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Targeted Genomic signature profiling with
Quasi-alignment statistics

Rao Mallik Kotamarti, Douglas W. Raiford, Michael Hahsler, Yuhang Wang,
Monnie McGee, and Maggie Dunham

Abstract

Genome databases continue to expand with no change in the basic format of se-
quence data. The prevalent use of the Classic alignment based search tools like
BLAST have significantly pushed the limits of Genome Isolate research. The
relatively new frontier of Metagenomic research deals with thousands of diverse
genomes with newer demands beyond the current homologue search and analy-
sis. Compressing sequence data into a complex form could facilitate a broader
range of sequence analyses. To this end, this research explores reorganizing se-
quence data as complex Markov signatures also known as Extensible Markov
Models. Markov models have found successful application in Biological Se-
quence analysis applications through small, but important extensions to the orig-
inal theory of Markov Chains. Extensible Markov Model (EMM) offers a novel
Quasi-alignment complement to the classic alignment based homologous sequence
search methods like BLAST. EMM based Biolnformatic analysis (EMMBA) in-
corporates automatic learning which allows the Markov chain creation dynami-
cally. Oligonucletide or Genomic word frequencies form the core sequence data
in alignment free methods. EMMBA extends the Karlin-Altschul statistics to
bring forth an analogous E-Score statistical significance to the Quasi-alignment
domain. By consolidating a community of sequences into a single searchable
profile, EMM methodology further reduces the search space for classification.
Through dynamic generation of the score matrix for each community profile,
EMMBA fine tunes the score assignments. Each evaluation iteratively adjusts
the profile score matrix to account for point probabilities of the query to ensure
Karlin-Altschul assumptions are satisfied to derive meaningful statistical signifi-
cance. The presence of multiple Quasi-alignments resembles multiple local align-
ments of BLAST. Quasi-alignments are scored based on a difference distribution



of Gumbel scores. Species signature profiles allow for statistical validation of
novel species identification. Working in EMM transformation space speeds up
classification and generates distance matrix for differentiation. The techniques
and metrics presented are validated using the microbial 16s rRNA sequence data
from NCBI.



Targeted Genomic signature profiling with
Quasi-alignment statistics

Rao M. Kotamarti ', Douglas W. Raiford, Michael Hahsler, Yuhang Wang,
Monnie McGee and Margaret H. Dunham !

Abstract

Genome databases continue to expand with no change in the basic format of sequence data.
The prevalent use of the Classic alignment based search tools like BLAST have significantly
pushed the limits of Genome Isolate research. The relatively new frontier of Metagenomic
research deals with thousands of diverse genomes with newer demands beyond the current ho-
mologue search and analysis. Compressing sequence data into a complex form could facilitate
a broader range of sequence analyses. To this end, this research explores reorganizing sequence
data as complex Markov signatures also known as Extensible Markov Models. Markov models
have found successful application in Biological Sequence analysis applications through small,
but important extensions to the original theory of Markov Chains. Extensible Markov Model
(EMM) offers a novel Quasi-alignment complement to the classic alignment based homologous
sequence search methods like BLAST. EMM based Biolnformatic analysis (EMMBA) incorpo-
rates automatic learning which allows the Markov chain creation dynamically. Oligonucletide or
Genomic word frequencies form the core sequence data in alignment free methods. EMMBA ex-
tends the Karlin-Altschul statistics to bring forth an analogous E-Score statistical significance to
the Quasi-alignment domain. By consolidating a community of sequences into a single search-
able profile, EMM methodology further reduces the search space for classification. Through
dynamic generation of the score matrix for each community profile, EMMBA fine tunes the
score assignments. Each evaluation iteratively adjusts the profile score matrix to account for
point probabilities of the query to ensure Karlin-Altschul assumptions are satisfied to derive
meaningful statistical significance. The presence of multiple Quasi-alignments resembles multi-
ple local alignments of BLAST. Quasi-alignments are scored based on a difference distribution
of Gumbel scores. Species signature profiles allow for statistical validation of novel species
identification. Working in EMM transformation space speeds up classification and generates
distance matrix for differentiation. The techniques and metrics presented are validated using
the microbial 16s rRNA sequence data from NCBI.

Acknowledgementdhe authors wish to acknowledge support receiyeithé first author from T-Systems, Inc in the foofra
graduate fellowship supporting his Ph.D. studieSMU.

Southern Methodist University, rkotamarti@engr.ssdu.
Corresponding author: mhd@lyle.smu.edu

Hosted by The Berkeley Electronic Press



INTRODUCTION

Statistical analysis of Genomes often requires use of frequenciesoplatierns [1]. A Targeted Genomic
Signature is an oligomer frequency distribution over a select section of arnisonghGenome like 16s rRNA
[2]. Quastalignment refers to a region wide alignment based on similar word freqsdetigeen two
sequence fragments. This is different from Classic alignment wheaighenent is individual position based
assessment using substitution matrices [3,4].

Supervised learning serves well in setting up libraries of models describimguroties of sequences. This
allows for easily determining the taxa of a sequence from a genomic sasrgilewn in [5]. Instead of merely
searching for homologous sequences every time for every sample to determibly pelsited genomes,
targeted Data mining methods could allow for a more efficient search and otigenafdhe known data [6].In
this research, data mining versatility of different clustering metincsa Markov model based classification are
utilized to set up libraries of sequence community profiles.

As the amount of genomic data explodes to billions of molecular sequences entaliigtems that can learn
from and organize data into a compressed and consolidated form could improve efficgamoing framework
based on Data Mining principles vastly improves such abstraction through creagpnesentative models [7]
and improved models further extend the versatility of analyses.

Extensible Markov Model (EMM)

The theory of Markov Models is well known in Bioinformatics for its innate ability poagent sequence
information [8] probabilistically with efficiency and unmatched sensitif8]. The extended forms of the
model, such as the Hidden Markov Model [9] account for much of the successful application.

Main principle behind Markov modeling is that future state depends only on the curretr ke immediate
preceding ones depending on the order of the chain. First order Markov modelingaititere state is based
on the current state is by far the most prevalent in Bioinformatics apmhsal he Classic Markov model relies
on fixed states that directly map the real world to symbols. However, reareility is useful when modeling
dynamic biological systems.

The classic theory was extended to address the relatively newer figidewhid data streams by Dunham et al
[10]. The Extensible Markov Model (EMM) is the basis for the research presemtedEMMs allow addition,
deletion and updating of states within a system.

The Extensible Markov Model [10] is a time varying first order Markov chain [Lid.dasy to think of a
Markov chain as a directed graph where the nodes represent real world statesaecxithieetransitions
between them. Each a4;; is labeled with its cardinality as is each naileGiven an ari;; =< n;,n; >, the

transition probability is calculated Jﬁfjl'. The salient features of the EMM are:

e The topology of the Markov chain varies including the number of nodes, the labeling of nodes, the
number of arcs, and the labeling of the arcs. Algorithms are in place to insert neywdetetesnodes,
insert arcs, and delete arcs.

e Each node in the EMM corresponds to a cluster of real world states — as opposed tbvarrddretate.
EMM algorithms are able to use different clustering and similarityfiistaneasures.
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EMMs have successfully been applied to many different applications including &iaie prediction [12] and
rare event detection [13]. EMM is extended in this work to represent biological seguercmore compact
complex form useful for rapid classification and differentiation of orgasism

EMM based Bioinformatic Analysis (EMMBA) - Our Work

Goals: Classification using EMM allows us to ask the familiar questionshidee statistically significant is the
association between an unknown sequence and a particular known community of seqlibizxcdsals with a
MxN environment where there are N test sequences of interest that ardassifeed across M profiles.

Differentiation, on the other hand, quantifies the distance by which, a communitjuehses differ, in order
to characterize intrgariability within a community. This deals with a NxN environment where therd are
profiles that are evaluated-adainstall to generate a distance matrix which is subsequently used for
Phylogenetic analysis.

Identification using EMM detects novel species. This is possible througlsiesdsof an unknown Species
EMM against a library of EMMs representing all known Species signaturéeprof

Overview: EMMBA involves three successive steps: 1) Preprocessing sequenc®) daiiéding of
model(s) to represent the community profiles and 3) evaluation of a sequenceest tatscore its association
with the communities.

As in all alignment free methods of sequence analysis, a word of fixed width idezedsand its permutations
are counted to create a frequency histogram or word statistics for a GErignThe word width may be a 2
(di-mer), 3(trimer), 4(tetramer) and so on. The notation used-m@r and it is found that beyond tetramer
resolution, no significant benefit is observed in Qu@dighment analyses.

Analysis of RNA sequences is possible by first transforming the RNA segue a numerical form using word
frequencies and then generating the EMMs for further analysis. SynaA sequences may also be studied
by first converting triplets to Amino Acids and then to a numerical form.

Scoring sequence comparisons.  Assessment scores are determined by the product of probabilities
associated with each correctly observed transition during the evaluation steggofeace against a model. The
incorrect transitions are allotted minimal probabilities. The missimgitians can be ignored to allow for
partial sequence or fragment classification. However, this researchawdys the complete sequence
classification and defers fragment analysis to future Metagenoneiarobs

When analyzing sequence communities, it may be noted that some regions arenmsemneed than others and
different regions contribute when establishing consensus. As such, scooesmate derived for each
community making up a profile. Scoring of a test sequence against a modelysskiggitive to the word
statistics of that community.

Related Work

Much of Markov model [14] applications in Bioinformatics deal exclusively witthdidh Markov concepts, to
enable the notion that a symbol to state association is not necessadilyMbis have the advantage of
accommodating multiple symbol outputs in a given state probabilistically. lTdugsdor useful applications
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such as Gene finding [15] and profile HMM [9]. However, HMMs require manual mcekgian initially

which limits their rapid application. Similarly, profile HMM requires jaleggnment of multiple sequences prior
to model generation which can be expensive. On the other hand, EMMs employ a learteen&bieally build
the model representing multiple sequences. Future research will addressrtiverking between HMM and
EMM where one can be converted to the other.

Covariance models differ from profile HMM in the aspect of possibilityho&ifolding within a sequence
according to Watsoegfrick complementarities [16]. These models are useful for predictingwsactisage of
EMM for structure analysis is deferred to future research.

Our Research

This research continues with a formal presentation of EMM based Bioinfosmiatng the microbial 16s
rRNA and then describes methods by which statistically significant fotasigin and differentiation are
accomplished. To substantiate claims about EMMBA versatility, three exauamgldlustrated as follows; the
first is prediction of phylogenetic class using a 16s rRNA database afbi@torganisms, the second is
identification of organism and the third is demonstration of differential asaddysgenerating distance matrix
and a phylogenetic tree for genomic sample of multiple species.

Creating new methods: Algorithmic approaches to problem solving are evident in classic alignmeik base
Bioinformatics considering the predominant use of BLAST like similaritycbetols [17]. Even in the
Quastalignment space also, where oligomer or word statistics dominate, it is ofessagy to develop new
algorithms on the same old conceptual frameworks. For example, this is de#&fitevidi algorithm which
uncovers the hidden state sequences [18]. However, in all such cases, the algorgptatoads highly
specialized and somewhat limited to the problem at hand. This research on the otherdeantsl @re
customizable algorithmic framework within the same modeling paradigm. 8ambwork can be used to
answer many types of Bioinformatic questions against the same background ateddprary of profiles. For
example, algorithms range from a simple transition sensitive match couagatggn usable for higher taxa
classification to a more involved &core that scores according to extended K& tischul statistics. Other
algorithmic adaptations presented here also include novel sequence resoamizell as those that generate
pairwise distance matrix usable for phylogenetic analysis.

Ensuring Statistical Significance: While dealing with heuristics to address the massive sequence homology search
issue, qualifying the results with sound statistical basis eliminabes reports that could occur by chance. This
is done successfully by Karhfltschul statistics in various BLAST literature which uses a paraoeitodel to
characterize the statistical significance of each and every [£8120]. Though the problem BLAST seeks to
address is that of similarity search across an ever growing databdalies of residues using Classic

alignment, the statistical principles offer extendable theoreticgd® Quasalignment solution space also.

The primary distinction between the classic alignment based and-&igasnent domains can be isolated to

the differences in the scoring of matches and sequences. This research expdmsen of KarlinAltschul

statistics for the purpose of determining statistical significémc®uasialignment.

http://biostats.bepress.com/cobra/art63



METHODS

Baseline EMM overview

The background for research outlined here is based on Extensible Markov Model. The EMM is buil
dynamically as input vectors are fed into the EMM Learner which eitherdimolgtching state to cluster the
new vector into or adds a new state. Whenever a new input vector is processed througé BVatiearner,
the current state of the EMM changes to the state into which the new input vehisterged. In case of a new
state that is created as a result of not finding an existing matchingls¢éateirrent state becomes the new state.
Throughout the dynamic model building process, transitions are recorded and courdézifatirtg transition
frequencies/probabilities as done typically in Markov chains except tha glassical Markov models, such
information is known ahead of time; in case of EMM due to its dynamic nature, tvansformation is
updated whenever a new input vector is fed to the EMM learner. Due to its aatl@aating capability and
the flexibility it offers for selecting various clustering techniques M&\Vare quite versatile with applications in
many areas including Bioinformatics.

