Collection of Biostatistics Research Archive COBRA Preprint Series

Year 2008

Paper 41

Reversal in declining trend of adult mortality in many states of India, 1970-2001: Is it due to AIDS?

Abhaya Indrayan*

Ajay Kumar Bansal[†]

*University College of Medical Sciences, a.indrayan@gmail.com

[†]University College of Medical Sciences, University of Delhi, akchbansal@yahoo.com

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/cobra/art41

Copyright ©2008 by the authors.

Reversal in declining trend of adult mortality in many states of India, 1970-2001: Is it due to AIDS?

Abhaya Indrayan and Ajay Kumar Bansal

Abstract

Objectives: To investigate the reversal in adult mortality trend from declining to rising in some segments of population in India, and to use an indirect demographic method to examine if this increase could be due to AIDS mortality. Also, to estimate the total excess deaths.

Design: Cross-sectional data on age-specific death rate in 5-year age-intervals from 25 to 44 years for the years 1970 to 1998 for rural/urban and male/female segments for each of 16 major states of India obtained from the government reports, and their projections till the year 2001.

Methods: In view of reversal of trend in some areas, we tried to fit a parabola to the observed rates in each segment. A statistically significant fit in some segments revealed the year with least mortality rate when the reversal started. Another fit was obtained by projection of the previously declining trend. Excess deaths were estimated by applying the excess death rate to the population of the segment where reversal in trend was significant.

Results: Reversal in declining mortality trend was detected in 65 of a total 256 age-sex-area (urban/rural) segments that we examined. Fourteen of the 16 States revealed reversal in at least one segment. The year of reversal in most segments coincides fairly well with the anticipated year of start of substantial AIDS mortality. At the national level, a total of at least 214,390 deaths till 2001 were revealed as excess by this method. This number is quite low relative to the deaths otherwise attributed to AIDS in the country. Contrary to belief, increase in mortality due to

AIDS was seen more commonly in rural areas than in urban areas, and more in females than in males.

Conclusions: The indirect demographic method of estimating AIDS deaths in India yields an apparently low number of deaths, and does not confirm the belief that AIDS in India is spreading from urban to rural, and from male to female populations.

Keywords: AIDS deaths, Mortality trend reversal, States of India, Age-specific death rates, Demographic method

Introduction

Seventeen years down the epidemic in India since 1986, the focus in 2003 naturally shifted to AIDS mortality. The World Health Organization¹ estimated that approximately 350,000 people died in the country due to AIDS till the year 2000 in 15-49 years age group, and the number projected for the year 2005 was close to 500,000. Schwartlander et al.² estimated 350,000 AIDS deaths in India by the year 1997 including children. UNAIDS³ estimated 310,000 deaths for the year 1999 alone. Their recent estimates are not available. No such estimates are available from the National AIDS Control Organization (NACO), which is the official agency for this purpose in India.

With more than a million HIV cases estimated in early nineties in India by GPA/WHO⁴ and the survival duration surmised to range from 7 to 13 years in the absence of therapy⁵, the projection of more than a million deaths cumulatively since the onset of epidemic till the year 2001 may not be far too off from reality. But there is no evidence yet that so many deaths have actually occurred. NACO has documented only 1759 AIDS deaths till December 2000⁶. Since then 2931 more deaths have been documented by the year 2003, according to the Health Minister of India⁷. A large number escape attention or defy cause attribution due to inadequate system of certification of cause of deaths.

The basic difficulty in assessing AIDS mortality in India is the cause attribution. For many causes such as pneumonia and tuberculosis, at least some information is available by way Survey of Causes of Death of the Registrar General of India, which attributes causes from a non-medical list after verbal autopsy⁸. Although substantial AIDS deaths were expected 17 years after the detection of first case but this survey has still not geared itself to attribute AIDS as a cause of death. These deaths can be easily counted for the opportunistic infections such as tuberculosis. Civil registration of deaths in India that assigns cause of death is deficient to an extent of 54 percent⁹, and is completely inadequate to give any indication of the mortality attributable to AIDS.

