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Estimating the Prevalence of Disease Using
Relatives of Case and Control Probands

Kristin N. Javaras, Nan M. Laird, James I. Hudson, and Brian D. Ripley

Abstract

We introduce a method for estimating the prevalence of disease using data from
a case-control family study performed to investigate the aggregation of disease in
families. The families are sampled via case and control probands, and the result-
ing data consist of information on disease status and covariates for the probands
and their relatives. We introduce estimators for overall prevalence and for covari-
ate stratum-specific prevalence (e.g., sex-specific prevalence) that yield approx-
imately unbiased estimates of their population counterparts. We also introduce
corresponding confidence intervals that have good coverage properties even for
small prevalences. The estimators and intervals address the over-representation
of diseased individuals in case-control family data by using only the relatives (of
the probands) and by taking into account whether each relative was selected via a
case or a control proband. Finally, we describe a simulation experiment in which
the estimators and intervals were applied to case-control family datasets sampled
from a fictional population that resembled the catchment area for an Austrian fam-
ily study of major depressive disorder. The resulting estimates varied closely and
symmetrically around their population counterparts, and the resulting intervals
had good coverage properties.



1. INTRODUCTION
The gold standard approach to estimating prevalence iesdivst obtaining a cross-sectional
(or prevalence) sample from the population of interestn thesessing whether the disease is
present in the sampled individuals, and finally calculatmgproportion of sampled individuals
with the disease, sometimes with individuals weighted fecethe probability that they were
sampled and responded. Often, researchers do not haves aocs existing cross-sectional
sample that is relevant to both the population and the disefisiterest, and the cost of collect-
ing one would be prohibitive. However, if they do have acdess case-control family sample
from the population of interest that was originally colkttto investigate familial aggregation

of the disease, it can be used to obtain valid estimates vélarce, as we show below.

Case-control family studies are conducted to investidgatektent to which a disease aggre-
gates (with itself) within families, or co-aggregates woither diseases within families (Hudson
et al., 2001). In these studies, researchers select casanu®who are affected by the disease
and control probands who are not, and then select relatrees &mong the case and control
probands’ family members (e.g., first-degree relatives$je fiesulting data consist of informa-
tion on disease status and covariates for the case and lqgomtbands and their relatives. When
the data is used to investigate familial aggregation, thetrbasic analysis entails comparing
the proportion of affected relatives for case probands émtioportion of affected relatives for
control probands. Here, we refer to an example that is a casigel family study of major
depressive disorder (MDD) conducted at Innsbruck UnitgrGlinics in Innsbruck, Austria
(Hudson et al., 2003). In the studi4 adults with MDD (case probands) were selected from the
psychiatric unit, an@8 adults without MDD (control probands) were selected fromghrgical
and ophthalmology units. Three hundred and thirty of théanals’ adult first-degree relatives
(parents, siblings, children) consented to participatiénstudy. Table 1 presents the numbers

of relatives with and without MDD, by proband disease staitus relative sex.

The probands provide no information on prevalence becdugsproportion of affected (or
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case) probands is fixed by design. The relatives, on the btret, do provide information on
prevalence, but the simple proportion of affected relatigea biased estimate of prevalence if
the disease aggregates in families because, in that casegl#tives’ probability of selection
depends on their disease status, albeit indirectly (tHrdlig probands’ disease statuses). How-
ever, by using only the relatives and conditioning on theali® status of the probands through
which the relatives were selected, we can obtain valid etsémand confidence intervals for
overall and stratum-specific (e.g., sex-specific) prewaemprovided that certain commonly-
made assumptions about sampling and the population steubtald. Our method yields es-
timates that are biased only slightly downwards for theipyation counterparts. Further,
they are less seriously biased than estimates from othemooiy-used methods of estimating
prevalence from case-control family data, such as the pidba propositus method (Kendler
and Eaton, 1988; Stromgren, 1948). Our method performgwel when applied to datasets
sampled from a fictional population: the resulting estiraatary closely and symmetrically
around their population counterparts, with only a very $maivnwards bias, and the resulting

intervals have good coverage properties.

The paper is organized as follows. Section 2 introduces stimators for overall preva-
lence and stratum-specific prevalence, as well as the asismsn which they rely. Section
3 presents the results of the simulation experiment, antdddet is a discussion of the advan-
tages and limitations of the method. Appendices A and B ¢omieoofs that the overall and
stratum-specific estimators, respectively, are appraoaiynainbiased for their population coun-
terparts. Finally, Appendix C introduces standard erraws eonfidence intervals for overall

and stratum-specific prevalence.

