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Targeted Genomic signature profiling with
Quasi-alignment statistics

Rao Mallik Kotamarti, Douglas W. Raiford, Michael Hahsler, Yuhang Wang,
Monnie McGee, and Maggie Dunham

Abstract

Genome databases continue to expand with no change in the basic format of se-
quence data. The prevalent use of the Classic alignment based search tools like
BLAST have significantly pushed the limits of Genome Isolate research. The
relatively new frontier of Metagenomic research deals with thousands of diverse
genomes with newer demands beyond the current homologue search and analy-
sis. Compressing sequence data into a complex form could facilitate a broader
range of sequence analyses. To this end, this research explores reorganizing se-
quence data as complex Markov signatures also known as Extensible Markov
Models. Markov models have found successful application in Biological Se-
quence analysis applications through small, but important extensions to the orig-
inal theory of Markov Chains. Extensible Markov Model (EMM) offers a novel
Quasi-alignment complement to the classic alignment based homologous sequence
search methods like BLAST. EMM based BioInformatic analysis (EMMBA) in-
corporates automatic learning which allows the Markov chain creation dynami-
cally. Oligonucletide or Genomic word frequencies form the core sequence data
in alignment free methods. EMMBA extends the Karlin-Altschul statistics to
bring forth an analogous E-Score statistical significance to the Quasi-alignment
domain. By consolidating a community of sequences into a single searchable
profile, EMM methodology further reduces the search space for classification.
Through dynamic generation of the score matrix for each community profile,
EMMBA fine tunes the score assignments. Each evaluation iteratively adjusts
the profile score matrix to account for point probabilities of the query to ensure
Karlin-Altschul assumptions are satisfied to derive meaningful statistical signifi-
cance. The presence of multiple Quasi-alignments resembles multiple local align-
ments of BLAST. Quasi-alignments are scored based on a difference distribution



of Gumbel scores. Species signature profiles allow for statistical validation of
novel species identification. Working in EMM transformation space speeds up
classification and generates distance matrix for differentiation. The techniques
and metrics presented are validated using the microbial 16s rRNA sequence data
from NCBI.
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INTRODUCTION 
 

Statistical analysis of Genomes often requires use of frequencies of letter patterns [1]. A Targeted Genomic 
Signature is an oligomer frequency distribution over a select section of an organismal Genome like 16s rRNA 
[2].  Quasi‐alignment refers to a region wide alignment based on similar word frequencies between two 
sequence fragments. This is different from Classic alignment where the alignment is individual position based 
assessment using substitution matrices [3,4]. 

Supervised learning serves well in setting up libraries of models describing communities of sequences. This 
allows for easily determining the taxa of a sequence from a genomic sample as shown in [5].  Instead of merely 
searching for homologous sequences every time for every sample to determine possibly related genomes, 
targeted Data mining methods could allow for a more efficient search and organization of the known data [6].In 
this research, data mining versatility of different clustering metrics and a Markov model based classification are 
utilized to set up libraries of sequence community profiles. 

As the amount of genomic data explodes to billions of molecular sequences, intelligent systems that can learn 
from and organize data into a compressed and consolidated form could improve efficiency. Learning framework 
based on Data Mining principles  vastly improves such abstraction through creation of representative models [7] 
and improved models further extend the versatility of analyses. 

Extensible Markov Model (EMM) 

 

The theory of Markov Models is well known in Bioinformatics for its innate ability to represent sequence 
information [8] probabilistically with efficiency and unmatched sensitivity [9].  The extended forms of the 
model, such as the Hidden Markov Model [9] account for much of the successful application. 

Main principle behind Markov modeling is that future state depends only on the current state or the immediate 
preceding ones depending on the order of the chain. First order Markov modeling, where a future state is based 
on the current state is by far the most prevalent in Bioinformatics applications. The Classic Markov model relies 
on fixed states that directly map the real world to symbols. However, more flexibility is useful when modeling 
dynamic biological systems. 

The classic theory was extended to address the relatively newer field of dynamic data streams by Dunham et al 
[10].  The Extensible Markov Model (EMM) is the basis for the research presented here. EMMs allow addition, 
deletion and updating of states within a system. 

The Extensible Markov Model [10] is a time varying first order Markov chain [11]. It is easy to think of a 
Markov chain as a directed graph where the nodes represent real world states and the arcs the transitions 
between them. Each arc  is labeled with its cardinality as is each node . Given an arc  , the 

transition probability is calculated as . The salient features of the EMM are: 

• The topology of the Markov chain varies including the number of nodes, the labeling of nodes, the 
number of arcs, and the labeling of the arcs. Algorithms are in place to insert new nodes, delete nodes, 
insert arcs, and delete arcs. 

• Each node in the EMM corresponds to a cluster of real world states – as opposed to one real world state. 
EMM algorithms are able to use different clustering and similarity/distance measures. 
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EMMs have successfully been applied to many different applications including future state prediction [12] and 
rare event detection [13]. EMM is extended in this work to represent biological sequences in a more compact 
complex form useful for rapid classification and differentiation of organisms. 

EMM based Bioinformatic Analysis (EMMBA)    ----    Our Work 

 

Goals:  Classification using EMM allows us to ask the familiar questions like how statistically significant is the 
association between an unknown sequence and a particular known community of sequences?  This deals with a 
MxN environment where there are N test sequences of interest that are to be classified across M profiles. 

Differentiation, on the other hand, quantifies the distance by which, a community of sequences differ, in order 
to characterize intra‐variability within a community. This deals with a NxN environment where there are N 

profiles that are evaluated all‐against‐all to generate a distance matrix which is subsequently used for 
Phylogenetic analysis. 

Identification using EMM detects novel species. This is possible through assessment of an unknown Species 
EMM against a library of EMMs representing all known Species signature profiles. 

Overview: EMMBA involves three successive steps: 1) Preprocessing sequence data, 2) building of 
model(s) to represent the community profiles and 3) evaluation of a sequence of interest to score its association 
with the communities. 

As in all alignment free methods of sequence analysis, a word of fixed width is considered and its permutations 
are counted to create a frequency histogram or word statistics for a Genome [11]. The word width may be a 2 
(di‐mer), 3(tri‐mer), 4(tetra‐mer) and so on. The notation used is p‐mer and it is found that beyond tetramer 

resolution, no significant benefit is observed in Quasi‐alignment analyses. 

Analysis of RNA sequences is possible by first transforming the RNA sequence to a numerical form using word 
frequencies and then generating the EMMs for further analysis. Similarly, DNA sequences may also be studied 
by first converting triplets to Amino Acids and then to a numerical form. 

Scoring sequence comparisons: Assessment scores are determined by the product of probabilities 
associated with each correctly observed transition during the evaluation step of a sequence against a model. The 
incorrect transitions are allotted minimal probabilities. The missing transitions can be ignored to allow for 
partial sequence or fragment classification. However, this research only covers the complete sequence 
classification and defers fragment analysis to future Metagenomic research. 
 

When analyzing sequence communities, it may be noted that some regions are more conserved than others and 
different regions contribute when establishing consensus. As such, score matrices are derived for each 
community making up a profile. Scoring of a test sequence against a model is highly sensitive to the word 
statistics of that community. 

 

Related Work 

Much of Markov model [14] applications in Bioinformatics deal exclusively with Hidden Markov concepts, to 
enable the notion that a symbol to state association is not necessarily fixed. HMMs have the advantage of 
accommodating multiple symbol outputs in a given state probabilistically. This allows for useful applications 
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such as Gene finding [15] and profile HMM [9].  However, HMMs require manual model creation initially 
which limits their rapid application. Similarly, profile HMM requires pre‐alignment of multiple sequences prior 
to model generation which can be expensive. On the other hand, EMMs employ a learner to automatically build 
the model representing multiple sequences. Future research will address the inter‐working between HMM and 
EMM where one can be converted to the other. 

Covariance models differ from profile HMM in the aspect of possibility of intra‐folding within a sequence 

according to Watson‐Crick complementarities [16].  These models are useful for predicting structures. Usage of 
EMM for structure analysis is deferred to future research. 

 

Our Research 

 

This research continues with a formal presentation of EMM based Bioinformatics using the microbial 16s 
rRNA and then describes methods by which statistically significant classification and differentiation are 
accomplished. To substantiate claims about EMMBA versatility, three examples are illustrated as follows; the 
first is prediction of phylogenetic class using a 16s rRNA database of microbial organisms, the second is 
identification of organism and the third is demonstration of differential analysis by generating distance matrix 
and a phylogenetic tree for genomic sample of multiple species. 

Creating new methods: Algorithmic approaches to problem solving are evident in classic alignment based 
Bioinformatics considering the predominant use of BLAST like similarity search tools [17]. Even in the 
Quasi‐alignment space also, where oligomer or word statistics dominate, it is often necessary to develop new 
algorithms on the same old conceptual frameworks. For example, this is seen with Viterbi algorithm which 
uncovers the hidden state sequences [18]. However, in all such cases, the algorithmic adaptation is highly 
specialized and somewhat limited to the problem at hand. This research on the other hand presents a 
customizable algorithmic framework within the same modeling paradigm. Such framework can be used to 
answer many types of Bioinformatic questions against the same background of sequence library of profiles. For 
example, algorithms range from a simple transition sensitive match count aggregation usable for higher taxa 
classification to a more involved E‐Score that scores according to extended Karlin‐Altschul statistics. Other 
algorithmic adaptations presented here also include novel sequence recognizers as well as those that generate 
pair‐wise distance matrix usable for phylogenetic analysis. 

Ensuring Statistical Significance: While dealing with heuristics to address the massive sequence homology search 
issue, qualifying the results with sound statistical basis eliminates those reports that could occur by chance. This 
is done successfully by Karlin‐Altschul statistics in various BLAST literature which uses a parametric model to 
characterize the statistical significance of each and every result [19,20]. Though the problem BLAST seeks to 
address is that of similarity search across an ever growing database of billions of residues using Classic 
alignment, the statistical principles offer extendable theoretical bases to Quasi‐alignment solution space also. 

The primary distinction between the classic alignment based and Quasi‐alignment domains can be isolated to 

the differences in the scoring of matches and sequences. This research explores extension of Karlin‐Altschul 

statistics for the purpose of determining statistical significance for Quasi‐alignment. 
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METHODS 

Baseline EMM overview 

 

The background for research outlined here is based on Extensible Markov Model. The EMM is built 
dynamically as input vectors are fed into the EMM Learner which either finds a matching state to cluster the 
new vector into or adds a new state. Whenever a new input vector is processed through an active EMM learner, 
the current state of the EMM changes to the state into which the new input vector is clustered. In case of a new 
state that is created as a result of not finding an existing matching state, the current state becomes the new state. 
Throughout the dynamic model building process, transitions are recorded and counted for calculating transition 
frequencies/probabilities as done typically in Markov chains except that in the classical Markov models, such 
information is known ahead of time; in case of EMM due to its dynamic nature, transition information is 
updated whenever a new input vector is fed to the EMM learner. Due to its automatic learning capability and 
the flexibility it offers for selecting various clustering techniques, EMMs are quite versatile with applications in 
many areas including Bioinformatics. 

 

Bioinformatic extensions to EMM 

 

Unlike traditional machine learning tools as well as EMM, bioinformatics deals with many long sequences of a 
select alphabet whether it be for representing DNA, RNA or protein. This format needs to be converted before 
EMM can be used to learn and build models. This is done by generating word statistics at various uniformly 
placed points along a sequence. The meaning of “word" is simply the sliding window of size varying between 
2‐4+ whose permutations are counted to generate frequency maps called Numerical Summarization Vectors. 
Process is discussed in the next section. 