In the absence of feasibility of any direct method, it is natural to investigate indirect methods. While preparing database on HIV seroepidemiology for India on behalf of South Asia Intercountry Programme of UNAIDS, we noted that mortality rates in some adult age groups in some states have shown upswing against a secular decline over the previous 20 odd years. This was surprising since nothing was known to cause such increase in deaths. It started in early nineties in many cases that coincided with the feared time of occurrence of AIDS deaths. This prompted us to examine this feature in more detail. The present communication reports findings about such reversal and estimates the excess deaths that could be possibly assigned to AIDS epidemic in different major states of India.

Methods

Widely used methods such as life expectancy at birth, crude death rate, infant mortality rate and child mortality rate¹⁰ are not appropriate for India at the current stage of the epidemic since the affected were only around 0.4 percent of the total population⁴. Perinatal transmission is not large yet¹¹ to cause any significant increase in infant or child mortality. AIDS deaths in India are still concentrated in the adult age groups. This communication reports findings for the age-group 25-44 years broken into four 5-year intervals.

Sample Registration System (SRS) is a scheme of the Registrar General of India that was set up in late sixties for providing reliable estimates of fertility and mortality in different major states¹². The number of sampling areas exceeds 6500 units in the year 1998. The estimates of death rate provided by SRS have been found to be within 3 percent of the actuals¹². This is just about the best source available in India for this purpose, and is widely believed to be correct.

Besides HIV database, we are also building up another database of more than 30 health indicators. These include age-specific death rates from SRS reports. These rates are available for urban and rural areas separately for males and females since the year 1970. Thus the data required for this work were readily available with us. With segments such as urban-male, urban-female, rural-male and rural-female and four age groups in each segment, we had 16 segments to examine for each state. The data were available for 16 major states, so that a total of $16 \times 16 = 256$ segments were examined for trend in mortality.

The secular trend in the age-specific death rate for each segment of each state was obtained for two scenarios. One was fitting a parabola to the observed rates wherever such a fit was statistically significant (P<0.10) (Examples in Figure 1 and 2). Level of significance of 0.10 instead of conventional 0.05 allowed us to detect minor reversals also that might be in the making. Parabolic fit has some very desirable feature: if reversal in mortality occurred, it is automatically revealed by the rise in the curve after a secular decline. If there is no reversal, the parabola generally will not be a good fit. The point of the minimum mortality in the trend was identified in each case by the change in sign of dy/dx from negative to positive wherever the parabolic fit was significant. The fit assumes that there was a gradual decline in the mortality, a leveling off, and then a gradual rise, and there is no sudden upswing. Such an observed trend is shown by solid curve for Andhra Pradesh as illustration in Figures 1 and 2.

The second fit was done assuming continuation of the previous declining trend. The average of the rates of decline seen in three years prior to the minimum was assumed to continue for the subsequent period. This gave us the projected trend had the earlier secular decline continued. In Figures 1 and 2 this is shown by broken line. The data were available for the years 1970 to 1998 and the same trend was extrapolated to the year 2001 for both the fits.

The difference between the observed trend and the projection of the previous declining trend is the excess death rate. This gap is shown by shaded areas in Figures 1 and 2. The excess death rate was applied to the estimated population for each segment in each year to get an estimate of the volume of excess deaths. For estimation of year-wise population, we used the simple geometric progression method based on census data for the year 1991¹³ and for the year 2001¹⁴. The estimates of percentage population in different age groups were obtained from SRS reports. The latest SRS report available at the time of starting this work was for the year 1998 and our calculations for the years 1999, 2000 and 2001 assume same rates and proportions as in the year 1998. The year to year differences are minimal and this approximation is not likely to result in any big error.

