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On the Nondifferential Misclassification of a
Binary Confounder

Elizabeth L. Ogburn and Tyler J. VanderWeele

Abstract

Abstract Consider a study with binary exposure, outcome, and confounder, where
the confounder is nondifferentially misclassified. Epidemiologists have long ac-
cepted the unproven but oft-cited result that, if the confounder is binary, odds
ratios, risk ratios, and risk differences which control for the mismeasured con-
founder will lie between the crude and the true measures. In this paper the authors
provide an analytic proof of the result in the absence of a qualitative interaction
between treatment and confounder, and demonstrate via counterexample that the
result need not hold when there is a qualitative interaction between treatment and
confounder. They also present an analytic proof of the result for the effect of treat-
ment amount the treated, and describe extensions to measures conditional on or
standardized over other covariates.



Observational studies of all designs require accurate measurement of and
adjustment for confounders in order to allow for unbiased estimation of causal
effects. However, misclassification of confounders is a pervasive—indeed some
would say ubiquitous—problem that has been written about extensively and is
found in most introductory textbooks on epidemiology.1�12 While misclassifi-
cation and measurement error continue to be the subject of much research,
in some simple settings the problem of describing and bounding bias due
to misclassification has been considered solved for several decades. In 1980,
Greenland13 argued that adjustment for a binary nondifferentially mismea-
sured confounder reduces the bias due to the confounder and therefore pro-
duces a partially adjusted effect measure that falls between the crude (i.e.
unadjusted) and true (i.e. adjusted by the true confounder) measures. We
hereafter refer to this as the “partial control” result. Savitz and Baron14 pre-
sented a framework for quantifying the percent of the bias of the crude effect
measure which remains after partial adjustment for a nondifferentially mismea-
sured confounder, and found, via simulations, that this “residual confounding”
decreases with increasing sensitivity and specificity. Fung and Howe15 pre-
sented evidence from simulations showing that adjustment for a nondiffer-
entially mismeasured polytomous confounder similarly accomplishes partial
control for confounding, but Brenner16 corrected the record by showing that
adjustment for a non-differential misclassified polytomous confounder may in-
duce greater bias than failing to adjust for the confounder at all, or it may
change the direction of the bias. He argued that appeal should be made to
the partial control result only for a binary confounder. Though this result has
never been proven, it has been cited without qualification in methodological
and applied work from 1980 onward.11,12,17�20

We prove that the partial control result holds for binary confounders under
the additional assumption that the effect of the confounder on the outcome is in
the same direction among the treated and the untreated (there is no qualitative
interaction between the treatment and the confounder) and demonstrate via
counterexample that the result does not necessarily hold when this assumption
is violated. We also prove that the partial control result holds for the effect
of treatment on the treated, i.e. when estimates are standardized by the
distribution of the confounder among the exposed rather than the distribution
in the entire population. Our remarks and results apply equally to effects on
the risk difference, risk ratio, and odds ratio scales.

1

Hosted by The Berkeley Electronic Press



Figure 1: Relationships among A, Y , and C

BACKGROUND AND NOTATION
We assume that a “true” 2 ⇥ 2 ⇥ 2 table represents the effect of a binary
exposure, A, on a binary outcome, Y , stratified by a binary confounder C.
We assume that C is not observed and that C 0, an imperfect measure of C,
is observed instead. An “observed” table represents the association between
A on Y stratified by C 0. Let e = P [C 0 = 1|C = 1] be the sensitivity and
f = P [C 0 = 0|C = 0] be the specificity. Then P [C 0 = 1] = e · P [C =
1]+(1�f)P [C = 0]. We assume that all measurement error is nondifferential,
i.e. P [C 0 = d|C = c, A = a, Y = y] = P [C 0 = d|C = c] for all a, and y.
Finally, we assume that C is the only confounder of the effect of A on Y ,
so that adjustment for C allows identification of the true effect. A diagram
depicting the relationships among the variables is given in Figure 1. We discuss
generalizations further below.

We will call effect measures which adjust for C 0 “observed adjusted” mea-
sures (16), those that adjust for C “true”, and those that collapse over C
“crude”. Let Y1 be the counterfactual outcome under exposure A = 1, i.e. the
outcome we would have observed if, possibly contrary to fact, a subject had
received exposure A = 1. Let Y0 be the counterfactual outcome under expo-
sure A = 0. We make the consistency assumption that Y

a

= Y when A = a.
The true effect measures are formulated in terms of the distributions of these
counterfactuals, e.g. the true risk difference (RD) is RD

true

= E[Y1] � E[Y0].
For no subject do we observe both Y1 and Y0; we observe only the counter-
factual corresponding to the subject’s actual exposure. But within levels of C
subjects are effectively randomized with respect to treatment (by the assump-
tion that C is the sole confounder), so E[Y1|A = 0, C = c] = E[Y1|A = 1, C =
c] = E[Y |A = 1, C = c]. Therefore both E[Y1] and E[Y0] can be calculated by
standardizing by C: E[Y

