-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by Collection Of Biostatistics Research Archive

Collection of Biostatistics Research Archive
COBRA Preprint Series

Year 2011 Paper 86

Modeling Criminal Careers as Departures
from a Unimodal Population Age-Crime
Curve: The Case of Marijuana Use

Donatello Telesca* Elena Erosheva'

Derek Kreager? Ross Matsueda™*

*UCLA, dtelesca@ucla.edu
TUniversity of Washington
{Pennsylvania State University

**University of Washington
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-

cially reproduced without the permission of the copyright holder.
http://biostats.bepress.com/cobra/art86
Copyright (©2011 by the authors.


https://core.ac.uk/display/61320509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling Criminal Careers as Departures
from a Unimodal Population Age-Crime
Curve: The Case of Marijuana Use

Donatello Telesca, Elena Erosheva, Derek Kreager, and Ross Matsueda

Abstract

A major aim of longitudinal analyses of life course data is to describe the within-
and between-individual variability in a behavioral outcome, such as crime. Sta-
tistical analyses of such data typically draw on mixture and mixed-effects growth
models. In this work, we present a functional analytic point of view and develop
an alternative method that models individual crime trajectories as departures from
a population age-crime curve. Drawing on empirical and theoretical claims in
criminology, we assume a unimodal population age-crime curve and allow indi-
vidual expected crime trajectories to differ by their levels of offending and patterns
of temporal misalignment. We extend Bayesian hierarchical curve registration
methods to accommodate count data and to incorporate influence of baseline co-
variates on individual behavioral trajectories. Analyzing self-reported counts of
yearly marijuana use from the Denver Youth Survey, we examine the influence of
race and gender categories on differences in levels and timing of marijuana smok-
ing. We find that our approach offers a flexible and realistic model for longitudinal
crime trajectories that fits individual observations well and allows for a rich array
of inferences of interest to criminologists and drug abuse researchers.
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Abstract

A major aim of longitudinal analyses of life course data is to describe the within- and between-
individual variability in a behavioral outcome, such as crime. Statistical analyses of such data
typically draw on mixture and mixed-effects growth models. In this work, we present a functional
analytic point of view and develop an alternative method that models individual crime trajectories
as departures from a population age-crime curve. Drawing on empirical and theoretical claims
in criminology, we assume a unimodal population age-crime curve and allow individual expected
crime trajectories to differ by their levels of offending and patterns of temporal misalignment.
We extend Bayesian hierarchical curve registration methods to accommodate count data and to
incorporate influence of baseline covariates on individual behavioral trajectories. Analyzing self-
reported counts of yearly marijuana use from the Denver Youth Survey, we examine the influence
of race and gender categories on differences in levels and timing of marijuana smoking. We find
that our approach offers a flexible and realistic model for longitudinal crime trajectories that fits
individual observations well and allows for a rich array of inferences of interest to criminologists
and drug abuse researchers.

KEY WORDS: Curve Registration, Drug Use, Functional Data, Generalized Linear Models, In-
dividual Trajectories, Longitudinal Data, MCMC, Unimodal Smoothing.
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1 INTRODUCTION

An important task in criminology concerns describing individual trajectories of offending across

time or age. An adequate description of offending trajectories across age is necessary for describing

differences in criminal careers (Blum h 983 for estimating features of age-crime
curves (IHJLSL;b.l_and_Gm_tir&d.st |19&4 such as age-at-onset, and ultimately, for explaining differ-
ences in age crime curves using developmental or life course theories ).

Most research on criminal careers and age-crime trajectories has been descriptive, follow-

ing the pioneering work of [Wolfgang et alJ 01923), who examined age at onset, length of crimi-

nal careers, and patterns of desistance. Recent research has turned to model-based approaches,

which typically specify individual trajectories as polynomial in age. Such models describe pop-

ulation heterogeneity in individual trajectories either by including random effects for age and

age-squared nbush and Ch Iﬁ&i), or by specifying a mixture of latent classes of tra-

jectories (INagﬁn and Land| |19_9_§), or by combining latent trajectory classes and random effects

(Muthén and Shgddgdhﬂd). However, polynomial representations are typically not able to capture

nuanced heterogeneity between individuals in their observed patterns of criminal behavior, and re-

search findings are often driven by variability in within-age behavioral amplitude d&niﬁﬁdsm_andﬂlﬂ;bj

In this article, we propose an alternative approach for analyzing longitudinal crime data. We

draw on the criminological work of [Hirschi an fr 1983), who argued that the age-
crime curve is invariant across social groups and throughout history. Arguing that a single uni-
modal age-crime curve underlies all crime, including illicit drug use, they described the curve as
rising precipitously from age seven (age of culpability) until the peak years—between ages 13-21,
depending on the crime—and then slowly declining thereafter through the life span. Although they

claimed invariance in the basic shape of the age-crime curve, they also acknowledged the presence

of individual differences in crime trajectories. Specifically, [Hirschi an fr n (1983) claimed
that individual differences are driven by differences in (time-stable) levels of offending and (time-
varying) opportunities to commit crime. We note that these substantive arguments naturally lend
themselves to using an appropriately constrained functional data analysis approach for modeling
longitudinal crime data.

We develop a Poisson warping regression model that assumes a unimodal mean age-crime curve
and defines individual crime trajectories as random functions that deviate from the mean curve

according to individual-specific level of offending and time misalignment patterns. We build on

curve registration models of Ramsay and Li (ILQ%), who introduced a model for the alignment of a

sample of curves via a continuous monotone transformation of a main effect modifier (usually time),

and TEJ.QS_c_a_a.nd_lnDufJ (IZDD}J), who formulated a Bayesian hierarchical model for curve registration,
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allowing for the borrowing of information across curves. To accommodate discrete observations
(counts), we develop a generalized extension of the curve registration models to count data. In
addition, we incorporate covariate effects directly on (1) the expected intensity of criminal behavior
and on (2) the deviation from the average timing of offenses in a hierarchical fashion.

