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Web Appendix

Details on Computational Implementation

Details of the sampling algorithm for the joint spatial model are given below. Estimation of

the conditional predictive ordinate using Monte Carlo samples from the posterior distribution

is then discussed. Software for carrying out the computation has been written in the R

programming language and is available from the author upon request.

Reparameterizations

We have found two simple reparameterizations particularly useful in improving mixing of

the sampler.

1. Replacing the regression specification λi{t|x(H)
si

(t)} = λ0(t)ωi exp{βxsi (t)} with a cen-

tered version λi{t|x(H)
si

(t)} = λ0(t)ωi exp{β(xsi (t)− c)} where taking c = Ȳ improves

mixing of the sampler; in particular w.r.t. β and {λj}.

2. We have found it useful to hierarchically scale each kernel Kl(u) so that the corre-

sponding scale parameter σl, l = 1, 2, 3, is ‘pushed back’ into the distribution of the

latent variables Xj, j = 1, · · · , J . In doing so, the distribution of the increments used

in defining the discrete process convolution changes from Xj
ind∼ MV N3(0, |Aj|TT′) to

Xj
ind∼ MV N3(0, |Aj| diag{σ1, σ2, σ3}TT′ diag{σ1, σ2, σ3}) and the computation of each

Kl(u) no longer involves σl.
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MCMC Algorithm

Denoting by {X, {σ2
l }, {ψlx, ψly, νl},ρ, η, β, {ωi}, {λj}, σ2

ε , µz} the current state of the chain,

we follow steps 1 to 10 below. One iteration of the sampler consists of a complete sweep

through the ten steps, at the end of which the new state is recorded.

1. Update latent variables X = (X1, . . . ,XJ)
′: the full conditional density for X is de-

noted πX(·) and given by

πX(X) ∝ L(θ|N ,Y )×
[

J∏
j=1

π(Xj|ρ, σ1, σ2, σ3)

]
.

An update based on the hybrid algorithm requires evaluation of ∇ log πX(X), a vector

of length 3J , which is easily obtained analytically using the chain rule. Numerical

evaluation based on finite differences is also possible and gave identical results at the

cost of slower computation. The analytic form for the components of ∇ log πX(X) are

given by

∂ log πX(X)

∂Xj1

=
n∑

i=1

M1∑
j=1

∂ log PN(Nij|µNij
)

∂µNij

∂µNij

∂b1(si)

∂b1(si)

∂Xj1

+
n∑

i=1

M2∑
j=1

log PY (Yij|µYij
, σ2

ε )

∂µYij

∂µYij

∂b1(si)

∂b1(si)

∂Xj1

+
∂ log π(Xj|ρ, σ1, σ2, σ3)

∂Xj1

j = 1, . . . , J

∂ log πX(X)

∂Xj2

=
n∑

i=1

M1∑
j=1

∂ log PN(Nij|µNij
)

∂µNij

∂µNij

∂b2(si)

∂b2(si)

∂Xj2

+
n∑

i=1

M2∑
j=1

log PY (Yij|µYij
, σ2

ε )

∂µYij

∂µYij

∂b2(si)

∂b2(si)

∂Xj2

+
∂ log π(Xj|ρ, σ1, σ2, σ3)

∂Xj2

j = 1, . . . , J

2



∂ log πX(X)

∂Xj3

=
n∑

i=1

M1∑
j=1

∂ log PN(Nij|µNij
)

∂µNij

∂µNij

∂b3(si)

∂b3(si)

∂Xj3

+
n∑

i=1

M2∑
j=1

log PY (Yij|µYij
, σ2

ε )

∂µYij

∂µYij

∂b3(si)

∂b3(si)

∂Xj3

+
∂ log π(Xj|ρ, σ1, σ2, σ3)

∂Xj3

j = 1, . . . , J

Given these forms, and letting X∗ denote the current value in the Markov chain for X,

the hybrid update, based on a step size δ > 0, then proceeds as described in Section

3.2:

(a) Simulate auxiliary variables U∗ ∼ MV N3J(0, I).

