (Ni) without Event refers to the number of segments that are true negatives in cluster i, as determined by the 
“gold standard” (invasive coronary angiography). 
 

^

iSp = No. of TNi / No. of segments without event (Ni). 
_

/iN N  = the cluster size for patienti / mean cluster size. 
^
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where 
_

iN
N

I
= Σ is the mean cluster size. 

The usual approach to constructing a confidence interval for a measure of diagnostic accuracy assumes a large sample size (i.e., 
follows a normal distribution asymptotically). This confidence interval is referred to as an asymptotic interval. It has the 
following form [Equation 1.12]: 
 

( )^ ^ ^

1 / 2z Varα−Θ− Θ ( ), 
^ ^ ^

1 / 2z Varα−Θ+ Θ   

 

where is the estimate of the accuracy measure, 
^

Θ Θ ;  is the upper1 / 2z α− / 2α  percentile of the standard normal distribution, 

and is the confidence level.  ( )100 1 %α−
 
V. Sample Size Requirements for Estimation in a Single Sample: Binary-Scale Data  
 
A general formula for sample size estimation for constructing a 2-sided Confidence Interval (CI) for a single diagnostic test 
measure of accuracy is: 
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where  is the 11 / 2z α− / 2α−  percentile of the standard normal distribution, α  is the confidence level, ( )^

V ν  is the variance 

function of 
^

ν

  

, 
^

ν is the conjectured measure of accuracy ( or ) and L is the desired width of one-half of the CI. Often, one 

wishes to construct a 95% CI, in which case 

^

Se
^

Sp

= 0.05 and =1.96. 1 / 2z α−α
 

With respect to , will be the number of patients with the condition of interest. 
^

Se m
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)

With respect to , will be the number of patients without the condition of interest. 
^

Sp m
 
 One can use  
 

( ) (
^ ^

1V ν ν ν= − ,   [1.20] 

 

to calculate ( )^

V ν . 

 
VI. Sample Size Requirements for Estimation in a Single Sample: Clustered Binary-Scale Data  
 
In a talk presented by J M Bland to the RSS Medical Section and the RSS Liverpool Local Group, 12 NOV 2003, Bland noted 
that “the magnitude of the effect of clustering is measured by the design effect, Deff, given by the following: Deff = 1 + (n - 
1)(ICC) where n is the number of observations in a cluster and ICC is the intra-cluster correlation coefficient. The ICC is the 
correlation between pairs of subjects chosen at random from the same cluster. It is usually quite small, 0.04 is a typical figure. 
This was the median ICC reported in the review by Eldridge et al. (2004). If n=1, cluster size one, in other words, no 
clustering, then Deff=1, otherwise Deff will exceed 1 (this assumes a positive correlation between pairs of subjects).   
We can use this in two ways. In design, if we estimate the required sample size ignoring clustering, we must multiply it by the 
design effect to get the sample size required for the clustered sample. Alternatively, we can say that if the sample size is 
estimated ignoring the clustering, the clustered sample has the same power as for a simple sample of size equal to what we get 
if we divide our sample size by the design effect.  

In analysis, if we analyse the data as if there were no clusters, the variances of the estimates must be multiplied by Deff, hence 
the standard error must be multiplied by the square root of Deff.  

From this formula, we can see that clustering may have a large effect if the ICC is large or if the cluster size is large. Only one 
of these conditions need be met. For example, if the ICC is 0.001, a very small correlation, and the cluster size is 500, the 
design effect will be 1 + (500-1)x0.001 = 1.5 and we would need to increase the sample size by 50% to achieve the same power 
as an unclustered trial.  

In addition, we need to estimate variances both within and between clusters. If the number of clusters is small, the between 
clusters variance will have few degrees of freedom and we will be using the t distribution in inference rather than the Normal. 
This too will cost in terms of power.”  

ICC ( ρ ) is the correlation between pairs of patients chosen at random from the same cluster. 
2

2 2

B

B W

σ
ρ

σ σ
=

+
 

where 2

Bσ  is the between cluster variability 

where 2

Wσ is the within cluster variability 
 
the size of the ICC is generally larger for smaller clusters 
small cluster ∼ 0 to 0.3  (large ICC) 

medium cluster ∼ 0 to 0.05 (medium ICC) 

large cluster ∼ 0 to 0.001  (small ICC) 
 
Illustration of the use of Deff to Determine the Statistical Precision of Estimates of Sensitivity and Specificity 
 
Patient-Level Binary-Scale: Event= Same coronary artery with 50% stenosis with an event rate=35% (Only one coronary 
artery with an event is required for the analysis) and Non-event= Else. 

≥
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Table 3. Event Rate for Patient-Level Analysis 
(35% of 350) 
 
Events Non-Events 
123 227 
 
Coronary Artery-Level Binary-Scale: Event= Same coronary artery with 50% stenosis with an event rate=18% (All 
coronary arteries with an event are considered in the analysis) and Non-event= Else. 