We are not the first to take a functional data analytic point of view towards longitudinal

crime data. IBMM_S&E@ M) carried out a functional principal component analy-

sis on a landmark data set originally collected by |Glueck and Gl 1950), and reanalyzed by

IS_am.pSLm_and_L_alLd (|J_Q9_EJ Our approach to analyzing life course crime trajectories, although func-

tional, is fundamentally different from that of IB@msa;LaniLSJJlermalJ M) as we do not rely on

principal components.
Several authors have contributed to the statistical analysis of random curves. |Shi et alJ (ILM)

were among the first to introduce flexible semiparametric models for the analysis of a sample of

curves based on functional mixed effects modeling. In the analysis of sparsely observed functions,
Rice and Sih@rmad (ILM), and, more recently, [Yao et alJ (IMﬂ) discuss nonparametric methods

based on functional principal component analysis.

Typically, functional data analysis deals with large amounts of data sampled on a fine grid in
time or space (Imwiﬂﬂﬁ m, Gervini and Qassg;l M) Information on lifetime

criminal behavior, however, often comes in the form of many short or sparsely sampled time series
(see [Elhmm_aﬂ 19&4 or [H.ams_ej_alj |21)D_EJ) High individual heterogeneity in combination with

such data structures requires models that capitalize on borrowing information across subjects while

maintaining a high level of flexibility in order to provide a reasonable fit to individual observed
trajectories.

Our method of hierarchical curve registration with covariates allows us to develop a flexible
set of nonparametric representations for individual curves of criminal offending. It deals with data
sparsity by combining information across curves in two ways: (1) structurally, by representing indi-
vidual curves as an affine transformation of a natural crime curve constrained to be unimodal; and
(2) stochastically, by assuming conditional dependence (exchangeability) between key parameters
contributing to the likelihood function. As we model the crime trajectories in a semi-parametric

fashion, we integrate the substantive claims of Mmﬂﬁﬁﬁmﬂmd (Ilﬂﬁfi) with the existing

toolkit of functional data analysis methods and accommodate the unimodality constraint for non-

Gaussian data. Unlike previous approaches to modeling crime trajectories, our approach explicitly
incorporates criminological arguments that the population age crime curve is unimodal and that
individual trajectories can be described as departures from the common population curve. We

illustrate our approach by analyzing data on marijuana use.
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Figure 1: Drug Use (Marijuana). Panel (a): Yearly count for the use of marijuana for 588 sub-
jects from the DYS. A solid black line depicts the structural mean function. Panel (b): Aligned
normalized trajectories. In black we report the overall functional convex average S(t,3). Panel
(c): Subject—specific posterior log—amplitude with associated 95% credible intervals. Panel (d):
Subject-specific time scale, characterized by the expected posterior time transformation functions.
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1.1 Data

We consider marijuana use data from the Denver Youth Survey (DYS) (IEs_b_eusm_and_Hmng

), a longitudinal study of delinquency and drug use in high risk neighborhoods in Denver.

Marijuana use is of interest not only to drug researchers and life course scholars but also to crimi-
nologists because it is an illegal substance in the United States. The DYS collected data from an
accelerated longitudinal design covering the age span from 7 to 25. The peak age of marijuana use is
about age 20 (@M&Mgm Iﬂlﬁ) The survey asked drug use questions

starting from age 11.

The DYS identified high risk neighborhoods via a cluster analysis of census variables such

as family structure, ethnicity, SES, housing, mobility, marital status, and age composition (e.g.,

I.Elsheus_ellﬁnd_ﬂiumngghu%d) High risk neighborhoods were then defined as the top third in terms

of high social disorganization and high official crime rates. These neighborhoods represent the most

disadvantaged areas of Denver.

The investigators selected a sample of 20,300 households from high-risk neighborhoods in Den-
ver, and used a screening questionnaire to identify five child and youth cohorts (i.e., 7, 9, 11, 13
or 15 years old in 1988). The overall procedure yielded a sample of 1,528 respondents (for details
see Matsueda et alJ (Iﬂlﬁ% Esbensen and HuizingA (ILQQd)) Of these respondents, 1,459 were aged

11 years or older for at least one interviewed year and completed a youth survey that included
drug-use counts. Subjects were interviewed in their homes annually from 1988-1992 and 1995-1999
(10 waves).

We consider answers to the survey question “In the past year, how many times have you smoked
marijuana?” Our goal is to model individual trajectories of marijuana use over the interval of 10-25
years of age, and to understand differences in these trajectories by race-ethnicity and gender. We
selected individuals who had between 4 and 9 longitudinal observations on marijuana use for each
individual. The resulting data set had a mean of 7.39 (SD = 1.37) observations per subject. The
frequency of marijuana use is highly volatile. Marijuana smokers — those who reported smoking at
least once during the observation period — smoked marijuana 42.85 times per year on average with
SD = 133.33 and a maximum reported count of yearly marijuana smoking of 999. [1 One commonly
reported quantity of marijuana use over the last year is 365 times that corresponds to the once a
day frequency of smoking.

The remainder of this article is organized as follows. In Section Bl we introduce a hierarchical
model for the semi—parametric analysis of longitudinal count data. We discuss MCMC estimation
and inference in Section Bland analyze lifetime data on marijuana use from the Denver Youth Survey

in Section @l We conclude with a discussion of our contributions and possible model extensions in

LA few respondents reported using marijuana more than twice a day. For those very few who reported marijuana
more then 3 times a day, their answers were truncated to the maximum of 999.
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Section

2 HIERACHICAL REGISTRATION
2.1 Poisson Warping Regression Model

In this section, we introduce a general formulation for the functional representation of longitudinal
crime data. Let Y; = (Y1, ..., Yij, ..., Vi) denote an observed vector of offenses for individual i over
a discrete sampling design t = (¢1,...,t;,...,t,). To simplify notation, we assume that a sampling
design t is common for all individuals but the functional model is flexible to accommodate different
sampling times. Technically, observed counts Y;; denote the number of offenses over a reasonable
time interval 7, e.g., a month or a year, just before sampling times ¢;. The time interval 7 is
fixed and the same for all observations in the sample. Let X; denote a p—dimensional vector of
time-stable covariates for individual i.

