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Improving statistical analysis of prospective
clinical trials in stem cell transplantation. An

inventory of new approaches in survival
analysis

Aurelien Latouche

Abstract

The CLINT project is an European Union funded project, run as a specific sup-
port action, under the sixth framework programme. It is a 2 year project aimed at
supporting the European Group for Blood and Marrow Transplantation (EBMT)
to develop its infrastructure for the conduct of trans-European clinical trials in
accordance with the EU Clinical Trials Directive, and to facilitate International
prospective clinical trials in stem cell transplantation. The initial task is to cre-
ate an inventory of the existing biostatistical literature on new approaches to sur-
vival analyses that are not currently widely utilised. The estimation of survival
endpoints is introduced, with an emphasis on recent developments which comple-
ments standard analysis. The issues raised are new regression models that allow
the estimation of time dependent effect for cause specific hazard, cumulative inci-
dence and more generally mean response. New development in multi state model,
with notably, recent regression models that assess the influence of covariates di-
rectly on transition probabilities are detailed. Some recent test for comparing
cumulative incidence function across treatment arm are introduced. The estima-
tion of centre effect in multi centric studies is also documented. Sample size
calculation in the presence of competing risks are then presented. We close with
the inventory of available packages and macro in R that implement the previous
survival models.
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Abstract

The CLINT 1 is an European union-funded project, run as a specific support action, under
the Sixth Framework Programme. It is a 2 year project aimed atsupporting the European Group
for Blood and Marrow Transplantation (EBMT) to develop its infrastructure for the conduct of
trans-european clinical trials in accordance with the european union clinical trials directive, and
to facilitate international prospective clinical trials in stem cell transplantation. The initial task
was to create an inventory of the existing biostatistical literature on new approaches to survival
analyses that were not currently widely utilised.

The estimation of survival endpoints is introduced, with anemphasis on recent developments
which complements standard analysis. The issues raised arenew regression models that allow
the estimation of time dependent effect for cause specific hazard, cumulative incidence and more
generally mean response. New development in multi state model, with notably, recent regres-
sion models that assess the influence of covariates directlyon transition probabilities are detailed.
Some recent test for comparing cumulative incidence function across treatment arm are intro-
duced. The estimation of centre effect in multi centric studies is also documented. Sample size
calculation in the presence of competing risks are then presented. We close with the inventory of
available packages andmacroin R that implement the previous survival models.

Keywords: clinical trial; competing risks; multistate model; centreeffect; sample size

1 Introduction

Patients who undergo a hematopoietic graft, can encounter several events post transplant: namely
engraftment, graft–versus–host–disease, relapse, non-relapse death, progression. To assess the effect
of a treatment on such outcome, some specific survival model are needed. The Cox proprotional
hazards dominates the survival analysis for years, notablybecause of the ease of the interpretation.
The use of this model is perfectly detailed in the classic book of Therneau and Grambsch [1]. The
topics covered are : residuals analysis to test the proportional hazards assumption, the functional form
of the covariate or influence of individuals, time–dependent effect/coefficient (time–varying effects),
correlated observations such as repeated measures and frailty or random effects. Other textbooks
include Klein and Moeschberger [2] (with an emphasis on hematology case studies), Kalbfleish and

1Establishment of infrastructure to support internationalprospective clinical trials in stem cell transplantation (CLINT)
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Prentice [3], Hosmer and Lemeshow [4] and the revised edition Hosmer et al. [5] as well as Collett
[6], Kleinbaum and Klein [7].

The hematology field is a very inspiring when it comes to statistical developments especially in
survival analysis. A first look at the litterature confirms this interest notably through methodological
notes or review that populate medical reviews [8, 9, 10, 11].Theses notes and articles focuse mostly
on comparison of regression for hazard rates and cumulativeincidence functions [12, 13]. In this
inventory we will consider, alternative modelling strategies that complements the traditional propor-
tional hazards model as well as estimations presented in thebook of Therneau and Grambsch [1].
Recent books covering the topics are: Handbook of Statistics 23 [14], Dynamic Regression Models
for Survival Data [15].

