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Nonparametric Incidence Estimation From
Prevalent Cohort Survival Data

Marco Carone, Masoud Asgharian, and Mei-Cheng Wang

Abstract

Incidence is an important epidemiologic concept particularly useful in assessing
an intervention, quantifying disease risk, and planning health resources. Inci-
dent cohort studies constitute the gold-standard in estimating disease incidence.
However, due to material constraints, data are often collected from prevalent co-
hort studies whereby diseased individuals are recruited through a cross-sectional
survey and followed forward in time. We discuss the identifiability of measures
of incidence in the context of prevalent cohort survival studies and derive non-
parametric maximum likelihood estimators and their asymptotic properties. The
proposed methodology accounts for calendar-time and age-at-onset variation in
disease incidence while also addressing common complications arising from the
sampling scheme, hence providing flexible and robust estimates. We also discuss
age-specific incidence and adjustments for temporal variations in survival. We
apply our methodology to data from the Canadian Study of Health and Aging and
provide insight into temporal trends in the incidence of dementia in the Canadian
elderly population.



1 Introduction

In order to learn about survival with a disease or condition of interest, investigators often use

prospective cohort studies, whereby groups of individuals are followed in time. One example

is the incident cohort study, in which disease-free individuals are recruited and followed

until death, loss to follow-up or study termination. Incident cohort studies provide bias-

free survival data and allow for seemless inference regarding disease incidence in the target

population. This type of study is considered to be the gold-standard in estimating incidence.

However, the incident cohort study suffers from serious drawbacks. In order to accrue a

sufficient number of disease cases, extensive enrollment and long follow-up periods are often

required, particularly in relatively uncommon diseases. In practice, such requirements result

in prohibitive logistic and economic costs to the investigators (see Szklo & Nieto (2000) and

Rothman et al. (2008)).

As an alternative, investigators at times conduct prevalent cohort studies. A prevalent

cohort study is conducted by recruiting prevalent individuals (living persons having expe-

rienced disease onset), determining their onset time (e.g. through medical records), and

following them until death or potential censoring. By requiring minimal enrollment and re-

duced follow-up periods, the prevalent cohort study is more feasible to conduct. However,

its design introduces systematic biases in the data-generation process, which, if ignored, can

lead to grossly incorrect conclusions (e.g., as documented in Wolfson et al. (2001)). For ex-

ample, individuals with longer disease durations are overrepresented in the sampling process;

this bias in survival has been widely studied (see Cox & Oakes (1984), Tsai et al. (1987),

Wang (1998) and Asgharian et al. (2002), for example).

If interest lies in disease incidence, it is not a priori clear whether the prevalent cohort
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study provides the information needed to identify the underlying incidence process. At least

two issues pose barriers to inference about incidence. The first regards the absence of a

clearly-identified pool of disease-free individuals, susceptible to disease onset. In the incident

cohort study, all individuals are initially disease-free; as time progresses however, some become

diseased. Incidence can be gauged by studying the number for incident cases relative to the

size of the susceptible pool. In the prevalent cohort study, the structure does not permit

direct comparisons using available risk pools, as all individuals are diseased upon recruitment.

The second difficulty is due to an inherent over-representation of individuals with onsets near

the recruitment time: the earlier an individual’s onset, the larger the hurdle (namely, surviving

until recruitment time) this individual must overcome to be eligible for the study. This paper

is concerned with nonparametric incidence estimation from prevalent cohort data. Interest in

this problem arose from investigation into the Canadian Study of Health and Aging (CSHA),

a study of dementia in the Canadian elderly population.

Variants of this problem have been discussed in the statistical and epidemiological liter-

ature in the past three decades. Early work by Miettinen (1976) and Freeman & Hutchison

(1980), for example, established the celebrated epidemiological equations relating prevalence,

incidence and mean duration under equilibrium conditions. Subsequent work by Alho (1992)

generalized these results by considering exponentially-varying stable populations. Keiding

(1991) provided a comprehensive look at incidence estimation from current-status data un-

der Markovian structure; the absence of follow-up required the imposition of assumptions

possibly difficult to verify in practice. Keiding et al. (1989) considered current-status data

as well and suggested the use of inverse-weighting using background knowledge of historical

mortality. Brookmeyer & Quinn (1995) focused on HIV infection incidence rate estimation
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from cross-sectional data, and Alioum et al. (2005) also studied estimation of HIV infection

incidence from prevalent cohort data using multistate Markov models. More recently, Addona

et al. (2009) provided inferential results regarding incidence estimation under equilibrium con-

ditions, whereby both population size and the number of diseased onsets per unit-time are

assumed constant through time. We propose a flexible, nonparametric estimation framework

allowing for calendar-time and age-at-onset variations in disease incidence and for tempo-

ral changes in population size, and accounting for common complications arising from the

sampling scheme. Our framework is shown to provide optimal inferences under minimal as-

sumptions. The methodology proposed is an example of a deconvolution problem, somewhat

in the spirit of the back-calculation method elaborated in the setting of HIV infection (see

Brookmeyer & Damiano (1989)).

The paper is organized as follows. The incidence measures to be studied are introduced

in section 2. Identifiability of these measures and inference are discussed in sections 3

and 4. In section 5, the relaxation of certain assumptions made in sections 3 and 4 is

outlined. In section 6, the methodology is used to decribe the incidence of dementia in the

Canadian population from data collected as part of the Canadian Study of Health and Aging.

Concluding remarks are provided in section 7.

