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Causal inference under multiple versions of
treatment

Tyler J. VanderWeele and Miguel A. Hernan

Abstract

In this article we discuss the no-multiple-versions-of-treatment assumption and
extend the potential outcomes framework to accommodate causal inference under
violations of this assumption. A variety of examples are discussed in which the
assumption may be violated. Identification results are provided for the overall
treatment effect and the effect of treatment on the treated when multiple versions
of treatment are present and also for the causal effect comparing a version of
one treatment to some other version of the same or a different treatment. Further
identification and interpretative results are given for cases in which a treatment
variable is dichotomized to create a new treatment variable for which there are
effectively “multiple versions” and also for effects defined by setting the version
of treatment to a prespecified distribution. Some of the identification results bear
resemblance to identification results in the literature on direct and indirect effects.
We describe some settings in which ignoring multiple versions of treatment, even
when present, will not lead to incorrect inferences.



1. Introduction

The potential outcomes framework for causal inference employs a number of assumptions
(Neyman, 1923; Rubin, 1974, 1990; Robins, 1986). One of the assumptions that is generally
made, either implicitly or explicitly, is an assumption that is sometimes described as the "no-
multiple-versions-of-treatment assumption"; the assumption is part of what Rubin de�ned as the
"Stable Unit Treatment Value Assumption" or SUTVA (Rubin, 1980, 1986). The assumption is
made so that the potential outcomes for each individual under each possible treatment are well
de�ned and take on a single value. If there are multiple versions of treatment present, as might
arise for surgery treatment say if there are different surgeons who perform the surgery, and if these
different versions of treatment give rise to different potential outcomes, then this assumption will
be violated.
To circumvent the problems created by multiple versions of treatment in such contexts, one

might restrict inference to a single version of treatment or, more generally, rede�ne each version
of treatment as a different treatment. For example, one could consider the effect of surgery con-
ducted by each particular surgeon rather that the effect of surgery generally. Such rede�nition of
the treatment of interest would make the no-multiple-versions-of-treatment assumption more rea-
sonable. However, rede�ning each version of treatment as a different treatment may not always be
possible or desirable. One may not have data on which version each patient received. Moreover,
if a patient needs to decide whether or not to undergo surgery but has no control over the choice
of the surgeon who will actually perform the surgery, the average effect of the surgery treatment
generally, rather than the average effect of surgery for each particular surgeon, may be what is most
relevant. Such average effects of a particular surgical procedure (averaged over the surgeon who
administers it) may also be of interest from a policy perspective. If, for example, in the treatment
of cancer patients we are comparing the effects of radiation versus surgery, although different sur-
geons (i.e. different versions of treatment) may have different effects on survival, from a policy
perspective, we could not simply select the most competent surgeon to perform all of the surgeries
as the number of surgeries needed would be far too numerous for one surgeon to undertake. The
policy question of interest here would be evaluating the overall survival rates of radiation versus
surgery, taking into account the fact that not all surgeons are equally skilled.
Motivated by the above considerations, the purpose of this article is to consider causal inference

under violations of the no-multiple-versions-of-treatment assumption. The remainder of the paper
is organized as follows. In section 2 we review the potential outcomes framework and discuss
how it can accommodate settings of multiple versions of treatment; we discuss the de�nition of
causal effects under multiple versions of treatment. In section 3, we discuss identi�cation of these
effects when the �rst treatment is assigned and then a particular version of treatment is assigned.
We discuss the interpretation of causal effect estimates under multiple versions and we consider
when multiple versions of treatment can be ignored. In section 4, we will consider what new
questions might be of substantive interest when multiple versions of treatment are present ; some
of the identi�cation results bear certain resemblances to the analysis of direct and indirect effects
(Robins and Greenland, 1992; Pearl, 2001; Geneletti, 2007), though the precise technical details
are distinct. In section 5, we discuss cases in which the ordering is version then treatment rather
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than treatment then version. An illustration is given in section 6. In section 7, we offer some
concluding remark and discuss how the extensions given in this paper to allow for violations of
the no-multiple-versions-of-treatment assumption parallels in certain ways extensions described
elsewhere for violations of the other major component of SUTVA, the no-interference assumption
(Sobel, 2006; Hong and Raudenbush, 2006; Rosenbaum, 2007; Hudgens and Halloran, 2008;
Tchetgen Tchetgen and VanderWeele, 2010).

2. Potential Outcomes and the No-Multiple-Versions-of-Treatment Assumption

We will use j = 1; :::; N to index the individuals in the population. Let Aj and Yj denote
respectively the actual treatment received by and the actual outcome for individual j. Under the
standard potential outcomes framework (Rubin, 1974, 1990), one might use Yj(a) to denote the
potential outcome Y for individual j if treatment A were set, possibly contrary to fact, to the value
a. Suppose treatment takes values in some set A; often A = f0; 1g with 0 indicating the control
condition and 1 indicating the treatment condition. Articulating the potential outcomes frame-
work in this way requires what Rubin called the "Stable Unit Treatment Value Assumption" or
"SUTVA." As Rubin (1980) points out that notation such as Yj(a) effectively presupposes (i) that
if individual j is given treatment a then individual j's outcome under treatment a does not depend
on which treatment individual j0 6= j received and (ii) that there do not exist multiple versions of
treatment a which might give rise to different outcomes depending on which version is adminis-
tered. The �rst of these assumptions is sometimes referred to as "no-interference" which Rubin
(1980) attributes to Cox (1958); the second assumption is a "no-versions-of-treatment assumption"
which Rubin attributes to Neyman (1935). Included also within SUTVA is an assumption which
in other literature is sometimes referred to as consistency. The consistency assumption (Robins,
1986) states that Yj(a) = Yj whenAj = a i.e. that the value of Y which would have been observed
if A had been set to what it in fact was is equal to the value of Y which was in fact observed. The
consistency assumption ties the potential outcomes (or counterfactual data) to the observed data.
Under Rubin's articulation of SUTVA, if there is only one version of treatment, then if Aj = a,
the manner in which treatment Aj was in fact set to a is irrelevant, so Yj(a) is well de�ned and
is equal to Yj when Aj = a. Rubin's SUTVA thus includes a no-multiple-versions-of-treatment
assumption and this no-multiple-versions-of-treatment assumption itself includes the consistency
assumption.
The assumption of "no multiple versions of treatment" and SUTVA generally are relevant both

to experimental and non-experimental studies. Although SUTVA is often only explicitly noted
in non-experimental observational research, the assumption is important in the interpretation of
causal effects even in randomized trials.
As noted above, one potential approach for handling multiple versions of treatment would be to

rede�ne the treatment variable A so as to include the version of treatment. This then generates an
expanded set of potential outcomes one for each "treatment level" (de�ned by the version of treat-
ment) and under this rede�ned treatment the no-multiple-versions-of-treatment assumption will
hold; limited sample size for each version may limit the effectiveness of this approach. Moreover,
if we did not observe the version, rede�ning treatment so as to indicate version makes it dif�cult to
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identify causal effects since we would then not be observing what was rede�ned to be the treatment
variable. Schafer and Kang (2009), however, have presented work that makes some progress with
this approach; their approach does still assume that some indicators related to version are at least
available.
Rather than rede�ning treatment in this way, additional progress can be made by instead intro-

ducing separate notation for the treatment itself and for the version of treatment. By taking this
approach instead we will sometimes be able to de�ne and identify causal effects even if we do
not observe the version of treatment that each individual received. We follow Cole and Frangakis
(2009) and VanderWeele (2009) to extend the potential outcomes notation to allow for multiple
versions of treatment. Let Yj(a; ka) be the potential outcome for individual j if treatment A is
set to value a by means ka where ka takes values in some set Ka = f1; :::; nag. For example, if
comparing surgery at a hospital (A = 1) to a control condition (A = 0), the set K0 may simply be
a singleton if there were only one version of the control condition andK1 might be the set f1; 2; 3g
indicating surgeon 1, 2 or 3 respectively and the potential outcomes Yj(1; 1), Yj(1; 2) and Yj(1; 3)
would indicate how individual j would fare under surgery by surgeon 1, 2 or 3 respectively. For
the next two sections we focus on settings in which causal ordering of variables is treatment then
version (rather than version then treatment). In the surgery example, an individual is �rst assigned
to surgery then to a surgeon.