≥

 
The 1050 sample size for coronary arteries is based on 350 patients x 3 coronary arteries=1050. 
  
Table 4. Event Rate for Coronary Artery-Level Analysis (18% of 1050) 
 
Events Non-Events 
189 861 
 
 
 
Table 5. Precision Expected for Sensitivity 95%Confidence Interval when Expected Patient-Level (Single Sample: 
Binary-Scale Data) and Expected Coronary Artery-Level (Single Sample: Clustered Binary-Scale Data) Sample Sizes 
are Considered.    
 
Sensitivity     

     
     
 Patient-Level  C.A.-Level 

189 C.A.s 
with an Event 
(18% of 1050) 

 
123 Patients 
 with an Event 
(35% of 350) 

     
     

^

Se  

+/- Precision +/-Precision 
Large ICC 

+/-Precision 
Medium ICC 

+/- Precision 
Small ICC 

0.85 0.063 0.065 0.054 0.051 
0.87 0.059 0.061 0.050 0.048 
0.90 0.053 0.054 0.045 0.043 
0.91 0.051 0.052 0.043 0.041 
0.92 0.048 0.049 0.041 0.039 
0.93 0.045 0.046 0.038 0.036 
0.94 0.042 0.043 0.036 0.034 
0.95 0.039 0.039 0.033 0.031 
0.96 0.035 0.035 0.029 0.028 

 
In all likelihood, the ICC associated with nesting of coronary arteries in a patient will be large. Therefore, it may be best to 
determine expected +/- precision for the coronary artery-level analysis based on the results of the +/- Precision Large ICC 
column. 

The standard error of a non-clustered coronary artery-level design was multiplied by the square root of Deff to get the proper 
expected +/- precision for the coronary artery-level clustered design. For the coronary artery-level columns above, the +/- 
precision was computed by multiplying the standard error by the square root of Deff as specified by Bland JM (2003). 
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Table 6. Precision Expected for Specificity 95% Confidence Interval when Expected Patient-Level (Single Sample: 
Binary-Scale Data) and Expected Coronary Artery-Level (Single Sample: Clustered Binary-Scale Data) Sample Sizes 
are Considered. 
 
Specificity     

     
     
 Patient-Level 

227 Patients 
without an Event 

(65% of 350) 

 C.A.-Level 
861 C.A.s 

without an Event 
(82% of 1050) 

 

     
     

^

Sp  

+/- Precision +/-Precision 
Large ICC 

+/- Precision 
Medium ICC 

+/-Precision 
Small ICC 

0.85 0.046 0.030 0.025 0.024 
0.87 0.044 0.029 0.024 0.023 
0.90 0.039 0.025 0.021 0.020 
0.91 0.037 0.024 0.020 0.019 
0.92 0.035 0.023 0.019 0.018 
0.93 0.033 0.022 0.018 0.017 
0.94 0.031 0.020 0.017 0.016 
0.95 0.028 0.019 0.016 0.015 
0.96 0.026 0.016 0.014 0.013 

 
 
Illustration of Analyzing Clustered Binary-Scaled Data 
 
Using the data layout outlined in Table 2a and the equations [1.15], [1.16], we illustrate the effect of clustering on binary-
scaled data (Refer to Table 7 and 8). We will estimate the 95% CI of sensitivity at the coronary artery segment level. 
 
Table 7. Data Layout of Example 
(Based on an adaptation of data and example presented by Zhou et al, 2002) 
 
Patient No. of TP 

(MDCT) 
No. of segments 
(Ni) with Event 
(invas. c. angio.)  

^

i
Se  

_

/
i

N N  
 (cluster) 

_ ^ ^

2 2

( / ) ( )
i i

N N Se Se−  

1 0 3 0.000 1.235 0.9391 
2 2 3 0.667 1.235 0.0211 
3 3 3 1.000 1.235 0.0710 
4 1 1 1.000 0.412 0.0079 
5 2 3 0.667 1.235 0.0211 
6 4 4 1.000 1.647 0.1263 
7 3 3 1.000 1.235 0.0710 
8 2 2 1.000 0.824 0.0316 
9 2 2 1.000 0.824 0.0316 
10 1 1 1.000 0.412 0.0079 
11 2 3 0.667 1.235 0.0211 
12 2 2 1.000 0.824 0.0316 
13 3 3 1.000 1.235 0.0710 
14 2 2 1.000 0.824 0.0316 
15 0 2 0.000 0.824 0.4174 
16 2 3 0.667 1.235 0.0211 
17 2 3 0.667 1.235 0.0211 
18 2 3 0.667 1.235 0.0211 
19 2 2 1.000 0.824 0.0316 
20 1 1 1.000 0.412 0.0079 
21 2 2 1.000 0.824 0.0316 
      

Sum 40 51   2.0357 

 
Each patient is considered a cluster (i=1,2,..,I clusters); within the cluster are a number of segments. We have 21 patients 
(clusters) with an event based on invasive coronary angiography; we have 51 coronary artery segments (DUOS) with an event 
based on invasive coronary angiography. 
 