We assume that individual trajectories of offending are realizations from a functional Poisson

process. Thus, the observed count at time ¢; for individual 7 is
}/ij | )\Z‘(tj,Xi) ~ POiSSO’I’L{ )\i(tj,Xi) }, (1)

where E(Y;; | X;) = Ai(t;,X;). The sampling density of Yj; is given by
e~ Nilts ,Xz‘))\i(t% X )Yii

P(Yij = vij | Ni(t5, X)) = ,
Yij+

Assume the intensity function \;(¢;, X;) depends on the covariate information X; as follows:
Ailts, Xi) = ai(Xi) S(t, B) o pi(ty, ¢ Xi) = ai(Xy) S{pi(ty, ¢ Xi), B}, (2)

where a;(X;) > 0 is an individual-specific amplitude, S(¢;,3) is a mean shape function, and
wi(ty, ¢;;X;) is an individual-specific time transformation function. Consequently, the mean func-
tion S(t;,3), evaluated over a subject-specific time scale 11;(t;, ¢;; X;), defines individual-specific
mean trajectory of offending. Our notation indicates explicit dependence on X; for individual
amplitude and time-transformation functions. We define this dependence in Sections and 2.4,
respectively, by modeling the mean of a; and ¢, as a function of covariates X;.

For the mean shape and time transformation functions, we assume that their functional forms
belong to the Sobolev space spanned by linear combinations of cubic B-Spline basis functions
m ). Intuitively, this is a vector space containing shapes of virtually arbitrary flexibility,
provided it originates from an adequate number of basis functions. See also for a
discussion of B-spline optimality and stability. When modeling the shape function S(¢,3) we
further constrain the functional form to be unimodal.

The modeling framework introduced in equations (Il) and (2)) is consistent with the substantive

arguments of M@ (IL%A) about the age-crime curve. It starts by assuming
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a common unimodal shape for the age-crime curve and reflects individual differences in the ex-

pected intensity of criminal behavior a;(X;) and deviations from the average timing of offenses
pi(ts, @33 Xi).
2.2 Mean Shape S(¢,3) and Unimodal Smoothing

Let the mean shape function S(¢,3) be a mapping S(¢,3) : T — R™, where T = [t; — A, t,, + A]

is the observed sampling interval [tq, ¢,] that is extended by a temporal misalignment window

A < oo (Telesca and IHQ]]A 2008)). Assume the functional form of the average shape S(¢,3) is a
linear B-spline combination S(t,3) = Sp(t)’'3, where Sp(t) is a set of K basis functions of order
4 evaluated at time t and (3 is a p-dimensional vector of spline coefficients. To ensure positivity of
S(t, 3), it is sufficient to require positivity of the shape coefficients ; > 0, j =1,..., K. To ensure
unimodality of S(t,3), it is sufficient to require the first derivative 9S(¢,3)/0t to exibit only one
possible sign change (Sghumakgll ILM, Theorem 4.76). We combine the unimodality and positivity

requirements via the following reparametrization of the shape coefficients 3:

5]6:”*2_(1/]6_]/*)27 k=1,. K, (3)

where the new coefficients v = (v, ...,vi)" are nondecreasing, i.e., 0 = v; < -+ < vk, and v* is
a fixed modal pivot [4. We place a second order shrinkage prior distribution on v. In particular,

assuming vy = v; = 0, we model the generic k' element of v as
Vg = 2Vg—1 — Vk—2 + €k, Ek ™~ N(O,O’%)- (4)

The variance parameter ag can then be interpreted as a smoothing parameter shrinking the shape

function towards a piece-wise linear trajectory.

2.3 Amplitude Parameters a;(X;) and Amplitude Regression

The notion that individual criminal propensity is constant across the life span but varies among

individuals is common in the criminology literature. |Gottfredson and Hirschi M) introduced

the hypothetical concept of self-control that could explain this variation. The amplitude regression

part of our model allows us to test the relationship between individual criminal propensity and
observed covariates.
We model the dependence of individual-specific amplitude a; on covariates X; in a generalized
linear fashion:
E(a; | Xi,by) = exp{X)b,}, i=1,...,N, (5)

In our analysis choosing v* = V'Y provided a reasonable reference scale on the magnitude of S(t, 3), for the prior
on b, to be reasonably centered around 0.

http://bi ostats.bepress.com/cobra/art86



where b, is a p-dimensional vector of amplitude regression coefficients. To specify a prior distri-
bution for a; with the mean given by equation (fl), we exploit the Gamma-Poisson conjugacy and
assume

(a; | ba, bo; X;) ~ G (bo, bo exp{—X;bg}) . (6)

In this formulation, 1/4/by represents the coefficient of variation.
The prior distribution of a; in equation (@) has two appealing properties. First, due to conjugacy,

the conditional posterior density of a; is

{bo+2jn(tj)—1} bo

exp § — W‘F%:S{Mi(tja%)zﬂ} a; ¢,
(7)

which corresponds to Gamma distribution with shape parameter (bo+>_; Y;(t;)) and rate (b exp{—X/b, }+

P(ai ’ Yi7187 ¢i7ba7b0;Xi) xXa

> S{ui(tj, #;), B}). In addition, the marginal distribution of observed offense counts Y, integrat-

ing over a;, is Negative Binomial:

P(Y;]|187¢7,7ba7b07X2) = fOOO P(Y;j|/87¢i7ai7baybO)P(ai|ba7b0)dai
I'(Yij + bo) bo vy Yis
= SLa Ty )

bO }/7,]' ( ]) 1)

(8)

where

w_ (expiXibaS{uilt;, 60,80\
g = X' b 3S{ 1 (t:. b, b ’
exp{ i a} {,UZ( ]7¢z)7ﬁ}+ 0
This form allows for natural modeling of overdispersion in the marginal distribution of counts.

Here, small values of by indicate extra variability beyond that explained by the Poisson.

In the presence of amplitude parameters «a;, scale identifiability is often an issue. In Gaussian

models, for example, |Gervini an 2004) and Brumback and Lindstr M) impose sum-

mation constraints of the kind ZZN a; = N. From a Bayesian perspective, scale identification can

be achieved by modeling dependence between the a; at the population level (see

boo).
The amplitude part of the model is completed with priors for the coefficient of variation and

for the regression coefficients respectively
bo~G(Aa; M), ba~m(by). 9)

The specific form for 7(b,) is described in the next section, in order to relate amplitude and phase

effects.

2.4 Time Transformation Functions y;(t, ¢,) and Phase Regression

Criminologists specify multiple dynamic influences on trajectories of offending. For example,

changes in crime and drug use over time are attributed to changes in peer groups, opportu-
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nities, school experiences, and neighborhood contexts. In our model, we use individual time-
transformation functions and a phase shift to account for such dynamic individual-specific influ-
ences. In addition, we model the phase shift as a linear function of time-stable covariates, gender
and race-ethnicity. This allows us to test whether certain groups of individuals start their criminal
careers on average earlier than other groups, controlling for differences in amplitudes.