If the two treatments being compared were surgery and radiation, some aspects of treatment
variation (e.g. speci�c hospital, time of treatment initiation) may be common to the treatments
being compared but generally not all will be. For each treatment a, we will consider a distinct
set of versions Ka = f1; :::; nag. For individuals with Aj = a we let Ka

j denote the version of
treatment Aj = a actually received by individual j; for individuals with Aj 6= a we de�neKa

j = 0
so that Ka

j 2 f0g [ Ka. For notational convenience, we de�ne the vector Kj = (Ka
j : a 2 A)

and recall that Ka
j = 0 for a 6= Aj so that Kj thus denotes a vector in which all of the entries

are 0 except the entry corresponding to the treatment that individual j actually received and this
entry indicates what version of that treatment was in fact received by individual j. Note also that
Kj gives no more information than Aj and K

Aj
j together. Note also that there is not variation

independence between Aj and Kj; once we know the vector Kj , we know Aj; but Aj does not
uniquely determineKj .
Under this expanded potential outcomes notation the no-multiple-versions-of-treatment as-

sumption can then simply be articulated as that

Yj(a; k
a) = Yj(a; k

0a) = Yj(a; �) for all j, a, and ka; k0a 2 Ka. (1)

If (1) holds then the consistency assumption is simply that for all j,

if Aj = a then Yj = Yj(a; �) (2)

and (1) and (2) together would bring us back to Rubin's articulation of the no-multiple-versions-of-
treatment assumption. VanderWeele (2009) referred to (1) as an assumption of treatment variation
irrelevance (which need not necessarily imply consistency assumption (2)). Under multiple ver-
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sions of treatment, if the version has no relevance to the outcome under consideration then (1)
will hold and, for all practical purposes, there are "no multiple versions of treatment," at least with
regard to the outcome Y under consideration. Note, however, that the version of treatment may be
irrelevant (i.e. (1) holds) for some outcome but may not be irrelevant for a different outcome.
If the treatment variation irrelevance assumption (1) is violated we may still articulate a con-

sistency assumption as follows. The consistency assumption would then require for all j,

Yj = Yj(a; k
a) when Aj = a and Ka

j = k
a: (3)

This expanded potential outcomes notation essentially presupposes that, for a subject with
Aj = a and Ka

j = k
a 2 Ka, (i) the potential outcomes Yj(a; k0a) with k0a 6= ka are well de�ned,

and (ii) the potential outcomes Yj(a�; ka
�
) with a� 6= a; ka� 2 Ka� are well de�ned. In the surgery

example, for an individual who in fact received surgery by surgeon 1, we could conceive of what
would have happened to this individual had they received surgery from surgeon 2 or surgeon 3,
and also what would have happened if surgery had not been given at all; for an individual who
did not receive surgery we could conceive of what would have happened to the individual had the
individual received surgery from surgeons 1, 2 or 3.
The average causal effect comparing treatment a, version ka with treatment a�, version ka� is

de�ned by:
EfY (a; ka)g � EfY (a�; ka

�
)g. (4)

The potential outcomes Y (a; ka)might be conceived of as consisting of joint interventions on both
Aj and Ka

j to respectively set them to levels a and ka (Pearl and Robins, 1995; Pearl, 2001). If
the potential outcomes Y (a; ka) or Y (a�; ka�) are only de�ned for individuals for whom S takes
certain levels of some covariate set S then we may instead be interested in the conditional causal
effect:

EfY (a; ka)jS = sg � EfY (a�; ka
�
)jS = sg: (5)

Note that a special case of (4) and (5) would be when the treatment a is the same and only different
versions, ka and k0a are being compared.
A well known causal effect is the effect of treatment on the treated, which is usually represented

as EfY (a)jA = ag�EfY (0)jA = ag. In the presence of multiple versions of treatmentA = a, the
counterfactual outcome Y (a) can be represented as Y (a;Ka). For individuals for whom A = a,
Ka is simply the version of treatment that was actually received. Note thatKa is a random variable
whose value may be different for different subjects, not a �xed value ka. Suppose now that there
is only one version of treatment for the control condition, A = 0, so that K0 = f1g and the only
potential outcome for each individual under the control condition is Yj(0) � Yj(0; 1). Provided
Yj(0) is well-de�ned for individuals with treatment Aj = a 6= 0, we could then de�ne the effect of
treatment on the treated as:

EfY (a;Ka)jA = ag � EfY (0)jA = ag: (6)

We will use additional notation to de�ne another familiar causal effect, the overall treatment
effect, but here in the setting with multiple versions of treatment. For individuals with Aj = a we
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de�nedKa
j to be the version of treatment Aj = a actually received by individual j. In some cases,

for individuals with Aj = a, we might be willing to conceive of a counterfactual variableKa�
j (a

�),
a� 6= a, corresponding to the version of treatment a� that an individual would have received had
they in fact been assigned to treatment a� rather than a. For example, in the surgery context, for an
individual j who did not receive surgery (Aj = 0), the variableK1

j (1)would denote which surgeon
individual j would have been assigned to had the individual in fact undertaken surgery i.e. whether
the individual would have been assigned to surgeon 1, 2 or 3. We then assume a consistency
assumption forKa

j , namely,Ka
j = K

a
j (a) when Aj = a. For each individual j, we assume there is

a �xed version that would have been received had the individual been given treatment a�; as with
the case of stochastic counterfactuals (Robins and Greenland, 2000), analogous results to those
that follow would hold if these "counterfactual versions of treatment" were assumed stochastic.
The variable Ka�

j (a
�), a� 6= Aj bears some resemblance to the counterfactual value of the

mediator in the literature on direct and indirect effects but, unlike in the mediation context, coun-
terfactuals of the form Yj(a;Ka�

j (a
�)) are only de�ned when a and a� coincide; that is, if a� is

the actual (or the counterfactual) treatment the only possible versions of treatment are different
versions Ka�of treatment a�. If we are willing to postulate variables Ka�

j (a
�), a� 6= Aj then we

can de�ne the overall treatment effect comparing giving everyone treatment a versus treatment a�
by

EfY (a;Ka(a))g � EfY (a�; Ka�(a�))g: (7)

Assuming the relevant counterfactuals exist we can de�ne, Y (a) � Y (a;Ka(a)) and the ex-
pression above is simply EfY (a)g � EfY (a�)g. In the following section we will discuss the
identi�cation of these various treatment effects. Later we will also consider the de�nition and
identi�cation of some additional causal effect measures.