a

] = E[Y |A = a, C = 1]P [C = 1] + E[Y |A = a, C =

2

http://biostats.bepress.com/cobra/art82



0]P [C = 0], for a = 0, 1.We will denote by E
C

0 [Y |A = a] the corresponding
expression standardized by C 0 instead of C: E

C

0 [Y |A = a] = E[Y |A = a, C 0 =
1]P [C 0 = 1] + E[Y |A = a, C 0 = 0]P [C 0 = 0], for a = 0, 1. The observed ad-
justed measures are formulated in terms of the means standardized by C 0, for
example the observed adjusted RD is RD

obs

= E
C

0 [Y |A = 1]� E
C

0 [Y |A = 0],
and the crude measures are formulated in terms of the unstandardized condi-
tional means: RD

crude

= E[Y |A = 1]� E[Y |A = 0].
Our interest is in comparing the observed adjusted risk difference, given

above, risk ratio (RR), RR
obs

= E
C

0 [Y |A = 1]/E
C

0 [Y |A = 0], and odds ratio
(OR), OR

obs

= {E
C

0 [Y |A = 1] (1� E
C

0 [Y |A = 0])} / {E
C

0 [Y |A = 0] (1� E
C

0 [Y |A = 1])},
to the corresponding true and crude measures.

RESULTS
The partial control result need not hold in general, but we prove that it always
holds under an additional assumption about the joint distribution of Y, A, and
C. We define monotonicity of conditional expectations and then we present
our main result.

If E[Y |A = a, C = 0]  E[Y |A = a, C = 1] for both a = 0 and a = 1,
then we say that E[Y |A,C] is nondecreasing in C. If E[Y |A = a, C = 0] �
E[Y |A = a, C = 1] for both a = 0 and a = 1 then we say that E[Y |A,C] is
nonincreasing in C. If E[Y |A,C] is either nonincreasing or nondecreasing in
C then it is monotonic in C. In what follows we will refer to this property
simply as monotonicity in C, and to monotonicity of E[Y |A,C 0] in C 0 as
monotonicity in C 0. Monotonicity in C requires that the confounder affects
the outcome in the same direction among the exposed and unexposed. If the
confounder has a protective effect among one exposure group and a harmful
effect among the other, i.e. if there is a qualitative interaction between A and
C, then monotonicity will be violated.

Result 1 For A and C binary and C 0 nondifferentially misclassified, if E[Y |A,C]
is monotonic in C then the observed adjusted effect lies between the
crude and true effects on the RD, RR, and OR scales.

For the proof see the appendix.
Not all departures from monotonicity will result in observed adjusted effects

that fall outside of the range of the crude and the true effects, but without
monotonicity there is no guarantee that the partial control result will hold.
Unfortunately, since the true C is unobserved, it is often impossible to verify
the assumption of monotonicity. One must instead rely on subject matter
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knowledge to determine whether or not monotonicity is a reasonable assump-
tion.

It is possible to test monotonicity in C 0 in the observed data, and mono-
tonicity in C entails monotonicity in C 0 (see appendix). Therefore if E[Y |A,C 0]
is not monotonic in C 0 then the assumption on which the partial control re-
sult depends is not satisfied. On the other hand, monotonicity in C 0 does not
guarantee monotonicity in C.

If E[Y |A,C 0] is monotonic in C 0, subject matter understanding of the re-
lationships among Y , A, and C may lead researchers to be willing to assume
that monotonicity holds or is violated. For monotonicity to hold, C must ei-
ther increase the risk of Y among both exposed and unexposed subjects, or
decrease the risk of Y among both the exposed and unexposed. In order for
monotonicity to be violated, C must exhibit a qualitative interaction with A
such that it has a protective effect among either the exposed or the unexposed
and a harmful effect among the other exposure group. For example, let Y be
hypertension, A be type 2 diabetes, a chronic condition positively associated
with hypertension, and C be thiazide, a drug commonly prescribed to treat
hypertension. While thiazide lowers the risk of hypertension in the general
population, it is known to increase blood glucose levels and thereby exacer-
bate diabetes among diabetics.21 It is possible that, though protective in the
non-diabetic stratum, thiazide may increase the risk of hypertension in the di-
abetic group by aggravating their condition. This would constitute a violation
of the monotonicity assumption. Another example is the “negative epistasis”
between the effects of the sickle cell trait and ↵+-thalassemia on susceptibility
to malaria. Sickle cell anemia and ↵+-thalassemia are inherited blood disor-
ders which, while harmful in other respects, are known to be protective against
malaria. Though each disorder is protective against malaria when it occurs
alone, there is evidence to suggest that when they co-occur that protection
is lost.22 In this case, if we consider either disorder as a confounder for the
effect of the other disorder on susceptibility to malaria, monotonicity will be
violated.