2. ESTIMATION

Before presenting estimators for overall and stratum4ifipgamrevalence, it is necessary to in-

troduce some notation, as well as several assumptions.eTdssimptions are commonly, if
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implicitly, made when analyzing data from case-control ifgretudies; here, they are used to
guarantee that the proposed estimators will be approxiynatdiased. The assumptions de-
scribe a simplified model for the underlying population amdtfie ascertainment of case-control
families from it. Although not a perfect representation edlity, this simplified model is an ad-

equate approximation to reality when the size of the pommrids sufficiently large (relative to

the sizes of the families that comprise the population atative to the number of probands
ascertained in the study). Further, the results of the sitinl experiment in Section 3 suggest

that our method is robust to violations of the assumptiordetging the simplified model.

We will assume that the population of interest is finite (betylarge) and that it can be
partitioned intoF" mutually exclusive and exhaustive families of siblings.e$é families are
indexed by:. Family i has N; members, who are indexed by, wherej = 1,... N;. For
individual 75, we useY;; to denote disease status, witltorresponding to presence of the dis-
ease and corresponding to absence of the disease. The populatiealpree,r, is defined
as f(Y;; = 1), where individualij is randomly selected from the population. Similarly, the
stratum-specific prevalence?, is defined ag (Y;; = 1|X;; = ), whereX; is a categorical
variable whose levels define covariate strata of interegt,(eales and femalesy; is a par-
ticular value ofX;; (e.g., the female stratum); and individuglis randomly selected from the
population in stratunx. Note thatX;; may result from coarsening the values of a continuous
variable (e.g., age) or from crossing the levels of multgag¢egorical variables (e.g., sex and

race).

Families are ascertained for the case-control family stdy’, unrelated probands with
the disease and;, unrelated probands without the disease. Once families baga ascer-

tained, they are renumbered, as are their members. Thembeanad families are now indexed

by i, where, for the sake of convenience, the valuesl, ..., F, refer to families ascertained

via case probands, the values F, +1, ..., F, + F}, refer to families ascertained via control

probands, and the valugs= F', + F,,,. .., F refer to unascertained families. For ascertained
3
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family 7, disease status and covariate information is obtainedrfigrio, — 1 of the N; — 1 re-
maining (i.e., non-proband) family members. The re-nuatdenembers of ascertained family
i are now indexed byj, wherej = 1 refers to the proband, = 2, ..., n, refer to the sampled
relatives, angi = n; + 1,...,n; + N; refer to the unsampled relatives. The original ingex
which refers to an individual as a member of a family in thewagon, has a 1:1 mapping to
the indexj, which refers to the individual as a member of his or her fgroiice it has been
ascertained. We usg(;) to refer to the renumbered index for ¢ member of the*” family

in the population once his or her family has been ascertained

Below, we show how data from a case-control family study canded to obtain estimates
of overall prevalence and stratum-specific prevalenceer@émore assumptions must hold for

the proposed estimators to yield approximately unbiastchates:

(i.) Availability of RelativesEach member of the population of interest has at least vimgli

relative.

(ii.) Family Size and Disease Status are Uncorrelat€&br(1V;, NTA) = 0, WhereNiA =

Zj\f:il I(Y;; = 1), the number of affected members in family

(iii.) Proband SamplingThe case probands are randomly sampled from the affectetbere
of the population, and the control probands are randomlyptesfrom the unaffected

members of the population.

(iv.) Single Ascertainmen® he number of case (control) probands is sufficiently sneditive
to the number of affected (unaffected) members of the pdipuldo guarantee that no

family will be selected via more than one proband.

(v.) Relative SamplingGiven that familyi has been ascertained, the probability that indi-
vidualij (j # 1) is included in the study is a constant (referred ta)aand, thus, does
not depend orY;; (his or her disease statusyy; (his or her covariates); ;) (the dis-

ease statuses for the other members of the fameQﬂ-) (the covariates for the other

4

http://biostats.bepress.com/cobra/art31



members of the family), or ofV; (the family’s size).

(vi.) Disease Status is Independent of Other Family Members' @ea For individualij,
Yij (his or her disease status) is independenkgf ;) (the covariates for the other mem-

bers of the family), conditional oX;; (the individual's covariate)
If Assumptions (i.)-(v.) hold, then the following estimais approximately unbiased at the

first-order for the overall prevalence of disease in the fadmn (see Appendix A for a proof):

N Py
T=—, 2.1
y——— (2.1)

wherep , is the proportion of case probands’ relatives who are afftct

ZZ'

1]2

by =

Mﬁ’

21

j =2

s
—_

andp,, is the proportion of control probands’ relatives who areetid,

F,+F, ™

ZZYJ:

F—l—liZ

Py = Fot+F, ™

> 1

i=F, +1 i=2

Further, we can show that the slight bias introduced by tlserskorder terms is downward
whenF, =~ F,, (the number of case probands is approximately equal to thrdauof control
probands) and wheR/(1 — pU) > E(p,) (the expected proportion of control probands’ rela-
tives who are unaffected is greater than the expected pgiopaf case probands’ relatives who

are affected).
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Note that the estimator in (2.1) adjugts, an estimate of prevalence based on relatives of
control probands only, by the fact%. SinceE(p,) > E(p, ) for diseases that aggre-
gate in families, this adjustment will usually have the efffef moving the prevalence estimate
upwards fromp,,. Thus, using,, to estimate overall prevalence—an approach that is referre
to as the proband or propositus method and has been widellyinsgenetic-epidemiologic
studies of psychiatric disorders (Kendler and Eaton, 198&mgren, 1948)—results in greater
downward bias than using the estimator in (2.1), except wherdisease does not aggregate
in families. Similar arguments reveal that overestimates prevalence except when the disease

does not aggregate in families.

Next, if Assumptions (i.)-(vi.) hold, then the following tarator is biased only slightly at

the first-order for the prevalence of disease in stratufgee Appendix B for a proof):
= piT+p,(1—7), (2.2)

wherep? is the proportion of case probands’ relatives who have tateawvaluez and are

affected
ng

FA
YN Xy =a)l(Yy = 1)
=1

J

=1 j=2

andp;, is the proportion of control probands’ relatives who haveac@te valuer and are

affected
FA+FU ng
> |(Xy = 2)I(Yy = 1)
1=F,+1 j=2
c z
Py = F,+F, ™
> Xy =)
i=F,+1j=2
6
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Further, we can show that the slight first-order bias is doand& when, again’, ~ F;, and
E(1 - pU) > E(pA). Note that, as above, an examination of Equation (2.2) tetkat using
only the relatives of control probands to estimate stragpeeific prevalence results in more
serious underestimation than using the estimator in (2x2gpt when the disease does not ag-

gregate in families.

In Appendix C, we provide approximate standard errors amfidence intervals fofr and
#*. The standard errors and confidence intervals are appt®gdadependent observations
since disease status will be positively correlated withimifies when the disease aggregates in
families. The confidence intervals are based on the sameepbas the Agresti-Coull (1998)
interval, which modifies the standard Wald interval for bimal proportions so that it will at-
tain actual coverage levels near the nominal coverage ezl for small proportions. The
modification, which has strong roots in the work of WilsonZT¥ involves replacing the max-
imum likelihood estimate of the proportion used to calcldite center and standard error of
the Wald interval with an estimate that is smoothed towardsuhiform probability distribution
by adding a small number (e.g., two) of successes and the samber of failures to the ob-
served data. Because the Agresti-Coull interval appegssrform well for small independent
samples (1998) and, more relevantly for our data, mediwedsiependent samples (Miao and
Gastwirth, 2004), we use a similar approach to form confidéntervals: the intervals’ center
and spread are calculated using p,,, p’;, andp; , which smoottp ,, p,,, p%, andp?,, respec-
tively, towards the uniform distribution by adding two faiés and two successes for evéoy

observations.

To illustrate the use of our method, we apply it to the datanftbe Austrian case-control
family study. Equations (2.1) and (C.3) yield an estimats.6§% and a95% confidence in-
terval of [5.9%, 15%], respectively, for the overall lifetime prevalence of MDD the Tyrol
region. Equations (2.2) and (C.4) yield an estimaté.6% and a95% confidence interval of

[2.3%,13%] for male lifetime prevalence, antl.3% and [6.4%, 20.0%] for female lifetime
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prevalence. Note that the overall, male, and female preval@stimates are larger than the
affected proportions of all relatives, male relatives, &muhale relatives of control probands
(7.9%, 5.5%, and10.1%, respectively), but considerably smaller than the affégie@portions
of all relatives, male relatives, and female relatives segarobandsig.5%, 11.0%, and23.8%,

respectively).

3. RESULTS OF THESIMULATION EXPERIMENT

We conducted a simulation experiment to investigate how thel estimators from Section 2
and the confidence intervals from Appendix C perform in pcact The experiment was de-
signed to mimic the Austrian case-control family study of BiDwhich is at the smaller end of

case-control family studies.

We created a fictional population with approximatéo, 000 individuals, which corre-
sponds to the number of people betwd@&rand70 years old reported to be living in the Tyrol
region of Austria, the catchment area for the Austrian stud003 (Statistik Austria, 2003).
To create a population of this size, we generated data fapajppately125, 000 families, which
involved three steps: (a) generating family sizes baseti@ulistribution of family sizes in the
Austrian data; (b) generating the sexes of and relatiosdbgpween (e.qg., siblings, parents, etc.)
family members based on the percentage of females betieand 70 years in the Tyrolean
population in 2003 (=50.5%) and the distribution of famiyationships and sex in the Austrian
data, and; (c) generating lifetime disease statuses fdiathy members conditional on their

sexes and relationships, based on parameter estimateghieofustrian data.