No. of TPi refers to the number of segments that are test positives in cluster i, as determined by the test being evaluated 
(MDCT angiography). 
 
No. of Segments (Ni) with Event refers to the number of segments that are true positives in cluster i, as determined by the “gold 
standard” (invasive coronary angiography). 
 
We shall say there is concordance between the test being evaluated and the “gold standard” if the same (identical) coronary 
artery segment has the event of interest. That is, if coronary artery segment 4 is determined to be positive by the test being 
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evaluated as well as by the “gold standard”, we have concordance. There must be a one-to-one correspondence between the 
coronary artery segment determined to be positive by the test being evaluated and the “gold standard” in order for the 
diagnostic accuracy assessment to be meaningful! 
 

^

^
1

1

I

i i
i

I

i
i

N Se
Se

N

=

=

Σ
=

Σ
 

 
= No. of TP / No. of segments with event (Ni) 
 
=40/51=0.7843. 

_

/iN N  = the cluster size for patienti / 2.43. 
 

( 2_^ ^ ^ ^
2

1

1
( ) / ( )

( 1)

I

i i
i

Var Se N N Se Se
I I =

= Σ −
−

⎡ ⎤⎞⎟⎢ ⎥⎠⎣ ⎦
 

 
=2.0357/[(21)(20)] 
 
=0.0048 

where 
_

i
N

N
I

= Σ is the mean cluster size. 

If the clustering effect was ignored,  
^ ^

( )Var Se
 
=0.7843(0.2157)/51 
 
=0.0033 (based on Equation 1.10). 
 
Table 8.   95% Confidence Limits (using Equation 1.12) 
 

Clustering Effect not 
Considered 

Clustering Effect 
Considered 

0.7843 0.1126 ± 0.7843± 0.1358 
 (0.6717, 0.8969)  (0.6485, 0.9201)  

 
One should note that if the clustering effect is not taken into account in this example, the calculated variance (thus the 
calculated confidence limits) is inappropriately small because the calculation ignores the positive correlation among the 
coronary artery segments nested within the patient. Even if the amount of correlation among the coronary artery segments 
nested within the patient is small, the variance (confidence limits) will be biased if the clustering effect is not taken into 
account. 
 
VIII. Additional Methods to Estimate Diagnostic Accuracy 
 
Comparison of Ordinal MDCT Angiography Data to Ordinal “Gold Standard” Invasive Coronary Angiography Data 
  
Diagnostic accuracy for ordinal MDCT angiography and invasive coronary angiography data (type I, less than 25% stenosis; 
type II, 25% - 50% stenosis; type III, 51% - 74% stenosis; type IV, 75% - 89% stenosis; type V, 90% - 99% stenosis; and type 
VI, 100% stenosis) can be assessed by the use of a weighted kappa analysis (Liebetrau, 1983). The standard error used to 
compute the 95% confidence interval for the weighted kappa when clustered data are considered will be adjusted for clustering 
by the use of the Deff as specified by Bland JM (2003). 
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Landis and Koch (1977) have indicated a kappa greater than 0.75 may be taken to represent excellent agreement beyond 
chance. A kappa below 0.40 may be taken to represent poor agreement beyond chance and a kappa between 0.40 and 0.75 may 
be taken to represent fair to good agreement beyond chance. 
  
Comparison of Continuous MDCT Angiography Data to Continuous “Gold Standard” Invasive Coronary Angiography 
Data 
 
Diagnostic accuracy for continuous MDCT angiography and invasive coronary angiography data (any continuous stenosis 
value between 0% and 100%, inclusive) can be assessed by the using the methods outlined by Bland (1995). Using a graphic 
approach, we will generate a scatter diagram in which a “line of equality” is superimposed. If there is perfect agreement 
between both the invasive coronary angiography and MDCT angiography, the plotted point will sit directly on the “line of 
equality”. The degree that the plotted point sits above or below the “line of equality” indicates the limit of agreement. Also, A 
95% confidence interval of the mean difference between MDCT angiography and invasive coronary angiography percent 
stenosis will be computed (Bland and Altman, 1986). The standard error used to compute the 95% confidence interval for the 
mean difference when clustered data are considered will be adjusted for clustering by the use of the Deff as specified by Bland 
JM (2003). 
 