Counterexample to the partial control result when mono-

tonicity is violated

The counterexample given in Table 1 demonstrates that when the assumption
of monotonicity is violated the observed adjusted effect need not lie between
the crude and true. In this example, E [Y |A = 1, C = c] is decreasing in c while
E [Y |A = 0, C = c] is increasing in c. The observed adjusted effect measure is
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Table 1: Counterexample to the Partial Control Result
C

ru
de A = 1 A = 0

Y = 1 44 41
Y = 0 509 600

RD
crude

0.016
RR

crude

1.244
OR

crude

1.263

Tr
ue

C = 1 A = 1 A = 0 C = 0 A = 1 A = 0
Y = 1 39 1 Y = 1 5 40
Y = 0 339 200 Y = 0 209 400

RD
true

0.013
RR

true

1.246
OR

true

1.263

Sensitivity = 1, Specificity = 0.75

O
bs

er
ve

d

C 0 = 1 A = 1 A = 0 C 0 = 0 A = 1 A = 0
Y = 1 40.25 11 Y = 1 3.75 30
Y = 0 352.25 300 Y = 0 156.75 300

RD
obs

0.012
RR

obs

1.203
OR

obs

1.219

less than both the crude and the true effect measures (and thus not between
the two) on the RD, RR, and OR scales. The ordering of the risk ratios,
RR

obs

< RR
crude

< RR
true

, entails that the observed adjusted risk ratio is
more biased than the crude, no matter what measure of bias is used. (This
is because the crude measure is between the observed adjusted and the true
measures and is therefore closer to the true measure on any scale. This occured
for the RR in this example, but other examples in which monotonicity is
violated can be found in which RD and OR follow this same ordering.)

Figure 2 demonstrates that the bias of the observed adjusted effect can
vary with sensitivity and specificity parameters in counterintuitive ways. Us-
ing the “true” data from Table 1, and keeping specificity fixed at 0.75, we
varied the sensitivity parameter from 0.6 to 1 and plotted the resulting value
of the observed adjusted OR (similar results also hold for the RR and RD).
Surprisingly, the bias of the observed adjusted effect decreases as the proba-
bility of misclassification increases for sensitivity values between 1 and 0.68;
at sensitivity = 0.68 the observed adjusted OR is equal to the true OR and
therefore unbiased, and for sensitivity between 0.68 and 0.6 the bias increases
with increasing probability of misclassification. Similar counterintuitive exam-
ples can be constructed to show that, for fixed sensitivity, bias can increase
with increasing specificity.

5

Hosted by The Berkeley Electronic Press



Figure 2: Relation between sensitivity and the bias of the observed adjusted
OR (specificity = 0.75)

Result for the treatment effect among the treated

Measures of the treatment effect among the treated are defined analogously to
the general treatment effect measures we have written about above, restricted
to the subpopulation of subjects with A = 1. We will denote such measures
with a superscript T . So, for example, the true treatment effect among the
treated on the risk difference scale is RDT

true

= E[Y1|A = 1] � E[Y0|A = 1],
where, if C is the only confounder, E[Y

a

|A = 1] =
P

c

E[Y |A = a, C =
c]P [C = c|A = 1] is the mean of Y given A = a standardized by the distri-
bution of C among the treated. We define the analogous observed adjusted
measures by E

C

0|A=1[Y |A = a] =
P

c

E[Y |A = a, C 0 = c]P [C 0 = c|A = 1],
which is the mean of Y given A = a standardized by the distribution of C 0

among the treated, and RDT

obs

= E
C

0|A=1[Y |A = 1]�E
C

0|A=1[Y |A = 0], which
is the observed adjusted treatment effect among the treated on the risk differ-
ence scale. The crude correlates of these mean outcomes among the treated
are simply E[Y |A = 1] and E[Y |A = 0], because the premise of the crude
calculations is that the effect of A on Y is unconfounded and therefore the
counterfactual outcome had the treated not received treatment would simply
be the observed outcome among the untreated.

Result 2 For Y , A, and C binary and for C 0 nondifferentially misclassified,
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the observed adjusted effect of treatment on the treated is between the
crude and the true effects of treatment on the treated on the RD, RR,
and OR scales.

Note that, for the effect of treatment on the treated, monotonicity is not re-
quired for the partial control result to hold. The proof is nontrivial and is
given in the appendix. The analogous result for the effect measures stan-
dardized by the confounder distribution among the unexposed also holds by a
similar argument.

Extensions

All of these results may be extended to Y ordinal or continuous, as none of
our proofs depend on the distribution of Y . The results may also be extended
to effects conditional on additional covariates X, provided that the misclassi-
fication of C is nondifferential with respect to A and Y conditional on X and
that E[Y |A,C,X = x] is monotonic in C for each value x in the support of
X. This extension is immediate because, under these conditions, our proofs
hold conditional on X.

Furthermore, if E[Y |A,C,X] and E[A|C,X] are both monotonic in C (that
is, if E[Y |A = a, C = c, X = x] is non-increasing in c for all a and for all
x or is non-decreasing in c for all a and for all x, and E[A|C = c,X = x] is
either non-increasing in c for all x or is non-decreasing in c for all x), then
the results will also hold standardized over X. Whereas conditioning on X
requires merely that monotonicity holds within each level of X, standardizing
over X requires that the effect of C on Y be in the same direction for each
level of X. We now require monotonicity of E[A|C,X] for the same reason:
because A is binary, monotonicity is guaranteed to hold for E[A|C], but when
standardizing over X we require the direction of the effect of C on A to be
the same in each level of X. If this is the case, then the same ordering for the
true, observed adjusted, and crude effect measures will hold for each level of
X and therefore for the effect measures standardized over X.