Once preprocessed, sequences take the familiar form of vectors which can be fed into an EMM learner which 
then either grows an existing state or grows the EMM itself by adding new states. As an EMM is built, an 
overall score matrix is also generated for it. The size of the score matrix is the same as the size of the input 
vector referred to as Numerical Summarization Vector (NSV) to be discussed in the next section. The entries in 
the score matrix match up with the frequency counts in the NSV. For example, a word length of 2 would have 
produced NSVs of size 16 for DNA which means for every pair of letters from the alphabet of 4 nucleotides, 
there is a score in the score matrix. Once all training data is processed and EMM creation is complete, the Score 
Matrix is finalized to take on a more symmetric form where the words sharing the same letters would be set to 
contain the same aggregate frequency. For example, a word formed from 2‐mer may be AC or CA and in most 
cases such pairs would have different counts. The symmetric form would combine both values and assign it to 
both pairs. This is a prevalent practice in evolution studies, but alternate practices [21] are also in use. This 
research will include analysis of using symmetric as well as asymmetric score matrices because it may be 
possible to increase prediction accuracy by sacrificing elegance of symmetry. 

The score matrix for an EMM is converted to a log‐odds score matrix as is typically done in Bioinformatics. 

The Log‐odds Score for a word variation like AG is defined as follows  where  is the 

frequency of letters A & G occurring together.  P(A) and P(G) are the individual probabilities for letters A and 
G in the model composition itself. The logarithm is typically based on natural logarithm. The scores thus 
generated are then multiplied by a 10 and rounded off to generate whole numbers. As it will be seen later, the 
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score matrices have to follow certain criteria before they can be used for parametric analysis. This will be 
further discussed in the section for Statistical Significance. 

Once augmented with score matrices, new sequences may be analyzed against these models to determine 
classification. In such assessments, statistical significance tests are performed to generate the match scores. 
Thus a number of extensions to the basic EMM frame work were necessarily added to prepare EMM for 
sequence analysis. 

Community profiling 

 

For sequence analysis, it helps to consolidate related sequences or the 16s rRNA sequences of the related 
organisms. The current classification has many levels of which Phylum is the highest and strain is the lowest. 
There are also several levels in‐between such as Class and Genus. The communities at a level of interest can be 
consolidated into a compact model available for fast search that is statistically significant at some level. Such 
community consolidation is referred to community profiling. For example, a group of organisms within a class 
could be condensed into an EMM supplemented with a Score Matrix and a centroid vector in each state of the 
model. Subsequently, the centroid of the cluster that makes up a state becomes useful for assessing whether an 
NSV segment of a new sequence would best belong in one state cluster or another in the profile’s EMM. Once 
the best possible match is determined, the match between state cluster’s centroid and the test NSV segment can 
be scored and qualified with a significance level. 

This is somewhat analogous to profile HMM in that the training sequences are known ahead of time to 
configure the HMM model prior to starting any biological analysis. In case of EMMBA also, all training 
sequences are consulted to derive the score matrix contents as well as individual sequence‐letter probabilities. 
Both of these are used in deriving statistical significance while processing a query against the database of 
EMMs (models). 

Formalization 

 

Formal notation of Figure 1 for EMM based Bioinformatics is presented here along with explanations where 
needed for the theoretical portion. Statistical Significance related discussion is presented throughout. 

There are three distinct process domains in dealing with EMM based Bioinformatic Analysis: first is Numerical 
Summarization where the sequence data is converted to word statistics, the second is where the model is built 
based on the formatted training data from the first and finally the third called the evaluation step deals with 
using the model(s) built to analyze new sequence data. 

Preprocessing: Numerical Summarization: 

 

Sequence‐Words: Words in Bioinformatic sense are different from the linguistic sense in that spaces and 
punctuations do not separate them; they are simply defined as a sequence of characters of an alphabet of a given 
length. A sequence‐word of length 3 is any consecutive 3‐letter word that occurs in a sequence. Sequence‐words 

may overlap; for example, a sequence of 4 letters would have 2 3‐letter words. Once the words are accounted 
for, their frequencies provide a numeric representation. Usually there are several sequence files that need to be 
transformed into the appropriate numerical forms to create the desired EMMs.   
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Numerical Summarization Vectors (NSVs) are generated in the preprocessing step along with Individual 
Probability Vectors (IPVs).  NSVs are used in building and evaluating EMMs where as IPVs are used in 
computing Score Matrices useful for computing statistical parameters.   Procedure used for both is the same 
except that the word length is as desired by the model builder for the NSVs where as the word length is set to 1 
for IPVs. 

Sequence Transformation:  Defining segment as a section of a sequence of size Z, there can be K segments in a 
sequence. Though segments can be of variable length, for simplicity, all segments of a sequence are assumed to 
be the same size z. Numerical Summarization is a transformation function acting on a sequence  of  
segments generating  Numerical Summarization Vectors of length . The transformation function itself is a 
counting function capturing the number of times a permutation of a pattern of length  occurs within a segment.  

For example, a pattern width  of 2 would generate  within a segment where the base  is the size of 
the alphabet of nucleotides in an RNA sequence. For a coding DNA sequence, the alphabet consists of 20 amino 
acids and as such . For this work, we will use RNA sequence data only and analysis for DNA sequence 
data will be deferred to future publications. Continuing to formally define all the sub-components there-in, we 
get the following. 
 

 

Numerical Summary Vectors contain a frequency histogram of counts for all permutations of the pattern of length p for each segment. In case of a 
sequence community, each sequence is separated from the previous with a start NSV which essentially represents a start state for the model. The 
NSV form of a sequence is used to either build models or to query against a set of already built models. 

 Figure 1: Numerical Summary Vector Representation 
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This table describes the terminology to be used as reference for formalization used throughout this work.

Figure 2: Formal notation used in describing EMM based Bioinformatic Analysis

reference for formalization used throughout this work. 

: Formal notation used in describing EMM based Bioinformatic Analysis

 

: Formal notation used in describing EMM based Bioinformatic Analysis 
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The notations  and  represent a sequence and a segment  respectively.  denotes the transformation 

function that converts the  segment in to a numerical summary form . 

Given K is the number of segments in S,  represents set of all the segments in S. Similarly, 
 represents the set of all Numerical Summarization Vectors (NSV) corresponding to sequence . 

 identifies the operation of transformation function on the  segment and  identifies 

transformation of the entire sequence with  representing the complete set of NSVs corresponding to . 

An NSV  is composed of a set of counts  where L is the number of counts per an NSV. 
Counts  are derived by counting the number of times a pattern of successive letters occurs within 
a segment. L, the number of counts per NSV, is derived from the number of possible permutations of a pattern 
of length . 

By increasing the pattern width p, the length of an NSV also increases as  for nucleotides and  in 
case of amino acids. The number of NSVs  can also be adjusted for a given sequence by choosing 

segmentation size  for each segment. The equation  implies a uniform segment length of  

generating  segments or NSVs. 

At the end of transformation, each sequence is converted to a set of NSVs which are either used for model 
building or for evaluation to determine which model or which sequence community the set of NSVs belongs to. 
An example set of NSVs is shown in the Figure 2. 

Resolution control is possible by adjusting the pattern width  and segment length  in the pre‐processing stage. 
This will be discussed further in the Evaluation step. Pattern width also known as word length can have an 
effect on the statistical significance of the reported classification results. As it will be shown later, a minimum 
pattern width of 3 is known to offer higher significance levels in the 90% range while smaller values like p=2, 
though still accurate in classification in most cases, may offer significance well below 90%. The frequency 
histogram view of Figure 2 reflects the resolution of the summarization step and indicates the cases (not shown) 
where diminishing benefits occur when an unusually large value is used for pattern width p. In such cases, much 
of the frequency histogram will show zeros giving rise to other complexities when determining key parameters 
of the underlying distribution for scores. 

Learning: Model Building (clustering measures):  NSVs are used to build an EMM for a sequence or a community 
of sequences. A model is represented as a directed graph  containing  nodes and  arcs. Unlike a classical 
Markov Model, each  is not bound to one symbol. In fact, each  represents a cluster consisting of 
NSVs that are found to be similar by the model building process according to a similarity metric. The directed 
edges or  are associated with additional information representing the relative probabilities of traversal 
assigned during the model building process. 
It is important to observe that intra‐similarity of a sequence is captured in nodes to the extent possible based on 
the segment length z and transitional information from one segment to next is condensed to its relative 
probability within the sequence. Since a segment is contiguous, its integrity is still preserved in the model inside 
nodes. Though the segments of a sequence may be distributed all over the graph, the transition among them is 
still available as weighted probabilities (frequency of arc traversals) in the model. It may be noted that state 
transitions can optionally influence during the sequence evaluation. This implies that missing transitions are 
penalized and only the supported transitions are counted. This in fact offers a tighter control on classifications; 
however, in biological sequences, it is well known that portions of sequences may relocate within and thus it 
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may not always be advisable to reject based on one or more missing transitions. In the analysis and data that is 
used in this research, the RNA sequence used is 16s rRNA for which such sub‐sequence relocation is not found 
to be an issue. 

The flexible arrangement of EMM is what makes HMM a subset special case of EMM with both sharing a 
common ancestor i.e. classic Markov model. While HMM requires prior knowledge and establishment of 
possible symbols generated by a model in a particular state, the EMM learns from the data itself. As data 
(NSVs) are fed into the model, the builder re-computes the dynamic definition of the state i.e. updated centroid 
of the state cluster thus decoupling a state and its static behavior of outputting a fixed symbol. Each EMM state 
could also be supplemented with frequencies of NSVs which helps maintain a probabilistic view of NSVs or 
symbols in HMM terminology. Such structure is useful for inter conversions between HMMs and EMMs. 

Pursuing this idea more formally, an EMM is a graph  of  nodes &  arcs with each node associated with a 
cluster of NSVs making up the nodes and with each arc (possible transition) associated with a relative 
probability. 

A model state search for a NSV of a new sequence would always produce a match in EMM frame work and the 
quality of the match is assessed based on a number of criteria (metrics); for example, a transition sensitive 
metric would consider the match complete, assigning it a probability value of 1, if the transition is supported in 
the Markov transition map of the model; otherwise, a small value  is assigned. Likewise, a transition agnostic 
metric like “Score" would assign a calculated score for the centroid of the best matched state. Thus, a state 
could output many types of “symbols" and different states may produce the “same symbols" also. In this sense, 
EMM is similar to HMM and in fact HMM becomes a subset of EMM where the symbols are predefined. On 
the other hand, in case of EMM, symbols are dynamic and metric dependant. 

Details of model building are as illustrated in Figure 3.  The very first vector defines the initial state while the 
second one causes the first model state (cluster) to be created. The third vector is checked against the first model 
state to see if its numerical composition is similar according to Jaccard similarity calculation (default). If it was 
similar, the third vector would have been added to the first model state’s cluster. Since it was not, a new model 
state is created with the third vector becoming the only member of the new state cluster. Process is repeated for 
all numerical summary vectors. It may be noted that each time a state is updated, its centroid vector is updated 
which is useful for generating an assessment score. 

As a part of model building, a pre‐Score Matrix is maintained to contain up‐to‐date overall frequency 
information for each word pattern. Similarly, individual frequency information is also updated using the IPVs to 
reflect the overall individual letter (for example, nucleotides) counts in a structure called Point Probability 
vector (PPV). This is done to facilitate subsequent Statistical Significance assessment of state matches. Thus, as 
each sequence is integrated into the EMM being built, the model’s pre‐Score Matrix and Point Probability 
Vector are updated using the word counts of each NSV of each added sequence. 

Once all the sequences are processed i.e. once all the organisms in the training set are included in the profile 
(EMM), a final Score Matrix is prepared by first converting to a symmetric form and then to a log‐odds (LOD) 
form. 