3. Identi�cation of Causal Effects Under Multiple Versions of Treatment

We now consider identi�cation in the setting of multiple versions of treatment. We partition
the set of covariate (potential confounders) into two sets. We let W indicate a set of covariates
that may be causes of treatment A or may be, for one or more treatment levels a, causes of which
version of treatment Ka is administered but are not causes of Y except through either treatment
or the version of treatment; let C denote all other covariates. We partition the covariates in this
way because as we will see below, to identify certain causal effect we do not need data onW i.e.
certain effects, but not others, would still be identi�ed even if data onW were unavailable. We can
then represent the relations between treatment, version, outcome and covariates as in Figure 1.
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Figure 1. Causal diagram illustrating relationships between treatment A, version K, outcome Y
and confounding variables C and W.

Note that because K contains all of the information in A, there is no arrow directed from A to Y .
An example of a covariate inW in the context of the surgery example might be the particular health
plan that an individual has that might affect both the probability that the individual receives surgery
and, if the individual does receive surgery, also which particular surgeon conducts the operation,
but would perhaps not affect the outcome except through whether surgery is received and who
performs the surgery.
The results below will require that the covariate sets C and W are suf�ciently rich so that

certain no unmeasured confounding assumptions (also sometimes referred to as "exchangeability"
or "ignorability" assumptions) are met. We will use the notation A q BjC to denote that A is
independent of B given C. We will �rst consider the following assumption: whether we have

Y (a; ka)q fA;KgjC for all a 2 A; ka 2 Ka (8)

In other words, we will consider whether, within strata of the covariates C, groups de�ned by
treatment and version are, for all a 2 A; ka 2 Ka, comparable in their potential outcomes under
treatment a, version ka. Note that assumption (8) would hold if treatment A were randomized (or
randomized conditional on C) and if, conditional on treatment A = a (or conditional on fA =
a; C = cg), version of treatment Ka were also randomized. Intuitively, (8) states that the set C
suf�ces to control for confounding of the joint effect of treatment and version on the outcome.
Assumption (8) will hold if Figure 1 represents a causal directed acyclic graph (Pearl, 2009). Note
that in Figure 1, C blocks all backdoor paths from the set fA;Kg to Y . Note also that since K in
fact contains all the information in A, assumption (8) could also be written as Y (a; ka)qKjC; the
two are equivalent.
We then have the following identi�cation results. The proofs of all results are given in the on-

line supplementary materials; some of the proofs bear resemblance to certain identi�cation results
in the literature on direct and indirect effects.

Theorem 1. If Yj(a; ka) and Yj(a�; ka
�
) are well de�ned for all individuals j and if the no-
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unmeasured-confounding assumption (8) holds then

EfY (a; ka)g � EfY (a�; ka
�
)g =

X
c
EfY jA = a;Ka = ka; C = cgpr(c)

�
X

c
EfY jA = a�; Ka� = ka

�
; C = cgpr(c):

Theorem 1 thus allows for the identi�cation of the average causal effect comparing treatment a,
version ka with treatment treatment a�, version ka� . We could control forW as well in assumption
(8) and Theorem 1, but data onW is not necessary to identify the effect given in Theorem 1; data
on W will, however, be needed for the overall treatment effect result given below. The proof of
Theorem 1 given in the online supplementary materials is for the identi�cation of EfY (a; ka)g;
this proof is completely isomorphic to the proofs often used for the identi�cation of counterfactu-
als for controlled direct effects (Robins and Greenland, 1992; Pearl, 2001). Note however that the
effect itself is somewhat different; even in the special case with a = a� but ka 6= k0a, the effect
EfY (a; ka)g � EfY (a; k0a)g corresponds to having the "treatment" variable �xed not the "media-
tor" variable as in controlled direct effects. If Y (a; ka) and/or Y (a�; ka�) are only de�ned for those
with certain covariate values of S � C then the result in Theorem 1 can be made conditional on
S = s. In the online supplement we also discuss settings in which there may be an effect, Q,
of treatment A that affects both version K and the outcome Y , a setting sometimes referred to as
"time-dependent" confounding. Analogous results hold but identi�cation formulas are different.
We now consider the identi�cation of the effect of treatment on the treated.

Theorem 2. If there is only one version of treatment for the control condition so that and Yj(0)
is well de�ned for all individuals j and if Y (0)q fA;K0gjC then

EfY (a;Ka)jA = ag � EfY (0)jA = ag = E(Y jA = a)�
X

c
EfY jA = 0; C = cgpr(cjA = a):

Note that Y (0) q fA;K0gjC would hold under assumption (8) above; however, for the appli-
cation of Theorem 2 we only need the weaker condition Y (0) q fA;K0gjC rather than that (8)
hold for all a 2 A; ka 2 Ka. Once again with Theorem 2 we do not need to control for the A �K
confounders,W .
If we are willing to postulate variables Ka�

j (a
�), a� 6= Aj , so that we can de�ne Y (a) =

Y (a;Ka(a)) we can also consider the identi�cation of the overall treatment effect. As will be
shown in Theorem 3, overall treatment effects are identi�ed if

Y (a)q AjfC;Wg for all a (9)

Assumption (9) requires that, within strata of the covariates fC;Wg, groups de�ned by treatment
are comparable in their potential outcomes Y (a) = Y (a;Ka(a)). Assumption (9) would hold if
treatment A were randomized (or randomized conditional on fC;Wg); assumption (9) holds if
Figure 1 is a causal directed acyclic graph (Pearl, 2009).
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Theorem 3. If Ka
j (a), Ka�

j (a
�), Yj(a;Ka

j (a)) and Yj(a�; Ka�
j (a

�)) are well de�ned for all
individuals j and if (9) holds then Y (a)� Y (a�) =

EfY (a;Ka(a))g � EfY (a�; Ka�(a�))g =
X

c
EfY jA = a; C = c;W = wgpr(c; w)

�
X

c
EfY jA = a�; C = c;W = wgpr(c; w):

Note for the quantity on the right hand side of the equation in Theorem 3 to itself be estimable
from data we would need "positivity" (or "experimental treatment assignment" assumption) to hold
for both fC;Wg, not just C i.e. 0 < P (A = ajC = c;W = w) < 1 for all a, c and w.
Theorem 3 states that even under violations of the no-multiple-versions-of-treatment assump-

tion we can use the ordinary identi�cation formula for overall treatment effects but control needs to
be made not simply for variables C that might confound the relationship between treatment assign-
ment and outcome but also for variablesW that may affect both treatment assignment and version
of treatment (even if these variables do not also affect the outcome except through treatment or
version of treatment). Control must be made for these variables essentially because for the overall
treatment effect we are examining the effect of A on Y andW is a confounder of the relationship
between A and Y as it affect both A and also Y throughK. In Figure 1, if control is not made for
W then there is a backdoor path from A to Y , namely, A  W ! K ! Y . In the context of
multiple versions of treatment a suf�cient set of confounder for the effect of A on Y would need
to include W . In the online supplementary materials we give a numerical example showing that
without controlling for a common cause of A andK, one can obtain biased estimates of the overall
treatment effect. Note that if treatment is randomized there will be no common causes of treatment
and version.
Several observations emerge from the results above. First, Theorems 2 and 3 demonstrate