Before, investigating what were the advances since 2000 in survival analysis. It is of interest to
list what are up tu now the major tool at–hands. Major advances in survival analysis are the Survival
R–package by T. Therneau [16], Multistate modelling, Tests for comparison of cumulative incidence
functions [17], Regression model for the cumulative incidence and Fine–Gray model, Additive hazard
model (Aalen, Scheike) [15]. All theses points will be exemplified in the sequel.

In the main hematological reviews there are very comprehensive recommendation on the respec-
tive merits of up–to–date methods. This is mostly due to JP Klein (Medical College of Wisconsin) and
colleagues that disseminate appropriate methodologies inthe stem cell transplantation field [8, 9]. For
exemple in a review paper Kim [11] introduced the pseudo–value estimation method for regressing
the cumulative incidence functions. This method is new but is already made available (in principle) to
applied statisticians. Another striking, exemple is the dissemination of the Fine–Gray model for the
subdistribution of a competing risk. This is mostly due to the availability of a R–package. Indeed, the
lack of statistical software that implements novel methodolodgies leads to underuse models. In that
respect, in this inventory, we focused on model with ready–to–use software or routines.

In the first part , we recall standard notation and statistical models. Next we introduce prognos-
tic factor analysis with the regression modelling and hypothesis tests. We close with a synthesis of
statistical softwares and add–on package.

2 Statistical Models

In this section, we introduce the major statistical models when the interest is the analysis of time–to–
event failure.

2.1 Survival model

The standard survival model focuses on a single endpoint. Recent developpments are numerous,
notably we identified, alternative methods (or tests) for the comparison of survival curves.

Usually, comparison of survival curves among randomization arms are performed at a fixed time–
point. Klein et al. [18], investigated the performance of naive test (difference between the two survival
curves).

Logan et al. [19] focused on crossing survival curves (that contradict the PH assumptions). A
number of methods for comparing two survival curves after a prespecified time point. This situation
may be of interest when the survival curves are expected to cross, so that we are only interested in late
difference. Another, recent developpments is the study of alternative endpoint, such as the Progression
Free Survival (PFS) [20].
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2.2 Multistate models

Since the papers of Klein et al. [21], Keiding et al. [22] the multi–state approach, is becoming more
popular but remain solely in hematopoeitic stem cell transplantation (HSCT). The use of multistate
in HSCT is not particlularly new [21, 23]. One possible reason is that a multi-state model regression
analysis typically involves the modelling of each transition intensity separately. Each probability of
interest, namely the probability that a subject will be in a given state at some time, is a complex
nonlinear function of the intensity regression coefficients. Thus, interpertation in terms of probability
is quite complicated (even if depict the patient more closely) and the interpretation of hypothetical
predictions from multi-state models in HSCT have to be avoided. An interesting exemple of the
versatility of the multi-state model is the Current Leukemia Free Survival. In this exemple, the patient
move between 9 states [24, 25, 26].

There exists an extensive literature on multi-state model.Main contributions include books by
Andersen et al. [27] and Hougaard [28]. Recent reviews on this topic may be found in Hougaard [29],
Andersen and Keiding [30]. An issue of the Journal Statistical Methods in Medical Research, entirely
devoted to these models, was published in 2002. Despite its potentialities, multi-state modelling is
not used by practitioners as frequently as other survival analysis techniques. Lack of knowledge of
the available software as well as misunderstanding of what multi-state modellings advantages rely on
(compared to the simple Cox model), are probably responsible for this lack of popularity.

The paper of Andersen et al. [31] entitledCompeting risks as a multistate model, gave a fresh
and unified view about multi–state model and competing risks. Recent developpement of Scheike and
Zhang [32] that suggested a direct modelling of regression effects for transition probabilities should
bring this framework up–front.

R–script of the tutorial from Putter et al. [33] can be found at http://www.msbi.nl/multistate.
For a comprehensive review, we suggest the work of Meira–Machado andtdc.msm script [34]. More
recently a R–packagemvna provides plots and estimates of the cumulative hazards as a function of
time for all the transitions specified by the user.

2.3 Competing risks model

For simplicity and tractability we will consider 2 competing events to introduce fundamental quanti-
ties.. In HSCT setting, this will usually be relapse and death in remissionakanon relapse mortality.