Finally, although the bias of the observed adjusted effect can increase with
increasing sensitivity and specificity when monotonicity is violated, we show
in the appendix that, when the partial control result holds and under the
additional assumption that the probability of misclassification is less than half
for any given subject, the bias of the observed adjusted effect decreases with
increasing sensitivity and specificity. Specifically, we have the following result:

Result 3 For A and C binary and 0.5  sensitivity, specificity  1, the bias
of the observed adjusted effect of treatment on the treated decreases

7
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with increasing sensitivity and specificity. If in addition E[Y |A,C] is
monotonic in C, then the bias of the observed adjusted average treatment
effect decreases with increasing sensitivity and specificity.

(Refer to the appendix for the proof.)

DISCUSSION
We have provided an analytic proof that the partial control result holds under
the assumption that the confounder has a monotonic effect on the outcome
across levels of the exposure, and demonstrated that it need not hold when this
monotonicity condition is not met. In addition we have provided an analytic
proof that the partial control result holds, even without monotonicity, for
the effect of treatment on the treated. In future work we will extend these
results to polytomous and continuous confounders and to multiple misclassified
confounders.

While it has long been understood that the bias due to nondifferential
misclassification of a binary confounder need not be towards the null, it was
thought that the biased effect was necessarily bounded on one side by the
crude effect and on the other by the true effect, and furthermore that the
residual bias was monotonically related to sensitivity and specificity. We have
shown that the observed adjusted measure need not be so bounded in the
presence of a qualitative interaction between the treatment and confounder
and that it may be unpredictably responsive to small changes in sensitivity
and specificity. Fortunately, in most applications such qualitative interaction
will likely be absent, but researchers should determine whether qualitative in-
teraction is possible before relying on the partial control and related results.
A body of literature has emerged over the last decade urging thorough assess-
ment of bias due to misclassification before drawing definite conclusions from
studies;4,5,8,23�26 our results underscore the need to perform such assessments,
especially when qualitative interaction cannot be ruled out.

APPENDIX
We give the proofs of our results after proving several lemmas which we will
use therein.

Lemma 1 Monotonicity in C implies monotonicity in C 0.
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Proof: Let � = P (C = 1). Then E[Y |A = a, C 0 = 0] can both be expressed
as convex combinations of E[Y |A = a, C = 1] and E[Y |A = a, C = 0]:

E[Y |A = a, C 0 = 1] = E[Y |A = a, C = 1]
P [A = a|C = 1]�e

P [A = a|C = 1]�e+ P [A = a|C = 0](1� �)(1� f)

+E[Y |A = a, C = 0]
P [A = a|C = 0](1� �)(1� f)

P [A = a|C = 1]�e+ P [A = a|C = 0](1� �)(1� f)

and

E[Y |A = a, C 0 = 0] = E[Y |A = a, C = 1]
P [A = a|C = 1]�(1� e)

P [A = a|C = 1]�(1� e) + P [A = a|C = 0](1� �)f

+E[Y |A = a, C = 0]
P [A = a|C = 0](1� �)f

P [A = a|C = 1]�(1� e) + P [A = a|C = 0](1� �)f
,

and therefore must both lie between E[Y |A = a, C = 1] and E[Y |A = a, C =
0]. Furthermore, their relative positions on the number line between E[Y |A =
a, C = 1] and E[Y |A = a, C = 0] is entirely determined by the ratio of the
numerators of the convex coefficients, i.e. P [A = a|C = 1]�e : P [A = a|C =
0](1��)(1�f) compared to P [A = a|C = 1]�(1�e) : P [A = a|C = 0](1��)f .

�e : (1� �)(1� f) � �(1� e) : (1� �)f

() E[A|C = 1]�e : E[A|C = 0](1� �)(1� f) � E[A|C = 1]�(1� e) : E[A|C = 0](1� �)f

() {1� E[A|C = 1]}�e : {1� E[A|C = 0]} (1� �)(1� f)

� {1� E[A|C = 1]}�(1� e) : {1� E[A|C = 0]} (1� �)f.

(This can be seen by rewriting the ratios in fraction form and noting that
E[A|C] and 1� E[A|C] are positive so one may divide and multiply by them
without changing the direction of the inequality.) Therefore, E[Y |A = 1, C 0 =
1] is closer to (or the same distance from) E[Y |A = 1, C = 1] than E[Y |A =
1, C 0 = 0] is if and only if E[Y |A = 0, C 0 = 1] is closer to (or the same distance
from) E[Y |A = 0, C = 1] than E[Y |A = 0, C 0 = 0] is. If E[Y |A,C] is non-
decreasing in C this means that E[Y |A = 1, C 0 = 1] � E[Y |A = 1, C 0 = 0]
if and only if E[Y |A = 0, C 0 = 1] � E[A = 0, C 0 = 0]; if E[Y |A,C] is non-
increasing in C the same argument can be used, reversing both inequalities.
Either way, monotonicity in C 0 holds.
Lemma 2 If E[Y |A,C] is monotonic in C and E[Y |A,C] and E[A|C] are

either both non-increasing or both non-decreasing in C, then E[Y |A,C 0]
and E[A|C 0] are either both non-increasing or both non-decreasing in C 0.