Bioinformatic extensions to EMM

Unlike traditional machine learning tools as well as EMM, bioinformatiedsdeith many long sequences of a
select alphabet whether it be for representing DNA, RNA or protein. Thistfoeeds to be converted before
EMM can be used to learn and build models. This is done by generating word statistrosus uniformly
placed points along a sequence. The meaning of “word" is simply the sliding wiricaxe varying between
2-4+ whose permutations are counted to generate frequency maps called Numennalidatmon Vectors.
Process is discussed in the next section.

Once preprocessed, sequences take the familiar form of vectors which cdnrive & EMM learner which
then either grows an existing state or grows the EMM itself by addingtaes. As an EMM is built, an
overall score matrix is also generated for it. The size of the score msatrexsame as the size of the input
vector referred to as Numerical Summarization Vector (NSV) to be disduis the next section. The entries in
the score matrix match up with the frequency counts in the NSV. For example, &mgifddf 2 would have
produced NSVs of size 16 for DNA which means for every pair of letters frompthaledt of 4 nucleotides,
there is a score in the score matrix. Once all training data is procesdeMEhdreation is complete, the Score
Matrix is finalized to take on a more symmetric form where the words shithergame letters would be set to
contain the same aggregate frequency. For example, a word formedifinemn2ay be AC or CA and in most
cases such pairs would have different counts. The symmetric form would combinelbeshaval assign it to
both pairs. This is a prevalent practice in evolution studies, but alternate r§2iicare also in use. This
research will include analysis of using symmetric as well as asymreeore matrices because it may be
possible to increase prediction accuracy by sacrificing elegance ofetyyn

The score matrix for an EMM is converted to a-tmyls score matrix as is typically done in Bioinformatics.
The Logodds Score for a word variation like AG is defined as follLOG(f1c/P(A).P(G)) wheref 4 Is the
frequency of letters A & G occurring together. P(A) and P(G) are the dchivprobabilities for letters A and
G in the model composition itself. The logarithm is typically based on natural logaiihe scores thus
generated are then multiplied by a 10 and rounded off to generate whole numbersll As ise@en later, the
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score matrices have to follow certain criteria before they can be usearéwnetric analysis. This will be
further discussed in the section for Statistical Significance.

Once augmented with score matrices, new sequences may be analyzddtasmeodels to determine
classification. In such assessments, statistical significartseatesperformed to generate the match scores.
Thus a number of extensions to the basic EMM frame work were necessarily agdepistre EMM for
sequence analysis.

Community profiling

For sequence analysis, it helps to consolidate related sequences or the 16sq&des of the related
organisms. The current classification has many levels of which Phylumhgytiest and strain is the lowest.
There are also several levelshatween such as Class and Genus. The communities at a level of interest can b
consolidated into a compact model available for fast search that iséyigignificant at some level. Such
community consolidation is referred to community profiling. For example, a groupafisngs within a class

could be condensed into an EMM supplemented with a Score Matrix and a centroid vectostateamtthe

model. Subsequently, the centroid of the cluster that makes up a state becoutésriesefessing whether an

NSV segment of a new sequence would best belong in one state cluster or anothenpfiidisegMM. Once

the best possible match is determined, the match between state clesteogl@and the test NSV segment can

be scored and qualified with a significance level.

This is somewhat analogous to profile HMM in that the training sequences are Kmeadhad time to
configure the HMM model prior to starting any biological analysis. le ch&£MMBA also, all training
sequences are consulted to derive the score matrix contents as well dsiahdequencketter probabilities.
Both of these are used in deriving statistical significance while processjugry against the database of
EMMs (models).

Formalization

Formal notation of Figure 1 for EMM based Bioinformatics is presented lmerg with explanations where
needed for the theoretical portion. Statistical Significance related siisous presented throughout.

There are three distinct process domains in dealing with EMM based BinatiorAnalysis: first is Numerical
Summarization where the sequence data is converted to word statistics, the sadwmre the model is built
based on the formatted training data from the first and finally the third caélezl/aluation step deals with
using the model(s) built to analyze new sequence data.

Preprocessing: Numerical Summarization:

Sequenc&Vords:Words in Bioinformatic sense are different from the linguistic sense irsplaaes and
punctuations do not separate them; they are simply defined as a sequence tdrshadran alphabet of a given
length. A sequeneword of length 3 is any consecutivdedter word that occurs in a sequence. Sequaiucds
may overlap; for example, a sequence of 4 letters would havtetBwords. Once the words are accounted
for, their frequencies provide a numeric representation. Usually therevaralsequence files that need to be
transformed into the appropriate numerical forms to create the desired EMMs.
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Numerical Summarization Vectors (NSVs) are generated in the prepnogestep along with Individual
Probability Vectors (IPVs). NSVs are used in building and evaluating EMMsenas IPVs are used in
computing Score Matrices useful for computing statistical parametemed@re used for both is the same
except that the word length is as desired by the model builder for the NSVsastieeeword length is set to 1
for IPVs.

Sequence Transformation: Defining segment as a section of a sequence of size Z, there can be Ktsagrae
sequence. Though segments can be of variable length, for simplicity, alr#sgrha sequence are assumed to
be the same size z. Numerical Summarization is a transformation functioy @t sequencs:of K

segments generatirk Numerical Summarization Vectors of lengtfrhe transformation function itself is a
counting function capturing the number of times a permutation of a pattern of }2ogtiurs within a segment.

For example, a pattern wid$hof 2 would generat4? = 16 = L within a segment where the bésis the size of

the alphabet of nucleotides in an RNA sequence. For a coding DNA sequence, thetalphsists of 20 amino
acids and as sud. = 202. For this work, we will use RNA sequence data only and analysis for DNA sequence
data will be deferred to future publications. Continuing to formally define all the@uponents therm, we

get the following.

Summarized Proteobacteria_ Gammaproteobacteria (pattern len=2)
[first 4 segments of size 50 nucleotides]

8_

7
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6 =)
2 0O

5 30
S

4 zL
O >
Z 0
3

3_ m:
o Q
Q=
0

2] &8
S

4 - L

0_

Seg 1 Seg 2 Seg 3 Seg 4
2344512345411253
/ ‘ ‘ 6422316233532322

3133024254832162
l40634323440503j1

~— "
4 segments of 16s rRNA Sequence 4 Numerical Summary Vectors
FASTA NSV

Numerical Summary Vectors contain a frequency bistm of counts for all permutations of the patiftength p for each segment. In case of a
sequence community, each sequence is separatedhfegonevious with a start NSV which essentiallyresents a start state for the model. The
NSV form of a sequence is used to either build rfsdeto query against a set of already built medel

Figure 1: Numerical Summary Vector Representation
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S Sequence of letters of DNA alphabet or Amino Acids

s Sequence fragment of a single segment

z Sequence Size

K Number of segments in S.
Number of Numerical Summarization Vectors (NSV) in S.

k a segment or NSV number {0..K}

Sk segment k

p Pattern width [2 for a dimer, 3 for a trimer, 4 for a tetramer]

L Length of an NSV (4° for nucleotides or 20" for amino acids)
Number of permutations of p successive letters in an NSV

z Length of a segment (N_/K)

Vi K™ NSV fora sequence S

v Complete set of NSVs for a sequence S

<S§1,55,..,5.>
<V, Vg, VP
C

<Cy,C3,..,0>

Ordered set of all segments of Sequence =5
Ordered set of all NSVs of Sequence =V
count or frequency of L permutation in an NSV

Ordered set of all permutation-frequencies in an NSV

X Score Matrix

xX* Adjusted Score Matrix (specific to each Query-Model pair)
f Frequency

f Normalized Frequency

f* Frequency after Symmetry

pp Point Probability

IPV Individual Probability Vector

NSV Numerical Summarization Vector

M Model

T Test Sequence

V. Ordered NSV set of test sequence T

G an EMM graph

E number of edges in the EMM graph

NSV number of nodes in the EMM graph

Q perfect graph of G where all nodes are inter-connected
r number of edges in

A r-E

k' matched node of the model

N Length of Query

LP Link Probability

SIM Similarity Value

{ (Zeta) Similarity Value

v Distance Function

F Function that returns Frequency of a word pattern

& penalty associated with unsupported transition

K' Number of matched states with supported transitions

This table describes the terminology to be use@f@sence for formalization used throughout thigka
Figure 2: Formal notation used in describing EMM based Bioinformatic Analysis
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The notationsS ands, represent a sequence and a segleegpectivelyF'(s;) denotes the transformation
function that converts th*» segment in to a numerical summary fasmn

Given K is the number of segments in<sq, s9, .., s > represents set of all the segments in S. Similarly,
< vy, v9,.., v > represents the set of all Numerical Summarization Vectors (NSVspording to sequen?

v, = F(s;) identifies the operation of transformation function onk*"esegment anV = F(S) identifies
transformation of the entire sequence vWthepresenting the complete set of NSVs correspondiSg to

An NSV v, is composed of a set of couiCy, =< ¢1, ¢a, ..,cr, > where L is the number of counts per an NSV.
Counts< ¢, 9, .., ¢, > are derived by counting the number of times a pattern of successive lettessvaitizsin
a segment. L, the number of counts per NSV, is derived from the number of possible pernuiftatjpetsern
of lengthp.

By increasing the pattern width p, the length of an NSV also increar = 47 for nucleotides anZ = 20? in
case of amino acids. The number of NSK = |V]| can also be adjusted for a given sequence by choosing
segmentation sizzfor each segment. The equat|V| =||S|/z| implies a uniform segment length »f
generatindV'| segments or NSVs.

At the end of transformation, each sequence is converted to a set of NSVs wieithegiresed for model
building or for evaluation to determine which model or which sequence communist thieNsSVs belongs to.
An example set of NSVs is shown in the Figure 2.

Resolution control is possible by adjusting the pattern widdind segment lengthin the preprocessing stage.
This will be discussed further in the Evaluation step. Pattern width also known as mgitddan have an

effect on the statistical significance of the reported classificagisults. As it will be shown later, a minimum
pattern width of 3 is known to offer higher significance levels in the 90% range wihalkeswalues like p=2,
though still accurate in classification in most cases, may offer sigmsfcaell below 90%. The frequency
histogram view of Figure 2 reflects the resolution of the summarizationrefdpdicates the cases (not shown)
where diminishing benefits occur when an unusually large value is used for padtdripwn such cases, much
of the frequency histogram will show zeros giving rise to other complexities détermining key parameters
of the underlying distribution for scores.

Learning: Model Building (clustering measures): NSVs are used to build an EMM for a sequence or a community
of sequences. A model is represented as a directed Graphtainingy nodes ant arcs. Unlike a classical
Markov Model, eaclnode is not bound to one symbol. In fact, emode represents a cluster consisting of

NSVs that are found to be similar by the model building process accordingraaity metric. The directed
edges onrcs are associated with additional information representing the relative proéslof traversal
assigned during the model building process.

It is important to observe that intsamilarity of a sequence is captured in nodes to the extent possible based on
the segment length z and transitional information from one segment to next is cdridatseelative

probability within the sequence. Since a segment is contiguous, its integtiti preserved in the model inside
nodes. Though the segments of a sequence may be distributed all over the graph, tbe &narwsiy them is

still available as weighted probabilities (frequency of arc trav@rgathe model. It may be noted that state
transitions can optionally influence during the sequence evaluation. This inmgliesissing transitions are
penalized and only the supported transitions are counted. This in fact offereadagtitol on classifications;
however, in biological sequences, it is well known that portions of sequences magerelhin and thus it
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may not always be advisable to reject based on one or more missing transitionankdytbis and data that is
used in this research, the RNA sequence used is 16s rRNA for which stsdysence relocation is not found
to be an issue.

The flexible arrangement of EMM is what makes HMM a subset speciabt&d¢M with both sharing a
common ancestor i.e. classic Markov model. While HMM requires prior knowledge abtistshent of
possible symbols generated by a model in a particular state, the EMM learribdrdata itself. As data
(NSVs) are fed into the model, the builder re-computes the dynamic definitioa stiate i.e. updated centroid
of the state cluster thus decoupling a state and its static behavior of outpfittedysymbol. Each EMM state
could also be supplemented with frequencies of NSVs which helps maintain a probameksiof NSVs or
symbols in HMM terminology. Such structure is useful for inter conversions éetW®Ms and EMMs.

Pursuing this idea more formally, an EMM is a grGbf N nodes &~ arcs with each node associated with a
cluster of NSVs making up the nodes and with each arc (possible transitionai@ssoaih a relative
probability.

A model state search for a NSV of a new sequence would always produce aniat¥l frame work and the
quality of the match is assessed based on a number of criteria (metricsgnmie, a transition sensitive
metric would consider the match complete, assigning it a probability valuef dhé tiansition is supported in
the Markov transition map of the model; otherwise, a small valaassigned. Likewise, a transition agnostic
metric like “Score" would assign a calculated score for the centroid oe#tertatched state. Thus, a state
could output many types of “symbols" and different states may produce the “saim@syalso. In this sense,
EMM is similar to HMM and in fact HMM becomes a subset of EMM where the syatelpredefined. On
the other hand, in case of EMM, symbols are dynamic and metric dependant.

Details of model building are as illustrated in Figure 3. The very first vdefores the initial state while the
second one causes the first model state (cluster) to be created. The toirdsvaotcked against the first model
state to see if its numerical composition is similar according to Jadoalariy calculation (default). If it was
similar, the third vector would have been added to the first model state’s clusteritSvas not, a new model
state is created with the third vector becoming the only member of the newlistte. Process is repeated for
all numerical summary vectors. It may be noted that each time a state isdjptdatentroid vector is updated
which is useful for generating an assessment score.