Collection of Biostatistics Research Archive

Results

Table 1 shows the year of reversal of mortality from declining to rising wherever parabolic fit was found significant. Out of 256 segments we examined, such reversal occurred in 65 segments. Of these, 9 are for urban-males, 21 for urban-females, 18 for rural-males and 17 for rural-females. Out of 16 states, 14 states showed reversal in at least one segment. The salient observations are as follows:

- 1. The states of Bihar and Haryana showed no reversal in any segment and Uttar Pradesh showed reversal in only one segment. These states are known for low prevalence of HIV^{6} .
- 2. The reversal in five or more segments occurred in six states, namely, Andhra Pradesh (AP), Assam (AS), Maharashtra (MH), Orissa (OR), and Tamil Nadu (TN). Except OR and AS, these are the states which are categorized by NACO as high-prevalence states⁶. Orissa is a stranger in this group considering extremely low prevalence obtained by HIV sentinel surveillence in this state⁶.
- 3. The year of reversal is between 1993 and 1997 in 41 segments. This is consistent with the expected time of substantial AIDS deaths considering the onset of epidemic in 1986. In other segments, reversal occurred quite early even in late eighties. If this is to be believed, this raises the hypothesis that HIV was probably present before 1986 in some areas. We discuss this possibility later in this communication.

For brevity, we are not giving figures for each state. Illustrations in Figures 1 and 2 are for Andhra Pradesh — a state severely affected by HIV in India. Excess deaths obtained for each segment are given in Table 2 for different states. At the national level, a total of 214,390 deaths were revealed as excess by this method. This is cumulative till the year 2001. Small number of deaths may have occurred in other segments in some states that have not caused sufficient dent in the age-specific death rate for reversal to be statistically significant. Also, there were 19 other smaller states and Union Territories that are not covered in the present exercise due to lack of SRS data for these areas. However, their population together is only 9.4 percent of India's total population. Sixteen major states in our exercise cover the remaining 90.6 percent population.

Discussion

Various attempts have been made in the past in different areas to study AIDS mortality from secondary sources. Timaeus¹⁶ examined trend in probability of dying between ages 15 and 50 year in four endemic and one nonendemic country in Africa, and observed upswing similar to the one observed by us for India. No attempt was made to transform this to the actual number of deaths attributable to AIDS. Garenne et al.¹⁷ did almost exactly same exercise as ours for mortality in Abidjan. They noted marked increase in death rates starting 1986 — the date of the first diagnosed AIDS case in the city, particularly among male adults, and assumed that the excess mortality is attributable to AIDS. Their exercise ignored the consideration of incubation or the latent period that would cause lag in mortality.

Bangkok's Institute of Population Studies carried out a very comprehensive study¹⁸ on mortality as a proxy for the impact of AIDS epidemic on Thai population. They studied all the age-groups beginning 0 to 70+, and projected excess deaths from 1989 to 2000. They considered average mortality in the years 1987 and 1988 as baseline, and excess was obtained as simple subtraction of baseline from the observed rate. No trends were fitted. This excess was divided in to an

increase due to external causes of death and an increase attributable to AIDS. External causes comprise accidents, homicides, suicides and poisoning. They also applied the excess death rate to the estimated age-specific population for each year just as we are doing in this communication.

Stover and Way¹⁰ studied impact of AIDS on mortality by estimating the effect on life expectancy in countries of Africa. Conti et al.¹⁹ measured premature mortality due to AIDS by potential years of life lost (PYLL) for Italy between 1984 and 1993. Heath et al.²⁰ analyzed demographic data of 11 selected industrialized nations with highly developed AIDS registration system, and obtained PYLL and standardized mortality ratio. Data limitation prevented us from using any of these methodologies.

There are limitations of our results. First, the reversal in adult mortality in some segments occurred before nineties. It is difficult to accept this as occurring due to AIDS in the wake of first case detected in the year 1986 in India. Note however that not only HIV but also AIDS case was detected in that year. There is anecdotal evidence that HIV was present in some pockets in India in the early eighties^{21, 22}. Thus the possibility of reversal of trend in adult mortality in some areas in late eighties is not altogether implausible. Our analysis reveals that reversal occurred in 12 segments before the year 1990. Perhaps a closer look is needed to examine why such a trend emerged in those areas. We leave this aspect for future endeavours.