IX. Multivariable Modeling 
 
Sensitivity and specificity of MDCT angiography may vary by gender, race/ethnicity, age and so forth.  Multivariable 
modeling will be used to identify factors associated with differences in the sensitivity and specificity of MDCT angiography. 
 
To identify factors associated with sensitivity, the analysis will be limited to the subset of cases that are classified as events by 
invasive coronary angiography (YAN = 1). Using this subset of cases, logistic regression can be used to model the probability 
that the case is also classified as an event by CT (pr[YCT = 1], where YCT = 1 means that a case is an event by MDCT 
angiography). Modeling pr(YCT = 1) among cases where YAN = 1 is a logistic regression approach to sensitivity analysis. 
Specifically, the logistic model is log(p/1-p) = X*Beta, where p = pr(YCT = 1 | X), X is the covariate design matrix, and Beta is 
a vector of parameters to be estimated.  The covariates can be either continuous (e.g., age) or categorical (e.g., gender).  A 
similar approach can be used to identify factors associated with specificity, except that the analysis is limited to the subset of 
cases not classified as events by invasive coronary angiography (YAN = 0) and logistic regression is used to model the 
probability that a case is classified as a non-event by MDCT angiography (pr[YCT = 0] ).  The discussion here focuses on 
sensitivity, but these methods can also be used in specificity analyses.  
   
In a logistic regression model with an intercept (beta0) but no other predictors, the estimate [exp(beta0) / (1+exp(beta0))] is 
identical to the sensitivity estimate computed by the methods described above. This is a “population average” estimate of 
sensitivity.  
 
Adding covariates, one can determine whether sensitivity varies among different subpopulations.  The Wald chi-square will be 
used for hypothesis tests about subpopulation differences (likelihood ratio tests are also possible using mixed models).  
Subpopulation differences will be described using two methods. First, odds ratios will be computed, indicating the increase in 
sensitivity associated with a 1-unit increase in a given covariate. Second, conditional marginals produced by the logistic 
regression procedure in SUDAAN will be used to estimate sensitivity for specific subpopulation, e.g., different countries.  The 
conditional marginal is an estimator of the expected response conditional on having a particular set of covariate values. 
  
Analyses at the coronary artery and coronary artery segment levels must take clustering into account (coronary arteries are 
nested within patients, and coronary artery segments are nested within coronary arteries).  Methods for logistic regression with 
clustered data have been developed for analysis of multistage survey data (e.g., the SUDAAN logistic regression procedure or 
SAS PROC SURVEYLOGISTIC).  These methods produce the same regression coefficients (betas) as ordinary logistic 
regression, but the standard errors are adjusted to take into account variation among the clusters.  If there is substantial 
variation among clusters, the inter-cluster variation will result in increased variance estimates.  The regression coefficients are 
interpreted as population average parameters, i.e., averaging over all clusters.  We will assume that all cases have a weight of 
one and all are drawn from the same population stratum. Patient and vessel will be represented as clusters in the analysis. 
 
X. Imputation:  Handling of Missing Data 

All analyses will be conducted on non-imputed and imputed data sets. The results from both types of data sets will be reported. 
Imputation relates to a family of techniques for replacing missing values in a data set by ‘synthetic values’ obtained from some 
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kind of model. Such a model describes a relationship between the variable having missing values and other variables for which 
the values are available. 
 
Imputation of binary-scaled outcome data (non-clustered and clustered) will use a worst score method of imputation similar to 
that proposed by McCarthy et al, 2004. This method will allow for an unbiased assessment of sensitivity and specificity when 
MDCT angiography binary-scaled data is missing. In essence, the imputed value for the missing MDCT angiography binary-
scaled value will be the opposite of what was reported for the “gold standard” invasive coronary angiography. For example, if a 
patient, vessel or segment has a missing MDCT angiography binary-scaled value, and the corresponding gold standard binary-
scaled value was positive, the imputed value for the MDCT angiography would be negative, and vice versa. 
 
For continuous missing outcome data, Hot-deck imputation will be used (Kalton and Kasprzyk, 1986). This is a special 
implementation of random imputation within groups. For each group, a donor record is maintained. The records in the file are 
processed sequentially. If the field of the variable to be imputed contains a ‘real’ value, the value is copied to the donor record. 
If the value in the field is missing, the value from the donor record is copied to the field. 
 
XI. Statistical Software and FDA Compliance 

Statistical computing will be done using the following statistical software packages: SAS (Version 9.0) ; SUDAAN (Release 
9); and StatXact (Version 6). Statistical computing programs for the analyses of diagnostic accuracy (non-clustered, clustered, 
and multivariable) will be reviewed and validated in accordance to the SAS Testing element of the FDA Regulation 21 CFR 
Part 11. The statistical design and all statistical analyses will comply with the International Conference on Harmonization 
(ICH) Guidance for Industry: E9 Statistical Principles for Clinical Trials. 
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