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Survival Analysis of Longitudinal Microarrays

Natasa Rajicic, Dianne M. Finkelstein, and David A. Schoenfeld

Abstract

Motivation: The development of methods for linking gene expressions to vari-
ous clinical and phenotypic characteristics is an active area of genomic research.
Scientists hope that such analysis may, for example, describe relationships be-
tween gene function and clinical events such as death or recovery. Methods are
available for relating gene expression to measurements that are categorized or con-
tinuous, but there is less work in relating expressions to an observed event time
such as time to death, response, or relapse. When gene expressions are measured
over time, there are methods for differentiating temporal patterns. However, no
methods have yet been proposed for the survival analysis of longitudinally col-
lected microarrays. Results: We describe an approach for the survival analysis
of longitudinal gene expression data. We construct a measure of association be-
tween the time to an event and gene expressions collected over time. The issue
of high dimensionality and dependence when assessing statistical significance is
addressed using permutations and control of the false discovery rate. Our pro-
posed method is illustrated on a data set from a multi-center research study of
inflammation and response to injury that aims to uncover the biological reasons
why patients can have dramatically different outcomes after suffering a traumatic
injury (www.gluegrant.org).
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Abstract

Motivation: The development of methods for linking gene expressions to various

clinical and phenotypic characteristics is an active area of genomic research. Scien-

tists hope that such analysis may, for example, describe relationships between gene

function and clinical events such as death or recovery. Methods are available for

relating gene expression to measurements that are categorized or continuous, but

there is less work in relating expressions to an observed event time such as time to

death, response, or relapse. When gene expressions are measured over time, there

are methods for differentiating temporal patterns. However, no methods have yet

been proposed for the survival analysis of longitudinally collected microarrays.

Results: We describe an approach for the survival analysis of longitudinal gene ex-

pression data. We construct a measure of association between the time to an event

and gene expressions collected over time. The issue of high dimensionality and

dependence when assessing statistical significance is addressed using permutations

and control of the false discovery rate. Our proposed method is illustrated on a data

set from a multi-center research study of inflammation and response to injury that

aims to uncover the biological reasons why patients can have dramatically different

outcomes after suffering a traumatic injury (www.gluegrant.org).

Contact: natasa.rajicic@pfizer.com

1.1 Introduction

Scientists are turning to the microarray technology for insights into the mechanisms

of the human body that were previously poorly understood. We think of genes as

units of heredity as they record the genetic makeup of organisms. Though it is be-

lieved that a large number of genes remain inactive for most of our lives, there are

those genes for which the activity can be associated with various physiological or

environmental effects. In simple terms, a gene is considered to be activated, or ex-
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pressed, if its coded information is converted into proteins which are the main instiga-

tors of functions and processes in our bodies. An interesting problem in the analysis

of the human genome is to relate changes in gene activity to clinical or phenotypic

information. For example, scientists have been able to relate gene expression to the

clinical implications of different types of cancer [Alizadeh et al., 2000, Golub et al.,

1999, van’t Veer et al., 2002, van de Vijver et al., 2002].

The nature of the data generated from a microarray experiment poses specific chal-

lenges to the statistical analysis. In a typical experiment, data from a relatively small

number of subjects is available on thousands, even tens of thousands of genes, which

makes many of the classical statistical procedures unapplicable. This is because

the standard statistical methods are developed with the classical data type in mind,

where the number of explanatory variables does not exceed the number of subjects

on which data is collected. Time-to-an-event data poses additional challenges due to

the presence of censoring.

We propose a method to study relationships between repeatedly collected gene ex-

pressions and time to an event of interest. Our problem is motivated by the data

from Inflammation and Host Response to Injury research project (also referred to as

the Glue grant, www.gluegrant.org). This multi-center and multi-disciplinary collab-

oration aims at better understanding of processes involved in the immune system’s

response to injury, as well as uncover the biological reasons why seemingly alike pa-

tients can have dramatically different outcomes after suffering a traumatic injury or

burns. Doctors hope that identifying the genetic factors will help predict the course

of recovery of severely injured patients.