It is a standard practice in a classic alignment framework, like BLAST, to use a symmetric score matrix and in 
fact, BLOcks of Amino Acid SUbstitution Matrix (BLOSUM) [3] and PAM [4] are both symmetric score 
matrices. This is primarily useful when considering evolutionary analysis where the substitutions are known to 
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occur and it is often convenient to assume that transition and transversion rates are the same for a pair of letters 
substituting for each other. BLAST searches for homologous sequences in the database and the homology could 
consist of well known substitutions [22]. Continuing this practice, the EMM score matrix is also made 
symmetrical by simply aggregating the frequencies of the words of similar base composition. For example, AG 
and GA frequencies are aggregated and used as the symmetric frequency for either pair. 

However, unlike classic alignment framework, this Quasi‐alignment framework does not deal with position by 

position letter‐level matching and substitution. The latter deals with summary-data over a region, i.e. the 
frequency statistics of each possible word composition. As such, substitution information is not available for 
use in scoring.  

 

 

Numerical Summary Vectors (NSV) constitute the numerical representations of equal sized segments along a 16s sequence which are used one at a 
time in building EMM model. Model building starts with a start Numerical Summary Vector (NSV); as each NSV is processed, it is compared to the 
existing states of the model. If the NSV is not found to be similar enough (per a Jaccard threshold T) as in the case of NSV 1, a new state (1) is 
created with the new NSV as its first cluster member; otherwise, the new NSV (as in the case of NSV 3) is simply added to the matching cluster state 
node (state 2). When all NSVs are processed, the model is said to be complete. 

 Figure 3: Phylogenetic Model Building process 

The proposed method here is to score the target sequence itself to which a Quasi‐alignment is found. This 
means that the base composition captured in the word frequency map of the model itself forms the basis for 
establishing a Score Matrix. Quality of the sequence segment matched is the score of the target segment itself. 
This implies that symmetry plays little role in this Quasi‐alignment context as sequence pairs AG versus GA are 
indeed different from substitution pairs used in the classic alignment framework. Analysis will also be included 
based on asymmetric Score Matrix to highlight these facts. 

Once symmetry is considered, the (Frequency populated) pre‐Score Matrix is then normalized and converted to 
contain LOD scores [23].  LOD score for each word variant is created by computing  where 

numerator is a word frequency (regardless of symmetry notion) and denominator is the product of individual 
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probabilities. The LOD scores are multiplied by 10 and rounded up to generate the final set of scores for each 
model. 

A matrix is sufficient for representing a dimer (word length of 2) based EMM; however, longer word lengths i.e 
trimers and tetramers improve resolution and significance of results and require working with n‐dimensional 
vectors. This is different from classic alignment framework where the substitution dominates which only deals 
with 2 dimensions i.e substitution between two nucleotides or amino acids. An extendable generalized 
algorithm is presented here to generate a Symmetric LOD Score Matrix in Figure 4. 

 

Unlike classic alignment based framework which involves only 2‐dimensional score matrix, Quasi‐alignment framework deals with 3+ dimensions as 
well making symmetric score matrix generation complicated. The above shows how the algorithm can be extended from 2 to 3 and thus to any n. 
Once the symmetric score matrix is generated, it is then converted to Log‐Odds (LOD) Score basis as shown. 

 Figure 4: symmetric score matrix generation 

 

Application: Evaluating Sequences: Once models are built, they may be used for evaluating where new or 
sequences of interest belong. The sequences of interest may themselves be from organisms yet to be classified 
as known or unknown. 
Test sequences are also converted into NSVs prior to evaluation; in fact, they themselves be converted to 
EMMs to speedup processing and in some cases actually improve accuracy. This is possible because an EMM 
can also be represented as a sequence of states where each state may be denoted by its centroid which is simply 
a vector of numbers like a typical NSV would be. However, care must be taken to be consistent in how such a 
sequence may be generated. This is easily achievable by using the order in which the states are created when 
building the EMM. This may still cause an issue if the input order of sequences used to build the model 
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changes. Future research for multi‐sequence EMMs will specify a consistent integration function to build 
profiles from families of sequences. The integrity of order for this study is preserved by making sure that all 
sequences are processed in the same batch to generate EMM libraries. 

Since the number of NSVs formed from states of an EMM typically would be less than the original set of 
NSVs, performance improves if EMM transformation of a sequence is used. 

Since NSV is used one at a time in building the model and the transitions are also considered between states 
hosting the NSVs, we will consider NSV a basic observable unit in EMMBA formalization. In the process of 
formalizing the notation for Extensible Markov Model based sequence analysis, we will derive the Markov 
probability of a particular sequence of NSVs. In fact such probability is one of the proposed metrics discussed 
further in the subsequent sections. 

We will call the state sequence, a path .  Since, the path follows a Markov chain, probability of a state depends 

only on the previous state. The  state in the path is called. The chain is characterized by the parameters 

  

Given a model  representing a sequence , the probability of a test sequence  whose ordered NSV set is  is 
simply the product of transition probabilities associated with each NSV. 

In other words, an NSV in a  is matched against one of the states and the probability of the arc from previous 
state to this new state due to the current NSV is considered the probability associated with it. In actuality, match 
is significant only if match value or the similarity value meets a certain threshold. Thus the symbol, as in 
established Markov terminology, is either 1 if a reasonable match value is found or 0 otherwise. Only in cases 
where symbol value is 1, a transition probability is computed as the relative frequency of the arc divided by the 
cardinality of the From‐State; it is otherwise assigned a small value called . 

Given  and  respectively representing the state nodes that matched the previous NSV and the 

current NSV while satisfying the threshold(s), the transition of interest is between both state nodes and its 
Probability is represented as . However, such transition may or may not actually exist or be significant in 

the model itself. This is because, during the model building time, not necessarily every possible transition 
among states occurs. 

Therefore, a transition probability associated with an NSV exists if and only if  and 
there is indeed a valid transition i.e a transition recorded while building the EMM. Using the usual notation  

to represent transition probability for the arc  and  as the symbol value associated with state i, this may be 

represented as: 

  

Thus the probability of a test sequence T of K NSVs of  is: 
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Unlike in HMMs where the symbol associated with a state is unknown requiring several algorithms to estimate 
the path, EMMs determine their symbol from the arc that reaches a particular state. This means that a state in 
EMMs can have a symbol 1 or 0 depending on the arc that leads to it. This is especially the case in case of 
evaluation of a test sequence where a transition between two successive NSVs may or may not be present in the 
model itself. In cases, where there is no such transition, the symbol value for the current state is 0; otherwise it 
is a 1. However, symbol value is only a component in computing the transition probability which will be 
included in the final product of transition probabilities. It may be noted that the symbol value could further 
change depending on Metric of interest being evaluated. For example, in case of a Score Metric, a matched state 
is further evaluated to derive a score which in effect a variable symbol that can be generated from the state. 

Determining :  Recall that  is assigned to transitions, found during the evaluation step, but either absent in the 
model or correspond to a weak match,as indicated by a low similarity value, between an NSV  and the nearest 
(as in similarity) node  of the model. Such  vary in each case and are dynamically determined as follows. 

At first, an EMM is built with  nodes and  arcs representing a graph ; from  a perfect graph  is 
extrapolated in which all nodes are connected to one another resulting in  total edges. The incrementally added 
arcs is  that are missing in the EMM graph. All arcs including the newly added  are assigned a 
pseudo count value of 1, according to Laplace rule [24]. Over the course of model building, the genuine 
transitions will have higher count values and therefore higher probabilities where as the missing ones will have 
a non‐zero, yet very small values and therefore  type small probabilities. A more sophisticated method for 
treating this is available [24] where the background data distribution adjusts the  even further. Depending on 
whether amino acids or nucleotides are used in the sequence input, appropriate adjustment parameters values 
are used. 

In the evaluation step,  presence of  influences its quality of membership in the community represented by the 
model. The more  present in the evaluation of a test sequence, the more unlikely the membership. In fact, this 
is reflected in the metric  used in differentiation studies which will be discussed later in this section. 

Adding Statistical Significance: 

This research uses the Karlin‐Altschul statistics [25,23] to derive statistical significance for every NSV match 
against a model. Once all NSVs of a sequence are processed against a model, some general characteristic of the 
overall significance may be concluded. Since Karlin‐Altschul statistics were intended for an classic alignment 
framework used by BLAST [26,23], some explanation of how the theory applies here is presented here. 

In a biological sequence, the letters are assumed to occur independently and any score matrix based on real 
biological sequence data inherits certain important characteristics [25]. For example, the scores conform to a 
Gumbel extreme value distribution [27-34,19,20] where the quality of a sequence with respect to its 
conformance to a score matrix or its associated model is represented by larger scores. Likewise, quality of an 
alignment can also be scored and analyzed using Gumbel distribution. The characterization leverages the 
parametric aspect of the Gumbel distribution to establish a baseline threshold for a given desired confidence 
level based on individual probabilities in a random sequence. In other words, so long as the computed score lies 
outside the threshold, it is considered “different from the norm" pertaining to an expected random distribution. 
This allows the search logic to quantify the quality of the “found local alignment" and consider the sequence as 
a possible homologue; in fact, yet another more subjective threshold is also used at the sequence level to filter 
out those with insufficient number of local alignments. The result of such rigor is reduction in search space and 
hence better performance. 
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BLAST algorithm seeds the search by first considering sliding trimers (i.e.3-letter words) as words for which an 
established (pre‐computed) index is available for the target database of sequences. A partially matched word list 
is then scored using a score matrix to further screen which of these seed alignments to consider further. The 
chosen exceed some threshold and are bi-directionally extended as long as possible with increasing quality. 
Thus local alignment scoring beyond a threshold is a central aspect of finding the homologues pertaining to a 
query sequence. 

EMM Evaluator also deals with a similar problem of finding the matching segments between a query sequence 
and those of a community of sequences.  The difference is that the community of sequences have already been 
reduced to a consensus form i.e. a profile EMM. The consensus model has some states as clusters of related 
segments from various sequence members of the community while the other states reflect the unique segments 
that do not sufficiently belong to any other state clusters. Furthermore, both the query sequence and the model 
are already in a numerical summary form containing frequencies of word variants. However, the task remains 
the same as in classic alignment framework, where parts of query sequence (segments or NSVs) are matched 
(Quasi‐aligned) against the states of a model to determine an assessment of membership. Finding the initial 
local alignment or the match for a query segment or NSV is simply done by searching for the state across the 
model with the maximum similarity value. This is computed by using the same similarity function used to make 
up the clusters and the build the model in the first place. For example, Jaccard is prevalently used as the 
similarity function [35] in EMMBA though other functions are available. The most likely match for an NSV is 
approximated using the similarity search using Jaccard measure again to narrow down the search space for a 
score based metric. 

Taking classic alignment case, it is necessary to note that alignments tend to score higher than non-alignments 
because their substitutive value is close to their identity value i.e. if matching A to A would give the identity 
score, matching A to X (other than A) may still give a high score value depending on the substitution matrix. 
This means that a perfect alignment or near perfect alignment is expected to give a high score than a random 
alignment. If the higher score were to exceed a threshold, it would achieve the status of “extreme" and becomes 
an alignment to consider further. 

In case of Quasi‐alignment also, the alignment tends to have a high value and scoring the centroid of the 
matched state could provide a meaningful score. Once the match is found, the match can be scored to determine 
the quality of the match as well as quality of the target segment or the centroid of the model state matched. The 
centroid can be scored and compared against some threshold to determine its significance. However such score 
may not be discriminative enough since it does not differentiate between two similar matching NSVs. As such, 
p‐value or significance measurements are not possible in the absence of non‐positional alignment. 