Second, the excess deaths revealed by this methodology are much less than otherwise apprehended considering the estimated infection levels in previous years. Deaths may be occurring in other segments also but not substantial to cause significant dent in the mortality trend. In addition, as already mentioned, smaller states and Union Territories are not included in the present estimate.

Third, reversal of trend is seen more commonly in rural areas than in urban areas, and more commonly in females than in males. Both these contradict the NACO assumption that the infection is spreading from urban to rural, and from males to females⁶. Their assumption looks rational but lacks evidence. Either their assumption needs reexamination or the reversal we observe is attributable to causes other than AIDS. The following strengthen the belief that this increase in mortality is indeed mostly due to AIDS.

- 1. Primary risk group for HIV/AIDS in India are the patients attending STD clinics⁶. Recent Behaviour Surveillance Survey²³ reports that genital discharge and/or genital ulcer/sore are more common in rural areas than urban areas in several states. Also females are more commonly affected than males in almost all the states. Thus a higher prevalence of HIV and consequent deaths in these groups is not entirely inconsistent, at least for some states.
- 2. Hira et al.²⁴ also report for Mumbai municipal area that excess mortality in adult agegroups is most likely due to AIDS in the absence of any other plausible cause. We examined the death rates by external causes such as accidents and suicides as reported by the Survey of Causes of Death and noted that these are rising linearly over the years without any special upswing to reverse the earlier decline trend in mortality. Some of the excess deaths might be due to these external causes but the data suggest that this could be minor.

Collection of Biostatistics Research Archive Our findings regarding excess deaths due to AIDS in India can not be said unequivocal. The total excess deaths revealed by this method are much less than otherwise suspected. Nevertheless, this paper communicates that at least an attempt has been made to estimate the excess deaths using demographic method and it does not firmly confirm the pattern of AIDS deaths that is believed to be occurring in India.

Key Messages

- Substantial AIDS deaths are expected 17 years after the detection of first case.
- Basic difficulty in assessing AIDS mortality in India is the cause attribution.
- Civil registration of deaths in India that assigns cause of deaths is deficient to an extent of 54 percent and is completely inadequate to give any indication of the mortality attributable to AIDS.
- Reversal in mortality trend from declining to rising is detected in 14 states out of 16 major states of India in at least one segment of population (male/female rural/urban).
- An indirect demographic method has been investigated for estimating excess deaths due to AIDS, and a total of at least 214,390 deaths till 2001 are revealed as excess by this method. This is low relative to those otherwise projected.

References

- 1. World Health Organization. HIV/AIDS in Asia and Pacific Region, Geneva: World Health Organization; 2001.
- 2. Schwartlander B, Stanecki KA, Brown T, et al. Country specific estimates and models of HIV and AIDS: methods and limitations. AIDS 1999;**13**:2445-2458.
- 3. UNAIDS. Report of the global HIV/AIDS epidemic, June 2000, Geneva: UNAIDS; 2000. p.128.
- 4. NACO. Combating HIV/AIDS in India 1999-2000. National AIDS Control Organization, New Delhi; 2000.
- Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly active antiretroviral therapy: a collaborative re-analysis. Concerted Action on Seroconversion to AIDS and Deaths in Europe. Lancet 2000; 355(9210):1131-1137.
- 6. NACO. Combating HIV/AIDS in India 2000-2001. National AIDS Control Organization, New Delhi; 2001.
- 7. <u>http://sify.com/news/scienceandmedicine/fullstory.php?id=13217176&vsv=71</u> accessed on March 1, 2004. 2,391 AIDS deaths in India since 2000.
- Survey of Causes of Deaths (Rural), India: Registrar General India, New Delhi (based on the International Classification of Diseases (ICD) 10th revision). Annual Report:Series-3(31) 1998. p.2.
- 9. Vital Statistics of India 1993. Based on The Civil Registration System, Statement XVII, New Delhi: Registrar General of India; 1999. p.39.
- 10. Stover J, Way P. Projecting the impact of AIDS on mortality. AIDS 1998; 12(1):S29-

