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The use of multiple imputation in molecular
epidemiologic studies assessing interaction

effects

Manisha Desai, Denise Esserman, Marilie Gammon, and Mary Beth Terry

Abstract

Background: In molecular epidemiologic studies biospecimen data are collected
on only a proportion of subjects eligible for study. This leads to a missing data
problem. Missing data methods, however, are not typically incorporated into anal-
yses. Instead, complete-case (CC) analyses are performed, which result in biased
and inefficient estimates.

Methods: Through simulations, we characterized the bias that results from CC
methods when interaction effects are estimated, as this is a major aim of many
molecular epidemiologic studies. We also investigated whether standard multiple
imputation (MI) could improve estimation over CC methods when the data are not
missing at random (NMAR) and auxiliary information may or may not exist.

Results: CC analyses were shown to result in considerable bias while MI reduced
bias and increased efficiency over CC methods under specific conditions. It im-
proved estimation even with minimal auxiliary information, except when extreme
values of the covariate were more likely to be missing. In a real study, MI esti-
mates of interaction effects were attenuated relative to those from a CC approach.

Conclusions: Our findings suggest the importance of incorporating missing data
methods into the analysis. If the data are MAR, standard MI is a reasonable
method. Under NMAR we recommend MI as a tool to improve performance over
CC when strong auxiliary data are available. MI, with the missing data mecha-
nism specified, is another alternative when the data are NMAR. In all cases, it is
recommended to take advantage of MI’s ability to account for the uncertainty of
these assumptions.
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ABSTRACT 

Background: In molecular epidemiologic studies biospecimen data are collected on 

only a proportion of subjects eligible for study.  This leads to a missing data problem.  

Missing data methods, however, are not typically incorporated into analyses.  Instead, 

complete-case (CC) analyses are performed, which result in biased and inefficient 

estimates.   

Methods: Through simulations, we characterized the bias that results from CC methods 

when interaction effects are estimated, as this is a major aim of many molecular 

epidemiologic studies.  We also investigated whether standard multiple imputation (MI) 

could improve estimation over CC methods when the data are not missing at random 

(NMAR) and auxiliary information may or may not exist. 

Results: CC analyses were shown to result in considerable bias while MI reduced bias 

and increased efficiency over CC methods under specific conditions. It improved 

estimation even with minimal auxiliary information, except when extreme values of the 

covariate were more likely to be missing.  In a real study, MI estimates of interaction 

effects were attenuated relative to those from a CC approach.   

Conclusions: Our findings suggest the importance of incorporating missing data 

methods into the analysis.  If the data are MAR, standard MI is a reasonable method.  

Under NMAR we recommend MI as a tool to improve performance over CC when 

strong auxiliary data are available.  MI, with the missing data mechanism specified, is 

another alternative when the data are NMAR.  In all cases, it is recommended to take 

advantage of MI’s ability to account for the uncertainty of these assumptions. 

http://biostats.bepress.com/cobra/art73
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INTRODUCTION 

With the advent of new technology to measure biomarkers, studies in molecular 

epidemiology have become increasingly more common.  As a result, many 

epidemiologic studies now collect biospecimens such as blood, buccal, urine or tissue 

samples in order to study biomarkers that may provide insight into the underlying 

pathogenesis of disease or that may be predictive of prognosis.   Often these 

investigations assess synergistic effects of the biomarker and another feature.  A recent 

assessment of molecular epidemiologic studies revealed that 30% of such studies 

evaluate a gene-environment interaction (1).  Generally, however, biospecimens are 

only available for a subset of the subjects in the study, posing a missing data problem. 

Missing data methods, however, are not typically being employed. In a 1995 study, 

Greenland and Finkle (2) discuss the underuse of missing data methods in 

epidemiologic studies due to their inaccessibility and complexity.  Although missing data 

methods are more readily available at present, a recent study by Klebanoff and Cole in 

2008 (3) found that less than 2% of papers published in epidemiology journals 

demonstrate the use of even accessible missing data methods like multiple imputation 

(MI).  Instead, a common approach is to perform a complete-case (CC) analysis (1-3). 

More specifically, a CC analysis excludes subjects missing data on at least one variable 

considered in the analysis.  Desai et al. recently assessed the handling of missing data 

specifically in molecular epidemiology studies and found that while the majority of 

studies acknowledged having missing data, 95% of these utilized a CC analysis (1). 

There are a variety of reasons data from biospecimens may be missing in 

molecular epidemiology studies, some of which may be related to the actual values of 
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the biomarkers themselves and/or other variables; these underlying reasons matter.  

Specifically, CC approaches are statistically valid (i.e., they provide unbiased estimates 

and confidence intervals that achieve nominal coverage) only when data are missing 

completely at random (MCAR); i.e., when missingness is unrelated to observed or 

unobserved data yielding a study sample that is representative of the larger cohort (4,5). 

See Rubin for a more complete discussion on statistical validity (5).  If missingness is 

related only to observed variables, the data are considered missing at random (MAR).  

If, however, the reason for missing data is related to the unobserved values, the data 

are not missing at random (NMAR). An example of the latter would be if those in the 

study who provide a blood sample to measure folate were more likely to consume large 

amounts of vegetables and, as a result, have higher folate levels than those with 

unmeasured folate values.  CC analyses conducted on data that are not MCAR can 

lead to biased and inefficient estimates.   

Often one can infer whether missingness is related to observed data, which may 

suggest that MCAR is not a reasonable assumption. Distinguishing between NMAR and 

MAR patterns, however, is not feasible without making unjustifiable assumptions since it 

is impossible to examine the nature of missingness for data that do not exist. Thus, one 

may have to rely on assumptions based on biological, clinical and epidemiological 

understandings. 

There are theoretically sound methods for analyzing data that are either MAR or 

NMAR.  For MAR data, likelihood-based methods and standard MI are examples of 

statistically valid approaches that are simple to implement and readily available (4). 

Analogous methods exist for NMAR data although they are not as easily accessible and 

http://biostats.bepress.com/cobra/art73
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are more complex. The increase in complexity is due to the need to model the missing 

data distribution whereas assuming the data are MAR generally allows one to ignore 

this aspect.  Valid likelihood-based methods for NMAR data include EM approaches to 

obtaining maximum-likelihood estimates and similar estimation strategies that exploit 

auxiliary data (defined as additional data that can be used to improve model 

performance given the missingness) (6-9). While software has been developed for 

some cases under NMAR conditions, it has not been incorporated into mainstream 

statistical packages. Thus, access to specialized software presents a barrier to using 

these methods.  MI, with the missing data distribution specified (such as pattern mixture 

models), is another alternative when the data are NMAR (10-11) .  