what may be intuitively clear, that it is not necessary to have data on the versions of treatment
in order to estimate the effect of treatment on the treated or the overall treatment effect. For the
overall treatment effect, adjustment needs to be made not only for common causes of treatment and
outcome but also common causes of treatment and version of treatment. For the effect of treatment
on the treated, if there are no multiple versions of treatment for the control condition, it is not
necessary to have data on common causes of treatment and version. Finally, as shown in Theorem
1, if data are available on the version of treatment then one can identify causal effects comparing a
version of one treatment to some other version of the same or a different treatment and to identify
such effects one again does not need data on the common causes of treatment and version.
Theorem 3, in particular, has important implications for settings in which the multiple versions

of treatment assumption is violated and the violation is ignored. The result implies that the ordinary
estimator for average causal effects can be interpreted as a contrast between (i) the average outcome
that would be expected if everyone had been assigned treatment A = 1 with each individual
receiving the version that would have been received had they been assigned A = 1 versus (ii)
the average outcome that would be expected if everyone had been assigned treatment A = 0
with each individual receiving the version that would have been received had they been assigned
A = 0. The estimate carries this interpretation provided adjustment is made for all confounders
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of the relationship between treatment A and outcome Y ; importantly, however, within the context
of multiple versions of treatment, these confounders include common causes of treatment and
version. Data on version is not needed, the multiple-versions-of-treatment assumption does not
need to hold, but data on common causes of treatment and version are needed to interpret the
estimate as a causal effect.
One way to think about these results are that if we conceive of a treatment and version com-

bination, (a; ka), as a "regime", and a treatment a, along with an unknown rule relating treatment
to version as a "policy," then Theorem 1 states that if the usual conditional independence assump-
tion holds at the level of the regime (assumption 8) we can identify causal effects at the level of
the regime. Theorem 3 states that if the usual conditional independence assumption holds at the
level of the policy (assumption 9), then for the set of policies in place in the study, we can identify
average causal effects at the level of the policy.

4. New Causal Effects and Applications with Multiple Versions of Treatment

In this section we will consider the identi�cation and interpretation of a different type of causal
effect which arises by setting the version of treatment to various prespeci�ed distributions. These
prespeci�ed distributions may be �xed or may be de�ned by those of certain treatment groups
or by those of individuals with certain pretreatment covariate values. For the results in this sec-
tion we will rely principally on assumption (8) above but for one result we will consider another
"exchangeability" or "no unmeasured confounding" condition, namely whether

Ka(a)q AjfC;Wg for all a (10)

In other words, we will consider whether, within strata of the covariates fC;Wg, groups de�ned by
treatment are comparable in the versions of treatment they would have received under each possible
treatment a. Note that assumption (10) would hold if treatmentAwere randomized (or randomized
conditional on fC;Wg. Intuitively, (10) states that within strata of fC;Wg the version of treatment
which an individual would be assigned if given treatment a is independent of the treatment actually
received; note the set fC;Wg blocks all backdoor paths from A toK; assumption (10) would thus
hold if Figure 1 were a causal directed acyclic graph (Pearl, 2009).
Taubman et al. (2008) considered what the incidence of coronary heart disease would be if

everyone exercised at least 30 minutes per day compared to what it actually was, E[Y ]. Note that
there are clearly multiple versions of treatment for both A = 1 ("exercising at least 30 minutes
per day") and A = 0 ("exercising less than 30 minutes a day"). With slight abuse of notation
(by not beginning the indices of each Ka with 1), we might index K1 by f30; 31; 32:::g and K0

by f0; 1; 2; :::29g. Taubman et al. (2008) considered two hypothetical intervention regimes g
that would ensure "exercising at least 30 minutes per day." Here we provide formal identi�ca-
tion results for the two hypothetical intervention regimes that Taubman et al. (2008) discussed.
Under the �rst intervention regime, those with A = 1 who in fact exercised at least 30 minutes
were allowed to retain their actual number of minutes of exercise K1 and those with A = 0
who in fact exercised less than 30 minutes were, under treatment, assigned version of treat-
ment K1 = 30. The counterfactual quantity of interest was thus E[Y (1; G)] where G = K1 if
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A = 1 and G = 30 otherwise. Taubman et al. described this as a "threshold intervention." Since,
EfY (1; G)jA = 1g = EfY (1; K1)jA = 1g = E(Y jA = 1), to identify EfY (1; G)g it suf�ces to
identify EfY (1; G)jA = 0g = EfY (1; 30)jA = 0g. Identi�cation conditions for this quantity are
given in the following result.

Theorem 4. If for some a� 6= a, and some ka, Yj(a; ka) is well de�ned for all individuals with
Aj = a

�and if the no-unmeasured-confounding assumption (8) holds then

EfY (a; ka)jA = a�g =
X

c
E(Y ja; ka; c)pr(cja�):

The second regime g considered by Taubman et al. again lets individuals with A = 1 who in
fact exercised at least 30 minutes retain their actual number of minutes of exercise K1; under the
second regime those with A = 0 who in fact exercised less than 30 minutes were, under treatment,
randomly assigned a version of treatment K1 from the distribution of those with A = 1 who had
the same covariates. Taubman et al. described this second regime as a representative regime.
If we now let Gj denote a randomly assigned version, K1, of treatment from the distribution of
those with A = 1 with covariates Cj then the quantity EfY (1; G)jA = 0g is needed to identify the
counterfactual incidence of coronary heart disease under the "representative regime." This quantity
is identi�ed by the following result.

Theorem 5. For individuals j with Aj = a� 6= a, let Gaj be a random variable with distribution
de�ned by pr(Ka = kajA = a; C = Cj). If for all j such that Aj = a�, the potential outcome
Yj(a; k

a) is well de�ned for all ka 2 supp(Gaj ) and if the no-unmeasured-confounding assumption
(8) holds then

EfY (a;Ga)jA = a�g =
X

c;ka
E(Y ja; ka; c)pr(Ka = kaja; c)pr(cja�): (11)

Note that the quantity EfY (a;Ga)jA = a�g in Theorem 5 does not necessary re�ect what
would happen if we were to set the version of treatment to the version it would have been if those
with A = a� had in fact been given treatment A = a. The formula in (11) will however identify
this latter quantity if, as stated formally in the next theorem, for individuals withAj = a�,Ka

j (a) is
well de�ned and if the set of covariates for which control is made contains both C andW in Figure
1 so that in addition to identi�cation assumption (8), identi�cation assumption (10) also holds.
Whereas Theorem 5 gave a result for randomly setting version of treatment to the distribution
of those with A = a, Theorem 6 gives a result for randomly setting version of treatment to the
distribution of those with A = a� had they been given treatment A = a.