Numerous methods have been proposed and developed for relating gene microar-

rays to either continuous or categorical measurements such as comparison of treat-

ment groups or the level of a known biomarker. Ring & Ross (2002) offer a com-

prehensive review of methods that use microarrays for tumor classification. In com-

parison, fewer methods have been suggested for the analysis of gene expressions in
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relation to time to an event (e.g., death, response, or relapse), or for detecting dif-

ferences in genes over time [Luan & Li, 2002, Yeung et al., 2003, Storey et al., 2005].

Methods for the use of longitudinal microarray in either describing or predicting

survival outcomes are currently unavailable.

Methods for relating gene activity to the occurrence of an event have been pro-

posed when microarrays are collected at a single point in time (e.g., baseline). One

approach is to first use an unsupervised classification method, e.g. hierarchical

clustering, to generate two or more groups of patient samples [Rosenwald et al.,

2002, Makretsov et al., 2004]. The survival distributions within such generated clus-

ters are then compared using the logrank test and displayed by Kaplan-Meier curves.

A second, related approach is to first cluster genes based on their expressions across

different patient samples, and then use cluster averages of the gene expressions as

explanatory variables in a Cox proportional hazard regression model [Li & Luan,

2003]. However, both of these approaches do not capture the marginal relationship

between gene expressions and time to an event [Sorlie et al., 2001, Jung et al., 2005].

One may end up with gene classes that do not represent any meaningful grouping in

terms of the survival, or the results may vary due to a particular clustering algorithm

used.

A number of published approaches apply partial least squares (PLS) method to gen-

erate linear combinations of gene expressions as predictors in the proportional haz-

ards model [Nguyen & Rocke, 2002]. PLS is a method related to principal compo-

nents analysis (PCA), but while PCA creates combinations that maximize the ex-

plained variability among predictors only, PLS aims at maximizing correlations be-

tween predictors and the response variable. Bair & Tibshirani (2004) first calculate

the Cox score for each gene (a statistic based on a proportional hazards partial likeli-

hood) in order to select a subset of genes, then employ the PLS method to a reduced

set of genes to arrive at the best model. Park et al. (2002) first reformulate the survival

outcomes problem into a generalized linear (Poisson) regression, then apply the PLS
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algorithm to derive a parsimonious model. In a related approach, [Li & Gui, 2004]

and [Gui & Li, 2004] reduce the dimensionality of the microarray predictor space

by either partial or penalized Cox regression. While in all of these approaches the

high-dimensionality of the microarray is reduced, direct interpretation of the fitted

parameters in terms of the individual genes is not possible. In contrast, we are in-

terested in developing a method to be used as a first step in identifying individual

genes for further investigation.

When thousands of genes are measured in a single experiment, a single question of

interest can be formulated as simultaneous testing of numerous individual hypothe-

ses. Testing many statistical hypotheses at once increases the possibility of a Type I

error, as a significant result may occur purely by chance, regardless of the nature’s

true state. The control of the false discovery rate (FDR) has become a widely used

method of error control in the analysis of gene microarrays [Storey & Tibshirani,

2003]. The control of FDR involves an estimate of the proportion of falsely positive

genes among all genes found positive (i.e., exhibit differential expression in differ-

ent samples or states under investigation). Westfall & Young (1989) promoted the

use of permutations to allow for dependencies among test statistics. In this paper,

we propose a permutation-based method that is related to the method of [Storey &

Tibshirani, 2003] and to the popular SAM method [Tusher et al., 2001].

A gene-specific test statistic is defined in Section 2.7. A multiple testing algorithm

that controls the number of false positive findings is described in Section 2.2.3. The

results of a series of simulations are presented in Section 1.3, while the analysis on

the data from the study of inflammation and response to trauma is presented in

Section 1.4. All programs for the analysis presented in this paper were done using R

statistical package [R, 2005] and can be obtained from the first author (N.R.) or from

http://hedwig.mgh.harvard.edu/biostatistics/software.php.
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1.2 Methods