In molecular epidemiologic studies there is often good reason to suspect the data 

are NMAR.  For example, suppose tumor size is measured less frequently on smaller 

tumors.  Furthermore, because it is not straightforward to distinguish between NMAR 

and MAR situations, analysts may incorrectly assume the data are MAR.  Such studies 

may also make auxiliary data available.  In the above example, a potentially useful 

auxiliary variable might be tumor site if it correlates with tumor size.  Finally, many 

molecular epidemiologic studies focus on interaction effects, such as gene-environment 

effects.  The bias that results specifically from estimating these effects using a CC 

approach has yet to be characterized. 

The goals of this paper are to characterize the bias that arises from performing a 

commonly applied CC analysis when interaction effects are being assessed, and to 

discuss MI methods as a possible practical solution.  We specifically investigate the 

consequences of applying MI, which in its standard form relies on the MAR assumption, 
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and assess the extent that auxiliary data (additional epidemiologic data) can help in 

estimation performance when data from a covariate are NMAR (i.e., when the MAR 

assumption is violated) and the interest lies in estimating an interaction effect, involving 

the covariate.  We examine situations when the covariate and therefore the modifying 

variable of interest are missing data and evaluate the impact of the strength of the 

auxiliary information under three conditions of missingness: large values of the 

covariate are more likely to be missing; extreme values of the covariate are more likely 

to be missing; and the relationship between missingness and the covariate also 

depends on the outcome.   We compare MI to the commonly applied CC approach on 

simulated and real data from a molecular epidemiologic study.  

http://biostats.bepress.com/cobra/art73
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MATERIALS AND METHODS 

Multiple Imputation (MI) 

MI is a simulation-based method for handling missing data.  There are three main 

steps involved in conducting an MI-based analysis.  The first step consists of imputing 

plausible values for missing data from a specified distribution.  To incorporate the 

uncertainty of the imputed values, this is done m times to create m complete data sets, 

where m typically varies between 3 and 10.  The data are analyzed separately for each 

of the m data sets in step 2, with the estimates appropriately combined to yield one 

summary result in step 3.  The theoretical underpinnings of the method are described in 

Little and Rubin (4). 

There are several approaches to specifying an appropriate distribution from 

which to draw the missing values required in the imputation step.  In general, the 

strategies fall into one of two classes: the joint modeling approach or the fully 

conditional specification approach (11).   The joint modeling approach relies on 

specifying a joint density for the data to derive the posterior predictive distribution of the 

missing values(10). The fully conditional specification approach, on the other hand, 

bypasses this step and imputes data on a variable-by-variable basis based on a 

specified conditional density. For more details on the comparison of these approaches 

see Van Buuren (11). These methods are available in easily accessible software. SAS, 

for example, utilizes MI based on the joint modeling approach via the PROC 

MIANALYZE procedure.  We provide example code that uses the fully conditional 

approach implemented via the ICE and MICOMBINE procedures, developed by Patrick 
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Royston for use in STATA (12-14) in Appendix A.  Other software implementing MI can 

be found in Horton and Kleinman’s comprehensive review (15).  

  

MI for Interaction Effects 

 Estimating interaction effects with MI is slightly more complicated than estimating 

main effects (16).  This has to do with the assumptions under which the data are 

imputed.  More specifically, MI methods that rely on parametric assumptions such as a 

multivariate normal distribution may produce reasonable results for the estimation of 

linear relationships, but not for higher-order relationships.   There are several 

approaches to imputing interaction terms.  The two main approaches are to 1) impute 

the variables involved in the interaction first and then generate the product term for 

inclusion in the analytic model or 2) generate the product term prior to imputation and 

then impute this term like one would any other variable.  These methods and others are 

discussed in detail by von Hippel (17). We show example STATA code in Appendix A 

that implements both methods. 

Design of Simulation Studies  

We assessed the performance of CC and MI methods for estimating an 

interaction effect between two predictors (X1, which in some cases is continuous and in 

others is dichotomous, and a dichotomous predictor X2) on a dichotomous outcome (Y). 

One of the predictors (X1), and therefore the interaction term, is NMAR for a proportion 

of the subjects.  An auxiliary variable (Z), generated as a linear function of X1 and 

random noise, is also available.  

http://biostats.bepress.com/cobra/art73
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Table 1 describes the eighteen scenarios examined in our simulation study.  

Simulations were conducted to evaluate the impact of the following factors on the 

results: (1) the percentage missing, (2) the nature of the missingness, and (3) the 

relationship between X1 and Z.  We chose the level of missingness to be representative 

of the real molecular epidemiologic study described below.  To evaluate the impact of 

the nature of missingness, three conditions were considered.  Under condition 1, the log 

odds of the probability of missing X1 is a linear function of X1. Under condition 2, X1 is 

more likely to be missing extreme values, that is, the log odds of the probability of 

missing X1 is a quadratic function of X1.  Finally, condition 3 defines the log odds of 

missingness as a linear function of X1 given Y.  If Y represented case-control status, for 

example, this would allow cases and controls to differ with respect to missingness.  In 

our study, cases are more likely to be missing large values of X1, and controls are more 

likely to be missing small values of X1.  To assess the effect of the strength of the 

relationship between X1 and the auxiliary variable on the results, nonexistent, moderate 

and strong relationships were considered.  Moderate strength was defined as a 

correlation between X1 and Z of 0.57 for X1 continuous and an increase of 1 unit in Z 

for X1=1 versus 0 for X1 dichotomous.  For X1 continuous, a strong auxiliary variable 

was one that had a correlation of 0.97 with X1.  For X1 binary, a strong relationship was 

defined as a 3 or 4 unit increase in the auxiliary variable when X1 was 1 versus 0.  Each 

scenario is based on 1000 iterations, each with a sample size of 1000.  

Three different models are presented: (1) the full model or the model fit on the 

complete data; (2) the CC model; and (3) the MI-based model, where the missing 

values of X1 were imputed as a function of X2, Y and the auxiliary variable, Z.  To 
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produce optimal results, we set m=10 as opposed to the more typical m=5, although we 

found negligible differences when comparing the two.  For each scenario, the data were 

analyzed using a logistic regression model with Y as the outcome and X1, X2 and their 

interaction as predictors. Average point estimates, average model-based standard 

errors (SE), average biases, mean squared errors (MSE), mean squared errors relative 

to CC (RelMSE), and percentage coverage with 95% confidence intervals were 

calculated for X1 given X2=0, X1 given X2=1, and their interaction.  The comparison of 

MI to CC using the RelMSE statistic is critical, as a comparison of MI to the method 

currently used in practice (CC) is more relevant than its comparison to an optimal 

method.  For an ideal reference, however, the full model is presented. 