2 Measures of incidence

The incidence of a disease refers to its occurrence in a susceptible population, and we

distinguish between two related measures of disease incidence, each serving differing pur-

poses. Let disease onset be a clearly-defined event and for simplicity, assume the disease of

interest is irreversible. Suppose that in the target population onsets arise from a nonhomoge-
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neous Poisson process {N(t), 0 < t <∞} (the onset point process) with intensity function

λ(t) = E[dN(t)|Ft− ]/dt (where Ft is the natural filtration) and cumulative intensity function

Λ(t) =
∫ t

0
λ(u)du. Here, the indexing variable t represents calendar-time and t = 0 is some

(potentially arbitrary) time origin. In view of the memoryless property of the Poisson process,

λ(t) also equals the rate function E[dN(t)]/dt of {N(t)}. This unconditional interpretation

will be emphasized throughout.

The incidence intensity, an absolute instantaneous measure of disease occurrence, is the

expected number of new disease cases per unit-time in a prespecified population. Probabilis-

tically, this measure is the rate function λ(t) of the onset point process. Its use is particularly

important in public health policy, where resource planning and allocation require knowledge

of the magnitude of disease burden over time. It suffers however from its dependence on

the definition of a prespecified population, its scale being tied to the size of the underlying

population. As such, it cannot be used directly to compare disease risk in different subpop-

ulations. For example, a low-risk subpopulation may have the same incidence intensity as a

high-risk subpopulation if, say, the former is much larger in size than the latter. Furthermore,

secular variations in the incidence intensity may be due to changes in population size or in

inherent disease risk.

For these reasons, the second measure considered, commonly referred to as the incidence

rate, is a relative instantaneous measure of disease occurrence, obtained by standardizing the

incidence intensity. Precisely, the incidence rate r(t) is defined as

r(t) =
λ(t)

Q(t)− P (t)
, (1)

where Q(t) and P (t) are, respectively, the size of the target population and of its prevalent
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subpopulation at calendat-time t. It is important to note that every individual in the target

population need not be at risk for the disease in question. Diseased individuals, although

included in the size of the target population, may not contract the disease once again and

consequently, should be discounted in the calculation of the at-risk population. This obser-

vation mandates standardization by Q(t) − P (t) rather than simply Q(t) as has been done

in the literature (e.g., Keiding et al. (1989)). Of course, for rare diseases, this distinction

is not critical; for many other diseases however, such as dementia in the elderly population,

failure to perform this adjustment may lead to serious underestimation of the incidence rate.

In view of this standardization, the incidence rate constitutes a true disease risk measure, as

intended by epidemiologists and extensively used by public health scientists. It often serves

as the fundamental metric on which etiologic and intervention-based research focuses. Con-

crete examples of its use include the identification of disease risk factors and the assessment

of interventions aimed at disease prevention.

3 Incidence intensity: identifiability and inference

Suppose that survival with the disease of interest, denoted by X0 (with survival function S

and bounded support (0, b)), is independent of calendar-time of onset (see Section 5 where

we relax this assumption). Suppose further that sampling occurs at a fixed timepoint τ > b.

Then, we may define the truncation variable, denoted by T 0 (with distribution function

G), as the time elapsed between disease onset and recruitment. Individuals are deemed

prevalent at recruitment if and only if their survival time X0 exceeds their truncation time

T 0. Denote by X and T the observable survival and truncation time random variables,

respectively. Suppose that for prevalent individuals the residual lifetime X − T is potentially
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right-censored by a residual censoring variable C; denote the observed follow-up time and

event indicator by Y = min (X,T + C) and ∆ = IY=X , respectively. The introduction of

censoring on the residual rather than full survival time reflects the fact that censoring is study-

dependent and should thus act upon a subject’s time under study alone. It is assumed that

(T 0, X0 − T 0) is independent of D conditional upon X0 > T 0. In view of biased sampling,

only onsets associated with sufficiently long survival times may be observed: we define the

w-observable onset point process {N?
w(t), 0 < t <∞} to be the counting process of onsets

observable at calendar-time w, and note that {N?
w(t)} is an independent pw(·)-thinning of

{N(t)} with thinning function pw(u) = S(w − u). It follows thus (see Schabenberger &

Gotway (2005)) that {N?
w(t)} is a nonhomogeneous Poisson process with intensity function

λ?w(t) = S(w − t)λ(t) and cumulative intensity function

Λ?
w(t) =

∫ t

0

S(w − u)dΛ(u) . (2)

3.1 Identifiability

The general problem considered here is that of determining sufficient conditions under which

estimation of λ(·) (or equivalently, deconvolution of (2)) is possible using a sample from the

process {N?
τ (t)}. With only survival data of prevalent individuals sampled at recruitment,

the intensity function λ(t) (or equivalently, the centered cumulative intensity function Λc(t)

defined as Λ(t)−Λ(τ−b) for τ−b ≤ t < τ and 0 otherwise) is identified only up to a constant

of proportionality on (τ − b, τ). This fact follows from noting that dΛ(t) is proportional to
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dG(τ − t) (see Daley & Vere-Jones (2003) and Note in Appendix) and consequently, that

Λc(t) = κ (1−G(τ − t)) (3)

for some constant κ > 0. Since identification of G, the truncation distribution, is possible

on (0, b) (see Wang (1991)), our claim follows. Of course, without further assumptions, it

is impossible to nonparametrically identify Λ(·) on (0, τ − b) as individuals with onset earlier

than τ − b are not subject to sampling.