C \$39. Ion of Biostofistics

Research Archive

- 11. NACO. <u>http://naco.nic.in/vsnaco/indianscene/overv.htm</u> accessed on November 5 2002, monthly update as on 30 Sept 2002. National AIDS Control Organization, New Delhi.
- 12. Swamy VS. Sample Registration System in India A perspective, Occasional paper no. 4 New Delhi: Registrar General of India, Chapter 4; 1992. pp. 13, 17 and 38.
- Census of India. Provisional Population Totals: Rural-Urban Distribution: Series-1: Paper
 New Delhi: Registrar General and Census Commissioner of India, Ministry of Home Affairs; 1991. p.19.
- Census of India. Provisional Population Totals: Rural-Urban Distribution: Series-1: Paper
 New Delhi: Registrar General and Census Commissioner of India, Ministry of Home Affairs; 2001. Table I.
- 15. APAC. Community prevalence of sexually transmitted diseases in Tamil Nadu. Chennai: AIDS Prevention and Control Project; 1998.
- 16. Timaeus IM. Adult Mortality in the Era of AIDS. In: Third African Population Conference. Durban, South Africa; 6-10 Dec.1999:377-395.
- 17. Garenne ML, Madison M, Tarantola D, Zanou B, Aka J, Dogore R. Mortality impact of AIDS in Abidjan, 1986-1992. AIDS 1996; **10(11)**:1279-1286.
- Van Griensven GJ, Surasiengsunk S, Panza A. The use of mortality statistics as a proxy indicator for the impact of the AIDS epidemic on the Thai population, IPS Publications No.267/98.Bangkok: Chulalongkorn University, Institute of Population Studies; 1998. pp.1-44.
- 19. Conti S, Mosocco M, Farchi G, Rezza G, Toccaceli V. Premature mortality in Italy during the first decade of the AIDS epidemic 1984–1993. Int J Epidemiol 1997; **26(4)**:873-879.
- Heath KV, Frank O, Montaner JS, O'Sghnessyhau MV, Schechter MT, Hogg RS. Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) mortality in industrialized nations 1987-1991. Int J Epidemiol 1998; 27: 685-690.
- John TJ, Babu PG. The epidemiology of retroviruses in India: The HIV era. International Symposium on AIDS in India: Biomedical and Social Research Issues and their Policy Implications - Pune. 1995.
- 22. Simoes EAF, Babu PG, John TJ, et al. Evidence of HTLV-III infection in prostitutes in Tamil Nadu (India). Indian J Med Res 1987; **85**:335-338.
- 23. Behaviour Surveillance Survey. National Baseline General Population Behavioural Surveillance Survey. New Delhi: National AIDS Control Organization 2001. pp.45.
- 24. Hira SK, Rao ASRS, Thanekar J. Evidence of AIDS related mortality in Mumbai, India. Lancet 1999; **354(9185)**:1175-1176.