Let X(0) = X∗ and U(0) = U∗ + δ
2
∇ log πX(X∗)

(b) For l = 1, . . . , L, let

X(l) = X(l−1) + δ U(l−1)

U(l) = U(l−1) + δl∇ log πX(X(l))

where δl = δ for l < L and δL = δ
2
.

(c) Accept X(L) as the new state for X with probability

p = min

(
πX(X(L))

πX(X∗)
exp

{
−1

2

(
U(L)′U(L) −U∗′U∗

)}
, 1

)

else remain in the current state X∗ with probability 1− p.
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2. Block update (σ2
1, σ

2
2, σ

2
3)
′: The density of the full conditional distribution is propor-

tional to [
J∏

j=1

π(Xj|ρ, σ1, σ2, σ3)

]
×

[
3∏

l=1

π(σl)

]
.

We use a Metropolis-Hastings step with candidate generated from a multivariate log-

normal distribution.

3. For each l = 1, 2, 3, block update {ψlx, ψly, νl}: The density of the full conditional

distribution is proportional to

L(θ|N , Y )× π(ψlx)π(ψly)π(νl).

We use a Metropolis-Hastings step where the candidate is generated from a transformed

multivariate normal distribution.

4. For each l = 1, 2, 3, update cross-correlation parameter ρl. The full conditional distri-

bution has density proportional to

[
J∏

j=1

π(Xj|ρ, σ1, σ2, σ3)

]
π(ρl).

We discretize this density onto a fine grid which facilitates a Gibbs update.

5. Update frailty precision η: the full conditional distribution has density proportional to

[
n∏

i=1

π(ωi|η)

]
π(η).

We use a Metropolis-Hastings step with candidate generated from a log-normal distri-
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bution.

6. Update regression coefficient β: the full conditional distribution has density propor-

tional to
n∏

i=1

[
M1∏
j=1

PN(Nij|µNij
)

]
π(β).

We use a random walk Metropolis step based on a Gaussian proposal distribution.

7. Update frailties ωi: the full conditional distribution for ωi is

Gamma(η +

M1∑
j=1

Nij, η +

M1∑
j=1

λjIij)

where Iij =
∫ t

(N)
j

t
(N)
j−1

exp{βxsi (t)}dt. We sample from the conditional distribution directly

in a Gibbs update.

8. Update baseline hazard parameters λj: Upon adopting a conjugate Gamma(ε, ε) prior

for λj, the full conditional distribution for λj is

Gamma(ε +
n∑

i=1

Nij, ε +
n∑

i=1

ωiIij)

where Iij =
∫ t

(N)
j

t
(N)
j−1

exp{βxsi (t)}dt. We sample from the conditional distribution directly

in a Gibbs update.
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9. Update the error precision σ2
ε : Upon adopting a conjugate Inverse-Gamma (α1, α2)

prior for σ2
ε , the full conditional distribution for σ2

ε is

Inverse-Gamma(α1 + nM2/2, α2 +
1

2

n∑
i=1

M2∑
j=1

(Yij − xsi (t
(H)
j ))2).

We sample from the conditional distribution directly in a Gibbs update.

10. Update µz: the density of the full conditional distribution is proportional to

L(θ|N , Y )×
[

3∏

l=1

π(µZl
)

]
.

We use a random walk Metropolis step with candidate generated from a Multivariate

normal distribution.

Monte Carlo Estimation of Conditional Predictive Ordinate

Having generated L samples from the posterior θ(1), . . . , θ(L), the conditional predictive

ordinates defined in Section 3.1 are computed using estimators based on a harmonic mean

(see Gelfand and Dey, 1994)

CPONij
≈

[
1

L

L∑

l=1

1

PN(Nij|µ(l)
Nij

)

]−1

CPOYij
≈

[
1

L

L∑

l=1

1

PY (Yij|µ(l)
Yij

, σ2(l)

ε )

]−1
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Figure 1. (Web) Image plot of the posterior mean interpolated surface for b3(s).
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