Theorem 6. If for all individuals j with Aj = a� 6= a, the potential outcome Ka
j (a) is well

de�ned then let Gaja
�

j be a random variable with distribution de�ned by pr(Ka(a) = kajA =
a�; C = Cj;W = Wj). If for all j such that Aj = a�, the potential outcome Yj(a; ka) is well
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de�ned for all ka 2 supp(Gaja
�

j ) and if the no-unmeasured-confounding assumptions (8) and (10)
hold then

EfY (a;Gaja
�

j )jA = a�g =
X

c;w;ka
EfY ja; ka; c; wgpr(Ka = kaja; c; w)pr(c; wja�):

Under assumptions (8) and (10) of Theorem 6, ordinary estimators of treatment effects will, for
each treatment group, estimate the effect of randomly setting the version to one selected from the
distribution of versions of those who were in fact in that treatment group; note this is a somewhat
stronger interpretation than that provided in Theorem 3. The analytic formulas in Theorems 5
and 6 bear resemblances to those for so-called "natural direct and indirect effects" (Robins and
Greenland, 1992; Pearl, 2001) when these effects are identi�ed. However, unlike in the literature
on natural direct effects, all of the assumptions made here, namely (8)-(10), would be satis�ed
if both treatment and version were randomized whereas the identi�cation of natural direct and
indirect effects requires counterfactual independence assumptions that may not hold even in a
doubly randomized trial (Robins, 2003).
We de�ne and provide an identi�cation result for one further counterfactual quantity. In health

disparities research, health outcomes are compared by strata of race or socioeconomic status. In
some cases, access to care or receipt of a treatment or procedure may be equal across strata of racial
groups but health outcome disparities may still persist. One possibility is that race itself modi�es
the effect of treatment. Another possibility is that there may in fact be disparities in the version of
the treatment being administered. Thus even if outcome disparities are not explained by disparities
in the receipt of treatment, they may be explained by disparities in the version of treatment. Let A
denote some treatment; for example, for patients with acute respiratory distress syndrome, A = 1
might denote low-volume ventilation andA = 0 traditional ventilation (Acute Respiratory Distress
Syndrome Network, 2000). Let K1 denote the version of treatment A = 1 (e.g. K1 might denote
the quality of the monitoring for low-volume ventilation) and let Y denote the health outcome (e.g.
180 day survival). Let S � C denote one or more covariates of interest; here we will let S denote
race. We might, for example, then be interested in how much better outcomes would have been
for black individuals (S = 1) who received treatment if they had obtained the same quality of
treatment as white individuals (S = 0). If for individuals with S = 1, we letGj denote a randomly
assigned version of treatment K1 from the distribution of those with A = 1, S = 0 and with
covariates CnS equal to CjnSj then this quantity is given by

EfY (1; G)jA = 1; S = 1g � EfY (1; K1)jA = 1; S = 1g
= EfY (1; G)jA = 1; S = 1g � E(Y jA = 1; S = 1)

The counterfactual quantity EfY (1; G)jA = 1; S = 1g is identi�ed by the following result.

Theorem 7. Let S � C and letGa;s
0

j be a random variable with distribution de�ned by pr(Ka =
kajA = a; S = s0; CnS = CjnSj). If for all j such that Aj = a and S = s, the potential
outcome Yj(a; ka) is well de�ned for all ka 2 supp(Ga;s

0

j ) and if the no-unmeasured-confounding
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assumption (8) holds then

EfY (a;Ga;s
0
)jA = a; S = sg =

X
c;ka
E(Y ja; ka; c; s)pr(Ka = kaja; c; s0)pr(cja; s):

Note that the hypothesis that different versions of treatment were given to groups S = 1 and
S = 0, not because of discrimination, but because differing versions of treatment, ka and k0a,
have differing effects across strata of S could be examined by contrasting EfY (a; ka)jc; S =
1g � EfY (a; k0a)jc; S = 1g and EfY (a; ka)jc; S = 0g � EfY (a; k0a)jc; S = 0g which would be
identi�ed under assumption (8).

5. When Version Precedes Treatment and Consequences of Dichotomization

All the material thus far considered a setting where treatment is set �rst and then the version
of treatment; in this section we consider the reverse scenario. For example, often researchers will
dichotomize or otherwise categorize or coarsen a continuous exposure to simplify an analysis. For
example, if the continuous exposure is the number of minutes of exercise, a researcher may form
a new dichotomous "treatment" variable de�ned by exercising at least 30 minutes. One might
then speak of different "versions" of the treatment "exercise at least 30 minutes" e.g. exercise 30
minutes, exercise 31 minutes, etc. In the analysis for multiple versions of treatment given above
we have presupposed that the causal order of the variables was treatment then version. However,
when a continuous exposure has been dichotomized an alternative conceptualization might be that
the version then treatment.
Suppose now, in contrast to the analysis in the previous two sections, that K is a treatment

variable such that the support of K is of cardinality greater than 2. Suppose also we partition
the support of K into two sets V0 and V1 and de�ne A = 0 if K 2 V0 and A = 1 if K 2
V1. Let Y be the outcome and Y (k) be the potential outcome for an individual if K had been
k. Suppose that in an observational study for a set of covariates L we had Y (k) q KjL i.e. no
confounding of the effect of K on Y conditional on covariates L: Suppose also the consistency
assumption held such that Y (k) = Y when K = k. An analyst who had dichotomized K so
as to obtain a binary treatment A might then compute "causal effect" for dichotomized treatment
A by calculating

X
l
E(Y jA = 1; l)pr(l) �

X
l
E(Y jA = 0; l)pr(l). The following result re-

expresses this quantities in terms of interventions on K. We state the result and then consider its
interpretation.

Theorem 8. If Y (k)qKjL thenX
l
E(Y jA = 1; l)pr(l)�

X
l
E(Y jA = 0; l)pr(l)

=
X

l
E(Y (k)jl)pr(K = kjA = 1; l)pr(l)�

X
l
E(Y (k)jl)pr(K = kjA = 0; l)pr(l):

This latter expression can itself be interpreted as a comparison in a randomized trial in which,
within strata of covariates L = l, one arm is randomly assigned a "version of treatment"K from the
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observed distribution ofK in the population amongst withK 2 V1 and L = l (e.g. the distribution
of minutes of exercise amongst those with L = l who exercise at least 30 minutes) and the other
arm is randomly assigned a "version of treatment" K from the observed distribution of K in the
population amongst with K 2 V0 and L = l (e.g. the distribution of minutes of exercise amongst
those with L = l who exercise less than 30 minutes). Note that nothing in the analysis above
required that K itself be continuous; the variable K might indicate a complex set of treatment
which are then dichotomized into a treatment variable A by partitioning the support ofK into two
sets, V0 and V1. A similar analysis is also applicable ifK is categorized into some �xed number of
categories, rather than dichotomized.
Note also that in some cases there may be ambiguity as to whether "treatment" precedes "ver-

sion" as in the previous section or whether "version" precedes "treatment" as in this section. In the
exercise example it is perhaps not unreasonable to argue that the number of minutes of exercise is
constituted by a number of decisions (whether to exercise more than 5 minutes, whether to exer-
cise more than 10 minutes, etc.). One of these decisions, namely whether to exercise more than 30
minutes, could be taken as A; once this is determined then there is still the question of which ver-
sion of A = 1 (how many minutes above 30) or A = 0 (how many minutes below 30) is selected;
this was how the issue was conceptualized in the previous section. In other cases, however, there is
arguably less ambiguity. If the exposure A = 1 is experiencing high levels of loneliness and A = 0
experiencing low loneliness, then there are numerous decisions or interventions that may lead to
high loneliness and it is dif�cult to conceive of these as following rather than preceding the high
level of loneliness itself. In such cases the approach of this section will be of interest. In the next
section we illustrate this approach with an empirical data analysis illustration.