 

Example Data Set  

As an illustration of these methods, we compared a previously published CC 

analysis of a gene-environment interaction (18) to one based on MI methods using data 

from a population-based case-control study of breast cancer, the Long Island Breast 

Cancer Study Project (LIBCSP)(19).  This particular analysis was undertaken to 

address a possible interaction effect between alcohol consumption and ADH3 genotype 

on breast cancer risk. Details of the overall study design are provided in prior 

publications (18-19). In-person interviews were completed for 1,508 cases (82.1% of 

eligible cases) and 1,556 controls (62.8% of eligible controls).  Seventy-three percent of 

both cases and controls who completed an interview donated a blood sample.  As the 

CC approach adjusted for potential confounders, it further excluded those who were 

missing at least one variable and resulted in a data set of 1,008 cases and 1,055 

http://biostats.bepress.com/cobra/art73
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controls.  As previously published (18), subjects were more likely to donate blood if they 

were white, non-smokers, ever consumed alcohol, ever used hormone replacement 

therapy, breast-fed for six months or more, or ever had a mammogram.  

RESULTS 

Simulation results are presented in Table 2 as a function of the percentage 

missing for the three conditions and when there is a strong auxiliary variable.  For 

completeness, estimates are presented for X1 given each level of X2 (denoted going 

forward as X1|X2) and their interaction.  Performance, however, is based solely on 

estimation of X1|X2=0 and the interaction as their sum yields the estimate of X1|X2=1.  

Under condition 1, where X1 is 7.4 times more likely to be missing for X1=1 than for 

X1=0, CC overestimated the interaction effect. As the percentage missing increased, so 

did the magnitude of the bias.  In addition, CC resulted in large standard error estimates 

due to small cell counts that occur when X1 is binary.  MI, on the other hand, provided 

less biased and more efficient estimates of both parameters. For example, the RelMSE 

statistic showed improvements in estimating the interaction that increased with 

percentage missing from 92% to 99%. Under condition 2, where X1 is continuous and 

more likely to be missing extreme values, MI yielded slightly more biased estimates 

than CC, particularly of X1|X2=0, but smaller standard error estimates. As a 

consequence, the RelMSE statistic showed an overall improvement in performance by 

MI that increased with percentage missing, ranging from 14%-41% for the interaction 

effect. Under condition 3, the coverage probability for CC became increasingly worse as 

the percentage missing increased.  The RelMSE statistic showed an improvement of MI 

over CC of 92%, 97% and 99% for the effect of X1|X2=0 for the three scenarios.   
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The nature of missingness had an effect on the direction of the bias for CC.  

Unlike condition 1, where CC overstated effects and condition 2, where CC did not 

result in large biases, CC underestimated X1|X2=0 and overstated the interaction effect 

under condition 3.  The bias was also reflected in low coverage probabilities not found in 

the other conditions.  

The impact of the strength of the auxiliary variable for the three conditions, where 

approximately 20% of the data are missing, is shown in Table 3.  For each condition, 

there are three scenarios corresponding to non-informative, moderate, and strong 

auxiliary variables.  Under condition 1 even when there is no auxiliary information, MI 

outperformed CC for both parameters, where the RelMSE statistic for the interaction 

effect showed a 93% improvement in estimation.  Under condition 2, however, MI 

needed a strong auxiliary variable to compete with CC.  CC did not yield biased results, 

but suffered a loss in efficiency.  With moderate to weak auxiliary information, MI tended 

to underestimate the interaction effect and overestimate the effect of X1|X2=0.  Overall 

it performed worse than CC and had an MSE that was 1.3 times greater than that of CC 

for X1|X2=0 and an MSE for the interaction that was 1.1 times greater.  Even when the 

auxiliary variable was moderate, the MI MSE was twice that of the CC MSE for 

X1|X2=0, although this was counterbalanced by some improvement in estimating the 

interaction. Like condition 1, MI always improved performance over CC under condition 

3.  When there is no auxiliary data, MI and CC both underestimated X1|X2=0, but while 

CC overestimated the interaction effect, MI underestimated it. MI had a superior MSE 

statistic for both X1|X2=0 and the interaction.  Although its MSE was 2.7 times worse 

than that of CC for X1|X2=1, this is because CC overestimated the interaction effect 

http://biostats.bepress.com/cobra/art73
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which helped improve its estimation of X1|X2=1.  With strong auxiliary information, MI 

improved estimation of X1|X2=0 and the interaction effect by 93% and 36%, 

respectively.   

The results from analysis of the LIBCSP evaluating an interaction effect between 

alcohol consumption and the ADH3 genotype on breast cancer risk are presented in 

Table 4. Adjusted odds ratios (ORs) from the previously published CC analysis, an MI-

based analysis, and the percentage change in the beta coefficients or log-ORs for the 

interaction effect are shown.  Both analyses involved fitting a logistic regression model 

adjusting for potential confounders (age at diagnosis; education; race; caloric intake; 

smoking status; and BMI). To impute values for genotype, these confounders as well as 

any variables identified as a risk factor for missingness were used.  These possible 

auxiliary variables included: having ever breastfed; having ever used hormone 

replacement therapy; having ever used oral contraceptives; ever having a mammogram; 

income level; and having benign breast disease.  Terry et al. previously reported a two-

fold association (OR = 2.3, 95% CI 1.3-4.0) for moderate alcohol consumption (15-30 

g/day) for fast metabolizers using a CC approach.  MI resulted in a 39% reduction in the 

coefficient (OR = 1.7, 95% 1.0-2.8) (18).  MI yielded parameter estimates that were 

smaller and closer to the null than those obtained by CC, where the percentage change 

in the beta coefficients ranged from 17% to >100%, and the median percentage change 

was 31%.    

 

DISCUSSION  
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Studies of molecular epidemiology often involve collecting data on biomarkers.  