Alternately, the significance of the match may also be computed by considering the difference between the 
matched state centroid and the segment‐NSV of the query sequence and then checking to see if the difference is 
smaller than some minimum threshold [36]. Thus each segment of the query will be associated with a score as 
well as significance which are available for further analysis. It may be seen that unlike classic alignment 
framework, the scoring here is done based on word statistics of the target or the differential as opposed to an 
alignment with substitution scoring. 

As mentioned earlier, the score matrix for the Quasi‐alignment framework will be based on the word and letter 

frequencies found in the sequence make‐up of a model (EMM). The word variants are independent and 
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randomly distributed over the entire community of sequences. This satisfies the requirement for Gumbel 
extreme value distribution. 

To determine , the equation [25]where  is the probability associated with a unique score 

. Both  and  are derived such that for every unique score there is a normalized probability. As it will be 
seen later, this can be quite involved and often requires numerical method based fine tuning. The core algorithm 
is presented here along with the iterative fine tuning algorithm in Figure 5 which follows: 

 

In order to determine the statistical significance of the seed matches (local alignments) which are high similarity scoring NSV‐state pairs, 

Karlin‐Altschul statistics can be used; this requires that the expected sum of product of unique scores and their probabilities be less than zero. The 
algorithms here show how to derive set of unique scores and associated normalized probabilities from a model wide score matrix and query based 
point probabilities. Variants for word sizes are presented to demonstrate algorithm’s simple extendability to multiple dimensions. A fine tuning 
numerical method is also presented to recover from the case where the expected sum is positive which automatically adjusts the baseline score matrix 
and re‐derives the set of unique scores and their probabilities. 

 Figure 5: Iterative algorithm for generating valid set of unique scores & probabilities 

Karlin‐Altschul statistics requires that . In case, this is found not to be the case i.e. in case the 
expected score E is , Altschul et al [25] propose that scores be adjusted using *E where . We 
found that while it is necessary to adjust the scores, it is not sufficient to maintain the integrity of scores & 
probabilities without re-computing probabilities. Once the probabilities are recomputed and normalized, the 
expected sum should be rechecked and the process is repeated until convergence. This added refinement is also 
shown in the algorithm presented above. 

Given set of scores S and probabilities P,  and K parameters are estimated using publicly available 
Karlin‐Altschul subroutines [37] which have been ported into Java. Thus, , K and adjusted Score Matrix S* are 
computed for every query. 
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Given , K and S*, Karlin‐Altschul theorem I [25] allows computation of Threshold by formula 

 where N is the length of the query‐segment and c is statistical significance. But 

this threshold is not applicable for Quasi‐alignment where it is not possible to compare position by position as 
in Classic alignment. 

Each selected NSV‐state match is scored by scoring the matched‐state’s centroid which is a vector of 

mean‐frequencies. Since there is no substitution context, question arises whether centroid scoring alone is 
sufficient to establish any kind of alignment. In order to address this, we instead propose exploring the 
differential i.e. difference between the centroid of the matched state and the segment‐NSV of the query and 
continuing to use it in an Extreme value distribution framework as far as scores are concerned. Difference based 
analysis is also noted in biological literature [36,38]. Since difference of zero means perfect match, the smaller 
the value the better and more significant the match. However, unlike typical Extreme Value distribution where 
the extreme maximum and extreme minimum values and thresholds are involved, what exists as a distribution 
in case of difference distribution may be very different. 

Here the difference score needs to be less than the threshold . The difference score distribution may be 
analyzed by examining the mean and the variance. Since the scores being compared come from the same 
Gumbel distribution, their difference possibly follows the same structure as difference normal distribution 
where the mean is zero and variance, in case of a standard normal distribution, is 2.  It may be noted that mean 
is zero because difference normal distributions have the new Mean as the difference between the two Means  
[39].However, the difference between the Means would be zero in our case since the two items being compared 
are drawn from the same distribution. This is because the Score Matrix is constructed from the model as well as 
the query and thus forms a common distribution to draw score assignments from. As a next step, we propose the 
following conjecture. 

Conjecture: Difference distribution formed from closely related samples selected uniformly from the same 
Gumbel distribution may be approximated using a Difference Normal distribution. 

The above conjecture considers the fact that the values being compared come into play only when their 
corresponding centroid vectors are already known to be highly similar; recall that a similarity function is used to 
establish the matching between an NSV and a model state. This conjecture is experimentally shown to hold true 
as shown in the Results section. 

Since, Gumbel difference is also expected to be zero in case of perfect match or Quasi‐alignment,a Mean of 
zero is applicable. However, the variance derivation for Gumbel difference cannot be possibly be 2 as in 
Difference standard normal distribution because Gumbel extreme value distribution’s cumulative probability 
function is quite different from that of standard normal distribution. 

For a Gumbel distribution, it is given that variance is  where  is reciprocal of  [40].  Thus we now have 

mean and variance for our approximate Normal difference distribution as 0 and  respectively. Since the 

absolute value of the difference is considered in the Difference distribution, another scaling factor defined by 
 is applied according to rules of Half Normal distribution [41].  With Difference 

Distribution’s  and Mean , the p‐value for a Quasi‐alignment may be expressed as follows: 
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where ERFC is the complementary Error Functio
match with a model state. However, the match itself may or may not be significant enough for consideration. A 
threshold is required to determine if a difference score is significant.

The table gives the reverse relation of sigma multiples corresponding to a few often used values for the area under the norma
useful to approximate (asymptotic) confidence intervals of the specified levels based on Normal distributed (or asymptotically Normal) estimators. 
The distribution basis here is score difference distribution which is approximated as a difference normal distribution. This 
threshold close to zero to determine the significance of matches found between a query sequence and a model profile of a sequenc

 Figure 6: Sigma multiples for Gumbel Confidence Intervals

According to normal distribution [43], the 95% interval falls at inverse Error function mapping for 0.95 i.e

ERFINV for 0.95 at  which is standard deviation for a difference distribution where mean is zero and 
The Figure 6 tabulates the  multiples to use and also presents the derivation for the sigma multiple for score 

where ERFC is the complementary Error Function [42].  This p‐value represents the significance for the NSV 
match with a model state. However, the match itself may or may not be significant enough for consideration. A 

required to determine if a difference score is significant. 

The table gives the reverse relation of sigma multiples corresponding to a few often used values for the area under the norma
nce intervals of the specified levels based on Normal distributed (or asymptotically Normal) estimators. 

The distribution basis here is score difference distribution which is approximated as a difference normal distribution. This 
eshold close to zero to determine the significance of matches found between a query sequence and a model profile of a sequenc

: Sigma multiples for Gumbel Confidence Intervals

the 95% interval falls at inverse Error function mapping for 0.95 i.e

which is standard deviation for a difference distribution where mean is zero and 
multiples to use and also presents the derivation for the sigma multiple for score 

value represents the significance for the NSV 
match with a model state. However, the match itself may or may not be significant enough for consideration. A 

 

The table gives the reverse relation of sigma multiples corresponding to a few often used values for the area under the normal curve. These values are 
nce intervals of the specified levels based on Normal distributed (or asymptotically Normal) estimators. 

The distribution basis here is score difference distribution which is approximated as a difference normal distribution. This is used to establish a 
eshold close to zero to determine the significance of matches found between a query sequence and a model profile of a sequence community. 

: Sigma multiples for Gumbel Confidence Intervals 

the 95% interval falls at inverse Error function mapping for 0.95 i.e. 

which is standard deviation for a difference distribution where mean is zero and  is 1. 
multiples to use and also presents the derivation for the sigma multiple for score 
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difference distribution. The  multiples define the threshold below which a difference score is considered 
significant since we are dealing with a difference distribution. 

Since we are really interested in the values close to zero which is also the mean, we choose the multiple 
associated with 0.05% which includes only the top 5% of the matches that have a difference close to zero. For 
example, to establish the 95% confidence difference threshold for the Gumbel difference, we use the following 
according to Figure 6. 

  

Where  is a scaling factor and is dependant on combination query (sequence being evaluated) as well as the 
fine tuned score matrix for the model (or EMM).  is the difference threshold below which the difference 
scores are considered significant. The number of matches or the number associated with the top 5% matches is 
used in computing the sequence level significance. 

In summary, the difference threshold used will be based on a much sharper Gumbel difference threshold as 
derived above. 

Sequence Significance and E‐Score:  With difference threshold in place, the number of significant 

Quasi‐alignments  can be determined by simply comparing the score difference for each‐matched state pair 
against the threshold. The ones that fall below the difference threshold are flagged as meeting the significance 
criterion. 

Karlin‐Altschul statistics proposes using the following formula for determining the significance of multiple 

local alignments thus producing an overall P‐value. 

  
Where , . For m=1, the above simplifies to the original form for the P‐value of single local 
alignment. However, this is not applicable in our case of difference distribution which is considered a normal 
difference distribution. We propose that the sequence level significance be computed as the average 
significance of all significant matches. 

Given m* the number of significant matches, the sequence level significance is computed as follows

  
E‐score “E" calculation as proposed by Karlin‐Altschul statistics i.e.  applies equally well for 

the Quasi‐alignment case presented here as follows: 

  
Word length versus significance: In all the above formulations, extreme value distributions require query 
lengths to be long and it is to be expected that word lengths of 3+ should achieve higher significance since word 
length of 2 yields NSV length of only  which is much smaller than word length 4 that yield NSV of 256. 
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NSV length versus Significance: As the word length increases and segment length over which Numerical 
Summarization is performed, an NSV may contain zero values for some of the word (variation) counts. This 
tends to effect the quality of  and therefore the accuracy of significance. 

Karlin‐Altschul statistics addresses similar issue with the inability to account for edge effect where alignment 
may not have sufficient room to complete toward maximum score. The recommended length correction is given 
by  where H is information entropy which is derived at the same time other parameters (  

and K) are derived [25]. 

Since, presence of zeroes for some counts in an NSV also does present loss of information, similar correction 
can also be attempted for Quasi‐alignment framework. However, since  values can get quite small resulting in 
small values for H, the length correction is not always applicable. As such, the length correction will be applied 
only where it is needed and meaningful. This is determined by checking to see if the resulting correction still 
maintains the effective length with in acceptable range i.e. . 

Alternately, using EMM form of sequences under evaluation reduces the complexity since the NSVs 
corresponding to the state centroids tend to hold statistics averaged over a state’s cluster thus eliminating much 
of the zero counts issue. 

In summary, extension of Karlin‐Altschul statistics should be possible to the Quasi‐alignment framework 
proposed by EMMBA as follows: 

• LOD score matrix concept is applicable so long as it is derived for each model and iteratively adjusted to 
meet the Karlin‐Altschul assumption for negative expected score. Symmetric property may or may not 
be necessary. In addition, the scores are not based on evolutionary substitution statistics, but on simple 
sequence community relevant word statistics. 

• A set of probabilities is associated with a unique set of scores from the score matrix which is adjusted 
based on point probabilities from the query; however, these also need iterative fine tuning if the scores 
are adjusted to meet the negative expected score requirement. 

• Seeding to determine the most likely match to consider further may done by using the similarity metric. 
The maximum similarity producing NSV‐Model state is considered the equivalent of High Scoring 
match Pair (HSP) for which significance may be evaluated. 

• Score difference is considered a better indicator for determining the significance since there is no way to 
compute consensus score based on substitution in a non‐classic alignment situation. The difference 

between the scores of matched state’s centroid and the NSV (word frequencies of a sequence‐segment) 
is assumed to approximately follow a Normal difference distribution. 

• Difference Normal distribution analysis is extended to Difference Gumbel distribution to determine the 
distribution parameters such as the Mean and Standard Deviation. Similar extension is also done to 
derive the sigma multiples for confidence intervals. Empirical observation as well as formal Normality 
tests based on Anderson-Darling [44] appears to confirm these assumptions. 

