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A unified approach to non-negative matrix
factorization and probabilistic latent semantic

indexing

Karthik Devarajan, Guoli Wang, and Nader Ebrahimi

Abstract

Non-negative matrix factorization (NMF) by the multiplicative updates algorithm
is a powerful machine learning method for decomposing a high-dimensional non-
negative matrix V into two matrices, W and H, each with nonnegative entries, V∼
WH. NMF has been shown to have a unique parts-based, sparse representation of
the data. The nonnegativity constraints in NMF allow only additive combinations
of the data which enables it to learn parts that have distinct physical representa-
tions in reality. In the last few years, NMF has been successfully applied in a
variety of areas such as natural language processing, information retrieval, image
processing, speech recognition and computational biology for the analysis and in-
terpretation of large-scale data.

We present a generalized approach to NMF based on Renyi’s divergence between
two non-negative matrices related to the Poisson likelihood. Our approach unifies
various competing models and provides a unique framework for NMF. Further-
more, we generalize the equivalence between NMF and probabilistic latent se-
mantic indexing, a well-known method used in text mining and document cluster-
ing applications. We evaluate the performance of our method in the unsupervised
setting using consensus clustering and demonstrate its applicability using real-life
and simulated data.
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Abstract

Non-negative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful

machine learning method for decomposing a high-dimensional nonnegative matrix V into two matrices,

W and H , each with nonnegative entries, V ∼WH . NMF has been shown to have a unique parts-based,

sparse representation of the data. The nonnegativity constraints in NMF allow only additive combinations

of the data which enables it to learn parts that have distinct physical representations in reality. In the last

few years, NMF has been successfully applied in a variety of areas such as natural language processing,

information retrieval, image processing, speech recognition and computational biology for the analysis

and interpretation of large-scale data.

We present a generalized approach to NMF based on Renyi’s divergence between two non-negative

matrices related to the Poisson likelihood. Our approach unifies various competing models and provides a

unique framework for NMF. Furthermore, we generalize the equivalence between NMF and probabilistic

latent semantic indexing, a well-known method used in text mining and document clustering applications.

We evaluate the performance of our method in the unsupervised setting using consensus clustering and

demonstrate its applicability using real-life and simulated data.

Index Terms

nonnegative matrix factorization, Renyi’s divergence, Kullback-Leibler divergence, probabilistic

latent semantic indexing, consensus clustering, misclassification rate, text mining, document clustering,

biomedical informatics, EM algorithm, λ-log-likelihood, sparse, high-performance computing, message-

passing interface

I. INTRODUCTION

Nonnegative matrix factorization (NMF) was introduced as an unsupervised parts-based learn-

ing paradigm in which a nonnegative matrix V is decomposed into two nonnegative matrices, W

and H , such that V ∼ WH , by a multiplicative updates algorithm [31,32]. In the past decade,

NMF has been widely used in a variety of areas including natural language processing such as

text mining and document clustering, information retrieval, image processing and facial pattern

recognition, sparse coding, speech recognition, video summarization and Internet research. More

recently, this approach has found its way into the domain of computational biology, particularly

in the analysis and interpretation of high-throughput biological data. For a complete review of

the applications of NMF, the interested reader is referred to [11] and references therein.
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References [31,32] outlined algorithms for NMF based on Kullback-Leibler divergence and

Euclidean distance. These are related to the Poisson and Gaussian likelihoods, respectively,

between two nonnegative matrices. They applied it to text mining and facial pattern recognition.

Since its introduction, several variants of their algorithm have been proposed in the literature.

These include, but are not limited to, references [8,12,21,22,23,28,33,39,40,46,47,49]. In previous

work [12], we generalized NMF based on Renyi’s divergence between two non-negative matrices,

also related to the Poisson likelihood [43]. Renyi’s divergence is indexed by a parameter γ and

represents a continuum of distance measures based on the choice of this parameter. In this

paper, we develop a unique framework for NMF and provide a rigorous convergence proof of

our generalized algorithm based on Renyi’s divergence. Our approach includes several well-

known distance measures as special cases. In addition, we generalize the relationship between

NMF and probabilistic latent semantic indexing (PLSI), a commonly used method for text mining

and document clustering applications. We show that the equivalence between these methods is

embedded within our broader framework as a special case.

We demonstrate the utility of our generalized approach to NMF in unsupervised clustering. To

that end, we use consensus clustering to quantitatively evaluate the homogeneity and accuracy of

clustering. We illustrate the applicability of our methods to text mining and document clustering

using several real-life and simulated data sets. The extension of our methods to other areas of

application is straightforward.

This paper is organized as follows. Section 2 gives an overview of the fundamental concepts

and provides an extensive discussion of Renyi’s divergence and related distance measures. Section

3 explores the applicability of these measures in the context of NMF and provides update rules

based on our generalized measure. In section 4, we generalize the equivalence between NMF and

PLSI. In section 5, we describe the quantitative evaluation of clustering based on our approach

and in section 6, we illustrate our methods in detail by applying it to a variety of real-life and

simulated document clustering data sets. Section 7 provides a discussion and concluding remarks.

Detailed proofs of convergence for our optimization algorithm are relegated to the Appendix.

II. A GENERALIZED DIVERGENCE MEASURE

Consider the problem of discriminating between two probability models F and G for a random

prospect X that ranges over the space S. Given an observation X = x, Bayes theorem relates
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the likelihood ratio to the prior and posterior odds in favor of F as follows:

log
f(x)

g(x)
= log

P (F |x)
P (G|x)

− log
P (F )

P (G)
, (2.1)

where f and g are probability density (mass) functions, and P (·) and P (·|x) denote the prior

and posterior probabilities of the model, respectively. As the difference between the posterior

and prior log-odds, the logarithm of the likelihood ratio log

[
f(x)

g(x)

]
quantifies the information

in X = x in favor of F against G.

Suppose that x is not given and there is not specific information on the whereabouts of x,

other than xϵS, then the mean observation per x from F for the discrimination information

between F and G is

K(f : g) =
∫ (

log
f(x)

g(x)

)
dF (x), (2.2)

given that F is absolutely continuous with respect to G. The discrimination information function

(2.2) introduced in [29,30] is a measure for comparing two distributions. This is referred to as

the Kullback-Leibler (KL) divergence. See [15] for properties of this measure.

Renyi’s divergence, which is referred to as the information divergence of order γ between two

distributions F and G, is defined by

Rγ(f : g) =
1

γ − 1
log

∫ (
f(x)

g(x)

)γ−1

dF (x), (2.3)

where γ ̸= 1 [43]. Various well-known distance measures arise from Renyi’s divergence as

special cases. For instance, in the limit γ → 1, Renyi’s divergence becomes the KL divergence

K(f : g). Information divergence of order γ,Rγ(f : g) is also symmetric for the case γ =
1

2
,

i.e., R 1
2
(f : g) = R 1

2
(g : f). An important feature of Renyi’s divergence is that if Y = T (X) is

a nonsingular transformation, then for any γ, Rγ(fX : gX) = Rγ(fY : gY ). That is, our measure

is invariant under any nonsingular transformation on the original data.

For two Poisson random variables with parameters m1 and m2, i.e., f(x) =
e−m1mx

1

x!
and

g(x) =
e−m2mx

2

x!
, one can easily show that

Rγ(f : g) =
1

γ − 1
log

∞∑
x=0

[
e−m1mx

1

x!

]γ [
e−m2mx

2

x!