Issues with missing data arise when data are not fully observed for all subjects included 

in a study.  The most common approach to analyzing these data is CC analysis (1-3), 

which has the advantage of computational ease but can result in estimates that are 

biased and inefficient.  Using missing data methods in analyses, therefore, needs to 

become more customary.  Standard MI is simple to implement and accessible but not 

recommended when the data are suspected to be NMAR.  For example, while Taylor 

and colleagues promote using MI to reduce non-response bias in epidemiologic studies, 

they recommend doing so only when the MAR assumption is likely to hold (20).  In 

molecular epidemiology studies, however, one may suspect that the data are NMAR or 

one may incorrectly assume the data are MAR.  In addition, many molecular 

epidemiology studies evaluate interaction effects, for which the bias of CC estimates 

has not been fully characterized.  Our goal, therefore, was to characterize this bias 

under CC and to investigate the performance of standard MI, a method that is as easy 

to implement and as accessible as CC, specifically in the context of assessing 

interaction effects when one of the predictors is NMAR.  

Characterization of Bias Resulting from a CC Approach 

Biased and inefficient estimates from the CC approach were observed in our 

simulation studies, indicating a strong need for missing data methods. The extent to 

which they were observed, however, varied by the nature of missingness. When large 

values of X1 were more likely to be missing (condition 1), CC tended to overestimate 

effects and produced large standard error estimates, particularly when X1 is not 

continuous.  When extreme values of X1 are more likely to be missing (condition 2), CC 

http://biostats.bepress.com/cobra/art73
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suffered a loss in efficiency.  Finally, under condition 3, where missinginess is a function 

of both X1 and Y, the bias from CC was the most dramatic where it underestimated the 

effect of X1|X2=0 and overestimated the interaction effect.   

Comparison of MI and CC Approaches in the Simulation Study 

Improvements resulting from MI over CC varied by both nature of missingness 

and strength of auxiliary information.  Specifically, under missingness conditions 1 and 

3, there was no harm in using MI over CC even when there was no auxiliary 

information.  Furthermore, when the auxiliary information was moderate to strong, large 

improvements were observed. Although we only show results under specification of a 

positive relationship between a binary X1 and missingness under condition 1, negative 

and positive relationships for a continuous X1 were also examined. While there was no 

impact on the magnitude of bias for MI, CC yielded a more overstated interaction effect 

under a negative relationship, yielding larger improvements of MI over CC.  Larger 

gains in both efficiency and bias of MI over CC were observed, however, when X1 is 

binary rather than continuous.  Under condition 2, MI was more misleading than CC, 

except when auxiliary information was strong, in which case, it yielded improvements.  

Application of MI and CC Approaches to LIBCSP 

In the LIBCSP example, data were not MCAR as blood donation was related to a 

variety of observed factors (18). We suspected that the data were NMAR as having the 

genotype for fast metabolism was related to alcohol intake, and alcohol intake was 

associated with providing a blood sample.  Specifically, data on metabolism status were 

more likely to be missing for fast metabolizers and therefore, likely to be NMAR.  While 

inference was similar between the two analytic approaches (the overall interaction effect 
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was not statistically significant by either method) and consistent with previous findings 

(21-22), MI estimates were attenuated toward the null relative to CC.  Based on the 

findings of our simulation study, if we believe that either conditions 1 or 3 describe 

missingness or if we have strong auxiliary information, we would be more likely to 

believe our MI results.  Although unlikely in this example, if condition 2 applies and we 

have weak auxiliary data, the truth may lie somewhere in between the CC and MI 

estimates. It makes sense in cases when CC and MI results are discrepant to present 

both analyses.  

 

MI, the MAR Assumption, and Its Relationship to Auxiliary Variables 

The intuition behind why MI performed well when auxiliary data were strong in 

our study has to do with the MAR assumption.  Assuming the data are MAR is 

equivalent to assuming that the information needed to impute the missing values can be 

found in the observed data.  This is a more reasonable assumption when the data 

include auxiliary information that is strongly related to the unobserved data. Thus, even 

if one were to suspect the data are NMAR, the presence of strong auxiliary information 

may allow one to proceed with methods that assume MAR.   

Our simulation study is limited in that it does not provide a precise definition for 

the strength of the relationship necessary for one to assume MAR.  In our simulations, 

for X1 continuous, a strong auxiliary variable was one that had a correlation of 0.97 with 

X1.  For X1 binary, a strong relationship was defined as a 3 or 4 unit increase in the 

auxiliary variable when X1 was 1 versus 0.  Although extreme and perhaps not likely 

outside of longitudinal studies, we felt it was important to study the extremes (no 
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association and strong association) in addition to a moderate association (in our study, 

a correlation of 0.57 for X1 continuous and an increase of 1 unit in Z for X1=1 versus 0 

for X1 dichotomous). A study examining the strength of the relationship needed to 

assume MAR is challenging, as many factors would have to be considered making it 

difficult to generalize.  For practical purposes, we recommend making thoughtful and 

reasonable assumptions before proceeding.  Below we give specific guidelines. 

Practical Considerations 

 In practice, one might be faced with the choice of which auxiliary variables to 

include in imputing the variable(s) of interest.  In simulation studies described by Collins 

et al. (23), where this very issue was assessed for the MAR case, being more inclusive 

even when doubtful of the usefulness of some auxiliary variables resulted in increased 

efficiency and reduced bias. This is consistent with our findings for conditions 1 and 3. 

For condition 2, however, one would need to make stronger assumptions about the 

auxiliary information before using MI in its standard implementation if the data were 

NMAR.  Thus, if one can assume conditions 1 or 3 and if potential auxiliary data are 

available, we recommend applying MI in an inclusive manner.  If one were to suspect 

condition 2 applies, we recommend using standard MI only if one assumes the 

presence of strong auxiliary information. Alternatively, one could apply MI after 

modeling the missing data mechanism (10).  The latter would require making explicit 

assumptions about the nature of missingness.   

A nice feature of MI, however, is its ability to incorporate the uncertainty of these 

assumptions into the results, where the assumptions may involve the missing data 

mechanism (NMAR and MAR) as well as which auxiliary variables to include.  One can 
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also perform a sensitivity analysis of sorts that involves presenting results using 

different subsets of auxiliary variables in the MI analysis, or in the case where MI is 

used after modeling the missing data mechanism, findings resulting from various 

assumptions of the missing data mechanism.  This will give a sense of the robustness 

of the results.  The CC analysis should be included among these.   