• A threshold is established by scaling the desired sigma multiple associated with confidence using 
Gumbel parameter  which is computed for every query‐model pair. 

• Quasi‐alignment is considered significant if associated score difference is below the established 
difference threshold. 

• Number of significant Quasi‐alignments is computed and used in deriving the sequence level 

significance as an extension from Karlin‐Altschul statistics for multiple local alignments. 
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• Standard E‐score to P‐value computation from Karlin‐Altschul statistics is used. 
 

Methods for Applications of EMMBA 
 

Unknown Sequence Identification: To identify the species of a 16s rRNA sequence family, the following 
method is to be used. First, a complete library of signature EMM profiles for all Species is to be generated using 
all available 16s rRNA sequence data for training. Next, the sequence information from an unknown origin, 
presumably still microbial, is converted to NSV form and then to an EMM. The EMM representation of the 
unknown origin may then be evaluated against each and every one of the Species in the library. The maximum 
scoring signature profile with acceptable significance becomes the identification. The same technique is used 
for novel species identification as well in which case since there is model, the significance level is expected to 
be lower. 

Known 16s rRNA Sequence Sample Classification: Sequence classification refers to determining the taxonomy 
of a given sequence given that its class already is known and available ahead of time. EMMs could be built for 
various taxonomic levels based on available sequence data in the NCBI database. The models can even be fine 
tuned by experimenting with different parameter settings, resolution levels and validated using rigorous 10x 
cross validation. Once finalized, a final set of models can be built into a library of EMMs which is then 
available for quick classification of lab sample of sequences belonging to several different organisms. The 
EMMBA evaluator can be configured to process such samples and find a likely classification. Since 
classification choices are ranked, additional information is available to allow for analyzing the related classes to 
a sequence of interest. It will be possible to answer questions like 1) what is the statistical significance that the 
sequence belongs to a certain class or 2) which classifications are most likely for a sequence at 90% statistical 
significance. This functionality is most useful for Metagenomic classification [45] where only partial sequence 
data may be available as opposed to complete genomes of the microbes found. The research assumes that 
targeted Metagenomics is used i.e. the sequence samples contain 16s rRNA header. 

Sequence Sample Differentiation: Community differentiation allows for study of phylogeny where the smaller 
differences group some in one branch and the others in different branches. This is also referred to as 
all‐against‐all analysis to establish a distance matrix for further analysis. In this case, analysis extends to the 
many 16s rRNA sequences an organism may have. This helps in studying how easy or difficult it is to 
differentiate species or genera. For example, it is known for some time that it is difficult to resolve the Bacilli 
strains. This can be analyzed using the differentiation function. Another application is for Metagenomic 
differentiation [45] where different Metagenomic samples are to be compared. In this case, each sample is 
subjected to all‐against‐all analysis deriving some metric (discussed in the Metrics section) of intra‐sample 
diversity which is used in comparison. 

Metrics 
All sequence evaluations are quantified using various metrics. The metrics are categorized into two groups. The 
basic group provides metrics at individual organism‐model pair level and are useful in establishing a rank order. 
The aggregate group offers metrics to characterize a whole sample of organisms useful for comparative 
genomic analysis. 

Basic 
There are four basic metrics proposed to assign a numeric assessment to evaluation of an organism against a 
model(EMM). In all cases, the EMM or the model that is associated with the largest metric value is considered 
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the most likely class. Two of the metrics SumScore and DiffScore are derived using Karlin‐Altschul statistics 
while the remaining two are derived using traditional methods. 

SumScore:  SumScore is computed as 

  

Where K is the number of segments in a query sequence, L is  with p being the word length (length of the 
NSV),  is the adjusted score for  count from the score matrix and  is the  count in the 

matched‐state’s centroid for the  NSV.  is the similarity value found for the match at  state and  is 

the Markov Transition Probability. The model scoring the highest SumScore is considered the most likely class 
for a query sequence. 

Probability:  Sum of Log Probability  is calculated by summing over all transition probabilities 

greater than a specified Threshold. The ones that fall below the threshold are given an extremely low score , 
but still added in to the metric. The model scoring the highest probability metric is considered the most likely 
class. 

Propensity:  Sum of Log Propensities  is calculated by summing over the products of 

transition probabilities and the associated similarity quantifier. The ones with no transition support in the model 
are assigned a very low score  to the product element before adding into the metric. The model scoring the 
highest propensity metric is considered the most likely class. 

Diffscore:  DiffScore is computed as 

  

Where  is the number of segments in a query sequence with difference scores less than the minimum 
difference threshold, L is  with p being the word length,  is the adjusted score for  count from the score 

matrix,  and  are the  counts in the matched‐state’s centroid and the segment‐NSV in context.   

is the associated transition probability. The model scoring the smallest differential Score is considered the most 
likely class for a query sequence. 

Apparent Distance : Distance between any two EMMs e1 and e2 is defined as +  where  
evaluates EMM 2 against the host model EMM 1. Apparent distance is limited to evaluation from one side only. 

Distance is computed as a result of mutual evaluation of each other’s EMM where the comparables are all in 
EMM form. In such evaluations, each EMM measures its apparent distance in terms of score differentials in all 
matches depending on whether each match is followed by a supported Markov transition in the host EMM. In 
cases where such transition is found, the score differential between the matched states is taken and where such 
isn’t found, a penalty is applied to the score differential of the match pair. The penalty  is computed as the 

  which is applied as a multiplicative factor to the score differentials with transition. The long formula 

for this metric may be expressed by 
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Which aggregates the differential scores of matches supported with a valid transition known to exist in the host 
EMM and 

  

Which, scores the differential scores of matches with unsupported transitions i.e. the transition from the 
previous state to the current matched state is not one that is known to exist in the host model (EMM). 

Notation: K is  with p being the word length, K’ is the number of segments with supported transition and 
(K‐K’) is the number of segments with unsupported transition.  is the joint score for  count from the 

score matrix,  and  are the  counts in the matched‐state’s centroid and the segment‐NSV in context.  

represents the penalty factor to account for increased differential due to unsupported transitions. This metric is 
used for building the distance matrix from which Phylogeny can be inferred or recovered. 

Aggregate Metrics 
On an overall assessment of a sample evaluation against a library of models, there are four different aggregate 
metrics proposed. Of these, two are c‐score [46] based though these are derived based on the third aggregate 

metric ‐ classification accuracy. Another new metric called Delta value is more applicable for differentiation 
which involves distance matrices. 

Classification Accuracy: Based on each basic metric, once each organism is assigned its most likely class or 
model, the overall accuracy of such assignments can be reported. This is possible in cases where the organism 
name itself holds the key to what the right class should be and the cases or the metric buckets, where this correct 
model is not chosen contribute to error for that metric. Correctly classified percentage of organisms for each 
basic metric is reported as the classification accuracy. 

Compatibility‐Score (c‐Score):  c‐Score measures and reports the difference in non‐trivial splits as a metric [46].  
Though it usually does this by examining a phylogenetic tree, it may be derived just as easily using the 
classification accuracy metric itself as shown in Figure 7. 

Thus c‐score can be computed by  where  and  is the number of 

phyla and classes with more than one organism. 

weighted c‐Score:  The weighted c‐Score, proposed here, takes into account that all error are not the same and 
that some are more trivial than others. By assigning severity weights to the type of error, a more conservative 
error estimate is indicated. For example, a misclassification resulting in a phylum level error is assigned a 
severity weight of 1.5 where as the same at Species level is given a value of 1. 

The formula is  where  is computed based on the type of error and the level of classification 

desired. For example, if reporting classification accuracy at the class level, the weighted error would include 
contributions from class and phylum level errors only with Phylum level error having a larger weight. 
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cScore [46,2] is intended to compare two trees to check for differences in terms of non
a new classification’s tree is measured using cScore. Since, EMMBA methodology already uses the NCBI classification 
organism itself; its metric for measuring classification accuracy already captures pertinent information useful for computing c
generating a phylogenetic tree. The derivation for this is shown in the above analysi
tree, subtracting 1 from the number of levels will suffice.

 Figure 7: Deriving cScore from Classification accuracy without generating Phylogenetic tree

Distance Matrix:  is an aggregate representation of the inter
differentiated. For example, if n sequences belonging to n organisms are being differentiated, a distance matrix 
would contain nxn elements with each element conta
matrices possible, one that is asymmetric which records the apparent distance between sequences and the other 
that is symmetric which records the true distance i.e. summation of relevant apparent dist
then be uploaded to any Phylogeny inference package t

Delta Value :   measures [48] the tree likeness of a distance matrix, so this measure is more applicable in case 
of differentiation where such matrix is the output. It is computed by taking one quartet (four points) at a time 
from the distance matrix and computing the 
formula is given by 

is intended to compare two trees to check for differences in terms of non‐trivial splits. Taking NCBI classification as the gold standard, 
a new classification’s tree is measured using cScore. Since, EMMBA methodology already uses the NCBI classification 

its metric for measuring classification accuracy already captures pertinent information useful for computing c
tic tree. The derivation for this is shown in the above analysis for a Genus level classification. To extend this for a class level 

tree, subtracting 1 from the number of levels will suffice. 

: Deriving cScore from Classification accuracy without generating Phylogenetic tree

is an aggregate representation of the inter‐distances among all the sequences being 
differentiated. For example, if n sequences belonging to n organisms are being differentiated, a distance matrix 
would contain nxn elements with each element containing a distance value. There are two types of distance 
matrices possible, one that is asymmetric which records the apparent distance between sequences and the other 
that is symmetric which records the true distance i.e. summation of relevant apparent dist
then be uploaded to any Phylogeny inference package to generate phylogenetic tree such as the PHILIP 

the tree likeness of a distance matrix, so this measure is more applicable in case 
of differentiation where such matrix is the output. It is computed by taking one quartet (four points) at a time 

atrix and computing the  over it and then taking the mean of all such measures. The 

 

trivial splits. Taking NCBI classification as the gold standard, 
a new classification’s tree is measured using cScore. Since, EMMBA methodology already uses the NCBI classification as implied in the name of an 

its metric for measuring classification accuracy already captures pertinent information useful for computing c‐score without 
s for a Genus level classification. To extend this for a class level 

: Deriving cScore from Classification accuracy without generating Phylogenetic tree 

distances among all the sequences being 
differentiated. For example, if n sequences belonging to n organisms are being differentiated, a distance matrix 

ining a distance value. There are two types of distance 
matrices possible, one that is asymmetric which records the apparent distance between sequences and the other 
that is symmetric which records the true distance i.e. summation of relevant apparent distances. The matrix may 

ogenetic tree such as the PHILIP [47]. 

the tree likeness of a distance matrix, so this measure is more applicable in case 
of differentiation where such matrix is the output. It is computed by taking one quartet (four points) at a time 

over it and then taking the mean of all such measures. The 
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Where, the notation of  means  and the notation  is simply the distance between x and v points 

in the distance matrix.  The   lies between 0 and 1. Larger the value less tree like the sample is. This is useful 
in Metagenomic differentiation studies where the sample characteristics are compared. Different values could 
mean more or less diverse mix of microbes in the sample. 

Software Tools 
R is a free software environment for statistical computing and graphics [49] used for generating the NSV and 
IPV files of this research.  A Java program called EMMBA is used to build EMMs to perform classification, 
differentiation and identification experiments; the program is not published externally outside the Southern 
Methodist University as of Nov 12, 2009. 

AGATE Statistical Analysis is an EXCEL program available on the web [44] for Normality test using 
Anderson‐Darling method. 