As a part of model building, a p&core Matrix is maintained to contain-tgpdate overall frequency

information for each word pattern. Similarly, individual frequency informatiorsis @pdated using the IPVs to
reflect the overall individual letter (for example, nucleotides) counts iuetste called Point Probability

vector (PPV). This is done to facilitate subsequent Statistical SigreBcassessment of state matches. Thus, as
each sequence is integrated into the EMM being built, the modelScore Matrix and Point Probability

Vector are updated using the word counts of each NSV of each added sequence.

Once all the sequences are processed i.e. once all the organisms in the ttaamenmskided in the profile
(EMM), a final Score Matrix is prepared by first converting to a symme&irm and then to a legdds (LOD)
form.

It is a standard practice in a classic alignment framework, like BLASISd@ symmetric score matrix and in
fact, BLOcks of Amino Acid SUbstitution Matrix (BLOSUM) [3] and PAM [4] deth symmetric score
matrices. This is primarily useful when considering evolutionary aisasere the substitutions are known to
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occur and it is often convenient to assume that transition and transversionadltessame for a pair of letters
substituting for each other. BLAST searches for homologous sequences in theadatabthe homology could
consist of well known substitutions [22]. Continuing this practice, the EMM scatéxims also made
symmetrical by simply aggregating the frequencies of the words obsib@ake composition. For example, AG
and GA frequencies are aggregated and used as the symmetric frequeithgrfqpae .

However, unlike classic alignment framework, this Qudigihment framework does not deal with position by
position lettedlevel matching and substitution. The latter deals with summary-data oveom, liexy the
frequency statistics of each possible word composition. As such, substitution tndorrmanot available for
use in scoring.

1 ok ok ko %k

sequence
A AT AT A A AT AT A58, 5755 A A A A 45 A AT T, T, 5] A AR A AT A7 AT AT 0. 5,5€ €75 A A A8 L A A CAAAAT AT 55675 A AT AT A AC AT A58 A A5G EA |1 A A At AT s re A e 1 273 |
Start
i AT,AC,AAAT,AT,AC,AG,AT,CA AT, CA,GG,GG,GCGT,GG | |1,25.1,2,.. 12512,-[2
State 1
2 AC,AA,ACAT,AG,AG,AT,AAAC,AT,ACTG,GA,GCGT,GG |  [24.3,20,.. 1241214
3(2.4,3.2,0,..
3 AG,CA,AAAC,CAAT,AT,AC,AT,AT,TG,TC,CG,GC,GT,GE | | 1.24.1.2,.. 5
7124220,
4 AAAG,ACAA,AAAG,CAACAACA AAATAT,GCGT,GE  [52222,. State 2 522,22,
5 AC,AC,AT,AT,AG,ACAT,AG,ACAG,AG,CA,CA AAAAAA|  |3,43,42,. State 3
& AG,AG,AA,ACAC,AA AT,AT,AC,TG,GA,AC,CC,CT,CGTA | [24.220,.
segments NSVs 3,4,3’4’2/. )
State 4

Numerical Summary Vectors (NSV) constitute the nricaé representations of equal sized segments adlfis sequence which are used one at a
time in building EMM model. Model building startsttva start Numerical Summary Vector (NSV); as ed&YV is processed, it is compared to the
existing states of the model. If the NSV is notrfduo be similar enough (per a Jaccard thresholsTi the case of NSV 1, a new state (1) is
created with the new NSV as its first cluster membtherwise, the new NSV (as in the case of NS\63)mply added to the matching cluster state
node (state 2). When all NSVs are processed, thiehi® said to be complete.

Figure 3: Phylogenetic M odel Building process

The proposed method here is to score the target sequence itself to which-aliQuasint is found. This

means that the base composition captured in the word frequency map of the modeintsedtfie basis for
establishing a Score Matrix. Quality of the sequence segment matcheddsithef the target segment itself.
This implies that symmetry plays little role in this Qualsinment context as sequence pairs AG versus GA are
indeed different from substitution pairs used in the classic alignment frakneMwaalysis will also be included
based on asymmetric Score Matrix to highlight these facts.

Once symmetry is considered, the (Frequency populate@qamre Matrix is then normalized and converted to
contain LOD scores [23]. LOD score for each word variant is createdntyggutmgin(f;.;/[p(i).p(j))] where
numerator is a word frequency (regardless of symmetry notion) and denominiagopieduct of individual
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probabilities. The LOD scores are multiplied by 10 and rounded up to generatalisetfiof scores for each
model.

A matrix is sufficient for representing a dimer (word length of 2) based EMiWever, longer word lengths i.e
trimers and tetramers improve resolution and significance of results@uiceresorking with rdimensional
vectors. This is different from classic alignment framework whereubstisution dominates which only deals
with 2 dimensions i.e substitution between two nucleotides or amino acids. An extendaldézgeher
algorithm is presented here to generate a Symmetric LOD Score Nhafigure 4.

Given p word length Given p word length
Given F function(index) returns a word frequency Given F function(index) returns a word frequency
Find X Symmetric pre- score matrix of length 4° Find X Symmetric pre- score matrix of length 4°
1|fori=0to4"1 I|fori=0to4"1
2| forj=0to 4°-1 2| forj=0to4°-1
3| ifl<>J, symmetric_words SW= [1*4"+)%4°, 1¥4°+]*4] 3| fork=0to4"1
4 else symmetric_words = [[*4%+)%4°) 4 if 1<>J<>k, symmetric_words = [1*47+j*4"+k*4°, 1*47+k*4 +j*4°,
5 remove_duplicates(symmetric_words) LT LY VY LY R ALY L)
6 for (sum=0,ii = 0 to cardinality(symmetric_words}-1, ii++) K*42+1* 4 40%4° K+ 424 j*4741%4°)
7 sum += F (i) 5 else  symmetric_words = [i*42+i*41+i*4°]
8 for (sum=0,ii = 0 to cardinality(symmetric_words}-1, ii++) 6 remove_duplicates(symmetric_words)
9 X[ii] = sum; 7 for (sum=0,ii = 0 to cardinality(symmetric_words)-1, ii++)
8 sum += F (i)
9 for (sum=0,ii = 0 to cardinality(symmetric_words)-1, ii++)
10 X[ii] = sum;
Given PP Point Probability Vector of length 4°
Find Score LOD score matrix of length 4°
1 |normalize(S) //normalize frequencies
1 normalize(S) //normalize frequencies 2 |for 1=0to 4°-1
2 for=0to 4°-1 3| forj=0to4°-1
3 forj=0to4"1 4| fork=0tod"1
4 index = i*4%+j*4° 5 index = i*a%+j*4 +K*4°
5 lod = log( X[irfdex] : ) 6 lod = log -X[ind.ex] )
PP[i]*PP[j] 7 PP[i]*PP[j]*PP[k]
6 Score[index] = round( lod*10) 8 Scoreindex] = round( lod*10)
for P = 2 {word length of 2] for p = 3 (word length of 3)

Unlike classic alignment based framework which imee only 2dimensional score matrix, Quasdignment framework deals with 3+ dimensions as
well making symmetric score matrix generation cdogteéd. The above shows how the algorithm can tended from 2 to 3 and thus to any n.
Once the symmetric score matrix is generated titéa converted to Le@dds (LOD) Score basis as shown.

Figure 4: symmetric score matrix generation

Application: Evaluating Sequence3dnce models are built, they may be used for evaluating where new or
sequences of interest belong. The sequences of interest may themselggsdrgdnisms yet to be classified
as known or unknown.

Test sequences are also converted into NSVs prior to evaluation; in fact, theglttesnbe converted to
EMMSs to speedup processing and in some cases actually improve accuracy. Thibls lpessuse an EMM
can also be represented as a sequence of states where each state magdbydénoentroid which is simply
a vector of numbers like a typical NSV would be. However, care must be taken to Is¢éecdvmsihow such a
sequence may be generated. This is easily achievable by using the evb@hi the states are created when
building the EMM. This may still cause an issue if the input order of sequences usdd tbebmodel
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changes. Future research for mekiguence EMMs will specify a consistent integration function to build
profiles from families of sequences. The integrity of order for this stugdyeiserved by making sure that all
sequences are processed in the same batch to generate EMM libraries.

Since the number of NSVs formed from states of an EMM typically would be less thangihal set of
NSVs, performance improves if EMM transformation of a sequence is used.

Since NSV is used one at a time in building the model and the transitions are also edristigeen states
hosting the NSVs, we will consider NSV a basic observable unit in EMMBA faratadn. In the process of
formalizing the notation for Extensible Markov Model based sequence analysid] deriwve the Markov
probability of a particular sequence of NSVs. In fact such probability is one pfadhesed metrics discussed
further in the subsequent sections.

We will call the state sequence, a prthSince, the path follows a Markov chain, probability of a state depends
only on the previous state. Ti*" state in the path is callzd The chain is characterized by the parameters

Auy = P(ﬂ'z’ = ’LL|7T1'_1 = ’U)

Given a models representing a sequensiethe probability of a test sequerT’evhose ordered NSV set#ss
simply the product of transition probabilities associated with each NSV.

In other words, an NSV in#is matched against one of the states and the probability of the arc from previous
state to this new state due to the current NSV is considered the probabilitatesbadth it. In actuality, match

is significant only if match value or the similarity value meets aicetfi@eshold. Thus the symbol, as in
established Markov terminology, is either 1 if a reasonable match value is found omdsath®©nly in cases
where symbol value is 1, a transition probability is computed as the relative ftgaqpi¢he arc divided by the
cardinality of the FronState; it is otherwise assigned a small value called

Given Node(t;—1) and Node(t;) respectively representing the state nodes that matched the previous N&¥ and t
current NSV while satisfying the threshold(s), the transition of inter&sttigeen both state nodes and its
Probability is represented P(t;). However, such transition may or may not actually exist or be significant in
the model itself. This is because, during the model building time, not necessariypossible transition

among states occurs.

Therefore, a transition probability associated with an NSV exists if andfconatch_value > threshold and

there is indeed a valid transition i.e a transition recorded while building the EMikl the usual notatics; ;

to represent transition probability for the 4; ; ande; as the symbol value associated with state i, this may be
represented as:

P(f,i) = ¢ iff a5 = 0|€]ﬁ =0
P(ti) = ag—15 = P;

Thus the probability of a test sequence T of K NSW;, id:

K-1

P(1) =[] P(t:)
i=0
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Unlike in HMMs where the symbol associated with a state is unknown requiringsaigerithms to estimate
the path, EMMs determine their symbol from the arc that reaches a parsiaiéarThis means that a state in
EMMs can have a symbol 1 or O depending on the arc that leads to it. This is espexizlsetin case of
evaluation of a test sequence where a transition between two successive N3Wsmag not be present in the
model itself. In cases, where there is no such transition, the symbol valbe éourtent state is O; otherwise it
is a 1. However, symbol value is only a component in computing the transition probabitibywitibe

included in the final product of transition probabilities. It may be noted that theosyadue could further
change depending on Metric of interest being evaluated. For example, in eaSeasé Metric, a matched state
is further evaluated to derive a score which in effect a variable symbol thiaé geenerated from the state.

Determininge: Recall that is assigned to transitions, found during the evaluation step, but either absent in the
model or correspond to a weak match,as indicated by a low similarity valueehetw® S\u,, and the nearest
(as in similarity) nodé.’ of the model. Suchvary in each case and are dynamically determined as follows.

At first, an EMM is built withy nodes an« arcs representing a graGh from G a perfect grapk? is
extrapolated in which all nodes are connected to one another resulitgtah edges. The incrementally added
arcs isr — F = A that are missing in the EMM graph. All arcs including the newly aAlace assigned a
pseudo count value of 1, according to Laplace rule [24]. Over the course of model buildgemume
transitions will have higher count values and therefore higher probabilities aféhe missing ones will have
a nonzero, yet very small values and therefatgpe small probabilities. A more sophisticated method for
treating this is available [24] where the background data distribution adjuetgeviee further. Depending on
whether amino acids or nucleotides are used in the sequence input, appropriate adpasémeters values

are used.

In the evaluation step, presence:affluences its quality of membership in the community represented by the
model. The more present in the evaluation of a test sequence, the more unlikely the membersieip thisfa
is reflected in the metridistance used in differentiation studies which will be discussed later in this section.

Adding Statistical Significance:

This research uses the Karlitschul statistics [25,23] to derive statistical significancedioery NSV match
against a model. Once all NSVs of a sequence are processed against a medggnsvat characteristic of the
overall significance may be concluded. Since Kaflitschul statistics were intended for an classic alignment
framework used by BLAST [26,23], some explanation of how the theory applies lpeesested here.