Full nonparametric identifiability of Λc can be attained with an additional requirement

on the data-collection process. If an estimate of population disease prevalence at recruitment

is available, either through external sources or as provided by the sampling framework, the

constant of proportionality κ may be identified. This fact follows from the combination of

(2) and (3) into

Λ?
τ (t) = κ

∫ t

0

S(u)dG(u) , (4)

and the observation that Λ?
τ (τ) is the mean population prevalence at recruitment. Thus, the

centered cumulative intensity function may be written as

Λc(t) =
Λ?
τ (τ)∫∞

0
S(u)dG(u)

(1−G(τ − t)) , (5)

a functional of identifiable arguments.

In order to simplify matters, epidemiologists often assume the so-called stable disease

conditions, which require stationarity of the onset point process and stability of the size of the

target population. Together, these requirements imply both constancy of disease prevalence

over time and uniformity of the truncation distribution. Under such conditions, equation (5)
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reduces to

prevalence = incidence × mean duration ,

a celebrated result in epidemiology (see, for example, Albert et al. (1978a), Albert et al.

(1978b) and Louis et al. (1978)). The framework provided in this paper may thus be seen as

a generalization of this result, allowing for arbitrarily-varying incidence and population sizes

over calendar-time.

In many prevalent cohort studies, sampling of the prevalent individuals is performed

cross-sectionally, in the sense that a simple random sample of the population is selected and

each subject in this sample is assessed for prevalent disease. Thus, in addition to providing

a sample of prevalent individuals, each contributing (biased) onset and survival data, an

estimate of disease prevalence in the population is automatically obtained. In view of the

above discussion, identifiability of the intensity function on (τ−b, τ) is assured. Considerable

weakening of this assumption will be considered in section 5.

The centered cumulative intensity function lends itself to easy interpretation. Indeed, for

τ − b ≤ t1 < t2 < τ , the difference Λc(t2)−Λc(t1), identically equal to Λ(t2)−Λ(t1), is the

mean number of disease onsets occurring in the target population between calendar-times t1

and t2. The centered cumulative intensity function Λc(t2) provides the same interpretation

but fixing t1 = τ − b.

3.2 Estimation

From the discussion above, a natural plug-in estimator for Λc(t) emerges as

Λ̂c(t) =
Λ̂?
τ (τ)∫∞

0
Ŝ(u)dĜ(u)

(
1− Ĝ(τ − t)

)
. (6)
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In the above, the estimator Λ̂?
τ (τ) is simply the estimated population prevalence ndnpop/ns,

where ns, nd and npop are, respectively, the number of individuals sampled, the number

of such individuals found diseased, and the size of the target population at recruitment.

The estimators Ŝ and Ĝ are, respectively, the truncation product-limit estimator (Tsai et al.

(1987)) and Wang’s inverse-weighted estimator of the truncation distribution (Wang (1991)).

More explicitly, we have that

Ŝ(u) =
n∏
i=1

{
1− dN(Yi)

R(Yi)

}Ni(u)∆i

and Ĝ(t) =
n∑
i=1

I(−∞,Ti](t)

Ŝ(Ti)
/

n∑
i=1

1

Ŝ(Ti)
,

where Ni(u) = I(−∞,u](Yi), N(u) =
∑n

i=1Ni(u) and R(u) =
∑n

i=1 I(Ti,Xi)(u). Since each of

these estimators are NPMLE for their respective targets, the invariance property of maximum

likelihood estimation guarantees that the proposed estimator is the NPMLE of the centered

cumulative intensity function.

Substitution of the explicit form of Λ̂?
τ (τ) and Ĝ into (6) provides a simple and intuitively-

appealling form for Λ̂c(t); specifically, (6) reduces to

npop
ns

nd∑
i=1

I(τ−t,∞)(Ti)

Ŝ(Ti)
, (7)

where T1, T2, ..., Tnd
are the observed truncation times.

If interest lies in estimating the intensity function itself (rather than its integrated form),

the above estimator may be used in conjunction with smoothing-based differentiation tech-

niques.
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3.3 Asymptotic properties

The estimator proposed for the centered cumulative intensity function above exhibits desirable

large-sample behavior. Our first theorem establishes its consistency, while the second theorem

provides its asymptotic law. The proofs of these theorems are provided in the Appendix.

Theorem 1. Under the assumptions stated in Sections 2 and 3, the estimator Λ̂c(t) is

uniformly strongly consistent for the true underlying centered cumulative intensity function

Λc(t) over (τ − b, τ), that is,

sup
τ−b<t<τ

|Λ̂c(t)− Λc(t)|
a.s.−→ 0 .

Denote by Hn(·) the empirical process
√
n(Ĥn(·) − H(·)) associated to an estimator

Ĥn(·) of H(·).

Theorem 2. Under the assumptions of Theorem 1, the normalized cumulative intensity pro-

cess
√
ns(Λ̂c(t)−Λc(t)) converges weakly to a mean-zero Gaussian process with covariance

function Σ given by

Σ(s, t) =
Λ?
τ (τ)(1−G(τ − s))(1−G(τ − t))

β2

{
1 +

npop
β2

ν − Λ?
τ (τ)

}
+

Λ?
τ (τ)npop
β2

{
σ2

Gnd
(τ − t, τ − s) +

1−G(τ − s)
β

φ(t) +
1−G(τ − t)

β
φ(s)

}
,

where β =

∫ ∞
0

S(u)dG(u) ,

ν =

∫ ∞
0

∫ ∞
0

σ2
Snd

(u, v)dG(u)dG(v)− 2

∫ ∞
0

∫ ∞
0

σSnd
,Gnd

(u, v)dG(u)dS(v) +∫ ∞
0

∫ ∞
0

σ2
Gnd

(u, v)dS(u)dS(v) ,

φ(w) =

∫ ∞
0

∫ ∞
0

{
σSnd

,Gnd
(u, τ − w)− σ2

Gnd
(τ − w, v)

}
dG(u)dS(v) ,
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and σ2
Snd

(u, v), σ2
Gnd

(u, v) and σSnd
,Gnd

(u, v) are, respectively, the asymptotic covariance

between Snd
(u) and Snd

(v), between Gnd
(u) and Gnd

(v), and between Snd
(u) and Gnd

(v),

each provided in Wang (1991).