1.2.1 Notation

For each of the n patients enrolled in a clinical study, we record the elapsed time

from the beginning of the study to the occurrence of the event of interest (e.g., death

or recovery). Since we are interested in examining whether there is an association

between the time to an event and changes in gene expression, we also observe pa-

tients’ microarray over time. A microarray here is a collection of p expression values

on p different genes. For a given gene, let Xi(t) denote expressions for patient i at

time t. Time to occurrence of the event is recorded using two indicator variables, δ

and Y . Say subject i had an event at time t, then δi(t) = 1 and δi(t) = 0 for times

prior to time t. Similarly, Yi(t) = 1 if i is still at risk at time t, meaning that the patient

is under observation and has not experienced the event by time t. A set of subjects

remaining at risk at time t is of size Y (t) =
∑

i Yi(t). Let n(t) =
∑

i δi(t) denote a total

number of subjects who experienced an event at time t. For patients for which the

event does not occur for the duration of the study, or who for other reasons have dis-

continued the study followup, we say that their event time is censored. We further

make a distinction between the observed event times, τk, k = 1 . . . m, and scheduled

(i.e. planned) visit times, tj, j = 1 . . . J , as the planned timing of visits may not coin-

cide with the observed event times. Here, m is the total number of observed events,

and J is the total number of scheduled visits. Since events are considered to be ’ter-

minal’, each subject can experience it only once during the study follow-up, and the

total number of observed events, m, is less or equal to the total number of subjects,

m ≤ n.

http://biostats.bepress.com/cobra/art7
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1.2.2 Test statistic

To test the association between thousands of longitudinally collected gene expres-

sions and time to an event of interest, we want to use a test statistic that is not

only intuitive but simple to calculate. This is primarily because we intend to use

a permutation-based testing procedure which is computationally intensive. The ap-

proach we take is to first calculate one test statistic per each gene, then determine

the significance of each association using permutations. We begin by examining a

general class of nonparametric tests for survival data, formulated by [Jones & Crow-

ley, 1989]. We assume that for each subject i at risk at time t, it is possible to define

a (quantitative) value Zi(t) that represents subject’s covariate measurement, and de-

note by Z̄(t) the average value of Z for subjects at risk at time t. It is also assumed

that the increasing covariate values correspond to either increasing or decreasing

chances of event occurrence. Let m denote the total number of observed events, then

the test statistic can be written as:

T (ω,Z) =
∑

t

ω(t)
∑

i

δi(t)[Zi(t)− Z̄(t)] . (1.1)

Note that ω(t) are optional weights chosen to emphasize either early or late events.

The score statistic based on the partial likelihood from a Cox regression model [Cox,

1972] is a member of this general class. Jones & Crowley investigate various choices

for weights and labels (ω(t), Zi(t)), where using (1, Xi(t)) results in the following test

statistic:

T =
∑

t

∑
i

δi(t)[Xi(t)− X̄(t)] . (1.2)

Here, X̄(t) is the average gene expression for subjects at risk at time t, X̄(t) =

(1/Y (t))
∑

i Yi(t) Xi(t). This test statistic captures the difference between the ob-

served covariate values for subjects that had an event at a given time-point, and the

average covariate value for subjects still at risk an instant before the event occurred.

The differences are then summed up over all observed event times.

In our approach, however, we cannot implement (1.2) without further modification.

Hosted by The Berkeley Electronic Press
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This is because the structure of our problem presents several challenges that need

to be addressed. We want the outer summation in both (1.1) and (1.2) to be over

the unique observed event times, τk, which results in summands involving current

gene expression values at the time of an observed event. Ideally, if we had observed

expression values for all subjects currently at risk at time of an observed event, the

statistic would be easily and correctly calculated. In clinical trials, however, data are

often collected according to some schedule of study visits. The data on time-varying

covariates for all subjects at risk may not be available at the time an event occurred

but rather at more than one prior scheduled visit times. For example, in the Glue

study, gene expression is obtained on 7 scheduled visits over a period of 28 days but

respiratory recovery event can occur and be recorded on any day during that time. A

simple approach to deal with intermittent covariate data is the ”last observation car-

ried forward” approach (LOCF), where the most recent available observation is used

in place of the missing data. If the event had occurred at some time k between the

two scheduled visits tj−1 and tj , so that Xi(τk) is not available, microarray collected

at time tj−1 would be used in place of Xi(τk). While the last observation carried

forward approach would be simple to implement, it has been traditionally heavily

criticized as it produces biased results. We therefore explore a different approach to

handling intermittent microarray data.