]1−γ

=
1

γ − 1

(
−γm1 − (1− γ)m2 +mγ

1m
1−γ
2

)
. (2.4)
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As mentioned above, for the limiting case γ → 1, Renyi’s divergence becomes KL divergence

K(f : g) = m1 log
(
m1

m2

)
−m1 +m2. (2.5)

In the special case that γ =
1

2
,

R 1
2
(f : g) = R 1

2
(g : f) = (

√
m1 −

√
m2)

2
. (2.6)

This is the well-known Bhattacharya distance and is a symmetric measure [17]. For this case, it

is also the logarithm of the squared Matusita or Hellinger distance [36]. If γ = 2,

R2(f : g) =
(m1 −m2)

2

m2

, (2.7)

which is the Pearson chi-squared estimator. For the case γ = −1, we obtain the modified chi-

squared estimator due to [38]. And for γ =
5

3
, we obtain the Cressie-Read distance estimator

[5].

Our motivation for a generalized approach to NMF using the Poisson likelihood is based on

the power-divergence family of statistics [1]. In this context, it is given by

ϕλ(m1,m2) =
2

λ(λ+ 1)
m1

[(
m1

m2

)λ

− 1

]
(2.8)

for λ ̸= −1 and λ ̸= 0. This family of measures and its variants have been extensively studied

in the statistical literature in the context of discrete multivariate data analysis [5,6,42]. It is

straightforward to obtain one measure from the other and all the special cases outlined above

via reparametrizations. For example in (2.8), λ → 0 corresponds to γ → 1 in (2.4). Similarly,

λ = −1

2
,−2 and 1 correspond to γ =

1

2
,−1 and 2, respectively in (2.4). This generalization

unifies various competing models into a unique framework for various applications in high-

dimensional data analysis using NMF. In the next section, we will revisit this topic and discuss

them in further detail in the context of NMF.

III. METHODS

Text mining and document clustering are concerned with the recognition of patterns or similar-

ities in natural language text. Consider a corpus of documents that is summarized as a p×n matrix

V in which the rows represent the terms in the vocabulary and the columns correspond to the

documents in the corpus. The entries of V denote the frequencies of words in each document. In

document clustering studies, the number of terms p is typically in the thousands and the number
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of documents n is typically in the hundreds. The objective is to identify subsets of semantic

categories and to cluster the documents based on their association with these categories. To this

end, we propose to find a small number of metaterms, each defined as a nonnegative linear

combination of the p terms. This is accomplished via a decomposition of the frequency matrix

V into two matrices with nonnegative entries, V ∼ WH , where W has size p × k, with each

of k columns defining a metaterm and the matrix H has size k × n, with each of n columns

representing the metaterm frequency pattern of the corresponding document. The rank k of the

factorization is chosen so that (n + p)k < np. Here, the entry wia in the matrix W is the

coefficient of term i in metaterm a and the entry haj in the matrix H quantifies the influence

of metaterm a in sample j.

The nonnegativity constraints in NMF are compatible with the intuitive notion of combining

parts to form a whole, i.e., they provide a parts based representation of the data. This is in contrast

to a holistic representation of the data provided by VQ and the distributed representation provided

by PCA [31]. The metaterms and the metaterm frequency patterns have a sparse representation,

potentially representing local hidden variables or clusters. In the context of text mining, these

clusters are subgroups of terms that co-occur in subgroups of documents. The perception of the

whole is simply a combination of the parts represented by these basis vectors. Since the data

are presented as frequency of occurrence of terms for each document, NMF provides a more

natural representation of the metaterms and metaterm frequency patterns. Unlike PCA and VQ,

the nonnegative coefficients in each metaterm are easily interpretable as the relative contribution

of terms. In this setting, NMF has been shown to be superior to PCA (see [46] and references

therein). Interestingly, the Poisson likelihood approach to NMF due to [31] owes its origin to an

application in text mining involving count data. Another useful feature of NMF is that it does not

force hierarchy into the data structure like some methods. However, it does identify a hierarchy

when present [3]. For a more thorough discussion of the interpretation of the factorization and

the nonnegativity constraints in NMF, the interested reader is referred to [11].

In this paper, our focus will be on clustering documents. However, we note that there is a

dual view of the decomposition V ∼ WH . This is achieved simply by taking the transpose

V ′ ∼ (WH)′ = H ′W ′. A notable example of such an application is in biomedical informatics,

which involves text mining and document clustering of biomedical literature. Reference [4]

describes the application of NMF to create literature profiles from a corpus of documents relevant
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to large sets of genes and proteins using common semantic features extracted from the corpus.

Genes are then represented as additive linear combinations of the semantic features which can be

further used for studying their functional associations. Using NMF, existing information about the

biological entities under study can thus be utilized in establishing putative relationships among

subsets of genes and proteins that characterize a subset of the data.

In order to find an approximate factorization for the matrix V , we first need to define functions

that quantify the quality of the approximation. In general, such a function can be constructed

using some measure of distance between any two nonnegative matrices, say A and B. Examples

of such measures include the Euclidean distance and KL divergence. The latter can be derived

based on reconstruction of an image represented by the matrix A from the matrix B by the

addition of Poisson noise, i.e,

A = B + ϵ (3.1)

where ϵ is a Poisson random variable. This formulation was originally described in [31] for text

mining applications involving count data as well as for facial pattern recognition.

We generalize this approach by using Renyi’s divergence Rγ(f : g) related to the Poisson

likelihood of generating A from B, as described in section 2. Specifically, using (2.4), our

measure is

D∗
γ(A||B) =

1

γ − 1

∑
i,j

[
Aγ

ijB
1−γ
ij − γAij − (1− γ)Bij

]
. (3.2)

In (2.4), if γ → 1, then D∗
γ in (3.2) becomes KL divergence K(A : B) =

∑
i,j

Aij log

(
Aij

Bij

)
−

Aij + Bij . This coincides with the measure proposed by [31]. In fact, we can generalize the

measure in (3.2) by re-defining it as

D∗
γ(A||B) =

1

γ(γ − 1)

∑
i,j

[
Aγ

ijB
1−γ
ij − γAij − (1− γ)Bij

]
(3.3)

where γ ̸= 1 and γ ̸= 0. This includes Renyi’s divergence as defined by (2.4) and its special

cases. Moreover, if γ → 0, we obtain the dual KL divergence [29]

K(B : A) =
∑
i,j

Bij log

(
Bij

Aij

)
−Bij + Aij. (3.4)
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For small values of γ, (3.4) provides a reasonable approximation of (3.3). For γ ̸= 1 and γ ̸= 0,

one can ignore
1

γ(γ − 1)
in (3.3) and define the function

Dγ(A||B) =



∑
i,j

Aγ
ijB

1−γ
ij − γAij − (1− γ)Bij, γ > 1

∑
i,j

γAij + (1− γ)Bij − Aγ
ijB

1−γ
ij , 0 < γ < 1.

(3.5)

Thus, for any information measure which is proportional to Renyi’s divergence, we obtain

equation (3.5). Similarly for γ ̸= 1, one can ignore
1

γ − 1
in (3.2) and define the function

Dγ(A||B) =
∑
i,j

−γAij − (1− γ)Bij + Aγ
ijB

1−γ
ij , γ < 0. (3.6)

The Euclidean distance (ED) between two nonnegative matrices A and B is simply given

by D(A||B) =
∑
i,j

[Aij −Bij]
2. It is interesting to note that the KL divergence between two

normal random variables with means µ1 and µ2 and (equal) variance σ is simply the well-

known ED given by
1

2
(µ1 − µ2)

2. While ED is not directly a member of the class of distance

measures defined by Renyi’s divergence, it is equivalent to the measure obtained by invoking

the transformation invariant property of Renyi’s divergence and applying it to [Aij
2] for the case

γ =
1

2
. In this sense, ED can be considered to be a part of this family of distance measures. In the

case of non-normal data such as those arising in text mining and document clustering applications,

Renyi’s divergence is a flexible choice in decomposing a document frequency matrix.