In a biological sequence, the letters are assumed to occur independently aodramatrix based on real
biological sequence data inherits certain important character@btdHor example, the scores conform to a
Gumbel extreme value distribution [27-34,19,20] where the quality of a sequehaesypéct to its
conformance to a score matrix or its associated model is representegens&mres. Likewise, quality of an
alignment can also be scored and analyzed using Gumbel distribution. The cizatamideverages the
parametric aspect of the Gumbel distribution to establish a baseline thresteolgiven desired confidence
level based on individual probabilities in a random sequence. In other words, so long agilted¢soore lies
outside the threshold, it is considered “different from the norm" pertaining to arteckpacedom distribution.
This allows the search logic to quantify the quality of the “found local aligriraedtconsider the sequence as
a possible homologue; in fact, yet another more subjective threshold is alsat tlse sequence level to filter
out those with insufficient number of local alignments. The result of such rigatustien in search space and
hence better performance.
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BLAST algorithm seeds the search by first considering sliding tsirfier. 3-letter words) as words for which an
established (preomputed) index is available for the target database of sequences. Aypawdiahed word list
is then scored using a score matrix to further screen which of these saatkalgto consider further. The
chosen exceed some threshold and are bi-directionally extended as long as paksittesasing quality.

Thus local alignment scoring beyond a threshold is a central aspect of finding thiednoes pertaining to a
query sequence.

EMM Evaluator also deals with a similar problem of finding the matching sgigrbetween a query sequence
and those of a community of sequences. The difference is that the community atesdweve already been
reduced to a consensus form i.e. a profile EMM. The consensus model has some dtetes asf related
segments from various sequence members of the community while the otteredtatt the unique segments
that do not sufficiently belong to any other state clusters. Furthermore, baphettyesequence and the model
are already in a numerical summary form containing frequencies of woatitga However, the task remains
the same as in classic alignment framework, where parts of query seceggoerfts or NSVs) are matched
(Quastaligned) against the states of a model to determine an assessment of migmBieding the initial

local alignment or the match for a query segment or NSV is simply donerchisgafor the state across the
model with the maximum similarity value. This is computed by using the samlarity function used to make
up the clusters and the build the model in the first place. For example, Jaccavdlsnpliseused as the
similarity function [35] in EMMBA though other functions are available. Tiest likely match for an NSV is
approximated using the similarity search using Jaccard measure agairowo ch@avn the search space for a
score based metric.

Taking classic alignment case, it is necessary to note that alignimect® score higher than non-alignments
because their substitutive value is close to their identity value i.e. if mgt8hio A would give the identity
score, matching A to X (other than A) may still give a high score value depending subistitution matrix.
This means that a perfect alignment or near perfect alignment is ekpegige a high score than a random
alignment. If the higher score were to exceed a threshold, it would achievattiseo$t‘extreme" and becomes
an alignment to consider further.

In case of Quasalignment also, the alignment tends to have a high value and scoring the centroid of the
matched state could provide a meaningful score. Once the match is found, theandte scored to determine
the quality of the match as well as quality of the target segment or the defittioe model state matched. The
centroid can be scored and compared against some threshold to determineitarsignilowever such score
may not be discriminative enough since it does not differentiate between tikar snatching NSVs. As such,
p-value or significance measurements are not possible in the absencepokitmmal alignment.

Alternately, the significance of the match may also be computed by consideriddférence between the
matched state centroid and the segaiN®V of the query sequence and then checking to see if the difference is
smaller than some minimum threshold [36]. Thus each segment of the query wilbtiataslswith a score as

well as significance which are available for further analysis. it beaseen that unlike classic alignment
framework, the scoring here is done based on word statistics of the targetdfettential as opposed to an
alignment with substitution scoring.

As mentioned earlier, the score matrix for the Qa¢éignment framework will be based on the word and letter
frequencies found in the sequence magef a model (EMM). The word variants are independent and
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randomly distributed over the entire community of sequences. This satisfiequlremeent for Gumbel
extreme value distribution.

To determine\, the equatioi=P;. EX P(\5') = 1[25]wherep; is the probability associated with a unique score
S;. Both P; andsS; are derived such that for every unique score there is a normalized probability.ilhbet w
seen later, this can be quite involved and often requires numerical method based finé henoore algorithm
is presented here along with the iterative fine tuning algorithm in Figurech fdliows:

Compute Scores&Probs Function

Given p word length

Given Score LOD score matrix of length 4°

Given Q Query:Point Probability vector of length 4
Find s Set of Unique Scores

Find P Set of score associated probabilities

1 |for (next,1=0; 1< 4" l++)
2| forj=0to4"-1

index = i"‘42+j”‘4O

if unique(Score[index]) // remembers unique scores

S[next++] = Score[index]

Given | word length

Given F word frequency vector of length 4°
Given P Point Probability vector of length 4°
Find S Set of Unique Scores

Find P Set of score associated probabilities

for (next,| =0; | < 4%; |++)
forj=0to4"-1
fork=0to 4"-1

index = i*42+j*41+K*4°

P[Score[index]] +=Q[I]*Q[J]
S[next++] = Score[index]

normalize(P)
return P & S

normalize(P)
return P & S

1
2
3
3 4
4 5 if unique(Score[index]) // remembers unique scores
5 PlScorefindexj] +=Q[I]1*Q[J] 6
6 7
7 8
8 g

for P = 2 {word length of 2) for P = 3 {word length of 3)

Prepare Set of unique Scores and Probabilities

Given Score LOD score matrix of length 4°

Given P Set of score associated probabilities
Given S Set of Unique Scores

Find P&S suchthatE<0

alpha =1.0

1 |while (E(P,S) > 0))  //E=3P;*S,
2| if(alpha®*E)<0.5alpha= 1.0

3 Decrease_scores(Score, alpha*E)
4

P&S <- ComputeScores&Prab(Score, S)

//subtract from old scores to create new scores
//recompute unique scores & probs

n

return P & S //set of scores & prob are now ready

In order to determine the statistical significan€¢he seed matches (local alignments) which agh kimilarity scoring NS\state pairs,
Karlin-Altschul statistics can be used; this requires tivatexpected sum of product of unique scores lagid probabilities be less than zero. The
algorithms here show how to derive set of unigueesand associated normalized probabilities franoelel wide score matrix and query based
point probabilities. Variants for word sizes areganted to demonstrate algorithm’s simple extefitiatd multiple dimensions. A fine tuning
numerical method is also presented to recover ffatase where the expected sum is positive whitdnatically adjusts the baseline score matrix
and rederives the set of unique scores and their proitiabil

Figure5: Iterative algorithm for generating valid set of unique scores & probabilities

Karlin-Altschul statistics requires the' =x P, x S; < 0. In case, this is found not to be the case i.e. in case the
expected score E > 0, Altschul et al [25] propose that scores be adjusted 1S;* = S,—a*E wherea> 0. We
found that while it is necessary to adjust the scores, it is not sufficient to iman&antegrity of scores &
probabilities without re-computing probabilities. Once the probabilities apenmaed and normalized, the
expected sum should be rechecked and the process is repeated until convergence. T leifsnahaext is also
shown in the algorithm presented above.

Given set of scoreSand probabilitied, A and K parameters are estimated using publicly available
Karlin-Altschul subroutines [37] which have been ported into Java. Mh#sand adjusted Score Matr&* are
computed for every query.
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Given), K and S*, KarlinAltschul theorem 1 [25] allows computation of Threshold by formula

Ty = —In((1/NK) = in(1/c)) /) where N is the length of the quesggment and c is statistical significance. But
this threshold is not applicable for Quatignment where it is not possible to compare position by position as
in Classic alignment.

Each selected NSstate match is scored by scoring the matedtate’s centroid which is a vector of
meanfrequencies. Since there is no substitution context, question arises whethad cEatring alone is
sufficient to establish any kind of alignment. In order to address this, wadnstepose exploring the
differential i.e. difference between the centroid of the matched state asebthenfNSV of the query and
continuing to use it in an Extreme value distribution framework as far as sceresncerned. Difference based
analysis is also noted in biological literature [36,38]. Since difference of zansperfect match, the smaller
the value the better and more significant the match. However, unlike typicangéxXfaue distribution where
the extreme maximum and extreme minimum values and thresholds are involveexiaisads a distribution

in case of difference distribution may be very different.

Here the difference score needs to be less than the thr{;hdlde difference score distribution may be
analyzed by examining the mean and the variance. Since the scores beingedaropee from the same
Gumbel distribution, their difference possibly follows the same structure asetife normal distribution
where the mean is zero and variance, in case of a standard normal distribution, iay2bdtmated that mean
is zero because difference normal distributions have the new Mean as the acbftezemeen the two Means
[39].However, the difference between the Means would be zero in our case since teensuaeing compared
are drawn from the same distribution. This is because the Score Matrix isictetsfrom the model as well as
the query and thus forms a common distribution to draw score assignments fromxAstameve propose the
following conjecture.

Conjecture: Difference distribution formed from closely related samplested uniformly from the same
Gumbel distribution may be approximated using a Difference Normal distribution.

The above conjecture considers the fact that the values being compared consg iotdyplvhen their
corresponding centroid vectors are already known to be highly similar; ttesttah similarity function is used to
establish the matching between an NSV and a model state. This conjectyrerimentally shown to hold true
as shown in the Results section.

Since, Gumbel difference is also expected to be zero in case of perfect matckiaiQument,a Mean of
zero is applicable. However, the variance derivation for Gumbel difference cannosiydwos 2 as in
Difference standard normal distribution because Gumbel extreme valuleufistris cumulative probability
function is quite different from that of standard normal distribution.

For a Gumbel distribution, it is given that variancg#/6 whereg is reciprocal o) [40]. Thus we now have
mean and variance for our approximate Normal difference distribution as7/(6x\) respectively. Since the
absolute value of the difference is considered in the Difference distribution, arcatlieg $actor defined by
2. =02 * (1—-v/2/7) is applied according to rules of Half Normal distribution [41]. With Diffiees
Distribution’scs’ and Meary, the pvalue for a Quasalignment may be expressed as follows:

11 =
Pualue = - + — * ERFC(a /M )[7]
2 2 g
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where ERFC is the complementary Error Furn [42]. This pvalue represents the significance for the N
match with a model state. However, the match itsay or may not be significant enough for consitiena A
threshold igequired to determine if a difference score is ificgmt.

o Multiple A

Normal Score 0.01 0.05 0.08 0.1 0.15 0.18 0.2
0.01 0.012533 | 0.013704| 1.370381| 0.274076| 0.171298| 0.137038| 0.091359| 0.076132| 0.068519
0.05 0.062707 | 0.068562| 6.856214| 1.371243| 0.857027| 0.685621| 0.457081| 0.380901| 0.342811
0.1 0.125661| 0.137395| 13.73952| 2.747904| 1.71744| 1.373952| 0.915968| 0.763307| 0.686976
0.9 1.644854 | 1.798445| 179.8445| 35.9689| 22.48056| 17.98445| 11.98963| 9.991362| 8.992226
0.95 1.959964 | 2.142979| 214.2979| 42.85959| 26.78724| 21.42979| 14.28653| 11.90544| 10.7149
0.99 2.575829| 2.816352| 281.6352| 56.32705| 35.2044| 28.16352| 18.77568| 15.6464| 14.08176
Difference Threshold

Derivation
For a Normal Difference distribution between Normal distributions of p,, y, and o,,0;,
the resulting L = P+,

the resulting o = sqrt(crlz+022)

if samples are from the same distribution,
L=0
o = sqrt(20,°)= o, *sqrt(2)

Following the same for Score Difference distribution
Sigmadiﬁerence = ol*sqrt(z)
= ((pi/sqrt(6))/A)*sart(2)

- (pifsar(3NA =—2212

A

Since | Ogiperence | Will be used, a scaling factor needs to be applied as per Half normal distribution
where @® = ¢’ (1-2/pi)= o’*  0.36338
= ¢°* 0.60281°

Now
SIZMA gitterence = 1.813799 *0.60281= 1.093377
A A

multiplying Gyisrerence With chosen n-multiple gives the Threshold at which significance can be ascertained.

The table gives the reverse relation of sigma il corresponding to a few often used valueshi@area under the norl curve. These values are
useful to approximate (asymptotic) confite intervals of the specified levels based on Nbudistributed (or asymptotically Normal) estimastc
The distribution basis here is score differencérithistion which is approximated as a differencemalrdistribution. Thisis used to establish a
threshold close to zero to determine the significasfaaatches found between a query sequence and el madile of a sequele community.

Figure 6: Sigma multiplesfor Gumbel Confidence Intervals

According to normal distribution [43lhe 95% interval falls at inverse Error functionppeng for 0.95 ..
ERFINV for 0.95 at’ which is standard deviation for a difference disition where mean is zero a\ is 1.
The Figure 6 tabulates tlanultiples to use and also presents the derivatiothie sigma multiple for sco

http://biostats.bepress.com/cobra/art63



difference distribution. Tha multiples define the threshold below which a difference score is considered
significant since we are dealing with a difference distribution.

Since we are really interested in the values close to zero which is also thenaedoose the multiple
associated with 0.05% which includes only the top 5% of the matches that have a ditfkreate zero. For
example, to establish the 95% confidence difference threshold for the Gumbehdigfewe use the following
according to Figure 6.

Where) is a scaling factor and is dependant on combination query (sequence being evatuattas the
fine tuned score matrix for the model (or EMM . is the difference threshold below which the difference
scores are considered significant. The number of matches or the number assatidberitop 5% matches is
used in computing the sequence level significance.

In summary, the difference threshold used will be based on a much sharper Guraterckfthreshold as
derived above.

Sequence Significance aneSeore: With difference threshold in place, the number of significant
Quastalignmenten can be determined by simply comparing the score difference fomneatched state pair
against the threshold. The ones that fall below the difference thresholdygefias meeting the significance
criterion.