1.2.3 Semi-parametric test of association

Another way to deal with the intermittently available data in a time-to-event study

is to model unknown values using measurements available up to that time. Tak-

ing into account our limited knowledge about the longitudinal behavior of microar-

rays, we search for ways to model the gene expression over time without assuming

strict distributional properties. In order to do this, we follow the approach outlined

in [Tsiatis & Davidian, 2001], who extend and apply the concept of a conditional

score [Stefanski & Carroll, 1987] to the joint modelling of the longitudinal and event
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data. Namely, we would like to consider a random effects model for the longitudinal

expression data, as this model provides a way to incorporate subject-specific random

intercept and slopes: Xi(t) = α0i + α1it, i = 1 . . . n. In this way, we also address the

issue of between-subject gene expression variability which can be substantial (Cheng

Li, personal communication).

However, the model estimate of the unknown gene expression value Xi(t) at time t

would require a distributional assumption for αi = [α0i, α1i]. As noted earlier, due

to the unknown longitudinal behavior of genes, we would like to avoid specify-

ing the exact distribution of the random effects. Fortunately, if we know the suffi-

cient statistic for αi, we can use it to avoid making assumptions on the distribution

of the random effects. This is because conditioning on the sufficient statistic, S i(t),

would remove the dependence of the conditional distribution on the random effects

αi. Namely, the sufficient statistic for αi, conditional on subject i being at risk at time

t, (i.e., Yi(t) = 1), is

Si(t)= βσ2(t)δi(t) + X̂i(t).

Here, σ2(t) accounts for the uncertainty when using X̂i(t) as an estimate of the un-

known covariate value Xi(t). We describe the estimation of σ2(t) below. More im-

portantly, assuming subject i is at risk at time t, and using all available data up to

and including t, X̂i(t) can simple be the ordinary least square estimate. The joint

likelihood of the events δi(t) and the model estimate X̂i(t) can then be factored into

two parts, one of which does not involve a random variable αi, and an other that

does not involve information on the event:

L(δi(t), X̂i(t)|αi) = L(δi(t)|Si(t))× L(X̂i(t)|αi).

The conditional likelihood L(δi(t)|Si(t)) does not depend on the random effect αi. It

arguably contains all the relevant information about the parameter of interest β, and
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thus can be used to construct estimating equations for β [Tsiatis & Davidian, 2001]:

m∑
k=1

∑
i

δi(τk)
[
Si(τk)−

∑n
i=1 Si(τk)Yi(τk)ei∑

i Yi(τk)ei

]
, (1.3)

where ei = exp(βSi(τk)−β2σ2(τk)/2). Here we emphasize that the outer summation

is taken over the observed event times τk, k = 1, . . . ,m.

We now proceed to construct a score test for testing H0 : β = 0 vs. H1 : β 6= 0. Let

T = U(0)/
√

V ar[U(0)] be the test statistic for such test. The numerator, U(0) is found

by evaluating (1.3) when H0 is true:

U(0) =
m∑

k=1

n∑
i=1

δi(t)[X̂i(τk)−
∑

i Yi(τk)X̂i(τk)

Y (τk)
]. (1.4)

Also note that U(0) has a form familiar to that in (1.2). The difference between the

two statistics is that (3.1) estimates the unknown value of the covariate at the ob-

served event time using the available covariate history.