COBRA A BEPRESS REPOSITORY Collection of Biostatistics Research Archive

Segment	AP	AS	BH	HN	HP	GJ	KA	KL	MP	MR	OR	PJ	RJ	ΤN	UP	WB
U-M,25-29	≜ 1994	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	☆	↑ 1987	\$	\$
U-M,30-34	*	*	☆	\$	\$	\$	×	¢	¢	↑ 1989	\$	\$	¢	¢	*	☆
U-M,35-39	↑ 1994	\$	☆	×	¢	↑ 1990	*	×	×	×	↑ 1989	\$	×	×	*	↑ 1993
U-M,40-44	*	↑ 1995	☆	×	\$	\$	\$	\$	×	×	↑ 1989	\$	×	×	*	☆
U-F,25-29	☆	↑ 1990	☆	×	☆	*	↑ 1990	☆	☆	↑ 1992	↑ 1998	↑ 1987		↑ 1990	*	*
U-F,30-34	*	↑ 1991	*	*	*	↑ 1995	*	*	*	↑ 1995	↑ 1997	↑ 1995	*	*	≜ 1988	\$
U-F,35-39	≜ 1988	≜ 1997	\$	*	≜ 1994	\$	≜ 1993	\$	\$	≜ 1994	\$	\$	\$	\$	\$	\$
U-F,40-44	↑ 1988	☆	☆	×	*	↑ 1998	↑ 1999	☆	☆	☆	*	↑ 1999	☆	☆	*	*
R-M,25-29	↑ 1990	*	\$	\$	↑ 1986	*	≜ 1989	\$	↑ 1996	≜ 1987	\$	*	≜ 1997	↑ 1993	\$	\$
R-M,30-34	*	☆	☆	×	☆	\$	☆	☆	☆	↑ 1992	↑ 1993	↑ 1984	☆	☆	*	*
R-M,35-39	↑ 1998	☆	☆	×	↑ 1993	*	☆	☆	☆	☆	↑ 1996	*	☆	↑ 1994	*	*
R-M,40-44	↑ 1991	\$	\$	*	\$	\$	↑ 1990	\$	\$	\$	↑ 1995	\$	*	\$	\$	↑ 1997
R-F,25-29	*	\$	*	*	*	*	*	*	*	*	*	\$	\$	*	*	\$
R-F,30-34	↑ 1995	↑ 1994	*	*	*	*	↑ 1996	↑ 1993	↑ 1999	↑ 1991	*	\$	↑ 1999	↑ 1995	*	*
R-F,35-39	↑ 1995	\$	\$	*	↑ 1994	*	↑ 1996	↑ 1994	*	*	*	\$	*	*	*	\$
R-F,40-44	↑ 1996	☆	☆	*	\$	*	*	↑ 1995	↑ 1992	\$	↑ 1996	*	*	\$	*	↑ 1994

Table 1 : Year of age-specific mortality trend reversal in major States of India for different
areas (rural, urban) and age-categories (25 to 44) in males and females -- 1971 to
2001

♣ - Reversal in trend; ★- No reversal in trend

R - Rural; U - Urban; M - Male; F - Female

AP-Andhra Pradesh; AS-Assam; BH-Bihar; HN-Haryana; HP-Himachal Pradesh; GJ-Gujarat; KA-Karnataka;

KL-Kerala; MP-Madhya Pradesh; MR-Maharashtra; OR-Orissa; PJ-Punjab; RJ-Rajasthan; TN-Tamil Nadu;