Karlin-Altschul statistics proposes using the following formula for determimagignificance of multiple
local alignments thus producing an overalldtue.

P —Value =1—e ¥+ X" 1y /il

Where ,y = KNe 5, For m=1, the above simplifies to the original form for theaRie of single local
alignment. However, this is not applicable in our case of difference distribuliich v8 considered a normal
difference distribution. We propose that the sequence level significance patedras the average
significance of all significant matches.

Given m* the number of significant matches, the sequence level significaroepsited as follows

mx—1 g cpe N . )
E0 SZg?”’jZC(anequaszfalzgnmem‘,

Significances =
mx

E-score “E" calculation as proposed by Ka#iltschul statistics i.ePvalue = 1 — e~ E applies equally well for
the Quasklignment case presented here as follows:

Significances =1 — e F

Word length versus significancks all the above formulations, extreme value distributions require query

lengths to be long and it is to be expected that word lengths of 3+ should achieve highearsig since word
length of 2 yields NSV length of on4? = 16 which is much smaller than word length 4 that yield NSV of 256.

Hosted by The Berkeley Electronic Press



NSV length versus Significandes the word length increases and segment length over which Numerical
Summarization is performed, an NSV may contain zero values for some of the waatiqupdounts. This
tends to effect the quality \fand therefore the accuracy of significance.

Karlin-Altschul statistics addresses similar issue with the inability toatdor edge effect where alignment
may not have sufficient room to complete toward maximum score. The recommergtecckarection is given
by n’ =n — In(K xn)/H where H is information entropy which is derived at the same time other paran\et
and K) are derived [25].

Since, presence of zeroes for some counts in an NSV also does present loss aionfasimalar correction
can also be attempted for Quaignment framework. However, sin\esalues can get quite small resulting in
small values for H, the length correction is not always applicable. As suckntite torrection will be applied
only where it is needed and meaningful. This is determined by checking to seefilieg correction still
maintains the effective length with in acceptable rang0 << n’ < n.

Alternately, using EMM form of sequences under evaluation reduces theestiynpince the NSVs
corresponding to the state centroids tend to hold statistics averaged owesakisier thus eliminating much
of the zero counts issue.

In summary, extension of Karhltschul statistics should be possible to the Qafignment framework
proposed by EMMBA as follows:

e LOD score matrix concept is applicable so long as it is derived for each modedratidaty adjusted to
meet the KarlirAltschul assumption for negative expected score. Symmetric property mayaran
be necessary. In addition, the scores are not based on evolutionary substituttors skatison simple
sequence community relevant word statistics.

e A set of probabilities is associated with a unique set of scores from the sttorewhich is adjusted
based on point probabilities from the query; however, these also need iterative fineftin@rsgores
are adjusted to meet the negative expected score requirement.

e Seeding to determine the most likely match to consider further may done byhessimilarity metric.
The maximum similarity producing NSModel state is considered the equivalent of High Scoring
match Pair (HSP) for which significance may be evaluated.

e Score difference is considered a better indicator for determining thiécagce since there is no way to
compute consensus score based on substitution in-elassic alignment situation. The difference
between the scores of matched state’s centroid and the NSV (word frequercsesjoénceegment)
is assumed to approximately follow a Normal difference distribution.

e Difference Normal distribution analysis is extended to Difference Gudisielbution to determine the
distribution parameters such as the Mean and Standard Deviation. Similaraxtser@dso done to
derive the sigma multiples for confidence intervals. Empirical observatiaelbas formal Normality
tests based on Anderson-Darling [44] appears to confirm these assumptions.

e A threshold is established by scaling the desired sigma multiple asdogititeconfidence using
Gumbel parametex which is computed for every quenyodel pair.

¢ Quastalignment is considered significant if associated score differenceois et established
difference threshold.

¢ Number of significant Quasilignments is computed and used in deriving the sequence level
significance as an extension from KarAttschul statistics for multiple local alignments.
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e Standard Escore to Pralue computation from Karliltschul statistics is used.

Methodsfor Applications of EMMBA

Unknown Sequence ldentificatiofo identify the species of a 16s rRNA sequence family, the following
method is to be used. First, a complete library of signature EMM profiles fqueadles is to be generated using
all available 16s rRNA sequence data for training. Next, the sequence itidorfinem an unknown origin,
presumably still microbial, is converted to NSV form and then to an EMM. The EMMsemiation of the
unknown origin may then be evaluated against each and every one of the Species inyth&hbrraaximum
scoring signature profile with acceptable significance becomes thdicitn. The same technique is used
for novel species identification as well in which case since there is modagnifieeance level is expected to
be lower.

Known 16s rRNA Sequence Sample ClassificaBequence classification refers to determining the taxonomy
of a given sequence given that its class already is known and available atieed BMMs could be built for
various taxonomic levels based on available sequence data in the NCBI databaseddlsecan even be fine
tuned by experimenting with different parameter settings, resolutiols lawé validated using rigorous 10x
cross validation. Once finalized, a final set of models can be built into a libr&Mis which is then

available for quick classification of lab sample of sequences belongingaiakdifferent organisms. The
EMMBA evaluator can be configured to process such samples and find a likelffagaisa. Since

classification choices are ranked, additional information is available to alcanélyzing the related classes to
a sequence of interest. It will be possible to answer questions like 1) whattetidtesl significance that the
sequence belongs to a certain class or 2) which classifications arekelgsli a sequence at 90% statistical
significance. This functionality is most useful for Metagenomic classibn [45] where only partial sequence
data may be available as opposed to complete genomes of the microbes found .aftte assames that
targeted Metagenomics is used i.e. the sequence samples contain 16s rRNA header.

Sequence Sample Differentiatid@ommunity differentiation allows for study of phylogeny where the smaller
differences group some in one branch and the others in different branches. [Boisefeared to as
all-againstall analysis to establish a distance matrix for further analysis. Inabés analysis extends to the
many 16s rRNA sequences an organism may have. This helps in studying how etigylbitds to

differentiate species or genera. For example, it is known for some timeighdifficult to resolve the Bacilli
strains. This can be analyzed using the differentiation function. Another amplicafor Metagenomic
differentiation [45] where different Metagenomic samples are to be comatbds case, each sample is
subjected to alagainstall analysis deriving some metric (discussed in the Metrics sectionjrasample
diversity which is used in comparison.

Metrics

All sequence evaluations are quantified using various metrics. The metricategorized into two groups. The
basic group provides metrics at individual organiadel pair level and are useful in establishing a rank order.
The aggregate group offers metrics to characterize a whole samplewisong useful for comparative

genomic analysis.

Basic
There are four basic metrics proposed to assign a numeric assessmelnatavat an organism against a

model(EMM). In all cases, the EMM or the model that is associated with tlestangtric value is considered
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the most likely class. Two of the metrics SumScore and DiffScore axedersing KarlirAltschul statistics
while the remaining two are derived using traditional methods.

SumScore SumScore is computed as

Ez[\:lsz:_Ollog(XJ* * Ci,j] *Aj—1,5 % Cj

Where K is the number of segments in a query sequenc¢? wish p being the word length (length of the
NSV), X7 is the adjusted score fjt* count from the score matrix aC; ; is the;j*" count in the

matcheestate’s centroid for thi'* NSV.  is the similarity value found for the match;!" state and,,_, ; is

the Markov Transition Probability. The model scoring the highest SumScore is cedgliteemost likely class
for a query sequence.

Probability: Sum of Log Probabilit‘Z{" log(a;—1 ) is calculated by summing over all transition probabilities
greater than a specified Threshold. The ones that fall below the threshold arengiaxéreely low scora,

but still added in to the metric. The model scoring the highest probabilitycnetonsidered the most likely
class.

Propensity: Sum of Log Propensiti€> "} log(a;—1.:) * ¢; IS calculated by summing over the products of
transition probabilities and the associated similarity quantifier. The ottesievtransition support in the model
are assigned a very low sceréo the product element before adding into the metric. The model scoring the
highest propensity metric is considered the most likely class.

Diffscore: DiffScore is computed as

2;‘;@};}){; s log([K; iy — vijl] * ai—1

Wherer* is the number of segments in a query sequence with difference scoresrigls thanimum
difference threshold, L i4? with p being the word lengtlX* is the adjusted score fjth count from the score

matrix,kg(l..j) andy, ; are thej*" counts in the matchestate’s centroid and the segm&8V in contexta;
is the associated transition probability. The model scoring the smalkesedifal Score is considered the most

likely class for a query sequence.

Apparent Distancw: Distance between any two EMM4 ande2is defined aw,,e2+¥ .1 Wherew, ., e2
evaluates EMM 2 against the host model EMM 1. Apparent distance is limited to erafuath one side only.

Distance is computed as a result of mutual evaluation of each other's EMM heaparables are all in
EMM form. In such evaluations, each EMM measures its apparent distance intacose differentials in all
matches depending on whether each match is followed by a supported Markov transitidrogt EldM. In
cases where such transition is found, the score differential between tihednstites is taken and where such
isn’t found, a penalty is applied to the score differential of the match pair. Théyceisatomputed as the
log(1/e) which is applied as a multiplicative factor to the score differentialstwattsition. The long formula
for this metric may be expressed by
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-/ oot
SR o+ SR T where

o= E;L;(}X;* * log([kg(ifj) — v ;])

Which aggregates the differential scores of matches supported with aaasidion known to exist in the host
EMM and

B = SEE X s log([KL ) — vi]) * €]

Which, scores the differential scores of matches with unsupported transitiadhe transition from the
previous state to the current matched state is not one that is known to exist in thedeb$EMM).

Notation: K is4? with p being the word length, K’ is the number of segments with supported transition and
(K-K’) is the number of segments with unsupported transiX *« is the joint score fo;*" count from the

score matrixkg(ij) ando; ; are thej® counts in the matchestate’s centroid and the segm&8V in contexts
represents the penalty factor to account for increased differential due to unsipjaodtions. This metric is

used for building the distance matrix from which Phylogeny can be inferred oeredov

Aggregate Metrics

On an overall assessment of a sample evaluation against a library of modelardgHeur different aggregate
metrics proposed. Of these, two afgcore [46] based though these are derived based on the third aggregate
metric- classification accuracy. Another new metric called Delta value is moreampl for differentiation

which involves distance matrices.

Classification AccuracyBased on each basic metric, once each organism is assigned its mostdaseby cl
model, the overall accuracy of such assignments can be reported. This is posai#s ivltere the organism
name itself holds the key to what the right class should be and the cases or thbuukéts, where this correct
model is not chosen contribute to error for that metric. Correctly classifiedrntage of organisms for each
basic metric is reported as the classification accuracy.

CompatibilityScore (eScore): c-Score measures and reports the difference irtmaal splits as a metric [46].
Though it usually does this by examining a phylogenetic tree, it may be derived pesily using the
classification accuracy metric itself as shown in Figure 7.

Thus escore can be computed 1 — 2E/N, whereE = 1 — classi fication_accuracy andn; is the number of
phyla and classes with more than one organism.

weighted eScore: The weighted <Score, proposed here, takes into account that all error are not the same and
that some are more trivial than others. By assigning severity weightstigpéhef error, a more conservative

error estimate is indicated. For example, a misclassification regudtia phylum level error is assigned a
severity weight of 1.5 where as the same at Species level is given a value of 1.

The formula isl — 2E* /N, whereE* is computed based on the type of error and the level of classification
desired. For example, if reporting classification accuracy at the lefasl, the weighted error would include
contributions from class and phylum level errors only with Phylum levet Baving a larger weight.
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Suppose EMMBA classifies taxa up to Genus level which means that it places the
OTUs (Operational Taxonomic Units) in the appropriate Genus of appropriate Class,
Phylum and Domain.

EMMBA classification tree can be up to 4 levels deep.

A non trivial split is a partitioning of the tree where both partitions contain more than one member.
Number of non trivial splits in a Genus differentiation taxonomy tree may be computed as:

Number of Genera with more than one member (OTU)}+
Number of Classes with more than one OTU +
Number of Phyla with more than one OTU+

or alternately as:
N,=3|G,C,P>1| where G, C, P represent Genera, Classes and Phyla respectively.

A misplaced OTU causes L number of invalid orincompatible non-trivial-splits or alternately
expressed as:
|incompatible| = E¥*(L-1) where L is the depth of classification tree [4 for a Genus tree]
E is the number of misclassifications

c-Score is defined as (number of compatible non-trivial splits)/{total number of non-trivial splits) or
alternately:
|c-Score| = |compatible | /N,
=(Ns - |incompatible|)/Ns
=1- E*(L-1)/N, where E is the number of misclassifications
Lis the depth of the tree (=4 for Genus tree)
N, is the num of Genera, classes & phyla with >1 organism

=1- 3€/N,

cScore [46,2]s intended to compare two trees to check for mifiees in terms of netrivial splits. Taking NCBI classification as theld standard
a new classification’s tree is measured using eSc®ince, EMMBA methodology already uses the NQBssificationas implied in the name of an
organism itselfjts metric for measuring classification accuraagatly captures pertinent information useful for pating -score without
generating a phylogetie tree. The derivation for this is shown in thmae analys for a Genus level classification. To extend thisa class leve
tree, subtracting 1 from the number of levels wiiffice

Figure 7. Deriving cScor e from Classification accuracy without gener ating Phylogenetic tree

Distance Matrix: is an aggregate representation of the -distances among all the sequences b
differentiated. For example, if n sequences beluypgp n organisms are being differentiated, a detamatrix
would contain nxn elements with each element dning a distance value. There are two types oadist
matrices possible, one that is asymmetric whicbnascthe apparent distance between sequencesenthth
that is symmetric which records the true distaneesummation of relevant apparentances. The matrix may
then be uploaded to any Phylogeny inference paclo generate phghenetic tree such as the PHIL[47].