The estimate of variance is obtained by finding a first derivative of (1.3), evaluated

for β = 0:

V̂ ar[U(0)] =
m∑

k=1

n(t)

Y (t)− 1
[σ̂2(t)(Y (t)− n(t)) + (Y (t)− 1)V̂ (t)]. (1.5)

The estimate σ̂2(t) is a product of two quantities. First is the estimate of the unknown

variability in measuring Xi(t) at time t, which is estimated by the pooled estimate of

the residual sums of squares over all subjects. The second quantity is the estimate of

variance of the predicted value X̂i(t) using available values up to and including time

t. Specifically, variance of the predicted value X̂i(t) at time t is 1/mi(t)+(t−t)2/SSi(t),

where mi(t) is the number of available observations for subject i up to time t, and

SSi(t) is the corresponding sum of squared differences from the mean, using values

up to and including time t. As before, Y (t) is the total number of subjects at risk at

time t, and n(t) is the number of events at time t. V̂ (t) is the sample variance of the

ordinary least square estimates, X̂i(t), among subjects at risk at t. The resulting score

test closely resembles the score test from the Cox’s proportional hazards model for

http://biostats.bepress.com/cobra/art7



11

non-time-varying covariates or for completely known time-varying covariate histo-

ries. Our proposed test can also be viewed as a test of form H0 : λ(t|X) = λ(t), for

all X , where λ(t) is a hazard function.

1.2.4 Calculation of the significance levels

The statistic in (3.1) is best suited for examining a single covariate, whereas we need

to test thousands of genes (covariates) to determine which gene’s changes over time

are associated with a clinical event. The testing procedure controls for the number

of false positive findings, as this is a standard approach for the genomewide studies.

Simply put, to determine whether the calculated test statistic Tg is significant or not,

we want to consider the number of falsely positive findings (FP) among the total

number called significant (TP) when that test statistic is used as a cutoff value,

number of false positive findings for Tg

number of total positive findings for Tg

=
FP (Tg)

TP (Tg)
.

The expected value of this ratio is defined as the False Discovery Rate (FDR) for

statistic Tg (Storey & Tibshirani, 2003),

FDR(Tg) = E

[
FP (Tg)

TP (Tg)

]
≈ E[FP (Tg)]

E[TP (Tg)]
.

One simple way to obtain an estimate of FDR(Tg) is to directly estimate the numera-

tor and the denominator [Xie et al., 2005]. We call this estimator the False Positive Ratio

(FPR) in order to emphasize it’s derivation. To estimate the denominator, we use the

total number of the test statistics called significant when Tg is used as a cut-off value,

i.e., #(|T | > |Tg|). The numerator is estimated using permutation-based estimate of

the null distribution of the test statistics. Given the nature of our longitudinal data

with survival endpoints, the actual permutation needs to be clearly defined. At each

observed event time, we permute the event indicators among subjects at risk at that

time. In other words, the number of subjects with events is kept fixed at each event

time, with their event indicators randomly exchanged among those currently at risk.
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Let T = [T1, . . . , Tp] be test statistics calculated on each of the p-genes in the original

data. Here, I(·) is the usual indicator function, where I(a) = 1, if a true.

1. At each observed event time k, permute indicators of events among those sub-

jects still at risk at that time. This is equivalent to choosing n(t) elements out of

Y (t), at time t;

2. Using such perturbed data, calculate a set of p test statistics, T ∗ = [T ∗
1 , . . . , T ∗

p ];

3. Compare each original Tg with all permutation-based T ∗ and call the number

of false positives the number among T ∗ that are greater than Tg,

F̂P (Tg) =
∑

T ∗=[T ∗
1 ,...,T ∗

p ]

I(|T ∗| > |Tg|);

4. Repeat steps 1-3 many times, say, hundred times. For each gene g, g ∈ {1, . . . p},

this produces a sequence of hundred numbers. Denote by F̂P (Tg) the mean

value of such sequence for test statistic Tg;

5. For each gene, the estimated proportion of false positives is the ratio of F̂P (Tg)

over the total number of statistics called significant when Tg is used as a cut-off

value. Thus, the estimate of the false positive ratio (FPR) for Tg is:

F̂PR(Tg) =
F̂P (Tg)∑

T=[T1,...,Tp]

I(|T | > |Tg|)
.