Proof: E[A|C 0 = 1] and E[A|C 0 = 0] are both convex combinations of
E[A|C = 1] and E[A|C = 0]:

E[A|C 0 = 1] = E[A|C = 1]
�e

�e+ (1� �)(1� f)
+E[A|C = 0]

(1� �)(1� f)

�e+ (1� �)(1� f)
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E[A|C 0 = 0] = E[A|C = 1]
�(1� e)

�(1� e) + (1� �)f
+E[A|C = 0]

(1� �)f

�(1� e) + (1� �)f

The ordering of E[A|C 0 = 1] and E[A|C 0 = 0] depends on the ordering
of the same ratios as above:�e : (1 � �)(1 � f) and �(1 � e) : (1 � �)f .
Therefore E[A|C 0 = 1] is closer to (or the same distance from) E[A|C = 1]
than E[A|C 0 = 0] is if and only if E[Y |A = 1, C 0 = 1] is closer to (or the
same distance from) E[Y |A = 1, C = 1] than E[Y |A = 1, C 0 = 0] is and
E[Y |A = 0, C 0 = 1] is closer to (or the same distance from) E[Y |A = 0, C = 1]
than E[Y |A = 0, C 0 = 0] is.

Lemma 3 If E[Y |A,C] and E[A|C] are either both non-increasing or both
non-decreasing in C, then the true effect is less than or equal to the crude
effect on the RD, RR, and OR scales. If one of E[Y |A,C] and E[A|C] is
non-increasing and the other non-decreasing in C, then the true effect is
greater than or equal to the crude effect on the RD, RR, and OR scales.

The proof of this lemma and the following corollary are due to VanderWeele.27

Corollary to lemma 3 If E[Y |A,C 0] and E[A|C 0] are either both non-increasing
or both non-decreasing in C, then the observed adjusted effect is less than
or equal to the crude effect on the RD, RR, and OR scales. If one of
E[Y |A,C 0] and E[A|C 0] is non-increasing and the other non-decreasing
in C, then the observed adjusted effect is greater than or equal to the
crude effect on the RD, RR, and OR scales.

Lemma 4 If E[Y |A,C] is monotonic in C and E[Y |A,C] and E[A|C] are
either both non-increasing or both non-decreasing in C, then E

C

0 [Y |A =
1] � E[Y1] and E

C

0 [Y |A = 0]  E[Y0]. If one of E[Y |A,C] and E[A|C] is
non-increasing and the other non-decreasing in C, then E

C

0 [Y |A = 1] 
E[Y1] and E

C

0 [Y |A = 0] � E[Y0].

Proof: We prove the results for E
C

0 [Y |A = 1]; the result for E
C

0 [Y |A = 0]
follows from a similar argument. First we prove that E

C

0 [Y |A = 1] � E[Y1]
when E[Y |A,C] are both either nonincreasing or nondecreasing in C. Holding
E[Y1] constant we will minimize E

C

0 [Y |A = 1] and show that at its minimum
E

C

0 [Y |A = 1] = E[Y1]. The result then follows immediately. We minimize
E

C

0 [Y |A = 1] = E[Y |A = 1, C 0 = 1]P [C 0 = 1] + E[Y |A = 1, C 0 = 0]P [C 0 = 0]
by minimizing both E[Y |A = 1, C 0 = 1] and E[Y |A = 1, C 0 = 0].
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E[Y |A = 1, C 0 = 1] = E[Y |A = 1, C = 1]
E[A|C = 1]�e

E[A|C = 1]�e+ E[A|C = 0](1� �)(1� f)

+E[Y |A = 1, C = 0]
E[A|C = 0](1� �)(1� f)

E[A|C = 1]�e+ E[A|C = 0](1� �)(1� f)

E[Y |A = 1, C 0 = 0] = E[Y |A = 1, C = 1]
E[A|C = 1]�(1� e)

E[A|C = 1]�(1� e) + E[A|C = 0](1� �)f

+E[Y |A = 1, C = 0]
E[A|C = 0](1� �)f

E[A|C = 1]�(1� e) + E[A|C = 0](1� �)f

Each of these expectations is a convex combination of E[Y |A,C = 1] and
E[Y |A,C = 0]. Therefore, minimizing entails minimizing the coefficient of
the larger of E[Y |A,C = 1] and E[Y |A,C = 0], while maximizing entails
maximizing the coefficient of the larger of E[Y |A,C = 1] and E[Y |A,C = 0],
and these operations in turn reduce to either minimizing or maximizing the
ratio of the numerator of the coefficients. We will minimize E[Y |A = 1, C 0 =
1] and E[Y |A = 1, C 0 = 0] with respect to E[A|C] and show that at this
minimum, regardless of the values E[Y |A,C], E[C], E[C 0] e, or f might take,
E