AISEE Graph Visualization is a commercial software [50] for generating EMM network graphs shown in Figure 
9. 

PHYlogenetic Inference Package (PHYLIP) is a website hosting the server for Phylogenetic tree generation 
using Neighbor‐Joining Method [47]. 

RESULTS 

Implementation 
 

The 16s rRNA Database utilized in this analysis is derived from the NCBI FTP site [51].  The database consists 
of individual files, one per microbial organism, in FASTA format. The format uses improved headers for 
subsequent data preparation processing prior to using them in Extensible Markov Modeling and evaluation 
steps. 

The original dataset called ORG, which was derived from the NCBI as of August 2009 and consists of 782 
organisms each with multiple 16s sequences where applicable. The FASTA header for each file contains five 
pieces of information: Phylum, Class, Genus, Species and Organism name as used in NCBI FTP Database. The 
Database is used in generating the training communities of sequences as well as a set of randomly selected test 
organisms to be used in subsequent classification experiments. 

Preprocessing 16s Sequences 
We found that some of the header information in the NCBI organism was missing in some cases. There were 
several cases of missing Genus or even Class information. Since this type of information is used for 
automatically verifying classification results, such data is excluded from analysis. The final database consisted 
of 676 FASTA files with one per organism. 

The ORG Dataset is first pre‐processed and then separated to facilitate multi‐step (10x method) model building 
and model validation as shown in Figure 8. 
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Once FASTA formatted multi‐copy 16s sequence files for each organism are converted to their Numerical summary equivalents, they are then 

randomized, divided into 10 non‐overlapping partitions with each containing 10 %. Following the 10x methodology, one of the partitions is selected 
as test candidates while the remaining 9 are used for training i.e to build models (EMMs). The process is repeated by selecting a different partition 
for test and the remaining other 9 for training. When all partitions finish taking turns as the test partition, the 10x cross validation is said to be 
complete and the results are averaged over the 10 runs. This method is done to add the necessary rigor and eliminate any bias in the results. 

 Figure 8: overall process for preparing training & test datasets from 16s rRNA database 

Modeling sequence communities with the Extensible Markov Model follows conversion of nominal sequence 
data into numeric form. More appropriately, the sequence data is actually converted to Numerical summary 
form i.e. to count vectors where counts represent the number of times a particular nucleotide pattern of certain 
length occurs within a segment of a predetermined length in given sequence of nucleotides. For this study, we 
opted to divide the 16s sequence into equal size segments of varying sizes (20, 80) with a pattern width of 3. 
Since a 16s rRNA sequence on average is approximately 1542 nucleotides long, the number of segments ranges 
from 77 to about 192. For a pattern width of 3 if chosen, there will be  = 64 different types of counts for each 
segment corresponding to 64 variations of nucleotides. 

Numerical Summarization: For a pattern width of 3, each 16s Sequence is thus converted into several 
Numerical Summarization Vectors (NSV) of size 64. In case of multiple 16s sequences for an organism, the 
vectors for each sequence are captured serially with a start count vector at the beginning. 

Sequence selection for training & testing: Once all organisms’ 16s sequences are converted to their numerical 
summary vector representations, they are then further organized into training and test sets as shown in Figure 8.  
 

Data files are sampled to select one tenth (default) of available organisms for test leaving the remainder for 
training in a 10x cross validation scheme [52] the scheme allows for averaging the results over 10 independent 
analyses of the same data by dividing the data into 10 equal partitions each of which takes turn in being used as 
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a test partition. For each run, once the test partition is set aside, the remaining nine partitions become the 
training pool. The training set is used to build aggregated models at a required granularity. For example, models 
can be built at Class level, Genus level or even at the Species level. In case of an aggregation at Phylogentic 
Class level, thus each Class will have all its organisms with their 16s sequence data in numerical summary form 
except for those selected for testing. 

The training classes are then used to build EMM models. The models are built by processing numerical 
summary vectors of each 16s sequence belonging to a training class, referred to as sequence community. 

Building Phylogenetic Sequence community Models 
When all sequences along with their numerical summary vectors are thus processed, the model is said to be 
complete and representative of the sequence community or the corresponding phylogenetic class. Throughout 
the building process, a Score Matrix is also updated which is subsequently used for deriving a match score and a 
statistical significance level. The scores are in log-odds (LOD) form and reflect the values to be assigned for a 
word or pattern count. 

 

Phylogenetic Class models built with EMM are directed weighted graphs with controllable cluster similarity threshold for visualization. For example, 
by adjusting the Jaccard threshold T, the model graphs are generated for the Phylogenetic classes ‐ Mollicutes, MethanoBacteria and ThermoCocci. 
These are for visualization purposes only. For classification analysis, a baseline threshold like 95% is used across all model building. Typically, 
higher the threshold, larger the size of the model graph and more the information content useable for species differentiation. The graphs are generated 
using AISEE software package using file output by the EMM model builder. 

 Figure 9: Phylogenetic class model visualization 

The class model thus built can be interrogated for transition probabilities of any arc in the model graph. As 
described earlier, the arc probabilities are derived simply by dividing the number of times the arc is traversed by 
the total number of times the  “from-State” is matched. These transition probabilities are used to filter out 
segments of member sequence that do not follow the expected transitions in a host community model. These 
probabilities in fact bring the specificity that is required to establish valid membership in a community of 
sequences. 
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Structure of EMM Models & Visualization: Extensible Markov Models are directed connected graphs with 
weights on each arc and nodes. They can also be used for visualization of an entire Phylogenetic class. For 
visualization purposes, it would be preferable to limit the number of state cluster nodes of the graphs to a 
manageable number (less than 20). This is possible by experimenting with the Jaccard similarity threshold at 
which the NSVs are processed to match existing state clusters in the model graph. The Figure 9 shows equal 
size graphs for Phylogenetic Classes Mollicutes, Thermococci and Methanobacteria. 

Evaluation/Classification of Test Organisms 
The FASTA formatted test files are then converted to their Numerical Summary Vector (NSV) form as 
illustrated in Figure 2. After sampling shown in Figure 8 and model building shown in Figure 3 the test-set is 
ready for evaluation against all the models. For each model, each test organism in NSV format is compared one 
NSV at a time recording the most matched state and the transition to it from the previous matched state. The 
evaluation process is as shown in Figure 10. 

 

The Test organisms are processed one at a time starting with the first numerical summary vector (NSV). Each NSV is searched against all states of 
the model looking for most similarity. The matching state (s) with the highest similarity, the similarity value (q) and the transition probability (prob) 
are recorded for each NSV. Once all NSVs are processed with all result triplets recorded, next organism and its NSVs are then evaluated. Once all 
test organisms are thus processed, the results will be used subsequently to derive model scores. The overall score for test sequence is computed for 
each class model according to the metric used. Once all test sequences are thus processed, for each organism, the model with the best score becomes 
the chosen model which will be subsequently used in determining the classification accuracy.  

Figure 10: Evaluation of Test Organisms to derive model scores 

Evaluator first records, for each NSV of the test organism, the most similar state, the similarity quantifier and 
the transition probability from previously matched model state to the current most similar state. Once all NSVs 
are processed, metrics are computed for ultimate rank calculation as shown in Figure 10 that determines the best 
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class model for the test organism. The metrics calculated are Sum of Log Probabilities and Sum of Log 
Propensities. 

Classification Experiments & Results 
 

Validating the Difference Distribution: As discussed in the Results section, the difference distribution formed 
from taking the difference between an NSV segment and a matched state of the model is assumed to 
approximately follow Normal distribution. The Figure 11 is output of a Darling‐Anderson test [44,39]. 

The difference distributions from two sequence evaluations against a model are tested for Normality using Anderson‐Darling test [Anderson1952,i]. 
Results show that Normality is acceptable. 

 Figure 10: 10x cross validation results and aggregate metrics 

Metrics Used:   Sum of Log Probability, Sum of log Propensities, SumScore and DiffScore are computed and reported for 

each pair of model & test sequence. The model scoring the maximum for each metric class assigned to a test sequence 

becomes the classification result. Once all test sequences are evaluated and classification determined, aggregate metrics 

are used to analyze the overall performance of the classifier. 

Experiments:  Sampling the entire 16s genomic database excluding those skipped due to missing header information 

resulted in 10 partitions of 67 organisms each. These partitions are then used for 10x cross validation. Building sequence 

models involves selection of sequences from all partitions except the one used as test partition. First author’s earlier 

experience with microbial classification [5] indicates that the best performance of a classifier is achieved when 
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classification is attempted at a sub‐class i.e.

granular level than Phylogenetic Class, it will be used as the classifica

classification. Since there are 246 sub‐classes i.e. Genera and only 33 phylogenetic classes in the dataset, this approach 

makes sense in achieving the desired goal. 

Each classification is evaluated against the intended label at Phylum and class levels. If the match occurs, classification is 

considered successful. The match at Genus level is not considered here since our interest in classifying the organisms 

into correct phylogenetic classes. As such, a mismatch

phylogenetic class as demonstrated in [5] b

The summary of the 10X cross validation runs and the individual run’s results clearly show that EMMBA classifies the microbia
Phylogenetic class reasonably well. In general, class prediction is seen to be more effective when classified at a lower sub

this case. Kotamarti et al [5] have previously demonstrated that Sub

only 12 of them are over 10 members each as opposed to 246 sub

at 90% or higher confirms the success of the approach. In addition to the accuracy metrics, also reported are aggregate metri

c‐Score that measure compliance of classification result
lower taxa. 

 Figure 11: 10x cross validation results and aggregate metrics

10x cross validation was performed on the overall dataset at Genus level and the results of the 10 independent 

experiments are recorded in Figure 12. Orphan qualification against the results reflects the fact that cardinality 

controlled 10x sampling sometimes results in skipping the creation of certain community sequence models. For 

example, there are 246 Genera out of which approximately 60% have no more than one organism; if a single member 

. at a level lower than the desired classification level. Since Genus is a more 

granular level than Phylogenetic Class, it will be used as the classification level which will provide a more targeted 

‐classes i.e. Genera and only 33 phylogenetic classes in the dataset, this approach 

 

intended label at Phylum and class levels. If the match occurs, classification is 

considered successful. The match at Genus level is not considered here since our interest in classifying the organisms 

into correct phylogenetic classes. As such, a mismatch at Genus level may still put the classification in the correct 

n [5] by the first author. 

The summary of the 10X cross validation runs and the individual run’s results clearly show that EMMBA classifies the microbia
Phylogenetic class reasonably well. In general, class prediction is seen to be more effective when classified at a lower sub

have previously demonstrated that Sub‐class level classification yields better performance. Since there are 33 classes and 

only 12 of them are over 10 members each as opposed to 246 sub‐class or Genera, the technique is expected to perform better. The high success rate 

at 90% or higher confirms the success of the approach. In addition to the accuracy metrics, also reported are aggregate metri

Score that measure compliance of classification results with NCBI taxonomy [46]. Weighted c‐Score penalizes more for errors at higher taxa than 

: 10x cross validation results and aggregate metrics

cross validation was performed on the overall dataset at Genus level and the results of the 10 independent 

. Orphan qualification against the results reflects the fact that cardinality 

results in skipping the creation of certain community sequence models. For 

example, there are 246 Genera out of which approximately 60% have no more than one organism; if a single member 

at a level lower than the desired classification level. Since Genus is a more 

tion level which will provide a more targeted 

‐classes i.e. Genera and only 33 phylogenetic classes in the dataset, this approach 

intended label at Phylum and class levels. If the match occurs, classification is 

considered successful. The match at Genus level is not considered here since our interest in classifying the organisms 

at Genus level may still put the classification in the correct 

 

The summary of the 10X cross validation runs and the individual run’s results clearly show that EMMBA classifies the microbial organisms at the 
Phylogenetic class reasonably well. In general, class prediction is seen to be more effective when classified at a lower sub‐class level such as genus in 

class level classification yields better performance. Since there are 33 classes and 

expected to perform better. The high success rate 

at 90% or higher confirms the success of the approach. In addition to the accuracy metrics, also reported are aggregate metrics c‐Score and Weighted 

Score penalizes more for errors at higher taxa than 

: 10x cross validation results and aggregate metrics 

cross validation was performed on the overall dataset at Genus level and the results of the 10 independent 

. Orphan qualification against the results reflects the fact that cardinality 

results in skipping the creation of certain community sequence models. For 

example, there are 246 Genera out of which approximately 60% have no more than one organism; if a single member 
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Genus is in the test partition, there will be none in the training se

test organism, it is called an orphan. However, classification results are shown with and without accounting for orphans. 