In view of the above, approximate confidence intervals and bands may be obtained by

estimating the above covariance function Σ(s, t) via substitution by appropriate empirical

estimates. However, given the covariance function’s rather intricate form, use of properly-

specified boostrap resampling is likely to be more expedient and accurate. Theorems 1 and

2 justify the use of the bootstrap.

In the provided setting, the bootstrap must be performed in two stages, similar to the

data-generation process. First, the number of prevalent individuals sampled nboot
d should be

generated from a Binomial distribution with size ns and success probability nd/ns. Second,

the survival data of the nd prevalent individuals should be resampled with replacement to

obtain a sample of nboot
d survival triplets. The bootstrap sample obtained is then comprised

of the generated diseased sample size nboot
d and the resampled survival data.

The asymptotic behavior of estimators of the intensity function falls into the realm of

density estimation (see for example Ramlau-Hansen (1983)) and as such, is beyond the scope

of this paper. We defer its exposition to future work.

4 Incidence rate: identifiability and inference

Using (1) and the observation that Λ?
t (t) is the mean disease prevalence in the target popu-

lation at calendar-time t, we may write the centered cumulative incidence rate (initiating at
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τ − b) as

Rc(t) =

∫ t

0

dΛc(u)

Q(u)− Λ?
u(u)

. (8)

It is interesting to note that (8) reduces to another celebrated epidemiological relationship,

namely

prevalence odds = incidence rate × mean duration ,

under the stable disease conditions.

4.1 Identifiability

Unlike the intensity function, the incidence rate is not identifiable from prevalent cohort data

alone. If the size of the prevalent population Λ?
t (t) through time is available, nonparametric

identifiability is guaranteed. External sources of information must be consulted to obtain

estimates of Q(t) and values for Λ?
t (t) through time. The former may usually be obtained

readily from census data, for example. The latter, however, is usually more problematic.

If such information is not available, some ad-hoc methods should be devised to estimate

it from the available data. Although strictly correct, it is slightly misleading to claim that

Λ?
t (t) is unidentifiable from prevalent cohort data. Indeed, depending on the value of t, some

information about Λ?
t (t) may be recovered from the data. For τ − b < t ≤ τ , (2) may be

decomposed as

Λ?
t (t) =

∫ t

0

S(t− u)dΛ(u) =

∫ t

t−b
S(t− u)dΛ(u)

=

∫ τ−b

t−b
S(t− u)dΛ(u) +

∫ t

τ−b
S(t− u)dΛ(u) .

The second integral is identifiable from the available data; the first is not due to its integrator.
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4.2 Estimation

If historical prevalence data are available, then estimation of the incidence rate over time is

relatively straightforward. Indeed, the plug-in estimator for Rc(t) is

R̂c(t) =

∫ t

0

dΛ̂c(u)

Q(u)− Λ?
u(u)

, (9)

which simplifies to

npop
ns

nd∑
i=1

I(τ−t,∞)(Ti)

Ŝ(Ti)(Q(τ − Ti)− Λ?
τ−Ti

(τ − Ti))
. (10)

Without historical prevalence information however, some form of extrapolation is in-

evitable. One possible extrapolatory approach consists of specifying a model, say λ(t; θ), for

the intensity function between (τ − 2b, τ) and using some distance-minimization technique

and the above NPMLE for Λc(t) over (τ − b, τ) to obtain parameter estimates θ̂. This

model-based estimate of the intensity over (τ − 2b, τ − b) combined with the nonparametric

estimates of the intensity over (τ − b, τ) and of the survival function could then be used to

estimate Λ?
t (t): specifically, we set

Λ̂?
t (t) =

∫ τ−b

t−b
Ŝ(t− u)λ(u; θ̂)du+

∫ t

τ−b
Ŝ(t− u)dΛ̂c(u) .

Because any extrapolatory method should be chosen and fine-tuned in consideration of the

particular application considered, the aymptotic details of such procedures are omitted.
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4.3 Asymptotic properties

Under the availability of historical prevalence estimates, inference about the centered cu-

mulative incidence rate builds upon our knowledge of the limiting behavior of the centered

cumulative intensity function. We assume in the sequel that Q(u) − Λ?
u(u) > 0 for all

u ∈ [0, τ ]. The following results describe the asymptotic behavior of R̂c.

Theorem 3. Under the assumptions of Theorem 1 and strict positivity of Q(u)−Λ?
u(u) on

[0, τ ], the estimator R̂c(t) is uniformly strongly consistent for the true underlying centered

cumulative intensity function Rc(t) over (τ − b, τ), that is,

sup
τ−b<t<τ

|R̂c(t)−Rc(t)|
a.s.−→ 0 .

Theorem 4. Under the assumptions of Theorem 3, the cumulative incidence rate empir-

ical process
√
ns(R̂c(t) − Rc(t)) converges weakly to a mean-zero Gaussian process with

covariance function Ψ given by

Ψ(s, t) =

∫ t

0

∫ t

0

Σ(u, v)

(Q(u)− Λ?
u(u))(Q(v)− Λ?

v(v))
dΛc(u)dΛc(v) ,

where Σ is the covariance function provided in Theorem 2.