For a given document frequency matrix V , we now formally consider a method for finding

nonnegative matrices W and H such that V ≈ WH . In our setup, this is equivalent to minimizing

Dγ(V ||WH) in (3.3) with respect to W and H , subject to the constraints W,H ≥ 0. In this

formulation, we observe that for a given γ, Dγ(V ||WH) is not convex in both variables (V

and WH) together. Hence, the algorithm will only converge to a local minima. There are many

techniques such as gradient descent and conjugate gradient from numerical optimization that can

be applied to find the minima. In this paper, we use multiplicative update rules, similar to that

in [32]. For a given γ, we will start with random initial values for W and H and iterate until

convergence, i.e, iterate until |D(i)
γ (V ||WH)−D(i−1)

γ (V ||WH)| < δ where δ is a pre-specified

threshold between 0 and 1 and i denotes the iteration number.

July 12, 2011 DRAFT

http://biostats.bepress.com/cobra/art80



9

Theorem 1: For γ > 0, the measure Dγ(V ||WH) is non-increasing under the multiplicative

update rules for W and H given by

H t+1
ak = H t

ak


∑

i

(
Vik∑

bWibH t
bk

)γ

Wia∑
iWia


1/γ

and

W t+1
ia =W t

ia


∑

i

(
Vik∑

bW
t
ibHbk

)γ

Hak∑
kHak


1/γ

.

This measure is also invariant under these updates if and only if W and H are at a stationary

point of the divergence.

Proof: See Appendix I.

IV. EQUIVALENCE OF NMF AND PLSI: A GENERALIZATION

Probabilistic latent semantic indexing (PLSI) is a method for modeling co-occurrence data

arising in natural language processing such as text mining and document clustering. It is based

on a statistical latent class model called the aspect model for the analysis of count data [19].

PLSI employs the likelihood principle and results in a factor representation of the data such as

in NMF, thereby defining a proper generative model of the data.

Consider the corpus of documents summarized as a p× n co-occurrence matrix V described

in section 3. The rows of V represent the terms in the vocabulary and the columns represent

the documents in the corpus. The aspect model associates an unobserved class variable k ∈

{1, 2, ..., K} (where K < n) with each occurrence of a term i ∈ {1, 2, ..., p} in a document

j ∈ {1, 2, ..., n} via the following mixture model

Pij = P (j)
K∑
k=1

P (i|k)P (k|j) (4.1)

=
K∑
k=1

P (k)P (i|k)P (j|k) (4.2)

where Pij is the joint probability of generating the observation pair (i, j), P (j) and P (k|j)

represent the probabilities of choosing document j and latent class k, respectively, and P (i|k)
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is the probability of generating term i. The equivalence of terms on the right hand side of (4.1)

and (4.2) can be shown using Bayes’ theorem. The probabilities in (4.2) sum to unity, i.e.,

∑
ij

Pij =
p∑

i=1

P (i|k) =
n∑

j=1

P (j/k) =
K∑
k=1

P (k) = 1 (4.3)

Let vij denote the frequency of occurrence of term i in document j, i.e., the (i, j)th entry of

the matrix V . In the context of NMF, vij has a Poisson distribution with mean µij and the vijs

are independent. Hence, the probability of {vij}, i = 1, ..., p, j = 1, ..., n (or the likelihood) is

∏
ij

P (vij) = e−
∑

ij
µij
∏
ij

µij
vij

vij!
(4.4)

and the log-likelihood can be shown to be equivalent to
∑

ij

{
−vij log

(
vij
µij

)
− µij + vij

}
.

In PLSI, we normalize the term frequencies by conditioning on their sum such that
∑

ij vij = v

where v is fixed. This is in contrast to NMF where
∑

ij vij is random, rather than fixed, due

to Poisson sampling. The normalized term frequencies vij are neither independent nor Poisson

distributed. It can be shown that the probability of {vij}, i = 1, ..., p, j = 1, ..., n conditional on

this sum is ∏
ij

P (vij|
∑
ij

vij = v) =

(
v!∏
ij vij!

)∏
ij

Pij
vij (4.5)

where Pij =
µij∑
ij µij

[1]. This is based on multinomial sampling and represents the likelihood

for PLSI. Typically, the term frequencies are normalized by re-scaling to their sum such that

vij ←
vij∑
ij vij

and
∑

ij vij = 1. Using (4.5), the log-likelihood for PLSI is equivalent to

L =
n∑

j=1

p∑
i=1

vij logPij (4.6)

[19]. We now generalize the likelihood for PLSI (4.6) in the following lemma.

a) Lemma: The log-likelihood for PLSI (4.6) is a member of the family of λ-log-likelihoods

given by

L = − 2

λ(λ+ 1)

n∑
j=1

p∑
i=1

vij
( vij

Pij

)λ

− 1

− λ(vij − Pij)

 (4.7)

where λ ̸= 0 and λ ̸= 1.

Proof: Without loss of generality, we re-write the log-likelihood (4.6) by adding a constant term
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as follows.

L =
n∑

j=1

p∑
i=1

vij logPij − vij log vij

=
n∑

j=1

p∑
i=1

−vij log
(
vij
Pij

)
(4.8)

Using the Box-Cox family of transformations [2], we can generalize it as

Lλ =
n∑

j=1

p∑
i=1

−vij
λ

( vij
Pij

)λ

− 1

 (4.9)

where λ ̸= 0. In the limit λ → 0, we obtain the log-likelihood given in (4.6). This is similar

in principle to the α-log-likelihood approach outlined in [35]. Since
∑

ij vij =
∑

ij Pij = 1, we

have
∑

ij(vij − Pij) = 0. Adding this term to Lλ in (4.9) and multiplying throughout by the

constant
2

λ+ 1
does not alter the meaning and interpretation of Lλ, and results in

Lλ =
n∑

j=1

p∑
i=1

−vij
λ

( vij
Pij

)λ

− 1


=

2

λ+ 1

n∑
j=1

p∑
i=1

−vijλ
( vij

Pij

)λ

− 1

+ (vij − Pij)

 (4.10)

We refer to Lλ = Lλ(V, P ) in (4.10) as the λ-log-likelihood where V = [vij], P = [Pij], λ ̸= −1

and λ ̸= 0. Maximizing Lλ(V, P ) is equivalent to minimizing −Lλ(V, P ) where

−Lλ(V, P ) =
2

λ(λ+ 1)

n∑
j=1

p∑
i=1

vij
( vij

Pij

)λ

− 1

− λ(vij − Pij)

 (4.11)

where λ ̸= 0 and λ ̸= −1. 2

Using KL divergence, references [13,14] showed equivalence between NMF and PLSI. In the

following theorem, we show that this equivalence is embedded within our broader framework

as a special case and therefore generalizes the relationship between NMF and PLSI.

Theorem 2: Renyi’s divergence, D∗
γ(A||B), between two non-negative matrices A and B in

(3.3) is equivalent to the negative λ-log-likelihood −Lλ(A,B) given by (4.11)), and therefore

generalizes the equivalence between NMF and PLSI.

Proof: In the context of NMF, the power-divergence family of statistics given in (2.8) can be

re-written as

ϕλ(A,B) =
2

λ(λ+ 1)

∑
i,j

Aij

(Aij

Bij

)λ

− 1

− λ(Aij −Bij) (4.12)
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for λ ̸= −1 and λ ̸= 0 since
∑

i,j(Aij − Bij) = 0. Note that ϕλ(A,B) = −Lλ(A,B), and

if we reparametrize (4.12) such that Aij =
γ

2
Ãij , Bij =

γ

2
B̃ij and λ = γ − 1, we obtain the

quantity D∗
γ(Ã||B̃) defined in (3.3). Hence the negative λ-log-likelihood is equivalent to Renyi’s

divergence between the matrices A and B.