If a test statistic has an estimated proportion of false positives below a desired, pre-

specified level, say 10%, then the hypothesis is rejected and the observed test statistic

is declared statistically significant. Our testing procedure is similar to the approach

proposed by [Storey & Tibshirani, 2003], when the estimated proportion of null hy-

potheses π̂0 is set to 1, and the results are described in terms of the test statistic (rather

than the appropriately defined p-value). The presented algorithm can also be viewed

as a form of the Empirical Bayes calculation of the FDR [Efron et al., 2001].

http://biostats.bepress.com/cobra/art7
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We calculate the permutation distribution by permuting the event indicators among

subjects at risk at each time. Alternatively, the true permutation distribution for the

test statistics would ostensibly be found by permuting the event times among the

patients. The problem with this approach is that no samples were collected after the

event for each patient, and if they were, the gene expression values after the event

may have been affected by the event which would preclude their use. One way to fill-

in such missing data, would be to define a distance metric in order to select among

subjects with complete covariate series those that are ’close’ or ’similar’ to the subject

with the missing observation. The algorithm will then proceed as follows: a) cluster

subjects according to their microarray at time t−1, b) note the cluster membership of

the subject with the missing t array, and c) impute the missing array by calculating

some sample measure (e.g. mean array) using the remaining members of the cluster

and their expressions at time t. The testing algorithm can then continue with the

Step 2 above. One potential limitation with this approach is that the small size of a

cluster of subjects determined to be ’close’ or ’similar’ to the subject with the missing

observation may introduce bias when calculating the imputed value.

1.3 Simulations

We performed a series of simulations to assess validity and performance of our pro-

posed method. The following describes an algorithm to generate longitudinal ex-

pressions along with survival outcomes that emulate the data-generating mecha-

nisms presented by the actual problem.

1. Obtain an estimate of a variance-covariance matrix, Σ̂, of the random effects by

fitting a random effects model to a selection of genes from the actual data;

2. Sample from a bivariate normal distribution with zero mean and variance-

covariance matrix obtained in Step 1 to get a set of random effects (intercepts

and slopes): (a0i, a1i) ∼ N2(0, Σ̂) , for i = 1, . . . , n;
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3. Generate individual gene trajectories for each subject and for all genes, using

the generated random effects: Xij = a0i + a1itj + εij , where εij ∼ N(0, σ2
ε );

4. Choose a value of the association parameter b. Assuming an exponential haz-

ard function λ(t) = λ0 ebX(t), the parameter b captures the strength of associ-

ation between time to an event and the time-dependent covariate trajectory

X(t). Using the exponential form of the hazard function λ(t), and an estimate

of an underlying event hazard, λ0, which uses the number of observed events,

we derive an inverse of the cumulative hazard distribution:

Λ−1(u) =
1

ba1

log[
−log(u) ba1

λ̂0 eba0

+ 1];

5. By knowing the form of the inverse cumulative hazard function, we can use the

Probability Integral Transformation to sample survival times, T ; We first gen-

erate replicates of the uniformly distributed random variable U ∼ Unif(0, 1),

then generate survival times as T = Λ−1[−log(U)].

In the final step of the algorithm, generated survival times that exceed 28 days are

considered censored. The produced survival times are ’linked’ to the trajectories

generated in Step 3 through the random effects α. Namely, since the same random

effects generated in Steps 1-2 are used in Step 5 to generate survival times T , subjects

with comparable random effects get assigned similar event times (e.g., early or late).

Using the above algorithm, we generated 600 samples of data. Each sample consists

of 100 subjects with 500 longitudinal gene expressions over 7 time-points. Fifty out

of 500 genes were set to be significantly associated with the time to an event. Testing

was done for three choices of the association parameter b, as well as two values for

the measurement error, σ2
ε . Within each simulation, the false positive ratio of 10%

was used as a cutoff value for determining significance. Simulations were executed

using R statistical software and results presented in Table 1.1.

http://biostats.bepress.com/cobra/art7



15

Table 1.1: Simulation results
n = 100 subjects; p = 500 genes; 600 replications

median (IQR) b= 2.5 b= 1.5 b= 0
prop.positive

σ2
ε = 0.10

# positive 56 (53, 58) 55 (53, 57) 1(0,1)
prop. false + 0.107 (0.056, 0.136) 0.090 (0.057, 0.137) –
σ2

ε = 0.20
# positive 55 (52.75, 57) 53 (48, 55) 1(0,2)
prop. false + 0.092 (0.056, 0.137) 0.090 (0.063, 0.125) –