C

0 [Y |A = 1] = E[Y1]. Since E[Y1] is invariant under changes to E[A|C], we
are holding E[Y1] constant while minimizing E

C

0 [Y |A = 1]. If E[Y |A,C] and
E[A|C] are non-decreasing in C, then our goal is to minimize E[A|C = 1]�e :
E[A|C = 0](1 � �)(1 � f) and E[A|C = 1]�(1 � e) : E[A|C = 0](1 � �)f ,
which is accomplished by minimizing E[A|C = 1] and maximizing E[A|C =
0], subject to the constraint that E[A|C = 1] � E[A|C = 0]. Therefore
E

C

0 [Y |A = 1] is minimized by setting E[A|C = 1] = E[A|C = 0] ⌘ �. If
E[Y |A,C] and E[A|C] are non-increasing in C, then we want to maximize
E[A|C = 1]�e : E[A|C = 0](1��)(1�f) and E[A|C = 1]�(1�e) : E[A|C =
0](1� �)f , which is accomplished by maximizing E[A|C = 1] and minimizing
E[A|C = 0], subject to the constraint that E[A|C = 1]  E[A|C = 0].
Therefore E

C

0 [Y |A = 1] is again minimized by setting E[A|C = 1] = E[A|C =
0].

Now we show that E
C

0 [Y |A = 1] = E[Y1] when E[A|C = 1] = E[A|C = 0].
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E
C

0 [Y |A = 1]

= E[Y |A = 1, C 0 = 1]P [C 0 = 1] + E[Y |A = 1, C 0 = 0]P [C 0 = 0]

=

✓
E[Y |A = 1, C = 1]

�e

�e+ (1� �)(1� f)
+ E[Y |A = 1, C = 0]

(1� �)(1� f)

�e+ (1� �)(1� f)

◆

⇥ (�e+ (1� �)(1� f))

+

✓
E[Y |A = 1, C = 1]

�(1� e)

�(1� e) + (1� �)f
+ E[Y |A = 1, C = 0]

(1� �)f

�(1� e) + (1� �)f

◆

⇥ (�(1� e) + (1� �)f)

= E[Y |A = 1, C = 1]�+ E[Y |A = 1, C = 0](1� �)

= E[Y1]

We now turn to the case in which one of E[Y |A,C] and E[A|C] is nonin-
creasing and the other nondecreasing in C, and prove that E

C

0 [Y |A = 1] 
E[Y1] when E[Y |A,C] is non-decreasing and E[A|C] is non-increasing in C.
The other cases may be proved analogously. We maximize E

C

0 [Y |A = 1] with
respect to E[A|C] and show that at its maximum E

C

0 [Y |A = 1] = E[Y1].
As above, we maximize E

C

0 [Y |A = 1] by maximizing E[Y |A = 1, C 0 = 1]
and E[Y |A = 1, C 0 = 0]. Since E[Y |A = 1, C = 1] � E[Y |A = 1, C = 0]
this means maximizing E[A|C = 1]�e : E[A|C = 0](1 � �)(1 � f) and
E[A|C = 1]�(1 � e) : E[A|C = 0](1 � �)f , which is accomplished by maxi-
mizing E[A|C = 1] and minimizing E[A|C = 0], subject to the constraint that
E[A|C = 1]  E[A|C = 0]. Therefore E

C

0 [Y |A = 1] is maximized by setting
E[A|C = 1] = E[A|C = 0].

Result 1 For A and C binary and C 0 nondifferentially misclassified, if E[Y |A,C]
is monotonic in C then the observed adjusted effect lies between the
crude and true effects on the RD, RR, and OR scales.

Proof of result 1: If E[Y |A,C] is monotonic in C and E[Y |A,C] and E[A|C]
are either both non-increasing or both non-decreasing in C, then by lemma 3
and its corollary the true and observed adjusted effects are less than or equal to
the crude effect; it remains only to be shown that the observed adjusted effect
is greater than or equal to the true effect. By lemma 4, E

C

0 [Y |A = 1] � E[Y1]
and E

C

0 [Y |A = 0]  E[Y0], from which it follows that the observed adjusted
effect is greater than or equal to the true effect on the RD, RR, and OR
scales. If E[Y |A,C] is monotonic in C and one of E[Y |A,C] and E[A|C] is
non-increasing and the other non-decreasing in C then by lemma 3 and its
corollary the true and observed adjusted effects are greater than or equal to
the crude effect; we are done if we can show that the observed adjusted effect
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is less than or equal to the true effect. By lemma 4, under these conditions
E

C

0 [Y |A = 1]  E[Y1] and E
C

0 [Y |A = 0] � E[Y0], from which it follows that
the observed adjusted effect is less than or equal to the true effect on the RD,
RR, and OR scales.

Result 2 For A, and C binary, the partial control result holds for the effect
of treatment on the treated on the RD, RR, and OR scales.