As noted earlier, estimation and inference regarding the incidence rate, as opposed to

the centered cumulative incidence rate, may be dealt with using a variety of smoothing

differentiation techniques.
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5 Extensions of the methodology

5.1 Covariates and age-specific incidence

The theory presented in sections 3 and 4 concerns one-sample estimation. In practice, it

is usually of interest to determine not only population-averaged measures of incidence, but

rather measures relevant to particular subgroups of the population. For covariates of only

finitely many levels, the methodology proposed may be readily adapted.

Suppose Z is a covariate taking values in a finite set. Then, the centered cumulative

intensity function pertaining to Z = z may be written as

Λc,z(t) =
Λ?
τ,z(τ)∫∞

0
Sz(u)dGz(u)

(1−Gz(τ − t)) , (11)

where Sz and Gz are the stratum-specific survival function and truncation distribution func-

tion, respectively, and Λ?
τ,z(τ) is the stratum-specific prevalence at time τ . Each of Sz and

Gz may be estimated by considering the subset of the prevalent cohort data for which Z = z.

Furthermore, at least two approaches may be used to estimate Λ?
τ,z(τ): we may either take

Λ̃?
τ,z(τ) = nd,znpop,z/ns,z and Λ̂?

τ,z(τ) = nd,znpop/ns ,

where nd,z, ns,z and npop,z are, respectively, the number of stratum-specific prevalent inviduals

sampled, the number of stratum-specific invidivuals sampled and the size of the stratum-

specific subset of the population. Assuming that either of npop and npop,z are available from

external sources, independence between sampling and the covariate of interest ensures that

both estimators are consistent for the stratum-specific prevalence of disease at time τ . Usual
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subgroup analysis consists of conditioning on any particular covariate value, and it is clear

that Λ̃?
τ,z(τ) is the corresponding subgroup estimator of Λ?

τ,z(τ). We argue however that

Λ̂?
τ,z(τ) is more appropriate than Λ̃?

τ,z(τ) in that it alone allows extension to age-specific

incidence estimation. Indeed, age-at-onset, despite being an often crucial quantity, is not a

well-defined covariate in that it does not partition the whole population: this observation is

a consequence of age-at-onset being defined only in individuals having experienced disease

onset. Thus, while ns,z and npop,z are not defined for age-at-onset, all terms in Λ̂?
τ,z(τ) are.

An estimator of Λc,z(t) is thus

Λ̂c,z(t) =
npop
ns

∑
i:Zi=z

I(τ−t,∞)(Ti)

Ŝz(Ti)
. (12)

It is important to not confuse Λ?
τ,z(τ), the prevalence of age-specific disease, with age-specific

prevalence. The first considers individuals with onsets in a particular age group, while the

second concerns individuals with prevalent disease during this age group. This distinction

should not be understated.

5.2 Stratified sampling

The theory above rests on the assumption that individuals were recruited via simple ran-

dom sampling from the target population. This assumption allows estimation of population

prevalence, for example, from sample prevalence. In many cases however, the study design

incorporates stratification in the sampling scheme so as to maximize recruitment of cases.

With appropriate knowledge of population characteristics, it is possible to recover correct

population estimates from sample quantities through reweighting.

Suppose that Y is the stratifying covariate, defined for all individuals, either diseased
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at recruitment or not, and that its range is a finite set S. Let Z be a covariate of interest

and D indicate disease status. Then, the joint stratum-specific prevalence probability may

be written as

Pr(D = 1, Z = z) =
∑
y∈S

Pr(D = 1, Z = z|Y = y)Pr(Y = y) , (13)

where Pr(D = 1, Z = z|Y = y) is directly estimable from the data at hand and Pr(Y = y)

should be obtained from external sources. Of course, if the stratifying variable is independent

of both disease status and covariate Z, there is no need for adjustment. It follows from (13)

that the adjusted stratum-specific population prevalence estimate is

Λ̂?
τ (τ) = npop

∑
y∈S

[
nd,z|y
ns|y

Pr(Y = y)

]
,

where nd,z|y and ns|y are, respectively, the number of stratum-specific diseased individuals and

the number of sampled individuals, each specific to stratifying value y. Thus, for covariate

Z, the correction factor for unadjusted prevalence estimates corresponding to Z = z is

ξz =
∑
y∈S

[
nd,z|y
nd,z

ns
ns|y

Pr(Y = y)

]
.

This measure provides an indication of the underrepresentation of covariate level Z = z

imparted by the stratification in the sampling process.
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5.3 Temporal trends in survival

Despite incorporating assumptions much less stringent than usually encountered in the rel-

evant literature, the theory presented above nonetheless builds upon a set of assumptions

which may fail to hold in practice. One such assumption is the independence between survival

and onset time, or rather, the absence of any temporal trend in survival. This assumption

may however be relaxed substantially.

In view of recent work (Cheng et al. (2007)), it is impossible to fully identify the onset-

conditional survival distribution nonparametrically without specification of the dependence

structure between survival and onset time. And in most cases, we may argue that such

a general estimation framework may be overly cumbersome for the considered objectives.

Rather, using that onset times and truncation variables are in bijection given a fixed sampling

time, we consider incorporating temporal trends in survival via a proportional hazards model

relating survival and truncation (see Wang et al. (1993)).