In the limit λ→ 0, we obtain

−Lλ→0(A,B) =
n∑

j=1

p∑
i=1

Aij log

(
Aij

Bij

)
− Aij +Bij, (4.13)

the KL divergence between A and B. The case λ = 1 yields

−Lλ=1 =
n∑

j=1

p∑
i=1

(Aij −Bij)
2

Bij

, (4.14)

the Pearson chi-squared statistic. If we reparametrize (4.12) such that Aij = Ã2
ij , Bij = B̃2

ij

for λ = −1

2
, we obtain the Euclidean distance

∑n
j=1

∑p
i=1 (Aij −Bij)

2 between A and B. The

equivalence between Renyi’s divergence and the negative λ-log-likelihood thus generalizes the

equivalence between NMF and PLSI. 2

We note that [13] provided a first order approximation to KL divergence (4.13) using the

Pearson chi-squared statistic (4.14) and also pointed out the relationship between Pearson chi-

squared and Euclidean distance. Our unified representation elucidates the relationship between

these measures whereby each measure is obtained as a special case for different choices of λ.

V. QUANTITATIVE EVALUATION OF CLUSTERING

In this section, we describe the implementation of our NMF algorithm and quantitatively

evaluate its performance in grouping n documents into homogeneous classes based on the

frequency of occurrence of p terms. The NMF algorithm may not converge to the same solution

on each run due to the random nature of initial conditions. We exploited this feature to evaluate

the consistency of its performance and to quantify the clustering accuracy for a benchmark data

set where the true number of classes k is known. The algorithm is applied multiple times with

random initial starting values for W and H; and it groups the documents into k clusters, where

k is the pre-specified rank of the factorization.

In order to assess whether a given γ provides a meaningful decomposition of the data for

a fixed (known) number of classes k = K, we applied consensus clustering to evaluate the

clustering accuracy of the factorization. Consensus clustering [3,37] evaluates the performance
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of any unsupervised clustering algorithm based on resampling methods. In our case, the stochastic

nature of initial conditions in the NMF algorithm is utilized in the evaluation process. In this

approach, class membership for each document is determined based on the highest metaterm

frequency profile. Each run of the algorithm results in an n× n connectivity matrix C with an

entry of 1 if documents i and j cluster together and 0 otherwise, where i, j = 1, , n. The consensus

matrix C̄ is simply the average connectivity matrix obtained over N runs of the algorithm. Final

document assignments are based on the re-ordered consensus matrix obtained by hierarchical

clustering (HC) using average linkage. In our studies [9,10], we found the performance of the

method to be consistent across multiple runs and, in general, 50-200 runs were sufficient to

provide stability to the clustering. For a rank K factorization, we applied consensus clustering

to different choices of γ, and evaluated the clustering accuracy for each γ based on the measures

described in the next section.

A. Measures for Evaluating Clustering Accuracy

We utilize four measures for evaluating clustering accuracy by combining the information

across multiple runs of the NMF algorithm. These are the misclassification rate, normalized

mutual information, adjusted Rand index and the cophenetic correlation coefficient. The first

three measures have been used previously in the context of document clustering [13,46] while

the fourth has been used in other clustering applications [3].

1) Misclassification Rate: The misclassification (MC) rate, denoted by ν, is the proportion of

documents that are classified incorrectly by the consensus clustering algorithm across all clusters

based on the final cluster labels assigned by that algorithm. The MC rate can be calculated only

if the true number of classes K is known and thus provides us with an overall measure of

agreement for the clustering.

2) Normalized Mutual Information: The normalized mutual information (NMI) between the

true class labels X and the assigned cluster labels Y is defined as

NMI =
I(X, Y )√
H(X)H(Y )
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where H(X) and H(Y ) represent the corresponding entropies [48]. For final cluster label

assignments based on multiple runs, the estimate of NMI is given by

NMI =

∑
i,j nij log

(
n · nij

ninj

)
√(∑

i ni log
ni

n

)(∑
j nj log

nj

n

)
where ni is the number of documents in class i, nj is the number of documents in cluster j, nij

is the number of documents in class i and cluster j and n is the total number of documents.

3) Adjusted Rand Index: The Adjusted Rand Index (ARI) is another commonly used measure

to quantify the agreement between the true class labels X and the assigned cluster labels Y .

It is the proportion of pairs of documents that are both in the same class and same cluster or

that are both in a different class and different cluster, normalized to fall in the [0, 1] range. For

details on this measure, the interested reader is referred to [37] and references cited therein.

4) Cophenetic Correlation Coefficient: The cophenetic correlation coefficient ρ is defined as

the correlation between 1− C̄ (where C̄ is the consensus matrix defined earlier) and the distance

induced by HC using average linkage [3].

Unlike ν, NMI , ARI and ρ can be computed even if the true number of classes K is not

known. However, for our purpose of evaluating clustering accuracy the true K is known. The

range of each measure is [0, 1] where the two extreme values correspond to random partitioning

and perfect clustering, respectively. This enables us to compare these three measures by corre-

lating each with ν across the range of γ based on the true K. We applied N = 200 runs of

the algorithm for various choices of γ in the interval (0, 2]. For given K and each choice of γ,

we compute each measure based on the final cluster assignments from the consensus clustering

algorithm.

B. Sparseness

For each (k, γ) combination, we investigated the sparseness of the metaterms (columns of

W ) and metaterm frequency profiles (rows of H). The sparseness of a non-negative vector x of

length n, denoted by ψ(x), is given by [23]

ψ(x) =

√
n− (

∑
i xi)√∑
i x

2
i√

n− 1
.
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It is interesting to note that ψ(x) = 0 if and only if all elements of x are equal and ψ(x) = 1

if and only if x contains a single non-zero element.

C. Data Normalization

We consider two different normalization schemes for the term frequency matrix in our pre-

sentation of real examples and simulated data. These are term frequency normalization (tf) and

term frequency-inverse document frequency normalization (tfidf). In the tf scheme, only the term

frequencies are normalized to prevent any bias towards documents containing more terms. In tfidf

normalization, the inverse document frequency (idf) which measures the general importance of a

term is computed for each term. The idf for each term is then multiplied with the corresponding

term frequencies to obtain tfidf normalized data. A detailed account of these methods can be

found in [44] and [45]. Henceforth, we shall refer to these methods simply as tf and tfidf,

respectively. For each dataset presented, we compare these two schemes based on clustering

accuracy for each (k, γ) combination as well as their overall performance.

D. Algorithm Implementation

For any given value of the parameter γ in Renyi’s divergence, the algorithm groups the samples

into k clusters, where k is the pre-specified rank of the factorization. Our procedure requires us to

evaluate various choices of γ for a fixed k, each based on N runs, by computing the corresponding

misclassification rates. For any real large-scale data set, the implementation of the steps in this

evaluation procedure for the combination of a given k and each γ can be computationally

very intensive. However, the stochastic nature of the NMF algorithm enables each step in this

procedure to be run independently and simultaneously. These steps can be repeated for each

run of the algorithm and the information from independent runs combined via the consensus

clustering algorithm. Thus the NMF algorithm lends itself easily to a parallel implementation that

would greatly increase speed and efficiency. Recently, we discussed such a comprehensive parallel

implementation of this algorithm on a Message-Passing Interface (MPI)/C++ platform [24] using

high-performance computing (HPC) clusters [10]. We also created an integrated package with

a graphical user interface that communicates between a Windows desktop and the HPC cluster

using MPI compatible software on computer clusters. This implementation was utilized in all

our computations.
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VI. REAL-LIFE AND SIMULATED EXAMPLES

We describe several real-life and simulated examples to illustrate the applicability of our

methods as well as their performance. For this purpose, we consider the following choices of γ

in the interval (0, 2] : 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, for various ranks k, each based

on N = 200 runs. Note that γ = 1 represents KL divergence and γ = 0.01 approximates dual KL

divergence described in (3.4). Other known measures considered here include the Bhattacharya

distance (γ = 0.5) and the Pearson chi-squared statistic (γ = 2). We utilize two publicly available

benchmark datasets for this purpose - the WebKB [25] and Reuters [46] data sets. In addition,

we consider the Page Blocks data [16] to further illustrate our methodology to other document

analysis problems. We present only the most relevant results from our analyses.