In the Figure 12   refers to results where accuracy ra

organisms to classify into. It makes sense to consider results for which orphans are accounted for only. These results are 

identified by "orphans‐". 

Successful classification is indicated by the presence of an uppercase letter for a given level; for example, P implies that Phylum level classification 
is successful and that a lowercase p implies an unsuccessful classification. The numbers in the bracket represent the signifi
p‐value and E‐Score respectively. Only three organisms are shown as examples, but infact, there were 670 organisms being classified into 33
phylogenetic classes. 

 Figure 12: Classification (partial)

The output for individual classification of an organism is shown in Figure
classification (for output of 3 randomly selected organisms) is shown to be successful if the corresponding level 
is shown is uppercase. For the levels not classified correctly, the corresponding letters are shown in lowercase. 
Such result of classification is shown for each Metric. Also show
classification as observed by score differential as

next to the significance level. Both P‐value and E

Karlin‐Altschul statistics [25] which utilizes the presence of multiple matches (local alignments) between a 
query sequence and a model sequence. Where the significance is high, the result reported is statistically 
justified; otherwise, more information may be required to arrive at a co

With orphan results accounted for, the summary results show that classification accuracy is well above 85% for 
all both Phylum and Class levels. The score metrics performed equally well in general with the 

 metric outperforming others; however, the score based metrics offer additional information 
such as significance with acceptable success level of 90% accuracy. Metrics c_Score shows a well above 85% 
value indicating the reasonable success o
lower score reflecting the degree of error in misclassifications. Both are reported against the
Probability metric based classification results only.

Identification Experiments & Results 
 

A species level EMM library is created. The library is of size 418 EMMs at the time of this paper. Some 
organisms are arbitrarily selected to be the ones to be identified. These are suffixed with “_test" which are 

Genus is in the test partition, there will be none in the training set for building a model. When there is no model for a 

test organism, it is called an orphan. However, classification results are shown with and without accounting for orphans. 

refers to results where accuracy rate is lower because there are no models for some test 

organisms to classify into. It makes sense to consider results for which orphans are accounted for only. These results are 

nce of an uppercase letter for a given level; for example, P implies that Phylum level classification 
is successful and that a lowercase p implies an unsuccessful classification. The numbers in the bracket represent the signifi

Score respectively. Only three organisms are shown as examples, but infact, there were 670 organisms being classified into 33

: Classification (partial) success with statistical significance and E

The output for individual classification of an organism is shown in Figure 13. As seen in the Figure 13
classification (for output of 3 randomly selected organisms) is shown to be successful if the corresponding level 

uppercase. For the levels not classified correctly, the corresponding letters are shown in lowercase. 
Such result of classification is shown for each Metric. Also shown is Statistical Significance for
classification as observed by score differential assessed against a difference threshold.  E

value and E‐Score are at sequence level and are derived 

which utilizes the presence of multiple matches (local alignments) between a 
query sequence and a model sequence. Where the significance is high, the result reported is statistically 
justified; otherwise, more information may be required to arrive at a conclusion regarding the classification.

With orphan results accounted for, the summary results show that classification accuracy is well above 85% for 
all both Phylum and Class levels. The score metrics performed equally well in general with the 

metric outperforming others; however, the score based metrics offer additional information 
such as significance with acceptable success level of 90% accuracy. Metrics c_Score shows a well above 85% 
value indicating the reasonable success of the classifier; however, the weighted c_Score shows a relatively 
lower score reflecting the degree of error in misclassifications. Both are reported against the

metric based classification results only. 

 

A species level EMM library is created. The library is of size 418 EMMs at the time of this paper. Some 
organisms are arbitrarily selected to be the ones to be identified. These are suffixed with “_test" which are 

t for building a model. When there is no model for a 

test organism, it is called an orphan. However, classification results are shown with and without accounting for orphans. 

te is lower because there are no models for some test 

organisms to classify into. It makes sense to consider results for which orphans are accounted for only. These results are 

 

nce of an uppercase letter for a given level; for example, P implies that Phylum level classification 
is successful and that a lowercase p implies an unsuccessful classification. The numbers in the bracket represent the significance in terms of sequence 

Score respectively. Only three organisms are shown as examples, but infact, there were 670 organisms being classified into 33 

significance and E‐score 

13. As seen in the Figure 13, 
classification (for output of 3 randomly selected organisms) is shown to be successful if the corresponding level 

uppercase. For the levels not classified correctly, the corresponding letters are shown in lowercase. 
n is Statistical Significance for the 

E‐Score is also shown 

Score are at sequence level and are derived using 

which utilizes the presence of multiple matches (local alignments) between a 
query sequence and a model sequence. Where the significance is high, the result reported is statistically 

nclusion regarding the classification. 

With orphan results accounted for, the summary results show that classification accuracy is well above 85% for 
all both Phylum and Class levels. The score metrics performed equally well in general with the 

metric outperforming others; however, the score based metrics offer additional information 
such as significance with acceptable success level of 90% accuracy. Metrics c_Score shows a well above 85% 

f the classifier; however, the weighted c_Score shows a relatively 
lower score reflecting the degree of error in misclassifications. Both are reported against the Sum Log 

A species level EMM library is created. The library is of size 418 EMMs at the time of this paper. Some 
organisms are arbitrarily selected to be the ones to be identified. These are suffixed with “_test" which are 
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automatically picked up by the Evaluator to test against the library of EMMs. The classifier output is examined 
to see if the test organisms are identified correctly.

As shown in Figure 14, the four test organisms
and Urealplasma_urealticum were easily identifiable by the
with significance greater than 90%. 

After the species library of 418 is created, four randomly selected organisms were subjected to a search test to see if t
identified. The organisms shown demonstrate a clear and certain identification with significance reported in the 90% range. T
metric Sum Log Probabilities provides consistent conclusion here. 

 Figure 13 : Identifying Organisms with the Species library of EMMs

 

To assess the performance of our identifier for novel organisms, we introduced three foreign RNA sequences 
belonging to Sand Fly, Brown dog tick and Mouse stem cells. These were mixed 
and the experiment was rerun. Figure 15 shows the much lower significance scores implying that the sequences 
are perhaps novel organisms. 

However, the Figure 16 shows the cases where identity remains a mystery. This is so beca
pattern across the four metrics regarding the identifiability of the three organisms
Clostridium_perifringens. This will be further explored in the Resolution Control section.

Differentiation of species with 16s rRNA

As discussed in the methods section, the “Apparent Distance Metric" is used to create a distance matrix. Since 
Bacillus strains are harder to differentiat
(non microbial) RNA introduced earlier in the document are also added to the group to analyze distance 
sensitivity in EMMBA. 

Evaluator to test against the library of EMMs. The classifier output is examined 
to see if the test organisms are identified correctly. 

, the four test organisms Clostridium_botulinum, Treponema_denticola, Vibrio_Cholerae 
were easily identifiable by the best performance metric i.e.

After the species library of 418 is created, four randomly selected organisms were subjected to a search test to see if t
identified. The organisms shown demonstrate a clear and certain identification with significance reported in the 90% range. T

provides consistent conclusion here.  

: Identifying Organisms with the Species library of EMMs

To assess the performance of our identifier for novel organisms, we introduced three foreign RNA sequences 
belonging to Sand Fly, Brown dog tick and Mouse stem cells. These were mixed with the other test sequences 
and the experiment was rerun. Figure 15 shows the much lower significance scores implying that the sequences 

However, the Figure 16 shows the cases where identity remains a mystery. This is so beca
pattern across the four metrics regarding the identifiability of the three organisms Chalmydia_trachomatis, 

. This will be further explored in the Resolution Control section.

rRNA 

As discussed in the methods section, the “Apparent Distance Metric" is used to create a distance matrix. Since 
Bacillus strains are harder to differentiate [53,54,55], they are selected to set up a distance matrix. Three foreign 
(non microbial) RNA introduced earlier in the document are also added to the group to analyze distance 

Evaluator to test against the library of EMMs. The classifier output is examined 

Clostridium_botulinum, Treponema_denticola, Vibrio_Cholerae 
tric i.e. Sum Log Probabilities 

 

After the species library of 418 is created, four randomly selected organisms were subjected to a search test to see if they would be correctly 
identified. The organisms shown demonstrate a clear and certain identification with significance reported in the 90% range. The best performing 

: Identifying Organisms with the Species library of EMMs 

To assess the performance of our identifier for novel organisms, we introduced three foreign RNA sequences 
with the other test sequences 

and the experiment was rerun. Figure 15 shows the much lower significance scores implying that the sequences 

However, the Figure 16 shows the cases where identity remains a mystery. This is so because there is no clear 
Chalmydia_trachomatis, 

. This will be further explored in the Resolution Control section. 

As discussed in the methods section, the “Apparent Distance Metric" is used to create a distance matrix. Since 
, they are selected to set up a distance matrix. Three foreign 

(non microbial) RNA introduced earlier in the document are also added to the group to analyze distance 
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The distance matrix shown in Figure 17 is a symmetric distance matrix where Apparent Distances are replaced 
with True Distance values. The matrix is then applied to a Phylogeny Inference Program called PHYLIP 
a server website [56] to obtain a phylogenetic tree using the Neighbor Joining method 
18. 

It may be interesting to note the delta values shown in Figure 17 as they tend to indicate the diversity.

 

Three foreign RNA sequences belonging to Mouse, Brown Dog Tick and Sand Fly
indication of novel cases unseen before for capture in the EMM libraries. The significance values are so low across the metri
of the foreign RNA is clearly established.   

Figure 14 : Novel sequence detection with Species Library of EMMs

These are some cases where the identification is uncertain since there is no clear pattern in the metric space. In such cases
a finer resolution to better differentiate. This is explored further in Figur

 Figure 15: Examples of uncertain identification which requires finer parametric resolution

Using the Neighbor Joining Method [57] tree construction, the Figure 18 

like Bacillus while clearly separating the foreign RNA belonging to

stance matrix shown in Figure 17 is a symmetric distance matrix where Apparent Distances are replaced 
with True Distance values. The matrix is then applied to a Phylogeny Inference Program called PHYLIP 

to obtain a phylogenetic tree using the Neighbor Joining method [57

It may be interesting to note the delta values shown in Figure 17 as they tend to indicate the diversity.

Mouse, Brown Dog Tick and Sand Fly were introduced to see if identification would 
indication of novel cases unseen before for capture in the EMM libraries. The significance values are so low across the metri

: Novel sequence detection with Species Library of EMMs

These are some cases where the identification is uncertain since there is no clear pattern in the metric space. In such cases
This is explored further in Figure 17. 

: Examples of uncertain identification which requires finer parametric resolution

d [57] tree construction, the Figure 18 shows the proximity of clos

like Bacillus while clearly separating the foreign RNA belonging to Mouse, Sand Fly and Brown Dog Tick

stance matrix shown in Figure 17 is a symmetric distance matrix where Apparent Distances are replaced 
with True Distance values. The matrix is then applied to a Phylogeny Inference Program called PHYLIP [47] at 

57] as shown in Figure 

It may be interesting to note the delta values shown in Figure 17 as they tend to indicate the diversity. 