We allow time transformation functions to map the original time scale onto random image sets
enclosed in an extended sampling interval 7 = [ty — A, t, + A], that is p;(¢, ;) : [t1, tn] — T

(ﬁdﬂmndlnmxfj (IZDD}J)) As before, [t1, t,] is the observed time interval and A < oo is a

temporal misalignment window. We require subject-specific time transformation functions p;(t, ¢;)

to be strictly monotone, du;(t, ¢;)/0t > 0 m nd L IL%é), to prevent time reversibility and
to define a bijection between the original time scale ¢ and the transformed time scale y;(¢, ¢;).
Let S, (t) denote a set of @) B-spline basis functions of order 4, evaluated at time ¢t. We define the
subject-specific time transformation functions as linear combinations y;(t, ¢;) = S,.(t)" ¢, for a given
(Q—dimensional vector of basis coefficients, ¢; = (¢i1, ..., ¢ig) . Imposing the ordering ¢;; < --- <
Giq < -+ < ¢ig provides us with a sufficient condition for time transformation functions (¢, ¢;)

to be monotone dﬂrumharkﬁndldﬂdsm IZDDAI) Additionally, imposing boundary conditions

(t1 — A< ¢i1 <t1+A)and (t, — A < ¢ig < t, + A) allows for the time transformations p;(t, ¢;)

to map the original time scale ¢ onto random intervals not bigger than [t; — A, ¢, + A] and not
smaller than [t; + A, t,, — A]. This last requirement rules out possible degeneracies, provided that
the temporal misalignment window is such that A << (¢, —t1)/2.

Let T be a Q-dimensional vector of identity coefficients, so that S, (t)Y' = ¢t. Following the

penalization approach introduced in ), we assume that individual time
transformation coefficients ¢, arise from a first-order random walk shrinkage prior. Thus, for all
i=1,...,N,

(Cbiq = "Yzq) = (¢i(q—1) - ’Yiq—l) + TIQ7 with 77q ~ N(0705))[{M}7 q= 17 eeey Qa (10)

where ¢;0 = Yo = 0. Here, M defines a set of random cuts such that 9, —ng—1 > Ty—1 — Ty, ¢ =
1,...,Q, where |n;| < A and |ng| < A. The variance parameter 035 is a smoothing parameter that
controls the amount of shrinkage of individual time transformation functions towards the identity
transformation p;(t, X) = t.

We incorporate covariate effects by modeling the average phase shift as a linear function of
covariates X;:

Vig :E[¢2q|X1,b¢] = Tq—I—X;b(z,, = 1,...,N. (11)

Finally, we complete the model with priors over phase and amplitude regression coefficients (b/,, b;b)’ ~

N(bg, Xp) with conditionally conjugate hyperprior Xy, ~ IW (v, cp Iap).
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3 HESTIMATION AND INFERENCE

Our modeling approach can be essentially summarized as follows. Marijuana use in time is assumed
to arise as the realization of a functional Poisson process with mean structure (2)). Dependence on

covariate information is included through amplitude effects (&) and phase shifts (IJ).

3.1 Likelihood Function

Using the B-Spline representations for the mean shape and time transformation functions described
in Sections (2.4]) and ([Z2)), we rewrite the expected number of offenses for subject i at time t; from

equation (2) as:
Nilty, B, ai, d;) = a;Sp(t;) B oSu(t;) ¢; = ai Sp{Su(t;) ¢:}' B (12)

Here we omit the explicit dependence of a; and ¢; on covariates X to simplify notation. The

log-likelihood function of shape coefficients 3, amplitude parameters a = (aq,...,ay)" and time
transformation coefficients ® = (¢1/, ..., @y)’ is then
N n
0(B,a, @[Y) o< > > [Yilty) log{Ai(t;, B, ai, )} — Ni(t;, B, ai, ;] (13)
i=1 j=1

The above formulation of the likelihood depends on the choice of the number and locations of
the spline knots for the mean shape S(¢, 3) and time transformation functions p;(t, ¢;). Because the
mean shape S(t, 8) is estimated from multiple individual trajectories, several authors in functional
data analysis recommend selecting a large number of knots. For example, placing knots at every

sampling time point can allow for a high level of shape flexibility. The level of smoothness is then

selected automatically or ad hoc via likelihood or prior penalization schemes (Lang and Brez

, |El].€t§jl]d_Mﬁ.D§||l_99_é) The shrinkage prior as in equation ([l automatically shrinks the fixed
effect functions towards a linear regression. In our case of highly sparse longitudinal offense data,
however, we observed some sensitivity to the choice of the number of basis functions. To select the

number of basis functions, we therefore recommend applying a model selection criterion based on

the minimization of a posterior predictive loss |l9_944)

Let Y? denote the observed counts and Y? denote the predicted counts. Following|Gelfand and Gh
), we obtain the deviance version of the posterior predictive loss criteria for the Poisson case
as

h(py) + k h(Y9) piy + kY . .
Dﬂm%=23mf4méﬂ+§:{ ]k+1 - —h _%ITJ , i=1,.,N, j=1,...,n,

(14)
where h(z) = (z +1/2)log(z +1/2) — z, hij = E{h(Y}] | Y)}, and pj; = E{Y}; | Y}. Here, m

denotes the number of basis functions in the model to be evaluated.
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Different considerations apply for the subject—specific time transformation functions. These
maps carry structural smoothness as they are constrained to be monotone. The strict monotonicity
requirement counterbalances the small number of observations associated with each individual
trajectory and suggests parsimony in the choice of the number of knots. Because the time scale is
stochastic, the exact placement of knots is less important in this case; thus we place knots for time
transformation functions as equally spaced.

In the following section, we describe a Markov chain Monte Carlo (MCMC) algorithm for poste-
rior simulation based on fixed numbers of spline basis for mean shape Sp(+) and time transformation

S, (+) functions.

3.2 Posterior Simulation via MCMC

For the Poisson warping regression model described in Section 2 the full parameter set 6 includes
an N-dimensional vector of individual-specific random amplitude coefficients a = (aq,...,an)’,
an (N x Q) matrix of individual-specific time transformation coefficients ® = (¢}, ..., ¢y, a p-
dimensional vector of population-level shape coefficients 3, and population level regression and
smoothing parameters b, by, bo, 035 and O'%.