The observed data typically consist in an observation timeT̃ which is the minimum of a failure
timeT and a censoring timeC and a status indicatorε. ε = 0 if the observation is censored (C < T ).
If T > C, thenε denotes the observed cause of failure withε = 1 for the event of interest andε = 2
for the other competing event. Most common analyses focus oncomparing thecause–specifichazard
under the control and the experimental treatment [35], where the cause–specific hazard of failure from
cause 1 in treatment arm E (resp C for control) is defined as:

λ1E(t) = dF1E(t)/SE(t)

with F1E is the cumulative incidence function of failure from the cause of interest,i.e. F1E(t) =
Pr(T ≤ t, ǫ = 1) andSE(t) = 1 − (F1E(t) + F2E(t)) is the event free survival function. In such
a case, comparisons of cause–specific hazards between groups are performed against proportional
hazards alternatives, using a Cox model. The other strategyconsists in comparing the corresponding
event probabilitiesF1E(t) andF1C(t), either directly the Gray’s test [17] or using a Cox-like model
for the associated hazardα1E(t) = dF1E(t)/(1−F1E(t)), referred as the subdistribution hazard [13].
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Figure 1: Competing risks model with cause-specific hazard for relapseλ1(t) and cause-specific haz-
ard for deathλ2(t).

The subdistribution hazard is directly related to the cumulative incidence function while the re-
lation between cause–specific hazard and cumulative incidence involves the cause–specific hazard of
the competing event. Another key remark is that these two models cannot hold simulatneously,i.e
proportional cause–specific hazards imply non–proportional subdistribution hazards.

It seems now established that these two models should be usedsimultaneously to fully depict
the complex course of the patients. A detailed discussion ofthe relative merits of both approaches
and their interpretation can be found in the paper of Beyersmann and Schumacher [36]. Tutorial on
competing risks analysis are provided by Putter et al. [33] (with EBMT data) and in other field such
time–to–seroconversion collaborative group such as CASCADE [37] provide guidelines for analysis
of competing risks data.

To estimate the treatment benefit, it is recommended to adjust treatment comparison for potential
confounders, based on regression models. For competing risks data, two main approaches have been
used, either the Cox model [12] or Therneau and Grambsch [1, Chapter 8.4], or the recently proposed
Fine and Gray model [13] and Martinussen and Scheike [15, Chapter 10]. Despite its rather recent ori-
gin, the Fine–Gray model has been quickly put to use in applications such as neutrophils recovery after
bone marrow transplantation [38], infectious complications after blood stem-cell transplantation [39].

The models take subtlety different approaches to competingrisks data, and it is important to
understand this for proper interpreting these respective results. Both the Cox and the Fine–Gray
model analyze data from a competing risks setting as displayed in Figure 1. We observe a so-called
failure timeT between start of remission and relapse/death, whatever comes first. One can think of
timeT as the time spent in the remission state0 until moving into one of the competing risk states1
(relapse) or2 (death without prior relapse). Attached to these competingrisks are cause-specific
hazardsλ1(t) andλ2(t); these can be thought of as ‘instantaneous forces’ that drawan individual
towards the respective competing risks. More precisely,λ1(t) multiplied by a very, very small time
interval is the probability of relapsing within this small time interval under the condition that the
individual has still been relapse-free at the beginning of this time interval.

Hazards are, in fact, a very elusive concept [40], but analysis and interpretation is straightforward
in usual survival analysis. A usual Cox model would look at the all-cause hazardλ(t) = λ1(t)+λ2(t),
which has a one-to-one correspondence to the distribution of the failure timeT through

P (T ≤ t) = 1− exp

(

−

∫ t

0

λ(u) du

)

,

i.e. the proportion of patients experiencing death or relapse (whatever comes first), as time progresses.
Due to this one-to-one correspondence, a decreasing treatment effect found in a Cox model means a
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decrease in this proportion, and an increasing effect entails an increase in this proportion.
However, things become surprisingly difficult with competing risks. We may still fit Cox models,

but as is apparent from Figure 1 we will need to fit two Cox models, one for each cause-specific
hazard, see, e.g., [1, p. 177]. The interpretation of these results then becomes involved, because the
CIF for relapse, say, depends on both cause-specific hazards, and it does so in a rather complicated
way [41]. In fact, we have for the CIF of relapse

CIF1(t) = P (T ≤ t,Relapse att) =
∫ t

0

exp

(

−

∫ u

0

λ1(v) + λ2(v) dv

)

· λ1(u) du

These difficulties have led to the Fine–Gray model [13], withthe aim of doing a Cox-type analysis for
a quantititywhich reestablishes the one-to-one correspondence to the CIF of relapse.