To understand these results, let us examine the case when the association parame-

ter b is set to 2.5, the measurement error of individual genes is σ2
ε = 0.20, and 50

out of a total of 500 simulated genes have trajectories associated with the time to

an event (i.e., 10% of genes are significant). A median number of genes found pos-

itive over 600 simulations is 55 genes. The median false positive proportion over

600 simulations is 0.092, with an interquartile range of (0.056, 0.137). Similar results

are found for the remainder of the cells. When b = 0, all genes are expected to be

non-significant under H0 : β = 0. If the association parameter b is set to zero, any

significant genes should be found purely by chance, and we would expect the total

number of significant genes to be zero.

Inspection of the simulation results shows that our method performs reasonably

well. The proportion of false positive findings remains close to the pre-specified 10%

mark for both choices of the association parameter b and the two levels of measure-

ment error. Also note that the proportion of false positives remains similar across

the two columns. A change of the pre-specified association parameter b does not

dramatically change the proportion of false positive. However, the assumed level

of the measurement error seems to influence the estimated number of false positive

findings. Estimates of false positive proportions are higher for σ2
ε = 0.10.
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1.4 Results of Trauma Data Analysis

We apply our method to the data from Inflammation and Host Response to Injury re-

search project (the Glue study). This collaborative program examines the biological

reasons why patients can have dramatically different clinical outcomes after expe-

riencing a traumatic injury. Among many scientific questions posed by the Glue

investigators is whether we can identify genes whose temporal changes relate to the

time until a specific clinical event. It is reasonable to assume that genes exhibiting

greater variation are more likely to be associated with the time to an event. Patients

in the Glue study are followed for 28 days from the time they experience a serious

traumatic injury. This is an example of a right-censored data, which we assume for

the developments of our method. Genomic data collected on days 0, 1, 4, 7, 14, 21,

and 28 are generated using commercially available oligonucleotide array technol-

ogy [Affymetrix Inc., 2001]. Each microarray includes expressions on 54,674 probe

sets (which we will call ’genes’ for the purposes of our analysis). Gene expressions

were extracted from oligonucleotide probes by employing a PM-only analysis of [Li

& Wong, 2001] and normalized across arrays to achieve comparable levels, using the

’Invariant Set’ method in the dChip software [Li & Wong, 2003]. Finally, the gene

expression values were log-transformed prior to any calculations.

To reduce the overwhelming dimensionality of a microarray, we first excluded those

genes labelled ’Absent’ over all arrays by the Affymetrix software. We then per-

formed a simple filtering of genes and included only those genes whose estimated

coefficient of variation (CV) exceeds a certain threshold. While more complex filter-

ing can be used, one can also proceed without filtering at all. Our choice of threshold

is somewhat ad-hoc as we aimed at having a couple of thousands of genes to work

with, instead of over fifty four thousand, in this hypothesis-generating approach.

This brought the number of genes to under four thousand (p = 3, 914). Data on 56

subjects with complete entries were included in the analysis. For the purposes of

http://biostats.bepress.com/cobra/art7
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survival analysis, we define the event of interest as ”respiratory recovery” which oc-

curs when a patient no longer depends on a machine to breathe. The response is thus

defined as the time from injury (and entry into the ICU) to getting off the ventilator.

Of 56 patients, 52 experienced recovery of respiratory function prior to the end of

28-day follow-up. Four patients remained on the ventilator by day 28 and thus had

recovery time censored at 28 days.

The test statistic that measures the association between each gene and the time to an

event is calculated for each gene separately. We performed described permutation-

based testing procedure to determine significance of each test statistic. Of 3,914 in-

vestigated genes, 154 were identified as statistically significant when we used .10 as

a cut-off value for determining significance of each individual gene. As a compari-

son, a total of 694 genes were identified as significantly associated with the time to a

recovery when their test statistics are compared to the 10th-percentiles of the normal

distribution.