Delta Valuei: ¢ measures [48he tree likeness of a distance matrix, so thissmesais more applicable in ce
of differentiation where such matrix is the outduts computed by taking one quartet (four poiraisa time
from the distance atrix and computing thi over it and then taking the mean of all such messsurhe
formula is given by
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4

Om = E(1 )[(d.zr'v|yu - d.ru\yv)/(d.lr'z,'|yu—(lmy|u'z,')]/(:l\v)

Where, the notation «,,,, meansd., + dy, and the notatiod.., is simply the distance between x and v points

in the distance matrix. Tha®, lies between 0 and 1. Larger the value less tree like the sample is. Tleffuis us
in Metagenomic differentiation studies where the sample characterigticerapared. Different values could
mean more or less diverse mix of microbes in the sample.

Softwar e Tools

Ris a free software environment for statistical computing and graphics [4Djarsgenerating the NSV and
IPV files of this research. A Java program called EMMBA is used to build EddMsrform classification,
differentiation and identification experiments; the program is not publishedhakyeoutside the Southern
Methodist University as of Nov 12, 2009.

AGATE Statistical Analysis an EXCEL program available on the web [44] for Normality test using
AndersonDarling method.

AISEE Graph Visualizatiors a commercial software [50] for generating EMM network graphs shown ineFigu
9.

PHYlogenetic Inference Package (PHYLI®#a website hosting the server for Phylogenetic tree generation
using Neighbowoining Method [47].

RESULTS

I mplementation

The 16s rRNA Database utilized in this analysis is derived from the NUBkke [51]. The database consists
of individual files, one per microbial organism, in FASTA format. The format uses inpremazlers for
subsequent data preparation processing prior to using them in Extensible Markov Maxlelevgluation

steps.

The original dataset called ORG, which was derived from the NCBI as of A2@08 and consists of 782
organisms each with multiple 16s sequences where applicable. The FASTA beadehffile contains five
pieces of information: Phylum, Class, Genus, Species and Organism name as WBHRTR Database. The
Database is used in generating the training communities of sequences asangat af randomly selected test
organisms to be used in subsequent classification experiments.

Preprocessing 16s Sequences

We found that some of the header information in the NCBI organism was missingarcases. There were
several cases of missing Genus or even Class information. Since tha$ ityfoemation is used for
automatically verifying classification results, such data is exdfiden analysis. The final database consisted
of 676 FASTA files with one per organism.

The ORG Dataset is first pprocessed and then separated to facilitate stdp (10x method) model building
and model validation as shown in Figure 8.
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Once FASTA formatted multopy 16s sequence files for each organism are cavto their Numerical summary equivalents, theythen
randomized, divided into 10 naverlapping partitions with each containing 10 %ldwing the 10x methodology, one of the partitianiselected
as test candidates while the remaining 9 are usedining i.e to build models (EMMSs). The procéssepeated by selecting a different partition
for test and the remaining other 9 for training.afkall partitions finish taking turns as the testtition, the 10x cross validation is said to be
complete and the results are averaged over ther) This method is done to add the necessary aigteliminate any bias in the results.

Figure 8: overall processfor preparing training & test datasets from 16s rRNA database

Modeling sequence communities with the Extensible Markov Model follows conversion ofai@@guence
data into numeric form. More appropriately, the sequence data is actually edrteektumerical summary
form i.e. to count vectors where counts represent the number of times a particidatiseipattern of certain
length occurs within a segment of a predetermined length in given sequence aficeglé-or this study, we
opted to divide the 16s sequence into equal size segments of varying sizes (20y 8@atteern width of 3.
Since a 16s rRNA sequence on average is approximately 1542 nucleotides long, the heegreemnts ranges
from 77 to about 192. For a pattern width of 3 if chosen, there w4? le64 different types of counts for each
segment corresponding to 64 variations of nucleotides.

Numerical Summarizatiorizor a pattern width of 3, each 16s Sequence is thus converted into several
Numerical Summarization Vectors (NSV) of size 64. In case of multipleelfieaces for an organism, the
vectors for each sequence are captured serially with a start count ¥eéb®beaginning.

Sequence selection for training & testir@nce all organisms’ 16s sequences are converted to their numerical
summary vector representations, they are then further organized intogramciiest sets as shown in Figure 8.

Data files are sampled to select one tenth (default) of available smyafor test leaving the remainder for
training in a 10x cross validation scheme [52] the scheme allows for averagnegulie over 10 independent

analyses of the same data by dividing the data into 10 equal partitions each ofdsctutn in being used as
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a test partition. For each run, once the test partition is set aside, the remairipgrtitions become the
training pool. The training set is used to build aggregated models at a required dgyadagxample, models
can be built at Class level, Genus level or even at the Species level. &f aasmygregation at Phylogentic
Class level, thus each Class will have all its organisms with their 16s segad@@@ numerical summary form
except for those selected for testing.

The training classes are then used to build EMM models. The models are budtégysimmg numerical
summary vectors of each 16s sequence belonging to a training clasedrefexrs sequence community.

Building Phylogenetic Sequence community Models

When all sequences along with their numerical summary vectors are thusspchdbe model is said to be
complete and representative of the sequence community or the correspondiggmétidaclass. Throughout
the building process, a Score Matrix is also updated which is subsequently used fog @emédtch score and a
statistical significance level. The scores are in log-odds (LOD) formediedtrthe values to be assigned for a
word or pattern count.

Thermococci
(t=0.82)

Mollicutes
(t=0.85)

MethanoBacteria
(t=0.78)

Phylogenetic Class models built with EMM are diegctveighted graphs with controllable cluster sintyethreshold for visualization. For example,
by adjusting the Jaccard threshold T, the modegdlggare generated for the Phylogenetic clasbtdllicutes, MethanoBacteria and ThermoCocci.
These are for visualization purposes only. Forsifi@ation analysis, a baseline threshold like 95%sed across all model building. Typically,

higher the threshold, larger the size of the mgdabh and more the information content useablsgecies differentiation. The graphs are generated
using AISEE software package using file outputhey EMM model builder.

Figure 9: Phylogenetic class modédl visualization

The class model thus built can be interrogated for transition probabilities af@aimythe model graph. As
described earlier, the arc probabilities are derived simply by dividinguimder of times the arc is traversed by
the total number of times thedrdm-State”is matched. These transition probabilities are used to filter out
segments of member sequence that do not follow the expected transitions in a hostitpmodel. These
probabilities in fact bring the specificity that is required to establiskd vadéimbership in a community of
sequences.
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Structure of EMM Models & VisualizatioExtensible Markov Models are directed connected graphs with
weights on each arc and nodes. They can also be used for visualization of an gluiyenlic class. For
visualization purposes, it would be preferable to limit the number of state alosies of the graphs to a
manageable number (less than 20). This is possible by experimenting withcdre Iamilarity threshold at
which the NSVs are processed to match existing state clusters in the magdhelThe Figure 9 shows equal
size graphs for Phylogenetic Classes Mollicutes, Thermococci and Mesutaeridn.

Evaluation/Classification of Test Organisms

The FASTA formatted test files are then converted to their Numerical Suwector (NSV) form as
illustrated in Figure 2. After sampling shown in Figure 8 and model building showgureR the test-set is
ready for evaluation against all the models. For each model, each testrorgaNiSV format is compared one
NSV at a time recording the most matched state and the transition to ihiggmevious matched state. The

evaluation process is as shown in Figure 10.
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The Test organisms are processed one at a timmgtaith the first numerical summary vector (NS¥ach NSV is searched against all states of
the model looking for most similarity. The matchistgte (s) with the highest similarity, the similavalue (g) and the transition probability (prob)
are recorded for each NSV. Once all NSVs are pestkwith all result triplets recorded, next orgamand its NSVs are then evaluated. Once all
test organisms are thus processed, the resultbevilsed subsequently to derive model scores. Féralbscore for test sequence is computed for
each class model according to the metric used. @ihtest sequences are thus processed, for egahism, the model with the best score becomes
the chosen model which will be subsequently usatetermining the classification accuracy.

Figure 10: Evaluation of Test Organismsto derive model scores

Evaluator first records, for each NSV of the test organism, the most sitatkarthe similarity quantifier and
the transition probability from previously matched model state to the currensmmilar state. Once all NSVs
are processed, metrics are computed for ultimate rank calculation as shogurén1f that determines the best
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class model for the test organism. The metrics calculategiameof Log Probabilities and Sum of Log
Propensities

Classification Experiments & Results

Validating the Difference DistributiorAs discussed in the Results section, the difference distribution formed

from taking the difference between an NSV segment and a matched steterafdel is assumed to
approximately follow Normal distribution. The Figure 11 is output of a DaAinderson test [44,39].

DATA SUMMARY |

QUASI-ALIGHMENT L !
STATISTIC «MODEL 1 | <MODEL 2 o E A
SEQ 1= SEQ 2=
Sample Size 20 14
Ho. of Batches 1 1 FUHR U
Mean 14.65 3.21
Std.dev 43.84 53.04
% Co. Variation 299.23 1652.05 .
Mimimum -75.00 -88.00 E
Maximum 71.00 97.00 Z
-

Anderson-Darling Test for Hormality{e=0.01)
0.5.L 0.0725 0.3776
Mormality is Acoceptable | Acceptable
0.5.L. for pooled data is [MA

Check for Hormality based on graphical method

Pearson Coefficient r 0.9673 0.9851
Mormality is Acoceptable | Acceptable
r for pooled data is MA r - . -

=150 =100 -aC a an 100 150
DIFFEREMCE S5CORE

The difference distributions from two sequence @atbns against a model are tested for Normalilygu8ndersorDarling test [Anderson1952,i].
Results show that Normality is acceptable.

Figure 10: 10x cross validation results and aggr egate metrics

Metrics Used: Sum of Log Probability, Sum of log Propensities, SumScore and DiffScore are computed and reported for
each pair of model & test sequence. The model scoring the maximum for each metric class assigned to a test sequence
becomes the classification result. Once all test sequences are evaluated and classification determined, aggregate metrics
are used to analyze the overall performance of the classifier.

Experiments: Sampling the entire 16s genomic database excluding those skipped due to missing header information
resulted in 10 partitions of 67 organisms each. These partitions are then used for 10x cross validation. Building sequence
models involves selection of sequences from all partitions except the one used as test partition. First author’s earlier
experience with microbial classification [5] indicates that the best performance of a classifier is achieved when
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classification is attempted at a sub-class i.e. at a level lower than the desired classification level. Since Genus is a more

granular level than Phylogenetic Class, it will be used as the classification level which will provide a more targeted

classification. Since there are 246 sub-classes i.e. Genera and only 33 phylogenetic classes in the dataset, this approach

makes sense in achieving the desired goal.

Each classification is evaluated against the intended label at Phylum and class levels. If the match occurs, classification is

considered successful. The match at Genus level is not considered here since our interest in classifying the organisms

into correct phylogenetic classes. As such, a mismatch at Genus level may still put the classification in the correct

phylogenetic class as demonstrated in [5] by the first author.

10x Cross Validation Results Summary:
|SumScore Slog Prob Flog Prop DiffScore SumScore Ylog Prob 3log Prop DiffScore

PHYLUM orphans+ 94% 98% 94% 93% |PHYLUM orphans- 94% 99% 95% 93%
CLASS orphans+ 92% 97% 93% 90% CLASS orphans- 92% 98% 94% 91%
Word Length: 3 Segment Size: 80 | c-Score 0.90 | Woeighted c-Score 0.88 |

Individual Runs are:

|SumScore Slog Prob Flog Prop DiffScore |SumScore Slog Prob Flog Prop DiffScore

PHYLUM orphans+ 96% 99% 96% 93% PHYLUM  orphans- 97% 100% 97% 94%
PHYLUM  orphans+ 94% 94% 91% 88% PHYLUM  orphans- 97% 97% 94% 91%
PHYLUM orphans+ 96% 100% 96% 93% PHYLUM orphans- 96% 100% 96% 93%
PHYLUM orphans+ 91% 99% 96% 91% PHYLUM  orphans- 91% 95% 96% 91%
PHYLUM  orphans+ 90% 96% 91% 91% PHYLUM orphans- 90% 96% 91% 91%
PHYLUM orphans+ 90% 99% 97% 96% PHYLUM orphans- 90% 99% 97% 96%
PHYLUM  orphans+ 93% 100% 90% 90% PHYLUM orphans- 93% 100% 90% 90%
PHYLUM  orphans+ 96% 97% 93% 94% PHYLUM  orphans- 96% 97% 93% 94%
PHYLUM orphans+ 96% 100% 97% 96% PHYLUM orphans- 96% 100% 97% 96%
PHYLUM orphans+ 94% 96% 96% 91% PHYLUM  orphans- 94% 96% 96% 91%
CLASS orphans+ 96% 97% 96% 93% |CLASS orphans- 97% 98% 97% 94%
CLASS orphans+ 93% 93% 88% 81% |CLASS orphans- 95% 95% 91% 83%
CLASS orphans+ 94% 99% 94% 91% CLASS orphans- 94% 99% 94% 91%
CLASS orphans+ 87% 97% 94% 88% |CLASS orphans- 87% 97% 94% 88%
CLASS orphans+ 87% 93% 90% 88% |CLASS orphans- 87% 93% 90% 88%
CLASS orphans+ 87% 99% 96% 90% |CLASS orphans- 87% 99% 96% 90%
CLASS orphans+ 91% 100% 88% 88% |CLASS orphans- 91% 100% 88% 88%
CLASS orphans+ 88% 96% 90% 90% CLASS orphans- 89% 97% 91% 91%
CLASS orphans+ 94% 99% 94% 93% |CLASS orphans- 94% 99% 94% 93%
CLASS orphans+ 90% 96% 96% 91%  |CLASS orphans- 91% 97% 97% 92%

The summary of the 10X cross validation runs aedriividual run’s results clearly show that EMMBhassifies the microbl organisms at the
Phylogenetic class reasonably well. In generagsciaediction is seen to be more effective whessdiad at a lower si-class level such as genus in
this case. Kotamarti et al [Bave previously demonstrated that -class level classification yields better perfornerfgince there are 33 classes
only 12 of them are over 10 members each as opposath su-class or Genera, the techniquexpected to perform better. The high success

at 90% or higher confirms the success of the aghrda addition to the accuracy metrics, also reggbare aggregate me«cs ¢Score and Weighted
c-Score that measure compliance of classificationlts with NCBI taxonomy [46]. Weighted$core penalizes more for errors at higher taxa

lower taxa.