This quantitity has come to be known as the subdistribution hazard for relapse, and we writeλFG(t)
for it. The aim is to reestablish

CIF1(t) = P (T ≤ t,Relapse atT ) = 1− exp

(

−

∫ t

0

λFG(u) du

)

for the CIF of relapse.
Finally, we should note that the Fine and Gray model for the subdistribution hazardλFG(t) and

classical Cox models for the cause-specific hazardsλ1(t) of relapse andλ2(t) of death are different
models [42].

3 Regression Models

In this section we introduce recent regression models for the identiable quantities namely, cause spe-
cific hazard, cumulative incidence and conditional probability function. It should be pointed out that
novel methodologies translate faster in medical journal. For exemple, the pseudo value approach in-
troduced in 2003 is exemplified in a practical context in medical journal such asBiology of Blood and
Marrow Transplantation[10] or [11].

3.1 Proportional hazards model

To relate the cause-specific hazard on the exposure covariateZ, the Cox proportional hazards model
is often used while a similar model was proposed for the subdistribution hazard [13]. The Cox model
expresses the cause-specific hazard as a multiplicative function of the baseline instantaneous hazard,
λk0(t) : λk(t) = λk0(t) exp (βZ), whereβ is the covariate effect. The Fine and Gray model focuses
on the hazard associated with the CIF and similarly expresses asαk(t) = αk0(t) exp (γZ).

The Fine–Gray model, draw a lot of attention (from 2002) since its first use in HSCT. As a result
several publications investigated the interpretation of the subdistribution hazard ratio [43]. The fol-
lowing references extand the Fine–Gray model or adapt standard methodologies to it [43, 44, 45, 46,
47, 36, 48]. Sun et al. [49] suggested a flexible additive multiplicative hazard model for modeling the
subdistribution hazard.

In a recent paper Peng and Huang [50] propose a natural generalization of the Cox regression
model, in which the regression coefficients have direct interpretations as temporal covariate effects on
the survival function. Second-stage inferences with time-varying coefficients are developed accord-
ingly. Simulations and a real example illustrate the practical utility of the proposed method.
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3.2 Andersen–Klein model

A method based on pseudo-values has been proposed for directregression modeling of the survival
function [51, 52, 53, 19]. The pseudo value method is an estimating method. It enables the estimations
of the following regression parameter, in a linear model forthe CIF that was proposed by Fine [54].
The model for the CIF of type 1 is

g(F1(t;Z)) = h(t)− Zβ. (1)

The parameter h(t) is the baseline failure probability, unspecified, invertible and stricly increasing int.
This general transformation model includes the Fine–Gray model takingg(x) = log{−log(1 − x)}.

The Andersen–Klein model is an alternative estimation techniques for the model 1. Recently, in a
series of papers, a method based on pseudo-values has been proposed for direct regression modeling
of the survival function, the restricted mean and cumulative incidence function with right censored
data.

g(F1(t)) = F10(t) +R(t)Z(t) (2)

Note that this model encompasses time-dependent covariates throughZ(t) but requires that a grid
or series of time points be specified. Usually 5 to 10 time points suffice to adequately model the
CIF . The regression estimator of the parameterR(t) is based on pseudovalues from the cumulative
incidence function. Interestingly, the model (2), once thepseudo-values have been computed, can
be fit using standard generalized estimating equation software. The use of these routines to obtain
regression estimates for a study of bone marrow transplant patients is detailed in Klein et al. [53]. The
model 2 is implented in thepseudo R–package.