UP-Uttar Pradesh; WB-West Bengal

COBRA A BEPRESS REPOSITORY Collection of Biostatistics Research Archive

Segment	AP	AS	BH	GJ	HN	HP	KA	KL	MP	MR	OR	PJ	RJ	TN	UP	WB	TOTAL
U-M,25-29	736													10971			11707
U-M.30-34										11132							11132
U-M.35-39	1299			5477							1673					1595	10044
U-M.40-44		102		-							3029						3131
U-M.25-44	2035	102		5477						11132	4702			10971		1595	36014
U-F.25-29		737					3868			4732	24	2998		4585			16944
U-F.30-34		627		364						774	46	146			11287		13244
U-F.35-39	8669	74				51	994			2300							12088
U-F.40-44	5508			73		0.	32			2000		10					5623
11-F 25-44	14177	1438		437		51	4894			7806	70	3154		4585	11287		47899
01,20 44		1400		-107		01	4004			7000	70	0104		4000	11207		47000
II-P 25-29	736	737					3868			4732	24	2998		15556			28651
U-P 30-34	/00	627		364			0000			11906	46	146		10000	11287		24376
U-P 35-39	9968	74		5477		51	994			2300	1673	140			11207	1595	22132
U-P 40-44	5508	102		73		51	32			2000	3029	10				1000	8754
11-P 25-44	16212	1540		5914		51	4894			18038	4772	3154		15556	11287	1595	83013
0-7,23-44	10212	1340		3314		51	4034			10330	4//2	5154		13330	11207	1555	03913
P M 25 20	21072					5001	7000		1055	14412			201	0104			51900
R-M 20 24	21072					3004	7023		1055	2505	2525	0440	321	2124			16560
R-M 25 20	271					556				3090	1204	9449		1005			2126
R-M,35-39	17111					550	5000				1204			1005		1000	05751
R-IVI,40-44	20554					6440	3220		1055	10000	13/4	0440	201	2120		1030	23/31
n-IVI,25-44	30334					0440	12231		1055	10000	0303	9449	321	3129		1030	97340
D E 05 00																	
R-F,25-29	0005	0000					1001	1004	100	c000			00	0404			17740
R-F,30-34	2325	3028				500	1021	1934	133	6803			98	2404			1//40
R-F,35-39	2/14					000	600	1304	000		<u></u>					0577	0064
R-F,40-44	1/16	2000				500	1070	79	809	C000	683		00	0404		6577	9004
к-г,25-44	6755	3028				200	18/0	3397	942	6803	083		98	2404		03//	33129
D D 05 00	01070					5004	7000		1055	14410			001	0104			51000
R-P,23-29	21072	0000				J004	1023	1004	1000	14413	0505	0440	321	2124			24215
R-P,30-34	2325	3028				1100	1021	1934	133	10398	3525	9449	98	2404			34315
R-P,35-39	3085					1122	800	1384	000		1204			1005		0415	05015
R-P,40-44	18827	2020				7006	5228	79	809	04011	2257	0440	410	5500		8415 8415	30010
п-Р,25-44	45509	3020				7000	14127	3397	1997	24011	0900	9449	419	5555		0413	130477
0.11.05.00	01000					5004	7000		1055	11110			001	10005			00500
C-M,25-29	21808					5884	7023		1055	14413	0505	0440	321	13095			03599
C-M,30-34	1070			E 477		550				14/2/	3525	9449		1005		1505	2//01
C-M,35-39	16/0	100		5477		556	5000				28/7			1005		1595	13180
C-M,40-44	1/111	102		5 4 7 7			5228		1055	00440	4603	0440		44400		1838	28882
С-М,25-44	40589	102		5477		6440	12251		1055	29140	11005	9449	321	14100		3433	133362
0 5 05 00		707					00000			4700		00000		4505			10041
C-F,25-29	00.05	/3/		0.0.4			3868	1001	100	4/32	24	2998		4585			16944
C-F,30-34	2325	3655		364			1021	1934	133	/5//	46	146	98	2404	11287		30990
C-F,35-39	11383	74				617	1849	1384		2300							1/60/
C-F,40-44	7224			73			32	79	809		683	10				6577	15487
C-F,25-44	20932	4466		437		617	6770	3397	942	14609	753	3154	98	6989	11287	6577	81028
C-P,25-29	21808	737				5884	10891	1.5.5	1055	19145	24	2998	321	17680			80543
C-P,30-34	2325	3655		364			1021	1934	133	22304	3571	9595	98	2404	11287		58691
C-P,35-39	13053	74		5477		1173	1849	1384		2300	2877			1005		1595	30787
C-P,40-44	24335	102		73			5260	79	809		5286	10				8415	44369
C-P,25-44	61521	4568		5914		7057	19021	3397	1997	43749	11758	12603	419	21089	11287	10010	214390

Table 2 : Estimated excess deaths in different States - 1991 to 2001

U - Urban; R - Rural; C - Rural and Urban combined

M - Male; F - Female; P - Person AP-Andhra Pradesh; AS-Assam; BH-Bihar; HN-Haryana; HP-Himachal Pradesh; GJ-Gujarat; KA-Karnataka; KL-Kerala; MP-Madhya Pradesh; MR-Maharashtra; OR-Orissa; PJ-Punjab; RJ-Rajasthan; TN-Tamil Nadu; UP-Uttar Pradesh; WB-West Bengal

Figure 1: Observed and projected trend in age-specific mortality in Andhra Pradesh in 25-29 and 30-34 years

Collection of Biostatistics Research Archive

Research Archive