In summary, molecular epidemiology studies face a particularly challenging 

missing data problem in that the majority of these studies will be missing data on the 

key variable of interest, the biomarker.  While it seems sensible to study only those with 

the measured biomarker, we argue the importance of including those who would be 

eligible for study despite the missing biomarker.  At the very least, we urge comparison 

of features between those with and without missing data and strongly encourage the 

incorporation of missing data methods into the analysis when it is warranted.  More 

specifically, if these comparisons indicate the data are not MCAR, and MAR seems 

reasonable, we highly recommend use of standard MI.  Even in cases where the data 

are MCAR, one can benefit from MI in efficiency.  If it is likely that the data are NMAR 

and one can assume the strong presence of auxiliary information, standard MI may still 

be a reasonable estimation-enhancing tool.  Otherwise, MI that models the missing data 

mechanism is a possibility.  A useful feature of MI is that in either case it allows for 

incorporation of uncertainty of these factors into the results.  
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Table 1.  Description of Scenarios Used in Simulation Study.  
Table  Scenario Median % 

Missing X1 

Nature of 

Missing 

Auxiliary 

Relationship 

Variable Type
*
  

2a. Impact of % 

Missing Under 

Condition 1 

A  20% Condition 1
a Strong

1 
X1 binary  

 B  30% Condition 1
a Strong

1
 X1 binary 

 C  40% Condition 1
a Strong

1
 X1 binary 

2b. Impact of % 

Missing Under 

Condition 2  

D  20% Condition 2
b 

Strong
2
 X1 continuous  

 

 E  30% Condition 2
b 

Strong
2
 X1 continuous  

 

 F  40% Condition 2
b 

Strong
2
 X1 continuous  

 

2c. Impact of % 

Missing Under 

Condition 3 

G  20% Condition 3
c Strong

2
 X1 continuous  

 

 H  30% Condition 3
c Strong

2
 X1 continuous  

 

 I   40% Condition 3
c Strong

2
 X1 continuous  

 

3a. Impact of 

Auxiliary 

Relationship 

Under Condition 1 

J  22%  Condition 1
d
 None

3 X1 binary 

 K  22% Condition 1
d
 Moderate

4 X1 binary 

 L  22% Condition 1
d 

Strong
5 X1 binary 

3b. Impact of 

Auxiliary 

Relationship 

Under Condition 2 

M  20% Condition 2
b
  None

3
 X1 continuous  

 

 N  20% Condition 2
b 

Moderate
6
 

 

X1 continuous  

 

 O  20% Condition 2
b 

Strong
2
 X1 continuous  

 

3c. Impact of 

Auxiliary 

Relationship 

Under Condition 3 

P  20% Condition 3
c
  None

3
 X1 continuous  

 

 Q  20% Condition 3
c 

Moderate
6
 

 

X1 continuous  

 

 R  20% Condition 3
c 

Strong
2
 X1 continuous  
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*
Coefficient values are 1 for X1 given X2=0; 2.5 for X1 given X2=1; and 1.5 for the interaction 

 
a
Condition 1: X1 is 7.4 times more likely to be missing if X1=1 

 
b
Condition 2: Extreme values of X1 are more likely to be missing (probability of missing is a quadratic function of 

X1 or the log odds of missing X1= γ 0+ γ 1 X1 + γ 2 X1
2
, where γ 1=-1 and γ 2=2.) 

 
c
Condition 3: A 1-unit increase in X1 corresponds to a 7.4 times decrease in the probability of missing for controls, 

but a 7.4 times increase for cases  

 
d
Condition 1: X1 is 12.2 times more likely to be missing if X1=1 

1
Strong: Those with X1=1 have Z values that are 3 units higher on average than those with X1=0 

2
Strong: Average correlation between X1 and Z is 0.97 

3
None: X1 and Z are independent variables 

4
Moderate: Those with X1=1 have Z values that are 1 unit higher on average than those with X1=0 

5
Strong: Those with X1=1 have Z values that are 4 units higher on average than those with X1=0 

6
Moderate: Average correlation between X1 and Z is 0.57 

 

Table 2: Impact of Percentage Missing Under Conditions 1, 2, and 3. Results From 
Fitting Full, Complete-Case, and Multiple Imputation Models to 1000 Simulated Data 
Sets With a Sample Size of 1000 Where the Covariate of Interest and as a Result the 
Interaction Term Were Missing for Some Subjects and the Auxiliary Information Was 
Strong. 
 

a. Condition 1 

Scenario Variable* Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

A: 20% 
missing 

        

 X1 (X2=0) Full 1.002 0.211 0.002 0.044 0.543 95.0 (93.6,96.4) 
  CC 1.000 0.284 -0.000 0.081 1.000 95.8 (94.6,97.0) 
  MI 1.062 0.230 0.062 0.052 0.644 95.9 (94.7,97.1) 
 X1 (X2=1) Full 2.549 0.378 0.049 0.166 0.068 95.4 (94.1,96.7) 
  CC 2.713 4.822 0.213 2.436 1.000 97.0 (95.9,98.1) 
  MI 2.543 0.426 0.043 0.178 0.072 96.8 (95.7,97.9) 
 Interaction Full 1.547 0.434 0.047 0.204 0.082 95.7 (94.4,97.0) 
  CC 1.713 4.894 0.213 2.503 1.000 96.7 (95.6,97.8) 
  MI 1.482 0.483 -0.018 0.205 0.082 96.1 (94.9,97.3) 

B: 30% 
missing 

        

 X1 (X2=0) Full 1.003 0.211 0.003 0.044 0.358 94.6 (93.2,96.0) 
  CC 0.992 0.345 -0.008 0.122 1.000 95.0 (93.6,96.4) 
  MI 1.095 0.245 0.095 0.065 0.531 94.9 (93.5,96.3) 
 X1 (X2=1) Full 2.558 0.379 0.058 0.146 0.014 97.2 (96.2,98.2) 
  CC 3.288 25.207 0.788 10.689 1.000 98.5 (97.7,99.3) 
  MI 2.557 0.462 0.057 0.178 0.017 98.3 (97.5,99.1) 
 Interaction Full 1.555 0.435 0.055 0.195 0.018 96.1 (94.9,97.3) 
  CC 2.295 25.290 0.795 10.904 0.018 96.1 (94.9,97.3) 
  MI 1.462 0.515 -0.038 0.219 0.020 97.8 (96.9,98.7) 

C: 40% 
missing 

        