Figure 11: 10x crossvalidation results and aggregate metrics

10x cross validation was performed on the overall dataset at Genus level and the results of the 10 independent

experiments are recorded in Figure 12. Orphan qualification against the results reflects the fact that cardinality

controlled 10x sampling sometimes results in skipping the creation of certain community sequence models. For

example, there are 246 Genera out of which approximately 60% have no more than one organism; if a single member
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Genus is in the test partition, there will be none in the training set for building a model. When there is no model for a

test organism, it is called an orphan. However, classification results are shown with and without accounting for orphans.

In the Figure 12 Orphan+ refers to results where accuracy rate is lower because there are no models for some test

organisms to classify into. It makes sense to consider results for which orphans are accounted for only. These results are

identified by "orphans-".

Organism
Chlamydophila-pneumoniae-TW-183

Bifidobacterium-longum-subsp--infantis-ATCC-15697
Borrelia-burgdorferi-B31

Legend:
P implies correct classification of Phylum
C implies correct classification of Class
G implies correct classification of Genus
S implies correct classification of Species
(X,Y) where X= p-Value or Statistical Significance

SumScore Probability Propensity DiffScore
PCGS(1.00,12) PCGS(1.00,12) PCgs{0.47,1) PCgs(0.47,1)
PCGS(0.93,3) PCGS(0.93,3) PCGS(0.93,3) PCGS5(0.93,3)
PCGs({0.96,3) PCGs(0.96,3) PCGs{0.96,3) PCGs(0.96,3)

p implies incorrect classification of Phylum
c implies incorrect classification of Class

g implies incorrect classification of Genus
s implies incorrect classification of Species
Y=E-Score

Successful classification is indicated by the pneseof an uppercase letter for a given level; f@amaple, P implies that Phylum level classificat

is successful and that a lowercase p implies anamessful classification. The numbers in the braggresent the signcance in terms of sequence
p-value and EScore respectively. Only three organisms are shaswexamples, but infact, there were 670 organisimgltlassified into &
phylogenetic classes.

Figure 12: Classification (partial) success with statistical significance and E-score

The output for individual classification of an ongem is shown in Figu 13. As seen in the Figure,
classification (for output of 3 randomly selectegamisms) is shown to be successful if the cornedjpg level
is shown isuppercase. For the levels not classified corretiily,corresponding letters are shown in lowerc
Such result of classification is shown for each fidefAlso shovn is Statistical Significance f the
classification as observed by score differentisessed against a difference thresh&escore is also shown
next to the significance level. Bothvialue and -Score are at sequence level and are deusing
Karlin-Altschul statistics [25}vhich utilizes the presence of multiple matchesdl@lignments) between
guery sequence and a model sequence. Where thicsigee is high, the result reported is statighyc
justified; otherwise, more information may be reqdito arrive at a (nclusion regarding the classificati

With orphan results accounted for, the summarylteshow that classification accuracy is well ab8%&6 for
all both Phylum and Class levels. The score meprazformed equally well in general with t
sumlogprobability metric outperforming others; however, the scoreetlasetrics offer additional informatic
such as significance with acceptable success t\@8)% accuracy. Metrics ¢_Score shows a well al&5%
value indicating the reasonable succef the classifier; however, the weighted c_Scoreansha relatively
lower score reflecting the degree of error in nasslfications. Both are reported agains Sum Log
Probability metric based classification results o

| dentification Experiments & Results

A species level EMM library is created. The librasyof size 418 EMMs at the time of this paper. $«
organisms are arbitrarily selected to be the onéetidentified. These are suffixed with *_test"ighhare
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automatically picked up by tHevaluator to test against the library of EMMs. Tassifier output is examine
to see if the test organisms are identified colye

As shown in Figure 14he four test organisr Clostridium_botulinum, Treponema_denticola, Vib@holerae
and Urealplasma_urealticunvere easily identifiable by tl best performance rtrec i.e. Sum Log Probabilities
with significance greater than 90%.

Clostridium-botulinum-A-str--ATCC-19397_test.txt Vibrio-cholerae-0395_test.txt

SumScore Based Assessment: SumScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium beijerinckii Closest Species Match is: Pseudomonas_Pseudomonas mendocina
p-value = 0.99 and E-Score =4 p-value =0.80 and E-Score =2

Log Sum Probability Based Assessment: Log Sum Probability Based Assessment:
Closest Species Match is: Clostridium_Clostridium botulinum Closest Species Match is: Vibrio_Vibrio cholerae
p-value = 0.94 and E-Score =3 p-value = 1.00 and E-Score = 18

Log Sum Propensity Based Assessment: Log Sum Propensity Based Assessment:
Closest Species Match is: Clostridium_Clostridium tetani Closest Species Match is: Vibrio_Vibrio cholerae
p-value = 1.00 and E-Score =8 p-value = 1.00 and E-Score = 18

DiffScore Based Assessment: DiffScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium tetani Closest Species Match is: Aliivibrio_Vibrio fischeri
p-value = 1.00 and E-Score =8 p-value = 1.00 and E-Score =6

Treponema-denticola-ATCC-35405_test.txt Ureaplasma-urealyticum-serovar-10-str-—-ATCC-33699_test.txt

SumScore Based Assessment: SumScore Based Assessment:
Closest Species Match is: Treponema_Treponema denticola Closest Species Match is: Ureaplasma_Ureaplasma urealyticum
p-value = 1.00 and E-Score = 21 p-value = 1.00 and E-Score =9

Log Sum Probability Based Assessment: Log Sum Probability Based Assessment:
Closest Species Match is: Treponema_Treponema denticola Closest Species Match is: Ureaplasma_Ureaplasma urealyticum
p-value = 1.00 and E-Score = 21 p-value = 1.00 and E-Score =9

Log Sum Propensity Based Assessment: Log Sum Propensity Based Assessment:
Closest Species Match is: Treponema_Treponema denticola Closest Species Match is: Ureaplasma_Ureaplasma urealyticum
p-value = 1.00 and E-Score = 21 p-value = 1.00 and E-Score =9

DiffScore Based Assessment: DiffScore Based Assessment:
Closest Species Match is: Treponema_Treponema denticola Closest Species Match is: Ureaplasma_Ureaplasma urealyticum
p-value = 1.00 and E-Score = 21 p-value = 1.00 and E-Score =9

After the species library of 418 is created, faamdomly selected organisms were subjected to alsézst to see ihey would be correctly
identified. The organisms shown demonstrate a @edrcertain identification with significance refsar in the 90% range.he best performing
metric Sum Log Probabilitieprovides consistent conclusion he

Figure 13 : Identifying Organisms with the Specieslibrary of EMMs

To assess the performance of our identifier forehavganisms, we introduced three foreign RNA saqas
belonging to Sand Fly, Brown dog tick and Mousenstells. These were mixewith the other test sequenc
and the experiment was rerun. Figure 15 shows tiehriower significance scores implying that theusstpes
are perhaps novel organisms.

However, the Figure 16 shows the cases where tglgatnains a mystery. This is so buse there is no clear
pattern across the four metrics regarding the ifiebility of the three organisn Chalmydia_trachomatis
Clostridium_perifringensThis will be further explored in the Resolutionr@rol sectior

Differentiation of species with 16s rRNA

As discussed in the methods section, the “Appdbéstance Metric" is used to create a distance mahince
Bacillus strains are harder to differere [53,54,55]they are selected to set up a distance matrice€ltoreigr
(non microbial) RNA introduced earlier in the doemhare also added to the group to analyze dis
sensitivity in EMMBA.
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The dstance matrix shown in Figure 17 is a symmetritadise matrix where Apparent Distances are repl
with True Distance values. The matrix is then aggpto a Phylogeny Inference Program called PHY[47] at
a server website [5@p obtain a phylogenetic tree using the Neighbaridg methoc[57] as shown in Figure

18.

It may be interesting to note the delta values shimnFigure 17 as they tend to indicate the divg!

Rhipicephalus-sanguineus-synganglion-_test.txt

SumScore Based Assessment:
Closest Species Match is: Mycobacterium_Mycobacterium gilvum
p-value = 0.36 and E-Score =0

Log Sum Probability Based Assessment:
Closest Species Match is: Aeropyrum_Aeropyrum pernix
p-value = 0.05 and E-Score =0

Log Sum Propensity Based Assessment:
Closest Species Match is: Sulfolobus_Sulfolobus acidocaldarius
p-value = 0.00 and E-Score =0

DiffScore Based Assessment:
Closest Species Match is: Sulfolobus_Sulfolobus acidocaldarius
p-value = 0.00 and E-Score =0

Brown Dog Tick

Normalized-Phlebotomus-papatasi-_test.txt

SumScore Based Assessment:
Closest Species Match is: Bartonella_Bartonella quintana
p-value = 0.45 and E-Score =1

Log Sum Probability Based Assessment:
Closest Species Match is: Borrelia_Borrelia afzelii
p-value = 0.13 and E-Score =0

Log Sum Propensity Based Assessment:
Closest Species Match is: Bartonella_Bartonella henselae
p-value = 0.48 and E-Score =1

DiffScore Based Assessment:
Closest Species Match is: Bartonella_Bartonella henselae
p-value = 0.48 and E-Score = 1

Sand Fly

NIA-Mouse-Hematopoietic-Stem-Cell_test.txt

SumScore Based Assessment:
Closest Species Match is: Sphingopyxis_Sphingopyxis alaskensis
p-value = 0.42 and E-Score = 1

Log Sum Probability Based Assessment:
Closest Species Match is: Gluconobacter_Gluconobacter oxydans
p-value = 0.79 and E-Score = 2

Log Sum Propensity Based Assessment:
Closest Species Match is: Sphingopyxis_Sphingopyxis alaskensis
p-value = 0.42 and E-Score = 1

DiffScore Based Assessment:
Closest Species Match is: Elusimicrobium_Elusimicrobium minutum
p-value = 0.11 and E-Score =0

MOUSE

Three foreign RNA sequences belongind/touse, Brown Dog Tick and Sand were introduced to see if identification woigive some
indication of novel cases unseen before for captutee EMM libraries. The significance values acelow across the mec space that the novelty

of the foreign RNA is clearly established.

Figure 14 : Novel sequence detection with SpeciesLibrary of EMMs

Chlamydia-trachomatis-A-HAR-13_test.txt

SumScore Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia trachomatis
p-value = 0.00 and E-Score =0

Log Sum Probability Based Assessment:
Closest Species Match is: Chlamydophila_Chlamydophila abortus
p-value = 0.69 and E-Score=1

Log Sum Propensity Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia trachomatis
p-value = 0.00 and E-Score =0

DiffScore Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia muridarum
p-value = 0.89 and E-Score =2

Clostridium-perfringens-str--13_test.txt

SumScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium beijerinckii
p-value = 1.00 and E-Score = 10

Log Sum Probability Based Assessment:
Closest Species Match is: Clostridium_Clostridium perfringens
p-value = 0.65 and E-Score = 1

Log Sum Propensity Based Assessment:
Closest Species Match is: Clostridium_Clostridium beijerinckii
p-value = 1.00 and E-Score =10

DiffScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium tetani
p-value = 1.00 and E-Score = 8

These are some cases where the identificationcisrtain since there is no clear pattern in theimsfrace. In such cas, it may be necessary to use
a finer resolution to better differentiaféhis is explored further in Fige 17.

Figure 15: Examples of uncertain identification which requiresfiner parametric resolution

Using the Neighbor Joining Method [57] tree construction, the Figure 18 shows the proximity of closely related strains
like Bacillus while clearly separating the foreign RNA belonging to Mouse, Sand Fly and Brown Dog Tick. Considering no
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alignment was needed ahead of time, this differentiation output of distance matrix seems reasonable for Metagenomic
analysis.