A. WebKB Data

The documents in the WebKB corpus are webpages collected from computer science de-

partments of various universities by the World Wide Knowledge Base (WebKb) project and is

available from [25]. It consists of 2803 documents split into four classes, namely, project, course,

faculty and student. We pre-processed this dataset based on document and term frequencies alone.

This resulted in 902 documents containing 1338 terms across the four classes.

Given four major classes of documents in this corpus, we considered a rank k = 4 factorization

for the choices of γ listed earlier. Figure 1(a) displays the misclassification rate ν plotted as a

function of γ for normalized data based on tf and tfidf. These normalization methods are seen

to perform similarly overall where γ = 0.75 and 0.5 result in the lowest misclassification rate

of 25.1% and 25.2%, respectively. This is corroborated by the relationship between ARI and γ

as well as between NMI and γ, and is graphically presented in Figures 1 (b) & (c). The strong

negative correlation between each of these measures and ν is evidenced in Figures 1 (e) & (f)

where, for each normalization method, the most homogeneous cluster corresponds to the value

of γ that results in the smallest misclassification rate. The relationship between ρ and γ is similar

to that observed for ARI and NMI (Figures 1 (d)). However, the correlation between ρ and ν is

not as strong as that observed for the other measures (Tables 3 and 4).

It is worth noting that γ = 1 (KL divergence) results in higher misclassification rates of 26.2%

and 29.4% using tf and tfidf, respectively. Using similar measures of clustering accuracy and

a different filtered version of this dataset, reference [13] demonstrated superior performance of
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their NMF-based hybrid method. They used only the top 1000 terms in the corpus selected based

on mutual information with class labels. On the other hand, our filtering scheme is completely

blinded to the class labels and utilizes only the term and document frequencies. Nevertheless,

our approach achieves a clustering accuracy of 75% using both tf (γ = 0.75) and tfidf (γ = 0.5)

normalization (Figure 1(a)) and outperforms the 64.4% accuracy achieved by their hybrid method.

Furthermore, we investigated the sparseness of the four metaterms and meteterm frequency

profiles for each choice of γ. For fixed γ, the mean sparseness of the metaterms (columns of

W ) was computed as the sparseness of each metaterm averaged across the four metaterms for

each run and then averaged across the N = 200 runs. The mean sparseness of the metaterm

frequency profiles (rows of H) was computed in a similar manner. For both normalization

methods, sparseness of metaterms showed a monotonically decreasing trend with respect to γ

(Figure 1(h)) while sparseness of metaterm frequency profiles showed an initial surge for small γ

before declining for higher values of γ (Figure 1(g)). It is interesting to note that tf normalization

resulted in uniformly sparser metaterms (across the range of γ) while tfidf normalization resulted

in uniformly sparser metaterm frequency profiles.

B. Reuters Data

The Reuters data is one of the most widely used benchmark datasets in text mining. We

utilize the pre-processed data consisting of the frequencies of 1969 terms from 276 different

documents presented by [46,47]. These documents belong to a total of 20 different categories.

For the purpose of illustrating our methodology, we created various subsets of this dataset where

the known, true number K, of classes varied anywhere from 3 to 20. This allowed us to evaluate

the performance of our method for various models, each determined by the true number of classes

of documents. In each case, the appropriate rank of factorization was used.
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Table 1: Subsets of Reuters Data

Subset K # of documents # of terms

1 3 77 1969

2 4 68 1105

3 5 120 1527

4 6 139 1639

5 8 169 1706

6 10 195 1800

7 20 276 1969

8 4 99 1407

9 3 55 828

Table 1 presents a summary of the various subsets used in our analysis. Subsets 1 through 6

were created based on the K most frequently occurring classes of documents in the corpus where

the corresponding K is specified in this table. Subset 7 represents the complete dataset. Subset

8 consists of the two most frequently occurring classes of documents and two less frequently

occurring classes while subset 9 consists of the three most frequently occurring classes that follow

the first four most frequently occurring classes. Each subset was first created by appropriate

filtering and then normalized by tf and tfidf separately.

Figure 2 presents the misclassification rates for each subset plotted against γ for the two

normalization methods. In most cases, tf performs at least as well as or better than tfidf in

delineating the true classes. This includes the complete dataset represented by subset 7. In

addition, the performance of tf appears to be fairly uniform across γ and better than tfidf for

subsets 1 and 8. Interestingly for subsets 2 and 9, tfidf is the best performer even though tf appears

to dominate tfidf for most of the range of γ. Perfect clustering (ν = 0) is achieved for subset 1

using both tf (γ = 0.5, 0.75) and tfidf (γ = 0.25) methods; and for subset 8 using tf (γ = 0.5).

In all subsets, there is at least one value of γ that outperforms γ = 1 (KL divergence). These

observations are further corroborated by the relationship between ARI and γ as well as between

NMI and γ as shown in Supplemental Figures S1 and S2, respectively. These two measures
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display a similar pattern of change with respect to γ compared to that of ρ (Supplemental Figure

S3).

Strong negative correlations between ARI and ν, and between NMI and ν are clearly seen

for most subsets across both normalization methods (Tables 3 and 4). However, the correlations

between ρ and ν are seen to be weaker overall. In particular, for subsets 3,4,6,8 and 9, a high value

of ρ was associated with the largest misclassification rate for tfidf (Figure 2 and Supplemental

Figure S3, panels (c),(d),(f),(g),(h)). In some cases (subsets 3 and 6), the highest ρ corresponds

to the largest ν. This is corroborated by the poor (and sometimes positive) correlations for these

cases (Table 4). Overall, ARI appears to have a stronger correlation with ν relative to other

measures and tf normalization shows a stronger correlation with ν across all measures. Once

again, a monotonically decreasing trend was observed in the sparseness of metaterms with respect

to γ (Supplemental Figure S5) for both normalization methods. On the other hand, sparseness of

metaterm frequency profiles showed an overall decreasing trend with increasing γ (Supplemental

Figure S4). In most cases, tf normalization resulted in uniformly sparser metaterms while tfidf

normalized data resulted in uniformly sparser metaterm frequency profiles across the range of

γ.

The various subsets in this example allowed us to perform a sensitivity analysis with real data

whereby we have assessed performance of our method for various true models. References

[46,47] adopted a similar approach for evaluating their penalized NMF (PNMF) algorithm

using this dataset. They considered ranks (subsets) ranging from K = 2 to 20 and assessed

the clustering accuracy of their method for various choices of their penalty parameter λ. For

more details, the interested reader is referred to their paper referenced above. It is not clear

exactly how the subsets were chosen in their approach, nevertheless, it provides us with a basis

for comparing the two methods for this dataset. Table 2 presents the clustering accuracies (1-

ν expressed in %) for the two methods for various ranks. In each case, the best performing

model determined by the choice(s) of γ or λ is listed. It is evident from these results that

our approach performs better throughout the range of K considered. There is also a notable

improvement in performance for smaller ranks where our method achieved near-perfect or perfect

clustering. Interestingly, both methods show an improvement in clustering accuracy at K = 10

relative to K = 8 before declining for K = 20. Furthermore, reference [13] used the ten

most frequently occurring categories in this dataset to demonstrate superior performance of their

July 12, 2011 DRAFT

Hosted by The Berkeley Electronic Press



20

NMF-based hybrid algorithm. Once again, they applied an informative filter that utilized the top

1000 terms based on mutual information with class labels. However, our approach performed

significantly better (71% and 70% clustering accuracy using tf and tfidf, respectively) in clustering

the documents over their hybrid approach (52.1% clustering accuracy).