 

were introduced to see if identification would give some 
indication of novel cases unseen before for capture in the EMM libraries. The significance values are so low across the metric space that the novelty 

: Novel sequence detection with Species Library of EMMs 

 

These are some cases where the identification is uncertain since there is no clear pattern in the metric space. In such cases, it may be necessary to use 

: Examples of uncertain identification which requires finer parametric resolution 

shows the proximity of closely related strains 

Mouse, Sand Fly and Brown Dog Tick. Considering no 
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alignment was needed ahead of time, this differentiation output of distan

analysis. 

Resolution Control:  Occasionally, coarse settings for key parameters of EMMBA improve response time at the 
cost of accuracy. Whenever the accuracy is found to be insufficient, fine tuning of the parameters is necessary. 

The matrix is a result of inter evaluation of a pair of EMMs where one EMM evaluates another EMM as a test sequence and vice versa. Each 
evaluation produces an apparent distance. Results of both evaluations i.e
Distance Matrix to achieve symmetry. The distance value not only reflects the state transition differences but also uses EMM 
quantify. The delta score computes the divergence or the tree
expected. 

 Figure 16: Distance Matrix generation using inter

Increasing the granularity of numerical summarization by reducing the segment size from 80 to 20 
The two organisms were previously unidentifiable at a segment size of 80, but with new reduced segment size, the metrics clea
prediction. 

 Figure 17: 10x cross validation 

For example, all experiments were conducted so far using a segment size of 80 and a word or pattern width of 3. 
Reducing the segment size improves the accuracy of prediction as there will be more granularity in the data.

alignment was needed ahead of time, this differentiation output of distance matrix seems reasonable for M

Occasionally, coarse settings for key parameters of EMMBA improve response time at the 
cost of accuracy. Whenever the accuracy is found to be insufficient, fine tuning of the parameters is necessary. 

of inter evaluation of a pair of EMMs where one EMM evaluates another EMM as a test sequence and vice versa. Each 
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of 0.98 indicates significant divergence as 
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significantly improves the prediction accuracy. 
The two organisms were previously unidentifiable at a segment size of 80, but with new reduced segment size, the metrics clearly show the 

results and aggregate metrics 

For example, all experiments were conducted so far using a segment size of 80 and a word or pattern width of 3. 
Reducing the segment size improves the accuracy of prediction as there will be more granularity in the data. 
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When segment size is reduced to 20 and identification is reattempted for the two organisms of Figure 16 it is 
clearly seen from Figure 18 that prediction accuracy significantly improves. 

In general, there are several parameter controls for EMMBA to adapt to different applications. This includes 
various clustering metrics that can be used when building EMMs as well. 

 

Phylogenetic tree is generated using PHYlogeny Inference Package [47] available on the web [56]. The method selected is Neighbor Joining Method. 
As seen in the Figure, the foreign RNA belonging to Sand Fly, Brown Dog Tick and Mouse are shown on the outer branches of the tree indicating 
remoteness rest of the microbial sample. The Figure also places the Bacilli strains closer though they belong to different Genera. 

 Figure 18: Phylogenetic Tree of EMM differentiation output of Distance Matrix 

DISCUSSION 
 

This research formally (Figure 1) explored reorganization of the biological sequences to a more compact 
statistically equivalent Extensible Markov Model form (Figure 9). The EMMs created (Figure 3), were then 
organized further to form profiles of related organisms. The organism level sequence data was obtained from 
NCBI as FASTA files which is preprocessed to a word frequency form prior to further usage. 

The effectiveness of using EMMs for biological sequences has been demonstrated through three distinct 
domains of bioinformatics of today and they are Classification, Identification and Differentiation. Classification 
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refers to the prediction of taxonomy for a given organism. Identification pertains to determining the possible 
taxa of a sequence as confidently as possible and Differentiation refers to recovery of phylogeny from 
all‐against‐all oriented distance matrix reports. The research presented here performed effectively in all three 
areas as discussed further here. 

Grouping EMMs of sequences by taxonomic level made it possible to build libraries of models which were used 
for classification and phylogenetic analysis. Using the notion of sequence communities, the research explored 
classification of organisms into appropriate phylogenetic classes using a novel evaluation method(Figure 10). 

In order to assess statistical significance of such classification, we have extended the Karlin‐Altschul statistics 

[25] derive scores and the threshold levels. Extensions to Karlin‐Altschul statistics were necessary because of 
differences in how the sequences are compared. In a classic alignment domain which is the basis of BLAST 
[23] sequences are aligned and scored. In a Quasi‐alignment domain such as our approach, sequence 
comparison is done at word frequency level. New algorithms were proposed (Figures 5, 4) for building 
symmetric score matrices in an alignment free context such as that described here. Since no substitution 
matrices could be used, score differentials  and usage of difference distributions (Figure 6) were derived and 
subsequently shown to be effective. Four criteria were proposed as pseudo metrics to determine the 
classification each of which is reported with statistical significance and E‐score. 

10x classification was used to verify the accuracy of classification (Figure 8). By targeting to predict sub‐class 
level such as Genus, we have achieved phylogenetic class level prediction accuracy well above 90% as shown 
in Figure 12. A four level classification for each organism evaluation is obtained by matching the classification 
result against the expected labels. This was found to be useful for determining at what level of the taxonomy a 
particular test sequence would be classifiable. For each classification, four different criteria or pseudo metrics 
were assessed and reported along with significance and E‐score values as shown in Figure 13. Matching the 

signature of a model and a query sequence is a non‐trivial process. Of the four criteria or pseudo metrics used, 

the most effective one appears to be Sum Log Probabilities which is very sensitive to intra‐sequence Markov 
transitions. However, the other metrics are also reasonable in their effectiveness and help provide a sanity check 
for the leading metric when assessing the overall results. It is to be noted that using extended Jaccard for 
clustering is not ideal when working with centroids. In fact, when Euclidean measure is used in place of 
extended Jaccard, the accuracy across all metrics improved except for the Sum Log Probabilities as shown in 
Figure 20. 

It is often the case that classification at higher taxa is more successful than at lower taxa. This can be explained 
by the fact that there is simply more training data available at higher taxa due to large overall membership in 
terms of organisms. Knowledge of knowing the distribution at each level helps determine which level to work 
with to obtain successful classification. In our case, we found that the number of Genera is reasonably large at 
246 compared to Phylogenetic Class pool size of only 33. Since the average number of genera per Class is much 
greater than 1, chances for predicting the Class are improved if Genus is used as the target class. However, this 
is not the only method for successful classification. Experimenting with granularity and making sure that the 
folds are balanced could achieve the same success at any desired level. 

Results of overall classification are also computed using c_Score [46] which measures compliance with NCBI’s 
view of correct taxonomy by measuring the number of non‐trivial splits. A weighted c_Score measure is 
proposed to account for severity of missed classifications and thus provide a more conservative view of 
compliance. We showed that it is not necessary to build a phylogenetic tree to compute nontrivial splits required 
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for c_Score determination. Derivation of c_Score from the classification errors is shown in Figur
c_Score values of 90% and a weighted c_Score v
multilevel Phylogenetic Classifier. 

Clustering measure used when building models can affect the performance of classification especially for the score related me
demonstrated by this table where the Euclidean based metric outperforms Jaccard in three of the four metrics.

 Figure 19: 10x cross validation results and aggregate metrics

 

Since it is possible to consolidate related organisms or strains into a single complex model, a library of EMMs 
at the granularity of Species is created. Microbial Identification explores the possibility of readily determining 
the taxa of an unknown organism by assessing the strength and significance of its membership against each 
EMM in the library. When a segment size of 80 and a word length of 3 were used, identification was as 
expected and unambiguous as shown in Figur
Vibrio_Cholerae and Urealplasma_urealticum
Chalmydia_trachomatis and Clostridium_perifringens
results. The before and after segment size reduction are shown in Figur
pseudo metrics are generally effective, we found that
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required. This is expected to find application in Metagenomic classification where the sequence information is 
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Phylogenetic trees are generated from carefully built distance matrices. Usage of a proper distance metric may 
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: 10x cross validation results and aggregate metrics

Since it is possible to consolidate related organisms or strains into a single complex model, a library of EMMs 
at the granularity of Species is created. Microbial Identification explores the possibility of readily determining 

sm by assessing the strength and significance of its membership against each 
EMM in the library. When a segment size of 80 and a word length of 3 were used, identification was as 
expected and unambiguous as shown in Figure 14 for organisms Clostridium_botulinum, Treponema_denticola, 
Vibrio_Cholerae and Urealplasma_urealticum. However, more granularity was needed to identify

Clostridium_perifringens. Reducing the segment size helped disambiguate the 
ment size reduction are shown in Figures 16 and 19. Though all four criteria or 

pseudo metrics are generally effective, we found that Sum Log Probabilities provides more consistent results. 
Resolution control aspect of EMMs is useful in adjusting the system responsiveness and the level of accuracy 
required. This is expected to find application in Metagenomic classification where the sequence information is 

Phylogenetic trees are generated from carefully built distance matrices. Usage of a proper distance metric may 
be verified by attempting to compute delta value [48]. Our research explores usage of delta scores to report the 
diversity of a distance matrix which is useful in case the sample is of Metagenomic origin. Computation of delta 
score first confirms that each quartet of a distance matrix satisfies the four point conditio
triangle inequality required of a true metric. We found that our four criteria used in classification and 
identification do not conform to the rules of a true metric. By defining distance as a sum of inter
evaluations, we have achieved a true distance metric. By selecting a variety of organisms combined with three 

Mouse, Tick and Sand Fly, a distance matrix was built (Figure 17). The distance matrix 
indicating high degree of diversity. The matrix was then input to a Neighbor 

of the PHYlogenetic Inference Package [47] on the web [56] to generate a phylogenetic 

The phylogenetic relationships indicated in the Figure 18 clearly separate the non‐microbial organisms from the 
microbial ones. Furthermore, the tree also shows the close proximity of the Bacillus strains though they all 
belong to different Genera. Our research here confirms the effectiveness of using EMM transf
analyzing the microbial diversity of a collection of organisms which may be found in a metagenomic context.

The new transformational space offered by EMMs is useful for re‐examining traditional sequence analysis 
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examining traditional sequence analysis 
ure predictions in the future. Metagenomics and the Human Microbiome facilitate 

complex landscape for dealing with multitude of genomes all at once. This places huge demands on traditional 

Hosted by The Berkeley Electronic Press



classic alignment methods. Effective Metagenomic Classification requires complex representations of taxa and 
Metagenomic Diversity analysis benefits from the issues of multiple sequence alignment. The future research 
will extend EMMBA methods to classify sequence fragments and differentiate Metagenomes from different 
times and/or places. 

Using word statistics or counting short pattern sequences has been known [1] which explored different 
statistical distance measures for clustering. To the best of our knowledge, automatic learning to build models 
dynamically has not been explored in the literature. Similarly, clustering related segments of a single or multiple 
sequences to form a compact Markov model equipped with transition probabilities has also not been found in 
the literature though some derivatives may be assumed in profile HMMs [9].Using Extreme Value Distributions 
in an alignment free context where there are no substitution matrices to derive scores is a natural extension from 
Karlin‐Altschul statistics [25] though its application toward a difference distribution is novel from our 
perspective. The fact that statistical signature libraries can be created from individual sequences or communities 
of sequences which can be used to classify, identify and differentiate combined with significance reporting is 
useful for Metagenomic Bioinformatics. 
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