Proof: We will show that E
C

0|A=1[Y |A = 1]=E[Y |A = 1]=E[Y1|A = 1] and
that E

C

0|A=1[Y |A = 0] is between E[Y |A = 0] and E[Y0|A = 1]. It then
follows immediately that the observed adjusted effect is between the crude
and true effects on the RD, RR, and OR scales. First, note that E[Y1|A =
1] = E[Y |A = 1] by the consistency assumption, and

EC0|A=1[Y |A = 1] = E[Y |A = 1, C 0 = 1]P [C 0 = 1|A = 1] + E[Y |A = 1, C 0 = 0]P [C 0 = 0|A = 1]

= E[Y |A = 1]

We now prove that E
C

0|A=1[Y |A = 0] is between E[Y |A = 0] and E[Y0|A = 1].
It is enough to show that E[Y0|A = 1]�E

C

0|A=1[Y |A = 0] and E
C

0|A=1[Y |A =
0]� E[Y |A = 0] have the same sign, where

E[Y0|A = 1]� EC0|A=1[Y |A = 0]

= (E[Y |A = 0, C = 1]� E[Y |A = 0, C = 0])

⇥ ({E[C|A = 1, C 0 = 1]� E[C|A = 0, C 0 = 1]}E[C 0|A = 1]

+ {E[C|A = 1, C 0 = 0]� E[C|A = 0, C 0 = 0]} (1� E[C 0|A = 1]))

and

EC0|A=1[Y |A = 0]� E[Y |A = 0]

= (E[Y0|A = 1]� E[Y |A = 0])�
�
E[Y0|A = 1]� EC0|A=1[Y |A = 0]

�

= (E[Y |A = 0, C = 1]� E[Y |A = 0, C = 0]) (E[C|A = 1]� E[C|A = 0])

� (E[Y |A = 0, C = 1]� E[Y |A = 0, C = 0])

⇥ ({E[C|A = 1, C 0 = 1]� E[C|A = 0, C 0 = 1]}E[C 0|A = 1]

+ {E[C|A = 1, C 0 = 0]� E[C|A = 0, C 0 = 0]} (1� E[C 0|A = 1]))

= (E[Y |A = 0, C = 1]� E[Y |A = 0, C = 0])

⇥ (E[C|A = 0, C 0 = 1] {E[C 0|A = 1]� E[C 0|A = 0]}
�E[C|A = 0, C 0 = 0] {E[C 0|A = 1]� E[C 0|A = 0]})

Then, it is enough to show that
�
E[C|A = 1, C 0 = 1]� E[C|A = 0, C 0 = 1]

 
E[C 0|A = 1]

+
�
E[C|A = 1, C 0 = 0]� E[C|A = 0, C 0 = 0]

 �
1� E[C 0|A = 1]

�
(1)
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and

E[C|A = 0, C 0 = 1]
�
E[C 0|A = 1]� E[C 0|A = 0]

 

�E[C|A = 0, C 0 = 0]
�
E[C 0|A = 1]� E[C 0|A = 0]

 
(2)

have the same sign. We will prove this by showing that (1) and (2) are
simultaneously either maximized or minimized at 0.

We consider two cases: e � 1� f and e  1� f , where e is sensitivity and
f is specificity. In the first case E[C|A = a, C 0] is increasing in C 0 for all a,
while in the second case it is decreasing in C 0 for all a, with equality in both
cases when e = f = 0.5.

We now prove that E[C|A = 1]  E[C|A = 0] () E[C 0|A = 1] 
E[C 0|A = 0] when e � 1� f . That E[C|A = 1]  E[C|A = 0] () E[C 0|A =
1] � E[C 0|A = 0] when e  1� f follows by a similar argument. Note that

E[C 0|A = 1] = E[C|A = 1]e+ (1� E[C|A = 1]) (1� f)

and
E[C 0|A = 0] = E[C|A = 0]e+ (1� E[C|A = 0]) (1� f)

are both convex combinations of e and (1� f). If E[C|A = 1] > E[C|A = 0],
then E[C|A = 1] : (1� E[C|A = 1]) > E[C|A = 0] : (1� E[C|A = 0]) and
E[C 0|A = 1] will be closer to e and therefore greater than E[C 0|A = 0]. If
E[C|A = 1] < E[C|A = 0], the reverse relationship holds and E[C 0|A = 1] <
E[C 0|A = 0].