Table 2: Comparison of Results: Reuters Data

K PNMF (λ) tf (γ) tfidf (γ)

4 78 (0.001) 100 (0.5) 97 (0.75)

6 73 (0.001) 79 (1.75) 68 (0.75)

8 57 (0.1) 67 (0.5) 62 (0.75,1.25)

10 67 (0.01) 71 (1.0) 70 (1.25)

20 57 (0.001) 58 (1.5) 58 (1.5)

We developed exploratory tools for visualizing the clustering using the metaterms and metaterm

frequency profiles. For the purpose of illustration, we consider subset 8 consisting of four classes

of documents. Perfect clustering (ν = 0) was achieved for this data for the case γ = 0.5 based

on tf normalization (see Figure 2(h)). The sparseness of the metaterms is best illustrated by a

box-plot of its coefficients, shown in Supplemental Figure S6 for this subset. The coefficient of a

given term in each metaterm quantifies the influence of that term in the corresponding metaterm

frequency profile of documents in a corpus. The compressed distribution of the metaterms

highlights terms with relatively high coefficients. We identified a core set of 50 terms that

appear in the top 5% of each of the four metaterms; as well as a unionized set of 137 terms

that appear in the top 5% of at least one metaterm. This overlapping nature of the metaterms

illustrates the potential role played by the frequency of occurrence of a single term in multiple

classes of documents.

A plot of these metaterm frequency profiles can help illustrate the role played by each

metaterm. Figure 3 presents the mean frequency profiles (across the N = 200 runs) for the

four metaterms, i.e., a plot of the rows of H averaged across the N = 200 runs. The numbers 1-

4 in this figure represent the four classes. It is evident from these profiles that each metaterm aids
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in delineating exactly one class from the rest. For example, the first metaterm profile separates

class 4 from the rest and so on. Even though the class labels of documents are known in this

dataset and have been plotted in order, the separation provided by each metaterm profile is clear.

A visual summary of the performance of clustering can thus be obtained using such a plot.

C. Page Blocks Data

This dataset was described by [16] and represents a unique example in document analysis.

Here, we are interested in classifying all the blocks of the page layout of a document that have

been detected by a segmentation process. This is an important step in document analysis that is

necessary for separating text from non-text areas. The original dataset consists of 5473 blocks

from 54 distinct documents. Each block represents an observation and there are five classes of

blocks, namely, text, horizontal line, picture, vertical line and graphic. The following variables

are measured for each block - number of black pixels per unit area, mean number of white-

black transitions, total number of black pixels, number of white-black transitions in the original

bitmap of the block, height, length, area and eccentricity (ratio of length to height). In addition,

the dataset also contains the number of black pixels per unit area and the total number of black

pixels obtained after the application of a smoothing algorithm. This dataset is available from

[26]. For more details on this dataset, the interested reader is referred to [16] and [34].

We reduced the dimensionality of this dataset by removing blocks with a relatively small

number of black pixels per unit area and mean number of white-black transitions. This resulted in

1407 blocks across the five classes. Also since some variables have been normalized with respect

to other variables in this dataset, no further normalization (i.e., tf or tfidf ) was deemed necessary

for this data. A rank k = 5 factorization was applied to this dataset for each γ under consideration.

γ = 0.25 resulted in the most homogeneous grouping of blocks based on the measured variables.

This is indicated by the observed trend in ARI and NMI as γ increases (Figures 4 (b) & (c))

and by the smallest misclassification rate, ν, of 29.6% achieved among all choices of γ (Figure

4(a)). On the other hand, ρ exhibits an inconsistent change as γ increases, peaking at γ = 1

(corresponding to ν = 41.8%) (Figure 4(d)). In particular, it is worth noting that γ = 0.25

outperforms all four known metrics - KL divergence (γ = 1, ν = 41.8%), approximation to dual

KL divergence (γ = 0.01, ν = 44.3%), Bhattacharya distance (γ = 0.5, ν = 36.7%) and the

Pearson chi-squared statistic (γ = 2, ν = 46%) - by a wide margin. These results emphasize
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the need to incorporate different choices of γ in the factorization, beyond the commonly known

metrics.

Table 3: Correlation between measures of clustering accuracy: tf

Dataset ARI vs. ν NMI vs. ν ρ vs. ν

WebKB -1.00 -0.98 -0.81

Reuters 1 -1.00 -0.98 -0.16

Reuters 2 0.24 -0.38 -0.77

Reuters 3 -0.82 0.05 0.36

Reuters 4 -0.96 -0.41 -0.66

Reuters 5 -0.87 -0.96 -0.33

Reuters 6 -0.98 -0.97 -0.80

Reuters 7 -0.98 -0.96 -0.88

Reuters 8 -1.00 -0.99 0.33

Reuters 9 -0.63 -0.43 -0.15

Page Blocks -0.85 -0.19 0.03

Simulated 1 0.10 0.34 0.43

Simulated 2 -0.97 -0.95 0.53

Simulated 3 -0.99 -1.00 -0.47

D. Simulating Nested Classes

We further investigate the performance of the NMF algorithm via extensive simulations

involving a correlated structure. In particular, we illustrate its ability to recover documents into

the true underlying classes when there exists a sub-structure (or a dependent structure) between

different classes. This is more realistic in real-life data especially when the number of classes

exceeds two, and there is a hierarchical or nested structure of the classes. To this end, we

construct three examples involving simulated frequencies of p = 1000 terms for each of n = 60

documents. We first describe their construction followed by their analyses based on our methods.
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Table 4: Correlation between measures of clustering accuracy: tfidf

Dataset ARI vs. ν NMI vs. ν ρ vs. ν

WebKB -0.99 -0.97 -0.77

Reuters 1 -0.97 -0.95 -0.70

Reuters 2 -0.49 -0.55 -0.50

Reuters 3 -0.97 -0.93 0.10

Reuters 4 -0.85 -0.84 0.25

Reuters 5 -0.74 -0.96 -0.66

Reuters 6 -0.89 -0.94 -0.12

Reuters 7 -0.94 -0.93 -0.83

Reuters 8 -0.91 -0.91 -0.54

Reuters 9 -0.70 -0.45 -0.16

Page Blocks -0.85 -0.19 0.03

Simulated 1 -0.25 0.64 0.65

Simulated 2 0.63 0.97 0.37

Simulated 3 -0.25 0.97 0.41

a) Example 1: We generated the term-document frequencies as follows: Let documents

1 − 20, 21 − 40 and 41 − 60 denote classes A, B and C respectively. For the first 50 terms,

frequencies for documents in classes A, B and C were generated from a Poisson distribution with

means 10, 1 and 1 respectively. For terms 51− 100, frequencies for documents in class B were

generated as Y ∼ min(X1, X2) where X1 ∼ Poisson(mean = λ1) and X2 ∼ Poisson(mean =

λ2); and frequencies for documents in class C were generated as Z ∼ max(X3, X2) where

X3 ∼ Poisson(mean = λ3). For terms 51−100, documents in classes B and C have a dependent

structure while for terms 1 − 50, documents in class A are independent of those in classes B

and C. For the remainder of the terms, all documents are generated from the same background

distribution as before, i.e., Poisson with unit mean. We considered various combinations of λ1, λ2

and λ3 in the following ranges: λ1 ∈ [50, 70], λ2 ∈ [70, 100] and λ3 ∈ [20, 50].
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b) Example 2: We generated toy data based on the same setup as Example 1 above except

for the following: For terms 51− 100, frequencies for documents in class B were generated as

Y ∼ min(X1, X2) where X1 ∼ Poisson(mean = λ1) and X2 ∼ Poisson(mean = λ2); and

frequencies for documents in class C were generated from a Poisson distribution with mean λ3.