 X1 (X2=0) Full 1.020 0.211 0.020 0.045 0.258 95.6 (94.3,96.8) 
  CC 0.991 0.411 -0.009 0.175 1.000 95.5 (94.2,96.8) 
  MI 1.137 0.263 0.137 0.083 0.474 94.1 (92.6,95.6) 
 X1 (X2=1) Full 2.540 0.377 0.040 0.140 0.006 96.6 (95.5,97.7) 
  CC 4.121 64.794 1.621 23.920 1.000 96.5 (95.4,97.6) 
  MI 2.536 0.489 0.036 0.177 0.007 97.5 (96.5,98.5) 
 Interaction Full 1.520 0.433 0.020 0.191 0.008 96.0 (94.8,97.2) 
  CC 3.131 64.890 1.631 24.283 1.000 97.0 (95.9,98.1) 
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  MI 1.399 0.538 -0.101 0.220 0.009 97.2 (96.2,98.2) 

b. Condition 2 

Scenario Variable Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

D: 20% 
missing 

        

 X1 (X2=0) Full 1.007 0.108 0.007 0.012 0.590 95.5 (94.2,96.8) 
  CC 1.010 0.147 0.010 0.021 1.000 95.9 (94.7,97.1) 
  MI 1.059 0.115 0.059 0.017 0.820 92.5 (90.9,94.1) 
 X1 (X2=1) Full 2.552 0.279 0.052 0.089 0.909 93.7 (92.2,95.2) 
  CC 2.548 0.298 0.048 0.098 1.000 93.4 (91.9,94.9) 
  MI 2.593 0.281 0.093 0.095 0.966 94.5 (93.1,95.9) 
 Interaction Full 1.544 0.300 0.044 0.102 0.872 93.6 (92.1,95.1) 
  CC 1.538 0.332 0.038 0.117 1.000 94.0 (92.5,95.5) 
  MI 1.534 0.304 0.034 0.101 0.863 94.0 (92.5,95.5) 

E: 30% 
missing 

        

 X1 (X2=0) Full 1.003 0.108 0.003 0.012 0.437 94.5 (93.1,95.9) 
  CC 1.008 0.168 0.008 0.027 1.000 94.6 (93.2,96.0) 
  MI 1.079 0.118 0.079 0.020 0.741 92.4 (90.8,94.0) 
 X1 (X2=1) Full 2.532 0.277 0.032 0.078 0.798 95.7 (94.4,97.0) 
  CC 2.529 0.317 0.029 0.098 1.000 96.2 (95.0,97.4) 
  MI 2.612 0.284 0.112 0.091 0.928 95.6 (94.3,96.9) 
 Interaction Full 1.529 0.297 0.029 0.091 0.731 95.4 (94.1,96.7) 
  CC 1.521 0.359 0.021 0.125 1.000 94.8 (93.4,96.2) 
  MI 1.533 0.308 0.033 0.093 0.743 95.4 (94.1,96.7) 

F: 40% 
missing 

        

 X1 (X2=0) Full 1.005 0.108 0.005 0.011 0.330 95.8 (94.6,97.0) 
  CC 1.007 0.197 0.007 0.035 1.000 95.9 (94.7,97.1) 
  MI 1.109 0.123 0.109 0.026 0.749 87.5 (85.5,89.5) 
 X1 (X2=1) Full 2.551 0.279 0.051 0.081 0.620 95.7 (94.4,97.0) 
  CC 2.563 0.355 0.063 0.131 1.000 96.2 (95.0,97.4) 
  MI 2.675 0.295 0.175 0.112 0.852 94.3 (92.9,95.7) 
 Interaction Full 1.547 0.300 0.047 0.094 0.563 95.1 (93.8,96.4) 
  CC 1.557 0.406 0.057 0.168 1.000 95.3 (94.0,96.6) 
  MI 1.565 0.319 0.065 0.098 0.588 96.9 (95.8,98.0) 

c. Condition 3 

Scenario Variable Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

G: 20% 
missing 

        

 X1 (X2=0) Full 1.012 0.108 0.012 0.012 0.076 94.7 (93.3,96.1) 
  CC 0.616 0.119 -0.384 0.162 1.000 11.9 (9.9,13.9) 
  MI 0.999 0.109 -0.001 0.012 0.077 94.3 (92.9,95.7) 
 X1 (X2=1) Full 2.549 0.279 0.049 0.080 0.667 96.1 (94.9,97.3) 
  CC 2.320 0.289 -0.180 0.120 1.000 87.1 (85.0,89.2) 
  MI 2.551 0.280 0.051 0.080 0.666 96.2 (95.0,97.4) 
 Interaction Full 1.537 0.300 0.037 0.091 0.635 96.1 (94.9,97.3) 
  CC 1.704 0.313 0.204 0.143 1.000 92.6 (91.0,94.2) 
  MI 1.552 0.301 0.052 0.092 0.642 95.7 (94.4,97.0) 

H: 30% 
missing 

        

 X1 (X2=0) Full 1.006 0.108 0.006 0.012 0.027 95.0 (93.6,96.4) 
  CC 0.331 0.127 -0.669 0.466 1.000 0.3 (0,0.6) 
  MI 0.983 0.110 -0.017 0.013 0.028 95.0 (93.6,96.4) 
 X1 (X2=1) Full 2.528 0.277 0.028 0.075 0.179 95.8 (94.6,97.0) 
  CC 1.927 0.299 -0.573 0.419 1.000 48.6 (45.5,51.7) 
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  MI 2.492 0.277 -0.008 0.072 0.171 95.6 (94.3,96.9) 
 Interaction Full 1.522 0.297 0.022 0.084 0.743 96.0 (94.8,97.2) 
  CC 1.596 0.325 0.096 0.113 1.000 95.7 (94.4,97.0) 
  MI 1.509 0.298 0.009 0.081 0.713 96.1 (94.9,97.3) 

I: 40% 
missing 

        

 X1 (X2=0) Full 1.007 0.108 0.007 0.011 0.012 95.8 (94.6,97.0) 
  CC 0.027 0.139 -0.973 0.966 1.000 0.0 (0.0,0.0) 
  MI 0.968 0.110 -0.032 0.013 0.013 94.1 (92.6,95.6) 
 X1 (X2=1) Full 2.537 0.277 0.037 0.079 0.092 95.6 (94.3,96.9) 
  CC 1.627 0.312 -0.873 0.864 1.000 23.1 (20.5,25.7) 
  MI 2.461 0.276 -0.039 0.073 0.085 95.4 (94.1,96.7) 
 Interaction Full 1.531 0.298 0.031 0.089 0.683 96.1 (94.9,97.3) 
  CC 1.600 0.342 0.100 0.130 1.000 95.2 (93.9,96.5) 
  MI 1.493 0.297 -0.007 0.081 0.627 96.9 (95.8,98.0) 