We seek inference about @ and functionals of 8 through the posterior probability P(0 | Y;X) o
p(Y | 6;X)P(0;X), where p(Y | 6;X) is described by the log-likelihood in equation (I3]) and
P(60;X) represents the joint prior distribution. Recall the dependence on covariates for amplitude
and time-transformation parameters through their respective prior distributions (equations ()
and (IIJ)). Because the posterior distribution is not available in closed form, we base our inferences
on an MCMC simulation from the joint posterior distribution p(@ | Y;X) (for a recent review,
see M@ ILQQ%) We use a Gibbs sampler (IQQMM_M Imﬁ) whenever conditional

posterior quantities are available in standard distributional form. Otherwise, we derive an efficient

sampling scheme, combining Gibbs steps with Metropolis-Hastings (MH) steps m M) in

a hybrid sampler

Sampling phase regression coefficients by and smoothing parameters 035 and O'%Z The prior model

induces likelihood conjugacy in the conditional posterior distribution of the phase regression coeffi-
cients by and the smoothing parameters 035 and ag. For these quantities, it is therefore straightfor-
ward to devise an efficient Gibbs sampler based on direct simulation from their complete conditional

distributions that we include in the Appendix.

Sampling time transformation coefficients ¢: Taking advantage of the fact that the time transfor-

mation coefficients ¢ have compact support 7 = [t; — A, ¢, + A], we implement a MH sampler with
appropriately scaled transition kernels q(¢°'¢, ¢"*"). Given that big < big+1), (V i=1,...,N, q=

1,...,Q), we consider proposal densities of the form q((b%d, W) =N ((b%d, slzq)I {M}, where M

10
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is the compact support defined in equation ([0, Section 2.4 During the MCMC simulation, for

each set of individual-specific time transformation coefficients, we start from some value s2 for the

2

variance of the proposal density and recalibrate the individual proposal variances S, at burn-in to

achieve an acceptance rate between 35% and 65% ).

Sampling amplitude parameters a, b, and by: We use a Gibbs sampler and simulate directly

from the conditional posterior distribution given in equation (7)) to update individual amplitude
parameters a = (aq,...,ay)’ one at a time.

The conditional posterior distributions for regression coefficients b, and for the coefficient of
variation by are not available in closed form. We implement MH scans with proposal distributions
informed by the respective target densities. If €2, defines the inverse of the prior covariance matrix
(i.e., the concentration matrix) on amplitude regression coefficients b,, the conditional posterior

density of b, can be written as:
1
log{P(ba | a, bOv Qba)} = _5 b;Qbaba —bo Z{X;ba + a; eXp(—X;ba)},
with gradient vector
_ 1., / / /
9b, = _5 baQba — bo Z{Xz - aiXi exp(_Xi ba)}7

and Hessian matrix
1 / /
Hba = _§Qba — bo E {CLZXZXZ eXp(—Xiba)}.

Given gp, and Hj,, we approximate the conditional posterior mode b numerically via Newton-
Raphson. Defining ¥ = (Hp,
relaxed proposal ¢(b2'¢, brev) = 2b, — b2 + MVt(0, 7, 3 sm). The parameters 7, and 7 can be

b )~1, we obtain the transition kernel on the basis of the over-

used to tune the MH acceptance ratio.

For the coefficient of variation by, we use a MH step to sample from the conditional posterior
density. We consider a Gamma proposal with shape vy and rate v/ 130; the parameter vy can be

used to tune the MH acceptance ratio, while the conditional moment estimator of by is defined as

s exp{2X’ba}
bO - Zz Z(ai—exp{xgba})z '

Sampling parameters v of common shape function: Recall that we reparameterized the common

shape function S(t,3) with new nondecreasing coefficients v from equation (B). We update v
one parameter at a time using a MH scan with transition kernels based on conditional proposals
old , new

q(Vj V] lv\;), 5 = 1,..., K. Defining Q, = Cov(v)~!, the logarithm of the target conditional

posterior density is

1
log{P(v; | Y vy, )} oc —5 VQuu + Y [Yit;)log{Sp(ui(t, 6:))B1)} — Splui(t, $:)) BW)}.
ij
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Given a fixed modal pivot v*, the conditional posterior support of v; is [I(v;), u(v;)], with I(v;) =
max(0;vj_1) and u(vj) = min(vj41;2v%), j = 2,..., K — 1. Furthermore, for j = K, l(vg) =
min(vi_1,v*/2) and u(vg) = oo. We fix v1 = 0, corresponding to the assumption of no marijuana
use at time ¢;. We consider independent Gaussian proposals with support defined by (I(v;), u(v;))
and recalibrate the scale of the transition kernel at burn-in to achieve acceptance rate between 35%
and 65%.

3.3 Model Interpretation and Inference

Given baseline covariate information x = (1, ..., ), the mean function S{u(t), 3} is well defined
for any ¢ € [t1,t,]. If we focus on the expected intensity of criminal behavior, the marginal expected

count at time ¢t can be written as:
E{Y(t) | x} = exp{x'b,} S{(t + x'by), B}, (15)

allowing us to describe average trajectories of offending conditional on covariate values.
Posterior predictions of individual trajectories can be obtained conditioning on individual-

specific amplitudes and time transformation functions:

E{Yi() | p(t) = i) xi} = a(xi)S{pi(t, i3 %), B, ¢ € [tr, tn]- (16)

Such model-based individual predicted trajectories are of considerable interest to criminologists
for describing and explaining the development of crime and deviance over the life-course. For
example, Bushway, Sweeten and Nieuwbeerta (2009) discuss and compare ways to identify “early-
starters” and “desistors” by examining individual predictions from other longitudinal data analysis
approaches. In contrast to other methods, however, our model allows naturally for examining
marginal covariate effects on two key features of the age-crime distribution — criminal propensity
and the timing of criminal careers — across all individuals in the sample.