Another appealling regression strategy is the Direct Binomial Regression [55] suggesting a new
simple approach for estimation and assessment of covariateeffects for the cumulative incidence curve
in the competing risks model. They consider a semiparametric regression model where some ef-
fects may be time-varying and some may be constant over time.Their estimator can be implemented
by standard software. Their simulation study shows that theestimator works well and has finite-
sample properties comparable with the subdistribution approach. This methodology was exemplified
to estimate the cumulative incidence of death in complete remission following a bone marrow trans-
plantation. Interestingly, this regression model extendsthe Fine–Gray model, with time–dependent
coefficients.

3.3 Time–dependent effects: The additive approach

A comprehensive description of additive model can be found in Martinussen and Scheike [15]. This
class of model alternative is The Cox-Aalen additive-multiplicative intensity model that comprise a
multiplicative part (Like a Cox model) and an additive part (like Aalen model). One interesting feature
is that time-dependent effect and time-dependent covariate are easily handle indeed such properties
violate the PH hazards assumptions.

Another important motivation for alternative modelling ispointed out in the recent work of Klein
[56] the proportional hazard transition in multistate model can lead to inconsistencies. The additive
models for either the hazard rates or the cumulative incidence functions are morenatural and that
these models properly partition the effect of a covariate ontreatment failure into its component parts.
These models are illustrated on data from a study of the efficacy of two preparative regimens for
hematopoietic stem cell transplantation. Such findings must translate rapidly in HSCT.
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Methods for fitting the Cox model with time–varying effects exist [57, 58, 59], but they all require
some kind of smoothing thus depending on some smoothing parameter or sieve approximation. The
obtained results may depend on the particular choice. The additive hazards regression model is an
alternative (or supplement) to the Cox model. It was proposed by Aalen [60], and is is very flexible
non parametric model. It results in plots that are informative regarding the effect of covariates on
survival. The additive model of Aalen [60] specify the following relation betwen hazard and covariates
:

λi(t) = β0(t) + β1(t)Xi1(t) + . . . + βp(t)Xip(t)

An interesting submodel was suggested by Mckeague and Sasiene [61]

λi(t) = exp (β(t)TXi(t) + γTZi(t)).

As pointed out by Klein [56], there is no guarantee that the estimated hazard is positive but this
situation is very unlikely. The Martinussen–Scheike [62] model is a new additive-multiplicative hazard
model which consists of two components. The first component contains additive covariate effects
through an additive Aalen model while the second component contains multiplicative covariate effects
through a Cox regression model. The Aalen model allows for time-varying covariate effects, while the
Cox model allows only a common time-dependence through the baseline. This model is implemented
in thetimeregR–package.

3.4 Temporal process regression

This temporal process regression is a functional generalised linear model which specifies the mean of
a responseY (t) at timet conditionally on a vector of possibly timedependent covariatesZ(t), that is

E(Y (t)|Z(t)) = g−1(β(t)′Z(t)), (3)

where the link functiong is monotone, differentiable and invertible. This is a very general model that
encompass as particular case models such as logistic prevalence model. This model is implemented in
the R–package tpr. A case study of this model can be found in the recent work of Allignol et al. [63]
where this general regression framework was used to assess the effect of covariate on the conditional
probability of a competing event [64].

4 Centre effect

A common question arising in multi-centre prospective clinical trials and in collaborative registry
studies, is whether some heterogeneity in outcomes could beexpected across centres, and, if such an
heterogeneity exists, whether some statistical adjustment is required when estimating the prognostic
effects of fixed covariates or not.

Recent developpments with an emphasis in HSCT are [65, 66, 45, 67]. Centre-effects are usually
investigated with shared frailty models, and this presumesthat this effect is constantly present during
the follow-up, even when the follow-up is very long. More realistic are models with time-varying
frailties. Therefore, the constant centre-specific frailty model was extended to allow time dependence
of the frailties [66]. Notably, the center effect was adapted to the Fine–Gray model [45] introducing a
random-effects model for the subdistribution hazard. Thiswork was exemplified on data provided by
the EBMT.