*
Coefficient values are 1 for X1 given X2=0; 2.5 for X1 given X2=1; and 1.5 for the interaction 

 
 
 
 
 
Table 3: Impact of Auxiliary Relationship Under Conditions 1, 2, and 3. Results From 
Fitting Full, Complete-Case, and Multiple Imputation Models to 1000 Simulated Data 
Sets With a Sample Size of 1000 Where the Covariate of Interest and as a Result the 
Interaction Term Were Missing for Approximately 20% of Subjects. 
 

a. Condition 1 
Scenario Variable* Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

J: No 
Auxiliary 

        

 
X1 (X2=0) Full 0.998 0.211 -0.002 0.043 0.403 95.2 (93.9,96.5) 

  CC 0.999 0.323 -0.001 0.106 1.000 95.3 (94.0,96.6) 
  MI 1.106 0.321 0.106 0.101 0.951 95.4 (94.1,96.7) 
 X1 (X2=1) Full 2.542 0.378 0.042 0.161 0.031 95.2 (94.0,96.6) 
  CC 2.890 11.419 0.390 5.271 1.000 95.7 (94.4,97.0) 
  MI 2.330 0.615 -0.170 0.317 0.060 92.8 (91.2,94.4) 
 Interaction Full 1.544 0.434 0.044 0.195 0.037 96.0 (94.8,97.2) 
  CC 1.891 11.500 0.391 5.321 1.000 96.4 (95.2,97.6) 
  MI 1.223 0.690 -0.277 0.382 0.072 94.6 (93.2,96.0) 

K: 
Moderate 
Auxiliary 

        

 X1 (X2=0) Full 0.986 0.211 -0.014 0.043 0.410 96.1 (94.9,97.3) 
  CC 0.984 0.323 -0.016 0.105 1.000 95.7 (94.4,97.0) 
  MI 1.157 0.312 0.157 0.110 1.039 94.9 (93.5,96.3) 
 X1 (X2=1) Full 2.53 0.376 0.03 0.149 0.066 95.9 (94.7,97.1) 
  CC 2.698 4.867 0.198 2.28 1.000 96.1 (94.9,97.3) 
  MI 2.438 0.600 -0.062 0.251 0.110 96.3 (95.1,97.5) 
 Interaction Full 1.544 0.432 0.044 0.195 0.080 95.7 (94.4,97.0) 
  CC 1.714 4.949 0.214 2.437 1.000 96.8 (95.7,97.9) 
  MI 1.281 0.671 -0.219 0.317 0.130 96.7 (95.6,97.8) 

L: Strong 
Auxiliary 

        

 X1 (X2=0) Full 0.997 0.211 -0.003 0.046 0.403 95.4 (94.1,96.7) 
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  CC 0.999 0.324 -0.001 0.113 1.000 94.4 (93.0,95.8) 
  MI 1.027 0.223 0.027 0.051 0.447 95.3 (94.0,96.6) 
 X1 (X2=1) Full 2.546 0.378 0.046 0.158 0.027 96 (94.8,97.2) 
  CC 2.968 12.65 0.468 5.941 1.000 96.9 (95.8,98.0) 
  MI 2.555 0.407 0.055 0.176 0.030 96.5 (95.0,97.4) 
 Interaction Full 1.549 0.434 0.049 0.200 0.034 96.1 (94.9,97.3) 
  CC 1.969 12.730 0.469 5.971 1.000 96.6 (95.5,97.7) 
  MI 1.528 0.462 0.028 0.205 0.034 96.2 (95.0,97.4) 

b. Condition 2 
Scenario Variable Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

M: No 
Auxiliary 

        

 
X1 (X2=0) Full 1.008 0.108 0.008 0.011 0.496 95.6 (94.3,96.9) 

  CC 1.013 0.146 0.013 0.023 1.000 93.8 (92.3,95.3) 
  MI 1.090 0.145 0.090 0.029 1.254 92.0 (90.3,93.7) 
 X1 (X2=1) Full 2.551 0.280 0.051 0.083 0.869 95.6 (94.3,96.9) 
  CC 2.550 0.299 0.050 0.096 1.000 95.4 (94.1,96.7) 
  MI 2.357 0.293 -0.143 0.085 0.888 93.1 (91.5,94.7) 
 Interaction Full 1.543 0.300 0.043 0.093 0.804 94.9 (93.5,96.3) 
  CC 1.537 0.333 0.037 0.116 1.000 95.5 (94.2,96.8) 
  MI 1.267 0.325 -0.233 0.126 1.084 90.2 (88.4,92.0) 

N: 
Moderate 
Auxiliary 

        

 X1 (X2=0) Full 1.011 0.108 0.010 0.012 0.533 95.4 (94.1,96.7) 
  CC 1.009 0.146 0.009 0.023 1.000 94.5 (93.1,95.9) 
  MI 1.163 0.142 0.163 0.046 2.039 81.4 (79.0,83.8) 
 X1 (X2=1) Full 2.558 0.280 0.058 0.090 0.911 94.2 (92.8,95.6) 
  CC 2.555 0.298 0.055 0.099 1.000 94.5 (93.5,96.3) 
  MI 2.571 0.296 0.071 0.085 0.855 96.7 (95.6,97.8) 
 Interaction Full 1.547 0.300 0.047 0.103 0.845 94.9 (93.5,96.3) 
  CC 1.545 0.333 0.045 0.122 1.000 94.7 (93.3,96.1) 
  MI 1.408 0.328 -0.092 0.102 0.832 95.1 (93.8,96.4) 

O: Strong  
Auxiliary 

        

 X1 (X2=0) Full 1.002 0.108 0.002 0.012 0.518 94.5 (93.1,95.9) 
  CC 1.004 0.146 0.004 0.024 1.000 94.2 (92.8,95.6) 
  MI 1.053 0.114 0.053 0.016 0.693 93.0 (91.4,94.6) 
 X1 (X2=1) Full 2.530 0.278 0.030 0.079 0.860 95.2 (93.9,96.5) 
  CC 2.530 0.297 0.030 0.092 1.000 95.0 (93.6,96.4) 
  MI 2.573 0.280 0.073 0.084 0.908 95.7 (93.8,96.4) 
 Interaction Full 1.527 0.298 0.027 0.092 0.788 95.0 (93.6,96.4) 
  CC 1.526 0.331 0.026 0.117 1.000 94.9 (93.5,96.3) 
  MI 1.520 0.303 0.020 0.092 0.791 95.1 (93.8,96.4) 

c. Condition 3 

Scenario Variable Method Mean β Mean SE Mean Bias MSE RelMSE Coverage 

P: No 
Auxiliary 

        