Given MCMC draws from the posterior distribution of model parameters @ and a fine grid of
time points in T = [t1,t,], we obtain pointwise summaries of curves given by equations (15} [I6])

and pointwise 100(1 — )% HPD intervals using the method described by |Qh&u_a11§LSlmgl (I.l9_9d)

We find it convenient to include an intercept term in the model by letting the first column of
the design matrix X to be the column of 1s. Thus, if marginal effects of covariates on the expected
intensity of criminal behavior are of interest, one can examine the marginal expected count at time

t, conditional on the identity time transformation for the natural age-crime curve:
E{Y(t) | p(t) = t;x} = exp{x'ba} S(t,B), t € [t1,t,]. (17)
Given that z1 = 1 by convention, we rewrite the expectation in (&) as
P
B{Y(t) | u(t) = t;x} = S(t, B) exp{bar} | | exp{axban}-

K=2
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Figure 2: Drug Use (Marijuana). Panel (a): Yearly count for the use of marijuana for 3 subjects
exhibiting different timing of marijuana use. Panel (b): Subject-specific time scale and associated
95% credible bands for the same subjects highlighted in panel (a).

The intensity of offending for the baseline combination of covariates is then exp{b, }, and a multi-
plicative effect on intensity associated with a unit increase in covariate x, is exp{bax}, £ =2,...,p,

all else being equal.

If the marginal effects of covariates on the expected timing of criminal behavior are of interest, we
can examine the mean trajectory of offending over time ¢, substituting the identity transformation

for the amplitude:
E{Y(t) | a=1;x} =S(t,B) o (t + x'by). (18)

As before, given that x; = 1, we rewrite (I8) as

E{Y(t) |a=1;x}=S(t73)o0 <t + bg1 + Zxkb¢k> .

K=2

The mean age-crime trajectory for the baseline combination of covariates is S(t + by1,3), and an
additive phase effect associated with a unit increase in covariate x, is bygx, & = 2,...,p, all else
being equal. These phase effects can be interpreted as shifts in the timing of criminal careers. Thus,

positive coefficients by, indicate an earlier participation in crime on average.
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Figure 3: Drug use (marijuana) mean population curves for some race and gender categories.

4 (CASE STUDY

We restrict our analysis to marijuana users who had at least four, not necessarily consecutive,
observations during the course of the study!l We define marijuana users as those who reported
smoking marijuana at least once. After removing 867 non-users and 22 marijuana users who
had fewer than four observed time-points, we are left with a subset of 588 marijuana offenders for
analysis. Our inferences are based on 15,000 (thinned by 20) samples from the posterior distribution,
after discarding a conservative 50,000 iterations for burn—in. We assessed convergence using the R

package BOA (Bayesian Output Analysis; IS_mHil_aild_Br_Laﬂ lZDDfJ)

Longitudinal observations of marijuana use are reported in Figure [l panel (a). A few ob-

servations indicating marijuana smoking more than 500 times/year have been cut off for ease of
visualization. In this figure, the solid black superimposed curve is the overall smoothed mean. This
summary does not resemble any of the individual trajectories as it smears over the variability in
both timing and frequency of drug use.

We fit the model introduced in Section 2l using 11 basis functions for the shape function S{¢, 3},

defined on the extended time interval [t; — A, ¢, + A]. This choice was made to minimize the

posterior predictive loss introduced in (I4]) |.L9_9A) Furthermore, we consider 5

3The inclusion of observations with a shorter time series would not affect the population estimates; however,
posterior inference on subjects with fewer then 4 records can be misleading due to weak identifiability of the subject
level parameters.
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basis functions for the individual random time transformations. The misalignment window A can
be interpreted as the maximal size of a linear shift. A natural constraint for the size of A is given
by the half width of the time domain (¢, — ¢1)/2, but more stringent values may be justified in
order to avoid degeneracies in the time transformation functions. In our application, we choose a
more conservative A = 1.5.

We place relatively diffuse G(0.1, rate = 10) priors on the shape precision 1/ O'% and G(0.1, rate =
1) on the time transformation precision 1/ ai. The amplitude-phase prior covariance ¥ is assigned
a proper Inverse Wishart prior /W (12,100 I1p). Finally we complete the model specifying a prior
distribution for the coefficient of variation 1/y/bg. As we are considering a sample of users we
require by > 1 and define a shifted gamma prior G(A\, = 1.1, A, = 0.1) on (byg — 1). A proper scale-
informative prior on b, is used to define ‘soft’ identifiability constraints. The constraint by > 1
assures that the prior mode of «a; is greater than 0.

Figure [II panel (b), shows observed frequencies of drug use that have been normalized by
removing individual differences in timing and in amplitude for all individuals. We obtained these
quantities by evaluating observed frequencies on the inverse transformed time scale E(ju; L(t, ;) |
Y), including the phase shift, and dividing by the expected amplitude of offense E(a; | Y). We
superimpose normalized observed counts with a smoothed functional convex average S(¢,3). This
figure shows a typical pattern of marijuana use for an average individual in our sample of marijuana
smokers from the most disadvantaged areas of Denver. The average individual starts smoking
marijuana during adolescence, continues with higher intensity through college age, and then drops
off marijuana smoking after reaching twenty. We observe a thin left tail of occasional use before the
peak years and a thicker right tail of occasional use after the peak years. This pattern is generally

consistent with the claims of IHLLS_Qbijd_GimirﬂimtJ (Il&?d) and previous empirical research on

the age-crime curve.

Figure [I panel (c), shows posterior median estimates of the individual amplitude parameters
on the log scale, with corresponding 95% highest posterior density (HPD) credible intervals. We
observe that variability in amplitude is an important source of variation in marijuana smoking
trajectories. Estimated log amplitude parameters are from about -4 to 4; the range of these
estimates is much wider than the width of a typical 95% credible interval. A log amplitude equal to
0 corresponds approximately to a marijuana smoking trajectory at the level of the overall functional
convex mean (solid black line in panel (b)), with the estimated peak smoking at about 33 times per
year. In comparison, the average log amplitude of 1.5 for white males corresponds to marijuana
smoking frequency that is exp(1.5) ~ 4.5 times higher than the structural mean, with the estimated
peak at about 33 % 4.5 = 148 times per year.