A sample gene ontology for a selection of genes for which change in expression over

time is associated with the time to respiratory recovery is given in Table 1.2. The sam-

ple genes are grouped in those that exhibited positive association with the time to

respiratory response, and those with a negative association. For example, increased

expression for NM 153701 (interleukin 12 receptor) is associated with the shorter

time to recovery.

Results for a sample of four significant genes are presented in Figure 1, with plots

of individual patient trajectories over time. The four panels are identified by acces-

sion numbers. In order to further illustrate our results, patients are distinguished by

whether they had a ’late’ respiratory recovery (those occurring after day 16). Red

lines represent a patients that either experienced a recovery after day 16 or their

times were censored at day 28. The two plots on the right-hand side are for genes

negatively related to the time to a recovery. A decrease in gene expression on these

two genes is related to a shorter time to recovery. The opposite is true for the other
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Table 1.2: Description of a subset of significant genes

Name ID Function or biological process (positive association)
NM 153701 lack of expression related to immunodeficiency
AF324888 regulation of muscle contraction; signal transduction
NM 002800 fatty acid biosynthesis and oxidation
NM 000593 oligopeptide transport; immune response; protein transport

Name ID Function or biological process (negative association)
NM 002668 has a role in chemotactic processes via CCR1
NM 004994 linked to increased invasiveness of cancer cells
NM 001629 associated with myocardial infarction and stroke

two plots where an increase in gene expression relates to a shorter time to recovery.

The tens of thousands of gene expressions measured repeatedly over time on tens

or hundreds of patients can create a considerable computational difficulty due to

the enormity of the resulting data sets. To further help reduce the time needed for

lengthy computations, we collaborated with an application specialist at the Mas-

sachusetts General Hospital Biostatistics Unit in order to obtain, develop, test, and

employ a parallel computing system [Lazar & Schoenfeld, 2004]. The 30+ node com-

puter cluster helped us greatly reduce the time needed for lengthy computations.

1.5 Discussion

We provide a method for the survival analysis of longitudinally collected microar-

rays. We address the issues of intermittently collected microarray data as well as

the unknown longitudinal behavior of a single gene expression. A limitation of our

approach is that the one-dimensional construction of the test statistic does not neces-

sarily address the high-dimensionality of the problem as it does not use information

across all genes simultaneously.

More complex longitudinal models can easily be incorporated into our approach. A

http://biostats.bepress.com/cobra/art7
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Figure 1.1: Plot of four selected genes
Solid lines represent patients with recovery events that occurred after day 16, or patients censored at
day 28. The test statistics corresponding to the two plots to the right are negative, indicating an in-
verse relationship between gene expressions and the time to a recovery. Conversely, the test statistics
corresponding to the two plots to the left are positive, an increase in gene expression is associated
with a shorter time to recovery.
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minimum set of assumptions regarding the functional relationship between longitu-

dinal gene expression and timing of the events will depend on an individual biolog-

ical problem at hand. For example, a natural extension would be to implement the

approach of [Song et al., 2002], which requires only the assumption that the random

effects have a smooth density. Another modification, which may be relevant in some

applications, is to devise a multiple imputation procedure for the unknown covari-

ate values. While this will certainly add to the overall computational complexity, it

would be interesting to explore whether it can be incorporated so to take advantage

of the computations already in place and the high-dimensionality of the data. Finally,

in order to make the proposed test statistics more robust to potential outliers, the ac-

tual values of gene expressions may have be replaced by ranks or some function of

the ranks.

In the Glue study, patients were closely monitored at all times for a period of 28

days. The study subjects either experience an event or their time is censored at the

end of the study follow-up. This is an example of Type I censoring where there

is no possibility of missing data due to a dropout. However, in a typical clinical

trial where study participants are followed for a longer period of time, it is likely

that the censoring due to early dropout would be an issue. It is straightforward to

accommodate this type of censoring in our approach.

The continual advancement of the microarray technology will ultimately result in

many large studies routinely including longitudinal genomic observations as part

of the study follow-up. The longitudinal microarray and event time data will thus

become more common. Also, other applications of high-dimensional data such as

proteomics and metabolomics data will arise. Therefore, further development of

efficient methodologies to handle these high-dimensional event time data sets will

be needed.
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