Now we turn our attention to the minima and maxima of expressions (1)
and (2); we will find the extreme values with respect to E[C|A,C 0]. The
derivative of (2) with respect to E[C|A = 0, C 0 = 1] is E[C 0|A = 1] �
E[C 0|A = 0] and the derivative with respect to E[C|A = 0, C 0 = 0] is
� {E[C 0|A = 1]� E[C 0|A = 0]}. Therefore (2) is monotonic in both E[C|A =
0, C 0 = 1] and E[C|A = 0, C 0 = 0], and furthermore it is non-decreasing in
one and non-increasing in the other. Therefore, the unconstrained extrema
occur at E[C|A = 0, C 0 = 1] = 1 and E[C|A = 0, C 0 = 0] = 0, and at
E[C|A = 0, C 0 = 1] = 0 and E[C|A = 0, C 0 = 0] = 1. But we know that when
e � 1� f these conditional expectations are constrained to be nondecreasing
in C 0; therefore the constrained extrema occur at E[C|A = 0, C 0 = 1] = 1 and
E[C|A = 0, C 0 = 0] = 0 and at E[C|A = 0, C 0 = 1] =E[C|A = 0, C 0 = 0] = 1.
On the other hand, when e  1 � f these conditional expectations are con-
strained to be nonincreasing in C 0 and therefore the constrained extrema
occur at E[C|A = 0, C 0 = 1] = 0 and E[C|A = 0, C 0 = 0] = 1 and at
E[C|A = 0, C 0 = 1] =E[C|A = 0, C 0 = 0] = 1.
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When E[C|A = 0, C 0 = 1] = E[C|A = 0, C 0 = 0], (2) equals 0. If E[C 0|A =
1] < E[C 0|A = 0], then this is the maximum of (2) if e � 1 � f and the
minimum if e  1 � f . If E[C 0|A = 1] > E[C 0|A = 0] then (2) is maximized
at 0 if e  1� f and minimized at 0 if e � 1� f .

To find the extrema of (1), we restrict our attention to the case where
E[C 0|A = 0] < E[C 0|A = 1] and e � 1 � f . We will show that (1) is also
minimized at 0. Because (1) is equal to

E[C|A = 1]�E[C|A = 0, C 0 = 1]P [C 0 = 1|A = 1]�E[C = 1|A = 0, C 0 = 0]P [C 0 = 0|A = 1]

proving that it is minimized at 0 is equivalent to proving that

E[C|A = 0, C 0 = 1]P [C 0 = 1|A = 1]+E[C = 1|A = 0, C 0 = 0]P [C 0 = 0|A = 1]
(3)

is maximized at E[C|A = 1]. We will maximize (3) with respect to e and f .
Let D = E[C|A = 0] and B = E[C|A = 1].

E[C|A = 0, C 0 = 1]P [C 0 = 1|A = 1]� E[C = 1|A = 0, C 0 = 0]P [C 0 = 0|A = 1]

= D

✓
e
Be+ (1�B)(1� f)

De+ (1�D)(1� f)
+ (1� e)

1� {Be+ (1�B)(1� f)}
1� {De+ (1�D)(1� f)}

◆
(4)

If e � 1�f , then D  B and (4) is increasing in e (the derivative with respect
to e is positive), so in order to maximize it we set e = 1. Now (4) reduces
to D B+(1�B)(1�f)

D+(1�D)(1�f) , which is increasing in f (the derivitive with respect to f is
positive) and is therefore maximized at f = 1. At e = f = 1,

P
C

0 E[C|A =
0, C 0]P [C 0|A = 1] = E[C|A = 1]. Therefore, (1) is minimized at 0.

That (1) is minimized at 0 when E[C 0|A = 0] < E[C 0|A = 1] and e  1�f ,
and that it is maximized at 0 when E[C 0|A = 0] < E[C 0|A = 1] and e � 1� f
or when E[C 0|A = 0] > E[C 0|A = 1] and e  1 � f , follow by analogous
arguments.

Result 3 For A and C binary and 0.5  sensitivity, specificity  1, the bias
of the observed adjusted effect of treatment on the treated decreases
with increasing sensitivity and specificity. If in addition E[Y |A,C] is
monotonic in C, then the bias of the observed adjusted average treatment
effect decreases with increasing sensitivity and specificity.

Proof: Under monotonicity, E
C

0 [Y |A = a] lies between E[Y
a

] and E[Y |A = a]
for a = 0, 1. We will show that E

C

0 [Y |A = 1] and E
C

0 [Y |A = 0] move further
from E[Y |A = a] and closer to E[Y

a

] as e and f increase. The result follows
immediately.
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The signs of @

@e

E
C

0 [Y |A = 1] and @

@f

E
C

0 [Y |A = 1] depend on the sign of
{E[Y |A = 1, C = 1]� E[Y |A = 1, C = 0]}{E[A|C = 0]� E[A|C = 1]}.When
E[Y |A,C] and E[A|C] are both either non-increasing or non-decreasing in C
this product is negative (or 0) and E

C

0 [Y |A = 1] is non-increasing in e and
f , i.e. as e and f increase E

C

0 [Y |A = 1] moves closer to E[Y1] and farther
from E[Y |A = 1]. (Recall that E[Y1]  E[Y |A = 1] when both conditional
expectations are either non-increasing or non-decreasing in C.) When one of
E[Y |A,C] and E[A|C] is non-increasing and the other non-decreasing then the
product is non-negative and E

C

0 [Y |A = 1] is non-increasing in e and f , which
again entails that as e and f increase E

C

0 [Y |A = 1] moves closer to E[Y1] and
further from E[Y |A = 1].

The proof that E
C

0 [Y |A = 0] approaches E[Y0] as e and f increase is
similar.
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