We denote the hazard rate at time x associated to individuals with truncation time t by

h(x|t). Consider the one-parameter regression model of survival conditional upon truncation

h(x|t) = h0(x) exp {γφ(t)} , (14)

for some specified univariate trend function φ and an unspecified baseline hazard rate h0.

The choice of φ should, in practice, be motivated by the scientific application of interest.

For example, a disease for which survival is believed to have varied only insidiously over

time might warrant φ(t) = t or φ(t) = log t, while a disease for which a marked change

in survival occurred (e.g, due to an innovative treatment) could be modeled via some step
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function φ(t) = I[0,τ0)(t) for a specified τ0. Apart from adjusting for potential trends in

survival, this model allows quantification of temporal trends along with testing of the no-

trend hypothesis H : γ = 0. Estimation and inference based on the above model can

be seemlessly performed through usual risk-set methods to account for truncation. Under

potential dependence between onset time and survival, equation (5) still holds replacing S(u)

by S(u|u), where S(x|t) = Pr(X0 > x|T 0 = t) is the survival function corresponding to

individuals with truncation value t (or onset time τ − t) evaluated at x. Then, we obtain the

estimator

Λ̂onset
c (t) =

Λ̂?
τ (τ)∫∞

0
Ŝγ̂(u|u)dĜ(u)

(
1− Ĝ(τ − t)

)
, (15)

where Ŝγ̂(u|u) is the model-based survival estimator described above and Ĝ is some suit-

able estimator of the truncation distribution function. It is possible to extend the work of

Wang (1991), which assumes independence between the failure time and truncation random

variables, to account for the considered dependence by noting that

G(t) ∝
∫
u≤t

dGobs(u)

S(u|u)
,

with Gobs the conditional distribution function of T 0 given T 0 ≤ X0 (estimable directly by

the empirical cdf). We obtain an appropriate estimator for G to be

Ĝ(t) =
n∑
i=1

I(τ−t,∞)(Ti)

Ŝγ̂(Ti|Ti)
/

n∑
i=1

1

Ŝγ̂(Ti|Ti)
. (16)

This estimator can be shown to be consistent and asymptotically efficient under correct

specification of the dependence structure between onset and failure times.
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6 The Canadian Study of Health and Aging

In 1989, researchers from the University of Ottawa, in conjunction with Health Canada

designed the Canadian Study of Health and Aging (CSHA), a nationwide multicenter lon-

gitudinal study aiming to describe the current epidemiology of dementia in Canada. The

shift in population age distributions, the consequent change in the occurrence of geriatric

diseases and its implied impact on health services utilization motivated the research efforts

involved in the design of this study. Most pressingly, the researchers wished to determine the

prevalence, incidence and key risk factors of various dementia, including Alzheimer’s disease,

in several subpopulations of Canada. See McDowell et al. (2005a) for more details.

The study design included three distinct stages, referred to as CSHA-1, CSHA-2 and

CSHA-3, chronologically. The first stage of the study took place in 1991 and served as the

primary recruitment phase for the study. A total of 10,263 individuals of age 65 or higher were

sampled at random from more than 36 communities, both rural and urban, across Canada,

with specific subsets drawn from both the community and institutions for the elderly. All

ten provinces of Canada were represented in the sampling procedure. These individuals were

assessed for various demential conditions by the staff of the 18 participating field centers

and followed-up according to certain guidelines. The second and third stages of the study

consisted primarily of the reassessment, at five and ten-year marks, of individuals recruited in

CSHA-1. Further study design details are provided in McDowell et al. (1994) and McDowell

et al. (2005b). Our focus resides in using the CSHA-1 data to infer about the incidence

of dementia in the Canadian population. Using the methodology developed in this paper,

we have investigated general trends in the intensity and incidence rate of dementia in the

Canadian population, as well as trends amongst various subgroups. To obtain incidence

20
http://biostats.bepress.com/cobra/art54



intensities and rates, we resorted to smoothing via penalized splines and linear intensity

extrapolation on the unidentified region.

We present only results pertaining to gender and age-specific disease. Due to the design-

induced oversampling of the elderly, we performed stratification corrections with respect

to age-at-recruitment, which highlighted some groups as particularly underpresented. The

obtained correction factors are provided in Table 1.

Figure 1 presents the population-averaged cumulative intensity function initiating in July

1976, that is, the estimated number of disease onsets having occurred since July 1976. Figure

2 provides the intensity functions for the general population as well as for each gender.

From this last plot, we observe that, apart from variations between 1980 and 1986, the

intensity functions exhibit relative constancy, with approximately 58,000 new disease cases

(about 40,000 women and 18,000 men) per year in the Canadian population. Figure 3 is

a plot of the age-specific incidence rate of dementia pertaining to age groups 65-74, 75-

84 and 85+. As is apparent in this figure, the identifiability period in older age groups is

significantly shorter than in younger age groups. As expected, a clear monotone ordering

in age-specific incidence rates emerges, with higher age group experiencing greater rates

of dementia. An interesting observation regards the temporal decline in the incidence rate

amongst individuals with age between 65 and 74 occurring between 1981 and 1985, whereby

the incidence rate droped from an original level hovering 15 cases per 1,000 person-years to

about 5 cases per 1,000 person-years. Apart from a mild increase around 1988, the incidence

rate amongst individuals aged 75 to 85 was approximately constant at 35 cases per 1,000

person-years. Finally, amongst the eldest elderly (individuals of more than 85 years of age),

incidence rates increased from around 90 cases per 1,000 person-years in 1986 to more than
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115 cases per 1,000 person-years in 1991. These temporal changes may very well be a

reflection of temporal delaying in the age-at-onset of dementia in the Canadian population,

with decreased incidence rates amongst age group 65-74, increased rates amongst age group

85+ and relative stability amongst age group 75-84 (possible due to opposing effects of

disease delay on the intermediate age category). It is reassuring to find that these rates

closely match, at least in approximate average magnitude, the constant age-specific rates

estimated from the prospective cohort followed between CSHA-1 and CSHA-2 (see CSHA

(2000)).