Resolution Control:Occasionally, coarse settings for key parameteEEMi¥IBA improve response time at t
cost of accuracy. Whenever the accuracy is fourmetmsufficient, fine tuning of the parametersesessary

i}é\.. R\&Q/QJR\@ f}\ﬁ < & ‘Qé\\\ 'b‘i’{\\ %Qé\\’ \06&. \\@{\\ 0(’&) Sl N
& P I LT EFSE

(\"\\" & ’b‘\\‘) é\’b\ o ' .\(JQ,Q OQ,Q éA@ Q’,é(? \(\Qe %\\{9 %\\}‘9 ) §\$9 \\& ((c\ 0(60 GOQ )

S S FITFTFET I P
Normalized-Phlebotomus-papatasi-(Genus Rana:Frog) 0 29 30 55 58 48 52 59 56 64 58 56 62 53 56
NIA-Mouse-Hematopoietic-Stem-Cell(Genus Mouse) 29 0 33 53 49 50 56 58 53 58 53 48 51 50 53
Rhipicephalus-sanguineus-synganglion-(Gen. Canis:Dog) 30 33 0 61 62 61 65 67 56 66 66 62 61 59 61
Acholeplasma-laidlawii-PG-8A 55 53 61 0 63 82 75 8 76 83 72 76 74 77 76
Aster-yellows-witches--broom-phytoplasma-AYWB 58 49 62 63 0 82 78 73 71 81 74 75 88 81 73
Rickettsia-bellii-RML369-C 48 50 61 82 8 0 9 8 78 90 82 78 87 84 84
Buchnera-aphidicola-str--5A--Acyrthosiphon-pisum- 52 56 65 75 78 90 O 8 77 76 73 77 86 83 77
Bacillus-clausii-KSM-K16 59 58 67 84 73 8 85 0 44 49 65 77 8 87 70
Bacillus-halodurans-C-125 5% 53 56 76 71 78 77 44 0 56 56 73 89 82 381
Bacillus-licheniformis-ATCC-14580 64 58 66 8 81 90 76 49 56 0 54 73 81 79 79
Staphylococcus-aureus-subsp--aureus-USA300 58 53 66 72 74 82 73 65 56 54 0 75 82 83 75
Chlamydophila-pneumoniae-AR39 56 48 62 76 75 78 77 77 73 73 75 0 82 81 73
Chloroherpeton-thalassium-ATCC-35110 62 51 61 74 88 87 85 86 89 81 B2 82 0 81 83
Rhodopirellula-baltica-SH-1 53 50 59 77 81 84 83 8 8 79 8 81 81 0 79
Thermodesulfovibrio-yellowstonii-DSM-11347 56 53 61 76 73 84 77 70 81 79 75 73 83 79 O

Delta Score|0.98

The matrix is a resuttf inter evaluation of a pair of EMMs where one EMMaluates another EMM as a test sequence andetisa. Eacl
evaluation produces an apparent distance. Reduitstio evaluations i. apparent distances are added to derive the trtendisand usen the
Distance Matrix to achieve symmetry. The distaraee not only reflects the state transition differes but also uses EMscore matrices to
quantify. The delta score computes the divergendbeotre-likeness of a distance matrix. Here the valfi6.98 indicates significant divergence

expected.

Figure 16: Distance Matrix generation using inter-evaluation of EMMs

Chlamydia-trachomatis-A-HAR-13_test.txt

SumScore Based Assessment:
Closest Species Match is: Chlamydophila_Chlamydophila felis
p-value = 1.00 and E-Score =30

Log Sum Probability Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia trachomatis
p-value = 1.00 and E-Score =9

Log Sum Propensity Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia trachomatis
p-value = 1.00 and E-Score =9

DiffScore Based Assessment:
Closest Species Match is: Chlamydia_Chlamydia trachomatis
p-value = 1.00 and E-Score =9

Clostridium-perfringens-str--13_test.txt

SumScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium perfringens
p-value = 1.00 and E-Score =36

Log Sum Probability Based Assessment:
Closest Species Match is: Clostridium_Clostridium perfringens
p-value = 1.00 and E-Score =36

Log Sum Propensity Based Assessment:
Closest Species Match is: Clostridium_Clostridium perfringens
p-value = 1.00 and E-Score = 36

DiffScore Based Assessment:
Closest Species Match is: Clostridium_Clostridium perfringens
p-value = 1.00 and E-Score =36

Increasing the granularity of numerical summaraatdy reducing the segment size from 80 tsignificantly improves the prediction accura
The two organisms were previously unidentifiable aegment size of 80, but with new reduced seggiegitthe metrics clrly show the

prediction.

Figure 17: 10x cross validation results and aggr egate metrics

For example, all experiments were conducted saderg a segment size of 80 and a word or pattedithvaf 3.
Reducing the segment size improves the accurapyediction as there will be more granularity in tega
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When segment size is reduced to 20 and identification is reattempted for the twernsgainkigure 16 it is
clearly seen from Figure 18 that prediction accuracy significantlyones:.

In general, there are several parameter controls for EMMBA to adapt tedifégplications. This includes
various clustering metrics that can be used when building EMMs as well.
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Phylogenetic tree is generated using PHYlogenyémiee Package [47] available on the web [56]. Tethod selected iNeighbor Joining Methad
As seen in the Figure, the foreign RNA belongin§&md Fly, Brown Dog Tick and Mouaee shown on the outer branches of the tree itidica
remoteness rest of the microbial sample. The Figls® places the Bacilli strains closer though thelpng to different Genera.

Figure 18: Phylogenetic Tree of EMM differentiation output of Distance Matrix

DISCUSSION

This research formally (Figure 1) explored reorganization of the baabgequences to a more compact
statistically equivalent Extensible Markov Model form (Figure 9). The EMidated (Figure 3), were then
organized further to form profiles of related organisms. The organism level segls&gaavas obtained from
NCBI as FASTA files which is preprocessed to a word frequency form priortteefursage.

The effectiveness of using EMMs for biological sequences has been demdribn@tgh three distinct
domains of bioinformatics of today and they @tassification, Identification and Differentiatio@lassification
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refers to the prediction of taxonomy for a given organism. Identificationipettadetermining the possible
taxa of a sequence as confidently as possible and Differentiation refeceveny of phylogeny from
all-againstall oriented distance matrix reports. The research presented here pdrédfeatively in all three
areas as discussed further here.

Grouping EMMs of sequences by taxonomic level made it possible to build libvhrresdels which were used
for classification and phylogenetic analysis. Using the notion of sequence coms)uhé research explored
classification of organisms into appropriate phylogenetic classes usmgbevaluation method(Figure 10).

In order to assess statistical significance of such classificationaweextended the Karlisltschul statistics
[25] derive scores and the threshold levels. Extensions to K&lt8ohul statistics were necessary because of
differences in how the sequences are compared. In a classic alignment dbrohiiswhe basis of BLAST

[23] sequences are aligned and scored. In a cligasment domain such as our approach, sequence
comparison is done at word frequency level. New algorithms were proposec§Fgudr) for building
symmetric score matrices in an alignment free context such as thalbees$ere. Since no substitution
matrices could be used, score differentials and usage of difference distribkigume ¢) were derived and
subsequently shown to be effective. Four criteria were proposed as pseuds tmekeiermine the
classification each of which is reported with statistical significamzbEscore.

10x classification was used to verify the accuracy of classificaiguie 8). By targeting to predict saglass
level such as Genus, we have achieved phylogenetic class level predicti@taeselt above 90% as shown
in Figure 12. A four level classification for each organism evaluation &r@at by matching the classification
result against the expected labels. This was found to be useful for determinimaf &tvel of the taxonomy a
particular test sequence would be classifiable. For each classifidaur different criteria or pseudo metrics
were assessed and reported along with significance-andrg values as shown in Figure 13. Matching the
signature of a model and a query sequence is drivial process. Of the four criteria or pseudo metrics used,
the most effective one appears tohen Log Probabilities/hich is very sensitive to intigequence Markov
transitions. However, the other metrics are also reasonable in their efiesgvand help provide a sanity check
for the leading metric when assessing the overall results. It is to be nateing extended Jaccard for
clustering is not ideal when working with centroids. In fact, when Euclideasuneis used in place of
extended Jaccard, the accuracy across all metrics improved exceptSanihieog Probabilitieas shown in
Figure 20.

It is often the case that classification at higher taxa is more stidabss at lower taxa. This can be explained
by the fact that there is simply more training data available at higtedtee to large overall membership in
terms of organisms. Knowledge of knowing the distribution at each level helps ideterhich level to work
with to obtain successful classification. In our case, we found that the numberesh@ereasonably large at
246 compared to Phylogenetic Class pool size of only 33. Since the average number of gé&iasa emuch
greater than 1, chances for predicting the Class are improved if Genus is tlsethaget class. However, this
is not the only method for successful classification. Experimenting with gretgndnd making sure that the
folds are balanced could achieve the same success at any desired level.

Results of overall classification are also computed using c_Score [46] whadumes compliance with NCBI’s
view of correct taxonomy by measuring the number oftnieral splits. A weighted c_Score measure is
proposed to account for severity of missed classifications and thus provide a moreatimes@ew of
compliance. We showed that it is not necessary to build a phylogenetic t@apute nontrivial splits required
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for c_Score determination. Derivation of c_Scomarfrthe classification errors is shown in Fe 7. The
c_Score values of 90% and a weighted c_Scalues of over 80% confirms the reasonable perfoocaah our
multilevel Phylogenetic Classifier.

Metric Test SumScore }¥log Prob Flog Prop DiffScore
EXT. JACCARD 97% 98% 97% 94%
EUCLIDEAN 97% 97% 97% 97%

Clustering measure used when building models dactahe performance of classification especiallythe score related itrics. This is
demonstrated bthis table where the Euclidean based metric outpeg Jaccard in three of the four meti

Figure 19: 10x cross validation results and aggr egate metrics

Since it is possible to consolidate related orgarisr strains into a single complex model, a IpErEMMs
at the granularity of Species is created. Microldahtification explores the possibility of readdgtermining
the taxa of an unknown orgam by assessing the strength and significance ofié@mbership against ec
EMM in the library. When a segment size of 80 amnabad length of 3 were used, identification was
expected and unambiguous as shown in le 14 for organism€lostridium_botlinum, Treponema_denticol
Vibrio_Cholerae and Urealplasma_urealtic. However, more granularity was needed to ide
Chalmydia_trachomatiandClostridium_perifringen. Reducing the segment size helped disambigual
results. The before and after segnt size reduction are shown in Fies 16 and 19Though all four criteria c
pseudo metrics are generally effective, we fourad Sum Log Probabilitieprovides more consistent resu
Resolution control aspect of EMMs is useful in atijug the sysim responsiveness and the level of accu
required. This is expected to find application ietigenomic classification where the sequence irdbam is
fragmented.

Phylogenetic trees are generated from carefulllf bistance matrices. Usage of a proper distandeicrraay
be verified by attempting to compute delta ve48]. Our research exploresage of delta scores to report
diversity of a distance matrix which is useful ase the sample is of Metagenomic origin. Computaticdelta
score first confirms that each quartet of a distamatrix satisfies the four point condn [48] to ensure
triangle inequality required of a true metric. Vb&ifid that our four criteria used in classificateord
identification do not conform to the rules of agnmetric. By defining distances a sum of int«EMM
evaluations, we have achieved a true distance en8lyiselecting a variety of organisms combinedliree
foreign RNA fromMouse, Tick and Sand |, a distance matrix was built (Figure)1The distance matri
achieved a delta sco> 0.9 indicating high degree of diversity. The matrix whasn input to a Neighbc
Joining Method [57pf the PHYlogenetic Inference Pacle [47] on the web [58) generate a phylogene
tree (Figure 18).

The phylogenetic relationships indicated in theure 18 clearly separate the nomcrobial organisms from tr
microbial ones. Furthermore, the tree also shoe<lise proximity of the Bacillus strains thoughyttall
belong to different Genera. Our research here nosfthe effectiveness of using EMM traormations in
analyzing the microbial diversity of a collectioharganisms which may be found in a metagenomiceod

The new transformational space offered by EMMssisful for reexamining traditional sequence analy
issues and for exploring struce predictions in the future. Metagenomics anddbman Microbiome facilitat
complex landscape for dealing with multitude of g@es all at once. This places huge demands ortionzali
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classic alignment methods. Effective Metagenomic Classificationresgoomplex representations of taxa and
Metagenomic Diversity analysis benefits from the issues of multiple segaignment. The future research
will extend EMMBA methods to classify sequence fragments and diffeteietagenomes from different
times and/or places.

Using word statistics or counting short pattern sequences has been known [1] whictdedibierent

statistical distance measures for clustering. To the best of our knowéedgmatic learning to build models
dynamically has not been explored in the literature. Similarly, clagteelated segments of a single or multiple
sequences to form a compact Markov model equipped with transition probabilitiesochastdleen found in

the literature though some derivatives may be assumed in profile HMMs [8j.Bstreme Value Distributions
in an alignment free context where there are no substitution matrices tosbenigs is a natural extension from
Karlin-Altschul statistics [25] though its application toward a difference Higion is novel from our
perspective. The fact that statistical signature libraries can &edrigom individual sequences or communities
of sequences which can be used to classify, identify and differentiate combihesigwificance reporting is
useful for Metagenomic Bioinformatics.
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