 X1 (X2=0) Full 1.006 0.108 0.006 0.011 0.066 96.2 (95.0,97.4) 
  CC 0.608 0.119 -0.392 0.168 1.000 10.2 (8.3,12.1) 
  MI 0.680 0.119 -0.320 0.116 0.691 23.9 (21.3,26.5) 
 X1 (X2=1) Full 2.549 0.279 0.049 0.085 0.693 94.6 (93.2,96.0) 
  CC 2.322 0.288 -0.178 0.122 1.000 85.3 (83.1,87.5) 
  MI 1.974 0.274 -0.526 0.324 2.654 49.9 (46.8,53.0) 
 Interaction Full 1.543 0.299 0.043 0.097 0.640 95.1 (93.8,96.4) 
  CC 1.714 0.312 0.214 0.152 1.000 92.3 (90.6,94.0) 
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  MI 1.294 0.297 -0.206 0.093 0.609 93.5 (92.0,95.0) 
Q: 

Moderate 
Auxiliary 

        

 X1 (X2=0) Full 1.003 0.108 0.004 0.012 0.073 94.5 (93.1,95.9) 
  CC 0.610 0.119 -0.390 0.167 1.000 11.9 (9.9,13.9) 
  MI 0.793 0.116 -0.207 0.057 0.340 54.4 (51.3,57.5) 
 X1 (X2=1) Full 2.535 0.277 0.035 0.085 0.657 93.5 (92.0,95.0) 
  CC 2.309 0.287 -0.191 0.129 1.000 85.1 (82.9,87.3) 
  MI 2.222 0.279 -0.278 0.141 1.093 80.9 (78.5,83.3) 
 Interaction Full 1.531 0.298 0.031 0.096 0.658 94.3 (92.9,95.7) 
  CC 1.699 0.310 0.198 0.146 1.000 91.4 (89.7,93.1) 
  MI 1.428 0.301 -0.072 0.074 0.508 95.4 (94.1,96.7) 

R: Strong 
Auxiliary 

        

 X1 (X2=0) Full 0.999 0.108 -0.001 0.012 0.069 95.4 (94.1,96.7) 
  CC 0.603 0.118 -0.397 0.172 1.000 11.1 (9.2,13.0) 
  MI 0.986 0.109 -0.014 0.012 0.072 94.8 (93.4,96.2) 
 X1 (X2=1) Full 2.533 0.277 0.033 0.081 0.635 95.0 (93.6,96.4) 
  CC 2.303 0.287 -0.197 0.128 1.000 84.2 (81.9,86.5) 
  MI 2.533 0.278 0.033 0.081 0.628 95.2 (93.9,96.5) 
 Interaction Full 1.533 0.298 0.033 0.091 0.638 95.3 (94.0,96.6) 
  CC 1.700 0.310 0.200 0.142 1.000 92.8 (91.2,94.4) 
  MI 1.547 0.299 0.047 0.091 0.640 95.8 (94.6,97.0) 

*
Coefficient values are 1 for X1 given X2=0; 2.5 for X1 given X2=1; and 1.5 for the interaction 
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Table 4: Results From Fitting Complete-Case and Multiple Imputation Models to Data 
from the Long Island Breast Cancer Study Project (15) Assessing the Effect of a Gene-
Environment Interaction where m=10 
Genotype/Alcohol Status OR

a
CC 

N=2,063 
(95% CI) 

OR
a
MI 

N=3,064;m=10 
(95% CI) 

% Change in β Coefficient 

Slow-Intermediate/Non-alcohol consumer 1.00 
 

1.00  

Fast/Non-alcohol consumer 1.18 
(0.88, 1.58) 

1.14 
(0.88, 1.48) 

22.11% 

Slow-Intermediate/<15 grams 1.16 
(0.89, 1.50) 

1.11 
(0.89, 1.39) 

25.38% 

Fast/ < 15 grams 0.92 
(0.69, 1.23) 

0.95 
(0.75, 1.20) 

30.89% 

Slow-Intermediate/15-30 grams 1.49 
(0.99, 2.25) 

1.27 
(0.89, 1.82) 

40.23% 

Fast/ 15-30 grams 2.32 
(1.35, 4.01) 

1.68 
(1.03, 2.75) 

38.68% 

Slow-Intermediate/ 30+ grams 0.72 
(0.43, 1.21) 

0.77 
(0.49, 1.19) 

17.40% 

Fast/ 30+ grams 0.98 
(0.52, 1.87) 

0.86 
(0.47, 1.56) 

> 100% 

CC=Complete Case; CI=Confidence Interval; MI= Multiple Imputation;OR=Odds Ratio 
a
Estimates are adjusted for age at diagnosis, education, race, caloric intake, smoking status and body 

mass index 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A: STATA Code for Implementing MI 

/* Data are generated under condition 1 */ 

/* case is a binary indicator for case/control status */ 

/* x1 and x2 are binary variables, x1 is missing data on 20% of subjects and is NMAR */ 
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/* z is a continuous auxiliary variable */ 

 

/*Read in data set where data were generated under condition 1*/ 

 

insheet using “~/scen1.csv”, 

clear 

 

/* Method 1 for Imputing Interaction Effects: Generate interaction term first and then 

impute */ 

 

/*Create Interaction term*/ 

gen theint=x1*x2 

 

/*Use ICE to create 10 imputed data sets*/ 

ice case x1 x2 theint z, saving(simimpute.dta) m(10) replace  

 

/*Read in data set containing all 10 imputed data sets*/ 

use simimpute.dta, clear 

 

/*Use MICOMBINE to fit the desired model and combine results across 10 data sets*/ 

micombine logit case x1 x2 theint 

 

 

/* Method 2 for Imputing Interaction Effects: Impute first then create interaction term as 

is done in passive imputation */ 

 

/*Create Interaction term*/ 

gen theint=x1*x2 

 

/*Use ICE to create 10 imputed data sets*/ 

/* Using passive option to implement Method 2 for imputing interaction term */ 

ice case x1 x2 theint z saving (simimpute.dta) m(10) passive (theint:x1*x2) replace  

 

/*Read in data set containing all 10 imputed data sets*/ 

use simimpute.dta, clear 

 

/*Use MICOMBINE to fit the desired model and combine results across 10 data sets*/ 

micombine logit case x1 x2 theint 
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