7 Concluding remarks

The methodology presented in this paper is more flexible and robust relative to existing

methodologies. The assumptions imposed in developing this methodology are rather mild.

Despite this tremendous generality, under certain situations, some of these assumptions may

well be violated. Chief amongst these is the Poisson structural assumption made on the onset

point process. Despite the enormous flexibility provided by allowing nonparametric modelling

of the intensity function of the onset point process, the assumption of independent increments

should be scrutinized in given settings. In our application, this assumption posed negligible

concern given the nature of demential diseases. However, in certain infectious diseases,

particularly in their epidemic phases, independence between distinct onsets may be violated.

Extension of the current methodology allowing for potential dependence between sampling

units (i.e., irregularity of the underlying point process) will be considered in future work.

An additional point of future consideration regards the extension of the one-sample

setting presented in this paper to the case of continuous covariates. Although adjustment
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for covariates can be performed rather effortlessly via semiparametric models imposed on

the survival and truncation distributions directly (implying a semiparametric model on the

intensity function and incidence rate), in view of parameter interpretability, it is desirable

to propose explicit semiparametric models of the incidence rate. For example, under the

assumption of proportionality between incidence rates for various covariate values, the model

r(t|z) = r0(t) exp (βz) may be considered, with the desirable property that exp (β) is a

relative risk of disease. Such semiparametric extensions of this paper are the focus of ongoing

research.

Finally, it is certainly of interest to also make use of data emanating from CSHA-2 and

CSHA-3 to provide estimates of the incidence rate up to 2001 (rather than 1991). The

truncation occurring at these points is not usual in that the follow-up pool (i.e., both trun-

cated and untruncated individuals) is known in advance. Onset data are however available

for untruncated individuals alone. Extensions accounting for these additional complexities

are being currently being studied.

Age-at-onset Gender Overall
65-74 75-84 85+ Men Women —
1.417 1.059 0.930 1.150 1.051 1.078

Table 1: Correction factors for stratified sampling.
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Figure 1: Estimated no. of onsets of dementia in the Canadian elderly population since 1976.

Figure 2: Estimated annual no. of onsets of dementia in the Canadian elderly population by
gender (black: overall, red: women, blue: men).
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Figure 3: Estimated annual rates of dementia in the Canadian elderly population by age
group (black: 65-74, red: 75-84, blue: 85+).
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8 Appendix: proofs and technical details.

Note. Left-truncation and the onset process intensity function.

Using the notation introduced earlier, the process {N∗(t) ≡ N(Λ−1(t)), t ≥ 0} is a sta-

tionary Poisson process with unit rate. We may then use Theorem 2.3.1 of Ross (1983) and

the Probability Integral Transform to verify that, given the occurrence of n events in (0, τ),

the occurrence times T1, T2, ..., Tn of the process {N(t), t ≥ 0} on (0, τ) are independent

with distribution function Λ(t)/Λ(τ). The reverse-occurrence times R1 = τ − T1, R2 =

τ − T2, ..., Rn = τ − Tn therefore have density function λ(τ − t)/
∫ τ

0
λ(u)du.

Proof of Theorem 1. Uniform strong consistency of Λ̂c(t).

Denote the product space [0, 1]×D(0, 1)×D(0, 1) by D and define the operator Γ acting

on D ×D[0, 1]×D[0, 1] as

Γ(α, f1, g1, f2, g2)(t) =

∫∞
0
S(u)dG(u) {α [1− g2(τ − t)]− g1(τ − t)Pτ}∫∞

0
S(u)dG(u)

∫∞
0
f2(u)dg2(u)

−
Pτ [1−G(τ − t)]

{∫∞
0
f1(u)dG(u)−

∫∞
0
g1(u)df2(u)

}∫∞
0
S(u)dG(u)

∫∞
0
f2(u)dg2(u)

.

Define Hn1,n2(u) to be the empirical process
√
n1(Ĥn2(u)−H(u)) for some estimator Ĥn(u)

of H(u) based on n observations, and write Hn(u) for Hn,n(u). This notation is needed to

incorporate the fact that the index nd of the involved estimators is random. This problem

will be minor however since nd/ns
P→ Pτ . By arithmetic expansion, we may verify that

Lns(t) = Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t) for each t < τ . Now, define the operator Γ0

acting on D as Γ0(α, f, g)(t) ≡ Γ(α, f, g, S,G)(t). Then, we have that

Lns(t) = Γ0(Pns ,Sns,nd
,Gns,nd

)(t) + op(1) . (17)
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To verify this statement, it suffices to show that

Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)− Γ(Pns ,Sns,nd
,Gns,nd

, S,G)(t)
P−→ 0

holds uniformly in t. We may write

|Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)− Γ(Pns ,Sns,nd
,Gns,nd

, S,G)(t)|

≤

∣∣∣∣∣Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)−
∫∞

0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)

∣∣∣∣∣
+

∣∣∣∣∣
∫∞

0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)− Γ(Pns ,Sns,nd
,Gns,nd

, S,G)(t)

∣∣∣∣∣
≤
∣∣∣Γ(Pns ,Sns,nd

,Gns,nd
, Ŝnd

, Ĝnd
)(t)
∣∣∣ ∣∣∣∣∣1−

∫∞
0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

∣∣∣∣∣
+

∣∣∣∣ Pns∫∞
0
S(u)dG(u)