Panel (d), Figure 1, shows the posterior expected estimates of individual time transformation

functions, indicating that phase variability is another important source of variation in self-reported
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marijuana use. FigurePlillustrates how large differences in the timing of marijuana use are reflected
in individual-specific estimates of time-transformation functions. Panel (a) highlights individual
trajectories for an early user (solid line), an average user (dotted line) and a late user (dashed line).
The corresponding estimated time transformation functions and associated 95% credible bands are
reported in panel (b). We note that for the average user the time transformation is close to identity,
i.e., the stochastic age of this person is similar to his or her physical age. The late user’s stochastic
age is kept frozen in time until his or her physical age of about 18; this individual then goes through
the marijuana use period much faster than an average marijuana smoker in our sample. The early
user exhibits a similarly quick period of marijuana smoking but at much earlier ages.

We use two approaches to investigate how overall intensity and timing of drug use depends
on race and gender. First, in Table 1, we report posterior estimates of the amplitude and phase
regression parameters for the covariates in the model (indicators for ’female’, as well as ’African
American’, 'Latino’ and ’other’ case categories; we use 'white male’ as the baseline category). We
find that, overall in our sample, females use marijuana less frequently. For example, white females
use marijuana with an overall frequency that is about exp(—0.334) ~ 0.72 to 1, when compared to
their male counterparts. African Americans males from disadvantaged areas of Denver, on the other
hand, seem to be using marijuana more frequently (1.55 to 1), when compared to their Caucasian
counterparts. We find the same significant differences in terms of timing of drug use, with females
starting to use marijuana on average about 5.5 months earlier when compared to white males and
African Americans starting to use marijuana on average about 10 months later. [ We did not
estimate gender by race interactions in our model as some subgroups only included a small (< 25)
number of subjects. Second, in Figure B, we report predicted mean population curves of marijuana
use for some race and gender subgroups, obtained with equation (IZ). The predicted mean curves
in Figure 3 complement our findings from Table 1, illustrating differences in marijuana use by race
and gender.

Examining individual data, we find that the estimated expected crime trajectories fit the ob-
served data well. In Figure [ we report expected frequencies of marijuana use for an illustrative
subsample of six subjects in the DYS, obtained with equation (I6]). Black dots and solid lines
indicate the observed and expected counts of yearly marijuana use, respectively, and the dashed
lines represent pointwise 90% highest posterior density prediction intervals. This figure shows how
our model formulation appears to provide a remarkably close fit to individual profiles. Based on
information that is shared across subjects, this modeling framework allows for individual-specific
predictions for all time points within time interval 7', including those points where the individual did
not have observations. Wider prediction bands illustrate higher uncertainty in model predictions

where no subject-specific data is available.

4 National survey data covering the years of our survey shows that observed race and gender differences in age at
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Figure 4: Drug Use (Marijuana). Lifetime marijuana use profiles for six random subjects from
different race and gender categories. For each profile, the solid line represents the median posterior
expected count and the dot—dashed lines represent the associated 95% pointwise prediction intervals.
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Amplitude Phase (years)

Effect E(b,)Y) 95% C.IL. E(by|Y) 95% C.I
Baseline

White Males 1502 [ 1.240, 1.842] 0.741  [~1.169, —0.312]
Main Effects

Female -0.334  [-0.501,—0.167]* 0.461 [ 0.213, 0.713]*
Latino 0.154 [—0.107, 0.396] 0.420 [—0.017, 0.864]
African American  0.436 [ 0.175, 0.678]* -0.864  [—1.325,—0.385]*
Other 0.394 [ 0.068, 0.715]* 0.172 [—0.383, 0.718]

Table 1: Amplitude and Phase Regression Parameters. (Stars denote 95% C.I. which do not cover
the value zero.)

In sum, our model provides two important features in modeling individual crime trajectories.
First, it allows us to estimate a common age-crime curve and fit individual trajectories as departures
from that mean curve. Second, it allows us to disentangle variation in individual crime trajectories
due to differences in level (amplitude) and timing (phase shift) of offenses. This approach gives
us new insights into offending trajectories for marijuana use. We find the shape of the estimated
common age-crime curve to be consistent with prior empirical research. Like previous research,
we find race and gender differences in levels of marijuana smoking; unlike previous research, our
finding controls for the common age-crime curve and phase variability. We find little support
for the claim that group differences in the shape of the age-crime curve are merely due to group
differences in rates of offending. For example, Hirschi and Gottfredson (1983) argue that racial
differences in age-at-onset are merely due to racial differences in rates of offending. By contrast,
we find significant race and gender differences in timing as indicated by the shift of marijuana
use trajectories while controlling for race and gender differences in amplitude. Moreover, we do
not detect any correlation, a posteriori, between amplitude and shift parameters, which would be

expected if differences in timing were merely due to differences in amplitude.

5 DISCUSSION

In this article we propose a generalized warping regression method for the analysis of longitudinal
crime data. We model subject-specific expected patterns of offenses as arising from a natural
unimodal crime curve, evaluated over a random individual-specific time transformation scale, and
with a random individual-specific amplitude.

The analysis we present in this paper has several limitations. First, we chose to ignore the issue

of heaping in the distribution of self-reported counts (Iﬂlang@mﬂ.ﬂem_aﬁ lZDDé) A more realistic

onset of marijuana use are small and change signs across survey years (Gfroerer et all M)
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sampling model would take into account tendencies to report smoking marijuana with a rounded
frequency (most commonly, in our example, 365). Second, observations in the data set are right-
censored at age 25 and may be left-censored at the age when individuals enter the survey. Third,
the model may be subject to criticism of overparameterization. Although these issues are important
and deserve further attention, we believe that the hierarchical Bayesian formulation together with a
flexible mean function in our model may already provide reasonable adjustments to heaping biases
and issues of censored data. We alleviate overparametrization concerns via structural modeling
constraints, shrinkage priors and model selection via posterior predictive checks.

Individual trajectories predicted by our model appear to capture the full nature of the individual
longitudinal observations of marijuana use, given that the observations conform to the unimodality

assumption. This result contrasts with the fit of individual predicted trajectories based on polyno-

mial trajectory models with random effects ) and group-based models

(Nagin and Land Imﬂ), which have been criticized for failing to fit some atypical individual profiles
such as those of “late starters” (IBushan et alJ Iﬂﬁd)

Group-based trajectory models of |N_agm_aJJd_L_a,nd| (|19_9_EJ) aim to identify latent classes of

m ) who de-

scribed a population of offenders as a mixture of two different groups, adolescence-limited and

life-course persistent offenders. An extension by [Roeder et alJ IL%d included time-stable covariates

as risk factors influencing individual membership in latent group trajectories. IMJHbﬂn_and_Sbﬁdd&d

) developed a model similar to that of Nagin and Land (1993) that incorporates within-

crime trajectories, following from a theoretical taxonomy developed by

group random effects. In the past decade, there has been an explosion in the number of pub-

lications on group-based data analyses of longitudinal crime data ).