As in Example 2, documents in classes B and C have a dependent structure for terms 51− 100

while for terms 1− 50, documents in class A are independent of those in classes B and C. For

the remainder of the terms, all documents are generated from a Poisson distribution with unit

mean. We set λ1 = 10 and considered various choices of λ2 in the range (20, 40].

c) Example 3: For this example, we generated toy data based on the same setup as Example

2 above except for the following: For the first 50 terms, frequencies for documents in classes

A, B and C were generated from a Poisson distribution with means 20, 1 and 1 respectively.

Document frequencies for terms 51-100 in classes B and C, as well as the remainder of the

terms in all three classes were generated as described in Example 2. In this set-up, documents

in classes B and C have a dependent structure for terms 51− 100 while documents in classes

A and B have a dependent structure among the first 100 terms. In this structure, class B is

dependent on both classes A and C. We set λ1 = 20 and considered various choices of λ2 in

the range [25, 40].

The rationale behind this scheme is to generate data with a dependent and/or a hierarchical

structure. In the first two examples, there are two major classes where one class has two sub-

classes while the third example represents a unique dependent structure between all three classes.

Each dataset was normalized using tf and tfidf and then a rank k = 3 factorization was applied

using our method.

The overall performance of our method on the simulated datasets paralleled that on the real-life

data presented. The results were also insensitive to the choice of the Poisson mean parameters

in each example. For the sake of brevity, we present results only for the case λ1 = 80, λ2 = 50

and λ3 = 20 in Example 1; and for the case λ1 = 20, λ2 = 25 in Examples 2 and 3. Figure 5

presents the misclassification rates for each example plotted against γ for the two normalization

methods. tf not only outperforms tfidf in delineating the true classes, its performance is also

uniformly better than that of tfidf throughout the range of γ. There is also at least one value of

γ that outperforms KL divergence (γ = 1) in each example for both tf and tfidf. In Examples

1 and 2, there is a significant improvement in clustering using tf for γ = 0.5 (ν = 25%) and
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γ = 1.5 (ν = 3.33%), respectively, compared to γ = 1 (ν = 31.67% and 26.67% respectively).

The difference in performance between tf and tfidf is particularly striking in Example 3.

ARI, NMI and ρ displayed relationships with γ similar to those observed for real-life data

(data not shown). NMI was poorly correlated with ν for tfidf while ρ was poorly correlated with

ν for both normalization methods in all three examples above (Tables 3 and 4). We also observed

a decreasing trend in the sparseness of both the metaterm frequency profiles and metaterms with

respect to γ (Supplemental Figures S7 & S8) for both normalization methods. Once again, tf

normalization resulted in sparser metaterms overall while tfidf normalized data resulted in almost

uniformly sparser metaterm frequency profiles across the range of γ. We also considered a rank

k = 2 factorization in Examples 1 and 2, and observed that the performance of our method was

uniform across the range of γ (data not shown). This is evidently due to the relative homogeneity

of individual classes caused by the data generating mechanism.

Next, we investigated the sensitivity of our method in delineating similar clusters. In our

simulation studies, the similarity between any two clusters can be simply determined by the data

generating mechnism. To this end, we utilized Example 2 and varied the Poisson mean parameter

λ2 that determines the degree of closeness between classes B and C. As λ2 was decreased from

40 to about 20, i.e., as classes B and C became more and more similar, a gradual increase was

observed in the misclassification rate across γ (see Figure 6 and Figure 5(b) for λ2 = 25). Note

that as λ2 → 20, classes B and C merge into a single, larger class. tf performs uniformly better

than tfidf not only throughtout the range of γ but also that of λ2. Moreover, the performance of

tfidf appears to have reached saturation at λ2 = 30 and does not show any further improvement

as λ2 is decreased. It is natural that tf performs very well for λ2 ≥ 30, however, the utility of

our method lies in its ability to capture subtle differences between classes B and C (i.e., as λ2

approaches the limiting value of 20). When λ2 = 25, γ = 1.5 is the best-performing model with

a misclassification rate of 3.33% while γ = 1 (KL divergence) is the worst-performing model

with a misclassification rate of 26.67%. For λ2 = 22, γ = 0.25 is the best performer with a

misclassification rate of 16.67% compared to 28.33% for KL divergence. This phenomenon was

also observed in other examples in our simulation studies as the parameter values were varied

(data not shown) and it emphasizes the need for a broader approach.
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VII. SUMMARY AND DISCUSSION

In summary, we have described a unified algorithm for NMF based on Renyi’s divergence

and proved convergence of our algorithm using an auxiliary function analogous to that used for

proving convergence of the EM algorithm. This approach provides a unique and generalized

framework for NMF and includes well-known distance measures as special cases. Furthermore,

we generalized the equivalence between NMF and PLSI using a Box-Cox transformation in the

multinomial likelihood for PLSI. This generalization embeds PLSI within the larger framework

of the λ-log-likelihood. Last but not least, we demonstrated the applicability of our methods

using simulated as well as real-life document clustering data.

One of the objectives of this paper has been to demonstrate the need for a generalized metric

for modeling high-dimensional data in the context of text mining and document clustering.

The generalized metric presented here retains the distributional assumption on the data while

providing modeling flexibility via the choice of the parameter γ. In that regard, one could

arguably view our approach from the perspective of penalized likelihood where the choice of

γ in Renyi’s divergence determines the joint penalty on the metaterms and metaterm frequency

profiles, or alternatively, on the reconstructed matrix WH . Furthermore, the application of

consensus clustering to select γ is analogous to the use of cross-validation for choosing the

penalty parameter in penalized likelihood methods.

Our real-life examples and simulation studies suggest an underlying effect due to the distribu-

tion of the term frequencies (across documents) on the performance of the clustering algorithm.

This is determined by the choice of γ. Perfect clustering is indeed achievable with the appropriate

choice of γ for some datasets, as demonstrated in our examples. The approach emphasizes

the need for a data-driven choice of γ and, hence, of the divergence measure itself used in

the decomposition. In practice, we recommend the use of several values of γ for evaluating

the clustering accuracy for a given factorization rank k. We focused mainly on values of γ

in (0, 2] in this paper for illustrative purposes, however, other cases might be of interest and

can be implemented easily. Our parallel implementation has distinct advantages in terms of

computational speed and allows one to simultaneously evaluate several factorization ranks.

An important observation from the analytical results presented is that the best performing

model is not necessarily the sparsest, either in terms of the metaterms or the metaterm frequency
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profiles. The simulations highlight the ability of our approach to delineate classes based on subtle

differences between them. The overall performance of tf normalization has been superior to that

of tfidf. Even though ARI, NMI and ρ can be used as measures of cluster homogeneity even when

the true number of clusters is unknown, our results demonstrated that both ARI and NMI were

better measures of clustering accuracy than ρ. The problems associated with ρ have been well

documented in the literature [18,20]. Moreover, ρ typically has too narrow a range to be useful

in many applications and, unlike ARI and NMI, can only be used with consensus clustering

in conjunction with hierarchical clustering. In particular, for a real dataset with unknown true

number of classes, we recommend the use of ARI or NMI on tf normalized data.