6. Illustration

We illustrate some of the prior discussion with an example in which an exposure has been
dichotomized. Loneliness (measured on the UCLA-R scale from 20 to 80) has been shown to
prospectively predict depressive symptoms (measured on the CES-D scale from 0 to 60) even after
control is made for baseline depressive symptoms and other covariates (Cacioppo et al., 2006).
Longitudinal data available on loneliness and depressive symptoms in the Chicago Health, Aging,
and Social Relations Study of 229 older adults; this data also include as covariates: age, gender,
ethnicity, marital status, education, psychiatric conditions and psychiatric medications. Suppose
a researcher were to median dichotomize measured at loneliness at follow-up 1 so as to de�ne
A = 1 when loneliness is greater than 35. A regression of depressive symptoms at follow-up
2 on dichotomized loneliness at follow-up 1, along with baseline loneliness, baseline depressive
symptoms and baseline covariates gives an estimate of 2:44 (95% CI: 0:03; 4:85) for dichotomized
loneliness at follow-up 1. If we thought that baseline covariates (including baseline lonelines
and depressive symptoms) were suf�cient to control for confounding of the effect of loneliness
at follow-up 1 on depressive symptoms at follow-up 2 then we could interpret this as an estimate
of an intervention trial that, conditional on covariates, assigned each individual in one arm to a
"version of treatment" of loneliness > 35 randomly drawn from the distribution of "versions of
treatment" in the population of those with loneliness > 35 and assigned each individual in the
other arm to a "version of treatment" of loneliness � 35 randomly drawn from the distribution of
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"versions of treatment" in the population of those with loneliness� 35. Note that the estimate only
has this interpretation under the strong assumption of no unmeasured confounding, which may not
be realistic here.
Note further that although under the assumption of no unmeasured confounding we can poten-

tially interpret the effect of treatment in this manner, an intervention corresponding to the treatment
effect we are supposedly estimating could not realistically be implemented in practice. Further-
more, whatever the underlying treatment variable K might be, to interpret the causal effect as the
comparison from the randomized treatment regime trial described above we would have to control
for all common causes of the underlying treatment K and the outcome. If we do not know what
the underlying treatment K is, it is dif�cult to assess whether we have indeed controlled for all
relevant confounders. We have discussed in greater detail these points and their implications for
epidemiologic research elsewhere (Hernán and VanderWeele, 2010).

7. Discussion

In this article we have described how the potential outcomes framework can be extended to al-
low for multiple versions of treatment, which are present to varying degrees in both observational
studies and in randomized clinical trials. Multiple versions of treatment are arguably present to
varying degrees in both observational studies and in randomized clinical trials. In clinical trials,
guidelines are often given to reduce the number or relevance of versions but it is generally not
possible to eliminate this problem entirely (Hernán and VanderWeele, 2011).Fortunately, as we
have seen, even with multiple versions of treatment, it is possible to use the ordinary estimators for
causal effects to compare the effects of treatments on average under no-unmeasured-confounding
assumptions. Ordinary estimators can be interpreted as the causal effects of well-de�ned inter-
ventions that mimic the assignment of versions of treatment in the study population. For such
an interpretation in an observational study control must, however, in general be made for com-
mon causes of treatment and version; in a randomized trial there will be no such common causes.
Although the ordinary estimators have an interpretation as an overall causal effect, multiple ver-
sions of treatment still renders ambiguous statements such as �treatment is on average better than
control� since these statements will always be with reference to the current policies for assigning
versions. Even if treatment is better on average than control under current policies for assigning
versions, it is nevertheless possible that certain versions of control, if administered to an entire
population, would be better than administering certain versions (or even all versions) of treatment.
This could arise if the most effective version of the control were generally infrequently assigned.
Analysis of the effects of a speci�c version of treatment (Theorem 1) or of varying regimes and
policies (as considered in section 4) can be useful in assessing this possibility.
The contributions in this paper have attempted to extend the potential outcomes framework

to allow for multiple versions of treatment. Recent work in causal inference has also attempted
to extend the standard potential outcomes notation to accommodate possible interference between
units (Sobel, 2006; Hong and Raudenbush, 2006; Rosenbaum, 2007; Hudgens and Halloran, 2008;
VanderWeele, 2010; Tchetgen Tchetgen and VanderWeele, 2010). We would like to conclude this
paper by drawing some parallels between the existing work on interference and our discussion
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above concerning multiple versions of treatment. First, both the no-interference assumption and
the no-multiple-versions-of-treatment assumption are concealed by the notation Yj(a); these two
assumptions are often not stated explicitly but are implicitly assumed to hold when using potential
outcomes notation such as Yj(a); such notation is in general only justi�ed under the assumptions of
no-interference and no-multiple-versions-of-treatment. Second, with both the no-interference as-
sumption and the no-multiple-versions-of-treatment assumption, although the traditional potential
outcomes framework presupposes these assumptions, the framework and notation can in fact be
extended so as to allow for potential violations; in the case of interference, the potential outcomes
notation can be extended so as to allow the potential outcome of one individual to depend on the
treatments received by other individuals; in the case of multiple versions of treatment, the notation
can be expanded so that an individual may have different potential outcomes for each possible
version of treatment. Third, in certain settings, violations of the no-interference assumption or the
no-multiple-versions-of-treatment assumption can be ignored; Rosenbaum (2007) showed that the
no-interference assumption could be ignored in certain randomized experiments; in our discussion
above we have seen that if covariates are available to adjust not just for treatment-outcome con-
founding but also for "treatment-version confounding" then the multiple versions of treatment can
be ignored in the estimation of average causal effects (it is not necessary to have data on which
individuals received which version). Fourth, with both the no-interference assumption and the
no-multiple-versions-of-treatment assumption, once notation has been introduced to expand the
potential outcomes framework in order to accommodate violations, then this new notation can give
rise to new questions of theoretical and substantive interest; notation accommodating interference
gives rise to questions of the identi�cation and estimation of spillover effects; notation accommo-
dating multiple versions of treatment gives rise to questions about hypothetical interventions on the
version of treatment to address policy relevant questions about resource allocation and assignment.
The extension of the potential outcomes framework to address interference and spillover effects

has been of use in a variety of substantive contexts (Hong and Raudenbush, 2006; Sobel, 2006;
Hudgens and Halloran, 2008). We hope that the contributions in this article will similarly clarify
and extend the possibilities for causal inference when multiple versions of treatment are present.
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Proofs of Theorems 1-8.
Proof of Theorem 1. For any a 2 A; ka 2 Ka we have that

EfY (a; ka)g =
X

c
EfY (a; ka)jC = cgpr(c)

=
X

c
EfY (a; ka)jA = a;Ka = ka; C = cgpr(c) by (8)

=
X

c
EfY jA = a;Ka = ka; C = cgpr(c) by consistency.�
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Proof of Theorem 2. We have that

EfY (a;Ka)jA = ag =
X

ka
EfY (a;Ka)jA = a;Ka = kagP (Ka = kajA = a)

=
X

ka
E(Y jA = a;Ka = ka)P (Ka = kajA = a) by consistency

= E(Y jA = a):

Note that if there is only one version of treatment for the control condition, A = 0, then K0 =
f1g and the only potential outcome for each individual under the control condition is Yj(0) �
Yj(0; K

0
j ) = Yj(0; k

0 = 1). We have that

EfY (0)jA = ag = EfY (0; k0 = 1)jA = ag
=

X
c
EfY (0; k0 = 1)jA = agpr(cjA = a)