However, the merits of group-based modeling and the interpretation of the meaning of groups is

still a point of contention and controversy in the criminology literature n and L

IBM m |Jg1n and Tremblavl |ﬂbﬁ| Nagin and Trgmbla,yl MKEﬁl Sampson and Land
|N_a‘g|11_an_d_’Ilr_meLa,;J IZDDE_IJ |N_a‘g|11_and_Tr_embla;L| IZDDEA) In addition, research findings

using these methods can be overwhelmingly driven by tremendous variability in within-age be-

havioral amplitude common in crime data. For example, group trajectories of offending reported

in studies often identify several groups that exhibit similar shapes, differing only in level ( e.g.,

|N_a‘gi11_and_Tr_emblayI |19_9_d, [S_ampsgn_andl@ud |20Q£*J, |B115bm;wj_al |2011£J). Finally, we note that

growth curve mixture models are only able to implicitly define other quantities of particular interest

to criminologists, such as age at onset and level of offending, whether at the group or individual
level. Typically, researchers simply eyeball the curves for quantities of interest. This makes it
difficult to carry out model-based inference about covariate effects on these important quantities.

Our model formulation explicitly accounts for variability in individual amplitude (level of of-

fending) and timing, and includes covariate effects on these quantities. While the interpretation
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of covariate effects on amplitude is straightforward, covariate effects on timing are incorporated
in the shift parameter and should be interpreted as such. Technically, the shift parameter in our
model reveals differences in timing that are conditional on the individual curves being transformed
to a common shape. The observed summary statistics may not correspond to the differences in
timing/shift revealed by the model because observed differences in timing may be confounded with
observed differences in shape. In the marijuana example, however, race and gender differences in
timing found with our model were similar in magnitude and significance to observed race and gender
differences in age at maximal use. Thus, in a regression of age at maximal use on race and gender,
females were estimated to reach the age at maximal use significantly earlier than males and blacks
significantly later than whites. If we were interested in examining race and gender differences in
other specific timing features of the age-crime curve, such as age at onset and age at desistance,
the model would have to be extended to incorporate time-stable covariates as time-varying effects.
While this approach would induce higher flexibility in the modeling of longitudinal counts, the in-
terpretation can be more challenging. On the other hand, the appealing features of direct inference
about functional changes in the mean structure suggest that extending our model to incorporate
time-varying effects of covariates may be worthwhile.

Another direction for a possible extension of our model relates to the foregoing discussion about

identifying distinct groups of offending trajectories. |[Ramsay and Silverman (IM) carried out a

functional principal component analysis on arrest data in an attempt to confirm or disprove the

existence of distinct groups of criminal offenders and found “no real evidence of strong groups.” A
group mixture reformulation of our model may allow for the classification of different features of
the age-crime curve, from intensity of offense, to typical offending ages, to different shapes of the
natural crime curve.

Another important question in criminology is to understand how criminal behavior changes in
association with time-dependent covariate information. For example, do individual departures from
a natural crime curve correspond to changes in life course transitions, such as high school dropout,
entrance into college, parenthood, and entrance into the labor force? To address these questions, one

needs to incorporate time-dependent covariates. This could be achieved, for example, by integratin

our warping regression model with the historical functional linear model of
).

The above potential extensions to our model would capitalize on the strengths of our general
approach to modeling crime trajectories. These strengths include (1) an individual-level model
that is both flexible and realistic, and allows for differences in amplitude and timing of offenses;
(2) a model that incorporates criminologists’ specifications of an invariant age-crime curve with
individual departures based on individual differences in crime propensity and life situations; and

(3) an estimation procedure that borrows information between the population average age-crime
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curve and individual departures from that curve.
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Appendix: Full Conditional Distributions

Shape smoothing parameters O’%Z For ease of notation we define the precision of the j**
fixed effect hg = 1/0%. From Section we have that P(hg | ag,bg) h(ﬁaﬁ_l)eazp{—bghg}.
Given the fixed effect coefficients v, the conditional posterior density of hg can be written as
K/2 .
P(hg | Y,0\n,) o< P(v | h)P(hg | ag,bs), where P(v | hg) o hy' exp{—hs/20'Qu} and Q is
the banded concentration structure arising from a second order random walk, described in Section
1
It is trivial to show that: P(hg|Y, G\hﬂ) o h(ﬁ% )e:np{—b;ghg}, corresponding to the density
function of a Gamma random variable with shape aj; = ag + K/2, and rate bj = bg + v/Qu /2.

Time transformation smoothing parameter 05): For ease of notation we define the time
transformation precision hy = 1/ 0'35. From Section 2.4l we have P(hg | ag,by) o hjf—le:np{—bqb he}.
Given the matrix of time transformation coefficients ¢, the conditional posterior density of hg can be
written as P(hg | Y, 0\n,) < P($ | 7,ho) P(hg | as,by), where P(¢p | v, hs) o< Ty hg'? exp{—he/2 (¢~
~:)E(¢; —v;)} and Z is a banded concentration structure arising from a first order random walk,
given (¢ —vio) = 0 for all i = 1,..., N. It easily follows that P(hg [ Y,6\s,) h(;z’_le:np{—b(’; he},
a Gamma random variable with shape a} = ay + N X Q/2, and rate b = by +1/2 x zz‘]\;1(¢i -
¥i)'E(di — ¥i)-

Phase Regression parameters by: Using standard conjugate analysis it is easy to show that
P(by|p) =4 N,(m*,V*), where V* = (3N, Z(?:l XiX; + Q)" and m* = V*(32; 2, Xi0ig)-
Where ¢;, is the g-th element of (¢; — Y)(2)"/? and Z is defined as before.

Amplitude-Phase Covariance Y;: using standard conjugate analysis it is easy to show that

the conditional posterior distribution P(¥p|bg,bg,vo, ®o) =4 IW (p + vo, (Sp + Po)), where S =
Zi:l(balm b¢k)(bak7 b(Z)k)/
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