∣∣∣∣ ∣∣∣Ĝnd
(τ − t)−G(τ − t)

∣∣∣
+ Pτ (1−G(τ − t))

(∫ ∞
0

S(u)dG(u)

)−2 ∣∣∣∣∫ ∞
0

Gns,nd
(u)d(Ŝnd

− S)(u)

∣∣∣∣
≤
∣∣∣Γ(Pns , Sns,nd

,Gns,nd
, Ŝnd

, Ĝnd
)(t)
∣∣∣ ∣∣∣∣∣1−

∫∞
0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

∣∣∣∣∣
+
npop√
ns

(∫ ∞
0

S(u)dG(u)

)−2{
|PnsGns,nd

(τ − t)|
∫ ∞

0

S(u)dG(u) +

∣∣∣∣∫ ∞
0

Gns,nd
(u)dSns,nd

(u)

∣∣∣∣} ,
and thus, we find that

sup
t

∣∣∣Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝ)(t)− Γ(Pns ,Sns,nd

,GnS ,nd
, S,G)(t)

∣∣∣
≤

∣∣∣∣∣1−
∫∞

0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

∣∣∣∣∣ sup
t

∣∣∣Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)
∣∣∣

+
1
√
ns

(∫ ∞
0

S(u)dG(u)

)−2

sup
t

{
|PnsGns,nd

(τ − t)|
∫ ∞

0

S(u)dG(u) +

∣∣∣∣∫ ∞
0

Gns,nd
(u)dSns,nd

(u)

∣∣∣∣}

Upon inspection, we note that each of

Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t) and
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{
|PnsGns,nd

(τ − t)|
∫ ∞

0

S(u)dG(u) +

∣∣∣∣∫ ∞
0

Gns,nd
(u)dSns,nd

(u)

∣∣∣∣}
converge weakly (as processes) to some non-degenerate laws. Thus, since by the uniform

consistency of Ŝnd
and Ĝnd

(see Tsai et al. (1987) and Wang (1991)) the factors

1−
∫∞

0
Ŝnd

(u)dĜnd
(u)∫∞

0
S(u)dG(u)

and
1
√
ns

converge to zero, we have verified that

sup
t

∣∣∣Γ(Pns ,Sns,nd
,Gns,nd

, Ŝnd
, Ĝnd

)(t)− Γ(Pns ,Sns,nd
,Gns,nd

, S,G)(t)
∣∣∣ P−→ 0 .

It is not difficult to verify, additionally, that the operator Γ0 is bounded and linear, and this

fact is crucial in our approach to determining the asymptotic law of Lns(t). Indeed, linearity

and boundedness jointly suffice to ensure the continuity of the operator Γ0.

To verify the uniform consistency of Λ̂(t), we use (17) and write

Λ̂(t)− Λ(t) =
1
√
ns

Lns(t) =
1
√
ns

Γ0 (Pns ,Sns,nd
,Gns,nd

) (t) + op

(
1
√
ns

)
= Γ0

(
1
√
ns

Pns ,
1
√
ns

Sns,nd
,

1
√
ns

Gns,nd

)
(t) + op

(
1
√
ns

)
= Γ0

(
P̂ns − P, Ŝnd

− S, Ĝnd
−G

)
(t) + op

(
1
√
ns

)
= Γ0(P̂ns , Ŝnd

, Ĝnd
)(t)− Γ0 (P, S,G) (t) + op

(
1
√
ns

)
.

Since Γ0 is a continuous operator and that (P̂ , Ŝ, Ĝ) is uniformly consistent for (P, S,G),

we have that

Γ0(P̂ns , Ŝnd
, Ĝnd

)(t)− Γ0 (P, S,G) (t)
P−→ 0

uniformly in t, and so, we conclude that Λ̂ is uniformly consistent for Λ(t).

Proof of Theorem 2. Weak convergence of
√
ns(Λ̂c(t)− Λc(t)).

The centralized variable Pns is asymptotically normal by the usual CLT for independent ran-
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dom variables while the joint process (Snd
,Gnd

) is asymptotically Gaussian, as shown by

Wang (1991). The (asymptotic) independence of Pns and (Sns,nd
,Gns,nd

) (see Addona et al.

(2009)) suffices then to establish the asymptotic convergence of (Pns ,Sns,nd
,Gns,nd

) to a

Gaussian process, which, from the consistency of the involved estimators, has mean zero.

By the representation above, the asymptotic distribution of the process Lns(t) is simply

that of the process Γ0(Pns ,Sns,nd
,Gns,nd

), and since Γ0 is continuous, the Extended Con-

tinuous Mapping Theorem, as stated in Kosorok (2008), applies. By the linearity of Γ0, the

asymptotic distribution of Lns(t) is Gaussian with mean zero and covariance function Σ(s, t).

Proof of Theorem 3. Uniform strong consistency of R̂c(t).

Similar to the proof of Theorem 1. Defining the operator

Υ(f)(t) =

∫ t

0

df(u)

Q(u)− Λ?
u(u)

,

the result follows from Theorem 1 and the representation

√
ns(R̂c(t)−Rc(t)) = Υ

(√
ns(Λ̂c − Λc)

)
(t) ,

with Υ easily verified to be both linear and bounded.

Proof of Theorem 4. Weak convergence of
√
ns(R̂c(t)−Rc(t)).

Similar to the proof of Theorem 2, using Theorem 2 and the representation discussed above.
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