=
X

c
EfY (0; k0 = 1)jA = 0; K0 = 1; C = cgpr(cjA = a) since Y (0)q fA;K0gjC

=
X

c
EfY jA = 0; k0 = 1; C = cgpr(cjA = a) by consistency

=
X

c
EfY jA = 0; C = cgpr(cjA = a)

where the �nal equality holds because when A = 0 we have that K0 = 1 since there is only one
version of treatment.�

Proof of Theorem 3. For any a 2 A; we have that
EfY (a;Ka(a))g = EfY (a)g

=
X

c;w
EfY (a)jc; wgpr(c; w)

=
X

c;w
EfY (a)ja; c; wgpr(c; w) by (9)

=
X

c;w
EfY (a;Ka(a))ja; c; wgpr(c; w)

=
X

c;w;ka
EfY (a; ka)ja;Ka(a) = ka; c; wgprfKa(a) = kaja; c; wgpr(c; w)

=
X

c;w;ka
EfY (a; ka)ja;Ka = ka; c; wgpr(Ka = kaja; c; w)pr(c; w) by consistency for K

=
X

c;w;ka
EfY ja;Ka = ka; c; wgpr(Ka = kaja; c; w)pr(c; w) by consistency for Y

=
X

c;w
EfY ja; c; wgpr(c; w):

This completes the proof.�
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Proof of Theorem 4. We have that

EfY (a; ka)jA = a�g =
X

c
EfY (a; ka)jA = a�; C = cgpr(cja�)

=
X

c
EfY (a; ka)jA = a;Ka = ka; C = cgpr(cja�) by (8)

=
X

c
EfY jA = a;Ka = ka; C = cgpr(cja�) by consistency.�

Proof of Theorem 5. We have that
EfY (a;Ga)jA = a�g

=
X

c
EfY (a;Ga)jA = a�; C = cgpr(cja�)

=
X

c;ka
EfY (a; ka)jGa = ka; A = a�; C = cgpr(Ga = kajA = a�; C = c)pr(cja�)

=
X

c;ka
EfY (a; ka)jA = a�; C = cgpr(Ka = kajA = a; C = c)pr(cja�)

=
X

c;ka
EfY (a; ka)jA = a;Ka = ka; C = cgpr(Ka = kajA = a; C = c)pr(cja�) by (8)

=
X

c;ka
EfY jA = a;Ka = ka; C = cgpr(Ka = kajA = a; C = c)pr(cja�) by consistency.�

Proof of Theorem 6. We have that
EfY (a;Gaja

�

j )jA = a�g

=
X

c;w
EfY (a;Gaja

�

j )jA = a�; C = c;W = wgpr(c; wja�)

=
X

c;w;ka
EfY (a; ka)jGaja

�

j = ka; a�; c; wgpr(Gaja
�

j = kaja�; c; w)pr(c; wja�)

=
X

c;w;ka
EfY (a; ka)ja�; c; wgpr(Ka(a) = kaja�; c; w)pr(c; wja�)

=
X

c;w;ka
EfY (a; ka)ja�; c; wgpr(Ka(a) = kaja; c; w)pr(c; wja�) by (10)

=
X

c;w;ka
EfY (a; ka)ja; ka; c; wgpr(Ka(a) = kaja; c; w)pr(c; wja�) by (8)

=
X

c;w;ka
EfY ja; ka; c; wgpr(Ka = kaja; c; w)pr(c; wja�) by consistency.�
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Proof of Theorem 7. We have that

EfY (a;Ga;s)jA = a; S = sg =
X

c
EfY (a;Ga;s)jA = a; C = c; S = sgpr(cja; s)

=
X

c;ka
EfY (a; ka)jGa;s = ka; a; c; sgpr(Ga;s = kaja; c; s0)pr(cja; s)

=
X

c;ka
EfY (a; ka)ja; c; sgpr(Ka = kaja; c; s0)pr(cja; s)

=
X

c;ka
EfY (a; ka)ja; ka; c; sgpr(Ka = kaja; c; s0)pr(cja; s) by (8)

=
X

c;ka
E(Y ja; ka; c; s)pr(Ka = kaja; c; s0)pr(cja; s) by consistency.�

Proof of Theorem 8
If Y (k)qKjL thenX

l
E(Y jA = 1; l)pr(l)�

X
l
E(Y jA = 0; l)pr(l)

=
X

l
E(Y jA = 1; K = k; l)pr(K = kjA = 1; l)pr(l)�

X
l
E(Y jA = 0; K = k; l)pr(K = kjA = 0; l)pr(l)

=
X

l
E(Y jK = k; l)pr(K = kjA = 1; l)pr(l)�

X
l
E(Y jK = k; l)pr(K = kjA = 0; l)pr(l)

=
X

l
E(Y (k)jK = k; l)pr(K = kjA = 1; l)pr(l)�

X
l
E(Y (k)jK = k; l)pr(K = kjA = 0; l)pr(l)

=
X

l
E(Y (k)jl)pr(K = kjA = 1; l)pr(l)�

X
l
E(Y (k)jl)pr(K = kjA = 0; l)pr(l)

where the �rst equality follows by iterated expectations, the second because K contains all the
information in A, the third from consistency and the fourth because Y (k)qKjL.�

Example of Treatment-Version Confounding.

Let A = 1 denote surgery and A = 0 denote the control (no surgery). Suppose there is only
one version of A = 0 (no surgery) but two versions of surgery: surgeon 1 (k1 = 1) and surgeon
2 (k1 = 2). Suppose that there are no confounders C that affect both the outcome Y and either
treatment or version but that there is a binary treatment-version confounder W with W = 0 and
W = 1 indicating two different health plans. Suppose P (W = 1) = 0:5; P (A = 1jW = 0) = 0:2;
P (A = 1jW = 1) = 0:6 so that by Bayes' Theorem, P (W = 1jA = 1) = 3=4 and P (W = 1jA =
0) = 1=3. Suppose also P (K1 = 1jA = 1;W = w) = (420 + 300W )=1000. Finally, suppose
P (Y = 1jA = 0;W = w) = 1=2 and P (Y = 1jA = 1; K1 = k1;W = w) = 1=2 + k1=5. Note
thatW affects both A and K1 butW has no effect on Y except through A and K1.
Now if the entire population were given surgery (A = 1) then the proportion of the population

with K1 = 1 would be f420 + 300E(W )g=1000 = 0:57 and the proportion with K1 = 2 would
thus be 0:43. The proportion with Y = 1 would be 1=2+E(K1)=5 = 1=2+(0:57+2�0:43)=5 =
0:786. If the entire population were not given surgery (A = 0) the proportion with Y = 1would be
0:5. The true overall average causal effect of surgery in this population is thus 0:786�0:5 = 0:286.
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Suppose now that no information is available on version of treatment. Suppose that we did not
control forW and simply computed E(Y jA = 1)� E(Y jA = 0). We would obtain:

E(Y jA = 1)� E(Y jA = 0)
=

X
w
E(Y jA = 1; w)pr(wjA = 1)�

X
w
E(Y jA = 0; w)pr(wjA = 0)

=
X

w

X
k1
E(Y jA = 1; k1; w)pr(k1jA = 1;W = w)pr(wjA = 1)�

X
w
E(Y jA = 0; w)pr(wjA = 0)

=
X

w

X
k1
(1=2 + k1=5)pr(k1jA = 1;W = w)pr(wjA = 1)� 1=2

=
X

w

X
k1
(k1=5)pr(k1jA = 1;W = w)pr(wjA = 1)