7
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5 2–Sample Tests

In this section we introduce recent test statistics that areof great interest in the field of HSCT. Notably
because, theses test have higher power to detect crossinghazards. In this section the terminology
hazardwill refer to CSH or SH. The major tests used in survival analysis are the log–rank test for
comparing the equality of cause–specific hazards and the theGray test for the comparison of subdis-
tribution hazards. Crossing survival curves may be a consequence of crossing hazards and it is well
known that for this situation many standard tests, such as the log-rank or Wilcoxon tests, will fail to
pick up differences in survival curves [18]. Freidlin and Korn [35] formally compared the performance
of log–rank and Gray’s test. Small sample behaviour of variance estimator were investigated in Braun
and Yuan [68]. Renyi type test was proposed as an alternativeempowering users to detect differences
between crossing hazards. It is a censored-data analogue ofthe Kolmogorov-Smirnov statistic and is
based on the supremum of the absolute value of the entire pathof the log-rank test statistic.

Bajorunaite and Klein [69] proposed a 2–sample tests for comparing cumulative incidence The
test statistic is based on the maximum difference between two cumulative incidence functions and a
second test based on the integrated weighted difference between the cumulative incidence functions
for the event of interest in two samples (based on Pepe [70]’stest).

6 Sample size calculation

We have seen that numerous derivation of regression models are proposed for the analysis of effect of
covariates. An essential step when planning a trial is the calculation of the sample size or the number
of patients to recruit to detect a relevant effect with sufficient power. In HSCT, patients enrolled in a
clinical trial may experience exclusive failure causes, which defines a competing risk setting. For in-
stance, in hematology patients receiving a bone marrow transplantation may experience two exclusive
events such as relapse and non-relapse death. Planning a trial when competing endpoints are acknowl-
edged to exist thus requires appropriate methodology. Notably, when some (primary) endpoints rely
on cumulative incidence inference, this must be accounted for when calculating a required number of
events.

For both proportional cause–specific hazard and subdistribution hazards, sample size where de-
rived in the presence of competing events [43, 71]. Both are based on Schoenfeld [72]’s formula
and rely on similar key parameters, namely the hazard ratio that quantifies the treatment effect to be
detected and the proportion of patients who are expected to fail from the cause of interest.

A sample size formula for the supremum log-rank test has alsobeen recently presented in the
classical survival framework [73]. It may be useful to anticipate possible departures from proportional
hazards by using a test statistic less sensitive to this proportionality assumption. This is the case of
Renyi-type tests also know as supremum log-rank tests in theclassical survival framework [1416].
Recent work on sample size has shown that this test is nearly as efficient as the log-rank test when
hazards are proportional, and can accommodate broader range of alternatives where the log-rank has
no power to distinguish between groups. Additionally, Renyi-type test statistics have already been
extended to the comparison of CIFs in the unpublished Ph.D. thesis of R. Bajorunaite. The Renyi-
type tests are based on supremum integrated weighted difference of CIFs. We will refer to this test as
the adapted Renyi-type test. More recently, Latouche and Porcher [47] suggested the use of supremum
log–rank test and supremum Gray test .
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7 Survival Analysis in R

A mandatory aspect for disseminating new statistical models is the availability of implementation.
For exemple thesurvival package enables standard analysis for Cox model and Kaplan–Meier
estimations [16].

To facilitate dissemination ofR–package, we produced aTask Viewthat enable user to easily install
the whole packages related to survival analysis. To automatically install these views, the ctv package
needs to be installed, e.g., via

>install.packages("ctv")
>library("ctv")

and then the views can be installed via install.views or update.views install.views(”Survival”) or up-
date.views(”Survival”)

The Survival View is located athttp://cran.r-project.org/web/views/Survival.
html. This was done thanks to the collaboration of Arthur Allignol (Freiburg).

8 Conclusion

We have attempted to review recent developments in survivalanalysis and competing risks , with
an emphasis on HSCT. The relevance of the use of such recent models are now established in the
HSCT. In that respect the journalLifetime Data Analysishas published a dedicated issue on Statistical
analysis of HSCT Data [74, 75]. A question raised by this inventory, is to know whether or not recent
developpments that bring new insights will reach applied statisticians/ clinicians. One solution would
be to give statistical courses or educational session each year on a regular basis. The CLINT portal
could be the core of this training/teaching infrastructurehttp://clint.ebmt.org.
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