While Renyi’s divergence is directly applicable for modeling data generated from the Poisson

distribution, it has also been successfully used for modeling large-scale biological data such as

those from microarray studies [8,12]. It has been shown to closely approximate data from skewed

distributions in such studies. There is also evidence suggesting that a heavy-tailed continuous

distribution such as the gamma distribution closely approximates data from many microarray

studies [12]. A useful resource on this topic is [27]. Applications of NMF involving special

cases such as Kullback-Leibler divergence and Euclidean distance in the domain of computational

biology are abundant in the literature. An extensive and fairly recent list of such applications is

presented in [12]. Thus the approach presented here provides the generalizability and flexibility

in modeling such large-scale biological data as well, and further broadens the usefulness and

applicability of our method.

APPENDIX I

PROOF OF THOEREM 1

First, we prove this result for 0 < γ < 1. Then we show how similar arguments can be used

to prove the result for γ > 1 and for γ < 0.

We will make use of an auxiliary function similar to the one used in the Expectation-

Maximization (EM) algorithm [7,32]. Note that for h real, G(h, h′) is an auxiliary function for

F (h) if G(h, h′) ≥ F (h) and G(h, h) = F (h) where G and F are scalar valued functions. Also,

if G is an auxiliary function, then F is non-increasing under the update ht+1 = argmin
h
G(h, ht).
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We define

F (Hak) = γ
∑
i

Vik + (1− γ)
∑
i,a

WiaHak −
∑
i

V γ
ik

[∑
a

WiaHak

]1−γ

,

where Hak denotes the akth entry of H . Then the auxiliary function for F (Hak) is

G(Hak, H
t
ak) = γ

∑
i

Vik + (1− γ)
∑
i,a

WiaHak −
∑
i,a

V γ
ik

WiaH
t
ak∑

b

WibH
t
bk(WiaHak)

1−γ

 WiaH
t
ak∑

b

WibH
t
bk


γ−1 .

(1.15)

It is straightforward to show that G(Hak, Hak) = F (Hak). To show that G(Hak, H
t
ak) ≥ F (Hak),

we use the convexity of −x1−γ and the fact that for any convex function f, f

(
n∑

i=1

rixi

)
≤

n∑
i=1

rif(xi) for rational nonnegative numbers r1, · · · , rn such that
n∑

i=1

ri = 1. We then obtain

−
(∑

a

WiaHak

)1−γ

≤ −
∑
a

γa

(
WiaHak

γa

)1−γ

=

−
∑
a

(Wiaha)
1−γ

 WiaH
t
ak∑

b

WibH
t
bk

 (
∑
WibH

t
bk)

1−γ

(WiaH t
ak)

1−γ

where γa =
WiaH

t
ak∑

b

WibH
t
bk

. From this inequality it follows that F (Hak) ≤ G(Hak, H
t
ak).

Now,
dG(Hak, H

t
ak)

dHak

= (1− γ)
∑
i

Wia−

∑
i

(1− γ)V γ
i

(
W 1−γ

ia

) WiaH
t
ak∑

b

WibH
t
bk

(
WiaH

t
ak∑

bWibH t
bk

)γ−1

H−γ
ak = 0

Thus, the update rule for H takes the form

H t+1
ak =


∑

i V
γ
ikW

1−γ
ia (WiaH

t
ak)

γ(∑
b

WibH
t
bk

)γ ∑
i

Wia


1/γ

= H t
ak


∑

i

(
Vik∑

bWibH t
bk

)γ

Wia∑
iWia


1/γ

.
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Similarly, we define

F (Wia) = γ
∑
i

Vik + (1− γ)
∑
i,a

WiaHak −
∑
i

V γ
ik

[∑
a

WiaHak

]1−γ

,

where Wia denotes the iath entry of W . Then the auxiliary function for F (Wia) is

G(Wia,W
t
ia) = γ

∑
i

Vik + (1− γ)
∑
i,a

WiaHak −
∑
i,a

V γ
ik

W t
iaHak∑

b

W t
ibHbk(WiaHak)

1−γ

 W t
iaHak∑

b

W t
ibHbk


γ−1 .

(1.16)

It is straightforward to show that G(Wia,Wia) = F (Wia). To show that G(Wia,W
t
ia) ≥ F (Wia),

we use the convexity of −x1−γ and the fact that for any convex function f, f

(
n∑

i=1

rixi

)
≤

n∑
i=1

rif(xi) for rational nonnegative numbers r1, · · · , rn such that
n∑

i=1

ri = 1. We then obtain

−
(∑

a

WiaHak

)1−γ

≤ −
∑
a

γa

(
WiaHak

γa

)1−γ

=

−
∑
a

(Wiaha)
1−γ

 W t
iaHak∑

b

W t
ibHbk

 (
∑
W t

ibHbk)
1−γ

(W t
iaHak)1−γ

where γa =
W t

iaHak∑
b

W t
ibHbk

. From this inequality it follows that F (Wia) ≤ G(Wia,W
t
ia).

Now,
dG(Wia,W

t
ia)

dWia

= (1− γ)
∑
a

Hak−

∑
i

(1− γ)V γ
i

(
H1−γ

ak

) W t
iaHak∑

b

W t
ibHbk

(
W t

iaHak∑
bW

t
ibHbk

)γ−1

W−γ
ia = 0

Thus, the update rule for W takes the form

W t+1
ia =


∑

k V
γ
ikH

1−γ
ak (W t

iaHak)
γ(∑

b

W t
ibHbk

)γ∑
i

Hak


1/γ

= W t
ia


∑

k

(
Vik∑

bW
t
ibHbk

)γ

Hak∑
kHak


1/γ

.
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This completes the proof for the case 0 < γ < 1.

For γ > 1, using (3.5) we define

F (Hak) = −γ
∑
i

Vik − (1− γ)
∑
i,a

WiaHak +
∑
i

V γ
ik

[∑
a

WiaHak

]1−γ

and the auxiliary function for F (Hak) as

G(Hak, H
t
ak) = −γ

∑
i

Vik − (1− γ)
∑
i,a

WiaHak +
∑
i,a

V γ
ik

WiaH
t
ak∑

b

WibH
t
bk(WiaHak)

1−γ

 WiaH
t
ak∑

b

WibH
t
bk


γ−1 .

(1.17)

It is easy to see that G(Hak, Hak) = F (Hak). By using the convexity of x1−γ for γ > 1, we

can show that F (Hak) ≤ G(Hak, H
t
ak) and proceed to obtain the update rules for H and W

as described above. The update rules for this case are exactly as those specified for the case

0 < γ < 1.

Finally, the proof for the case γ < 0 is obtained by using (3.6) and defining

F (Hak) = −(1− γ)
∑
i

Vik − γ
∑
i,a

WiaHak +
∑
i

V 1−γ
ik

[∑
a

WiaHak

]γ
and the auxiliary function for F (Hak) to be

G(Hak, H
t
ak) = −(1− γ)

∑
i

Vik − γ
∑
i,a

WiaHak +
∑
i,a

V 1−γ
ik

WiaH
t
ak∑

b

WibH
t
bk(WiaHak)

γ

 WiaH
t
ak∑

b

WibH
t
bk


−γ .

(1.18)

Again, it is easy to verify that G(Hak, Hak) = F (Hak). Using the convexity of xγ for γ < 0,

we can show that F (Hak) ≤ G(Hak, H
t
ak) and proceed to obtain the update rules for H and W

as shown above.
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Figure 5: Simulated Data
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Figure 6: Simulated Data
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Supplemental Figure S1: Reuters Data
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Supplemental Figure S2: Reuters Data
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Supplemental Figure S3: Reuters Data
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Supplemental Figure S4: Reuters Data
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Supplemental Figure S5: Reuters Data
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Supplemental Figure S7: Simulated Data
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Supplemental Figure S8: Simulated Data
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