= (1=5)
X

w
E(K

1jA = 1;W = w)pr(wjA = 1)

= (1=5)
X

w
[(420 + 300W )=1000 + 2 � f1� (420 + 300W )=1000g]pr(wjA = 1)

= (1=5)
X

w
f2� (420 + 300W )=1000gpr(wjA = 1)

= (1=5)[2� f420 + 300E(W jA = 1)g=1000]
= (1=5)[2� f420 + 300 � 3=4g=1000] = 0:271:

We would get a biased estimate of the overall average causal effect of surgery. If we did control
forW and computed

X
w
fE(Y jA = 1; w)� E(Y jA = 0; w)gpr(w) we would obtain:X

w
E(Y jA = 1; w)pr(w)� E(Y jA = 0; w)pr(w)

=
X

w

X
k1
E(Y jA = 1; k1; w)pr(k1jA = 1;W = w)pr(w)�

X
w
E(Y jA = 0; w)pr(w)

=
X

w

X
k1
(1=2 + k1=5)pr(k1jA = 1;W = w)pr(w)� 1=2

=
X

w

X
k1
(k1=5)pr(k1jA = 1;W = w)pr(w)

= (1=5)
X

w
E(K

1jA = 1;W = w)pr(w)

= (1=5)
X

w
[(420 + 300W )=1000 + 2 � f1� (420 + 300W )=1000g]pr(w)

= (1=5)
X

w
f2� (420 + 300W )=1000gpr(w)

= (1=5)[2� f420 + 300E(W )g=1000]
= (1=5)[2� f420 + 300 � 1=2g=1000] = 0:286:

We get a correct estimate of the overall average causal effect of surgery is we control for the
treatment-version confounderW but a biased estimate if we do not control for it.
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Analogous Results Under Time-Dependent Confounding.

Suppose now that there is an effect, Q, of treatment A that affects both version K and the
outcome Y as in the Appendix Figure. We will continue to let W denote a set of variables that
affects only treatment A and versionK.

Appendix Figure. Time-dependent confounding in which an effect, Q, of treatment A, may affect
both version K and outcome Y.

We replace assumption (8) with

Y (a; ka)q AjC for all a 2 A; ka 2 Ka (A1)
Y (a; ka)qKj(C;A;Q) for all a 2 A; ka 2 Ka (A2)

Under these two assumptions, the effect of the version of treatment remains identi�ed but data
must be available on both version Ka and on the time-dependent confounder Q as stated in the
following result which provides the analogue to Theorem 1 under time-dependent confounding.
The proof is somewhat analogous to that for "controlled direct effects" in the context of mediation
with a time-dependent confounder.

Theorem 9. Under assumptions (A1) and (A2),

EfY (a; ka)g =
X

c;q
EfY jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(c)

Proof. For any a 2 A; ka 2 Ka we have that

EfY (a; ka)g =
X

c
EfY (a; ka)jcgpr(c)

=
X

c
EfY (a; ka)jA = a; cgpr(c) by (A1)

=
X

c;q
EfY (a; ka)jA = a; c; qgpr(qjA = a; c)pr(c)

=
X

c;q
EfY (a; ka)jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(c) by (A2)

=
X

c;q
EfY jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(c) by consistency.�
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Even in the presence of time-dependent confounding as in the Appendix Figure, assumption
(9) in the text that Y (a) q AjfC;Wg for all a will still hold and the overall causal effect will be
identi�ed by the proof of Theorem 3 given above. As before, data on version of treatment is thus
not necessary to estimate overall treatment effects. Throughout the paper and in the Appendix we
have, however, assumed point treatment. If treatment is time-varying then the version of treatment
may serve as a confounder for the effect of subsequent treatment and data would then be needed
on the version of treatment for the purposes of confounding control. The development of a formal
analytic framework for this setting is left to future research.
In the text, Theorems 5 and 6 considered the effects on those with A = a� of intervening to set

A = a with version randomly set to the distribution of those with A = a (Theorem 5) or to the
distribution of those with A = a� had they been given treatment A = a. Theorems 10 and 11 give
analogous results under time-dependent confounding. Theorem 10 requires assumptions (A1) and
(A2). Theorem requires assumptions (A1) and (A2) along with assumption (10) in the text that
Ka(a)q AjfC;Wg for all a.

Theorem 10. For individuals j with Aj = a� 6= a, let Gaj be a random variable with distribution
de�ned by pr(Ka = kajA = a; C = Cj). If for all j such that Aj = a�, the potential outcome
Yj(a; k

a) is well de�ned for all ka 2 supp(Gaj ) and assumptions (A1) and (A2) hold then

EfY (a;Ga)jA = a�g
=

X
c;ka;q

EfY jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(Ka = kajA = a; c)pr(cja�):

Proof. We have that
EfY (a;Ga)jA = a�g

=
X

c
EfY (a;Ga)jA = a�; cgpr(cja�)

=
X

c;ka
EfY (a; ka)jA = a�; cgpr(Ga = kajA = a�; c)pr(cja�)

=
X

c;ka
EfY (a; ka)jA = a; cgpr(Ka = kajA = a; c)pr(cja�) by (A1)

=
X

c;ka;q
EfY (a; ka)jA = a; c; qgpr(qjA = a; c)pr(Ka = kajA = a; c)pr(cja�)

=
X

c;ka;q
EfY (a; ka)jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(Ka = kajA = a; c)pr(cja�) by (A2)

=
X

c;ka;q
EfY jA = a;Ka = ka; c; qgpr(qjA = a; c)pr(Ka = kajA = a; c)pr(cja�) by consistency.�

Theorem 11. If for all individuals j with Aj = a� 6= a, the potential outcome Ka
j (a) is well

de�ned then let Gaja
�

j be a random variable with distribution de�ned by pr(Ka(a) = kajA =
a�; C = Cj;W = Wj). If for all j such that Aj = a�, the potential outcome Yj(a; ka) is well
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de�ned for all ka 2 supp(Gaja
�

j ) and if assumptions (A1), (A2) and (10) hold then

EfY (a;Gaja
�

j )jA = a�g

=
X

c;w;ka;q
EfY ja; ka; c; w; qgpr(qja; c; w)pr(Ka(a) = kaja; c; w)pr(c; wja�):

Proof. We have that
EfY (a;Gaja

�

j )jA = a�g

=
X

c;w
EfY (a;Gaja

�

j )jA = a�; c; wgpr(c; wja�)

=
X

c;w;ka
EfY (a; ka)ja�; c; wgpr(Gaja

�

j = kaja�; c; w)pr(c; wja�)

=
X

c;w;ka
EfY (a; ka)ja; c; wgpr(Ka(a) = kaja�; c; w)pr(c; wja�) by (A1)

=
X

c;w;ka
EfY (a; ka)ja; c; wgpr(Ka(a) = kaja; c; w)pr(c; wja�) by (10)

=
X

c;w;ka;q
EfY (a; ka)ja; c; w; qgpr(qja; c; w)pr(Ka(a) = kaja; c; w)pr(c; wja�)

=
X

c;w;ka;q
EfY (a; ka)ja; ka; c; w; qgpr(qja; c; w)pr(Ka(a) = kaja; c; w)pr(c; wja�) by 8

=
X

c;w;ka;q
EfY ja; ka; c; w; qgpr(qja; c; w)pr(Ka(a) = kaja; c; w)pr(c; wja�) by consistency.�
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