To generate the disease statuses in step (d), we used theA&Ca&dditive genetic effects, C
= common or shared family environment, and E = unique enuemt) model for case-control
family data (Javaras et al., 2007). In this model, a subgeatfected if his or her ‘liability to the

disease’ exceeds a threshold that corresponds to diseagdqmce for the relevant covariate
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stratum. The liabilities for subjects from familyare modeled by atV;-variate normal distri-
bution with mean vector set to zero and correlations thaadwenction ofa? (the percentage
of variation in liability due to A) and:? (the percentage of variation in liability due to C). In
our experiments, we set the ACE model's parameters to vélagsd on analysis of the actual
MDD data (Javaras et al., 2007, Section 6): wedsetd 0.45, ¢ to 0, lifetime disease preva-
lence among males ©0%, and lifetime disease prevalence among femalés &9%. Note that
the male and female prevalences, along with the proportidamsales, determine the overall

lifetime prevalence of disease-(8.8%) for the fictional population.

Next, we sampled, 000 small case-control family datasets from the fictional papah.
Each dataset was formed by selectifig = 64 case probands anfl, = 58 control probands,
and then including all of the probands’ family membess= 1). (F,, F,,, ands were set
equal to their values in the Austrian study.) For each sadngdgaset, Equation (2.1) was used
to estimate overall prevalence, and Equation (2.2) was tesedtimate the male and female
prevalences. In addition, we used Equation (C.3) to formdwed and lower and upper one-
sided95% confidence intervals for the overall prevalence, and we &spdhtion (C.4) to form

the same confidence intervals for the male and female presede

In the1, 000 case-control family datasets sampled, the number of iedundividuals (rel-
atives plus probands) ranged betwedfl and541. Even for this relatively small study size,
the population was not sufficiently large to ensure singleedainment: inl22 of the 1,000
datasets, at least one family was doubly ascertained. $etinstances, the first family member
to be selected as a proband was retained as the sole prolyahid for her family. Figure 1
presents boxplots of the resulting prevalence estimatefiéd , 000 datasets. The plots reveal
that the prevalence estimates vary symmetrically and lgi@seund the population prevalences,
which are indicated by “X”s. The downward bias in the estesas extremely small (especially
relative to the length of the confidence intervals): the rsezfrthel, 000 estimates are within

—0.0008 (—0.9%), —0.0006 (—0.5%), and—0.0011 (—1.9%) of the overall, male, and female

Hosted by The Berkeley Electronic Press



prevalences, respectively. The two-sided; confidence intervals for overall, male, and female
prevalence have mean lengihd05, 0.146, and0.114, respectively. Although these intervals
are fairly wide, especially for such small estimates, thisoi be expected due to the positive
correlation of MDD status within families. The actual coage probabilities of the intervals for
overall, male, and female prevalence se9%, 90.5%, and98.8% for the two-sided5% con-
fidence intervals96.2%, 94.4%, and97.2% for the one-sided lowed5% confidence intervals,
and94.7%, 93.1%, and96.8% for the one-sided upp&b% confidence intervals. Note that the
two-sided intervals, which will be used most often in preetiattain actual coverage levels very
close to the nominal level 8f5%. Note also that the actual coverage levels are generaltifea li
too high for the upper one-sided intervals and generallitla tioo low for the lower one-sided
intervals. This phenomenon reflects the fact that the iaterare calculated using estimated

proportions that are smoothed away from zero.

The simulation experiment suggests that the prevalenimasts in (2.1) and (2.2) are
approximately unbiased and reasonably efficient, even vinvempopulation size is relatively
small and the assumption of single ascertainment does mdt Bs would be expected, our
estimators and confidence intervals perform even bettedditianal similar experiments (not

described here) that involve a larger fictional populatiothwver2 million individuals.

4, DISCUSSION

We have introduced a method of forming estimates and cordaartervals for overall and

stratum-specific prevalence based on case-control farath. d

It is clear from the simulation experiment (Section 3) anubfs (Appendices A and B) that
the proposed estimators and intervals yield valid infofomabout the prevalence of disease.
The ability to glean valid information about disease premaé from case-control family data

is useful to medical researchers when no population-bagtd(fltom a cross-sectional sample)

10
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are available for the population of interest. Knowledge @vplence augments epidemiologi-
cal understanding of the disease and also informs resolloation. In addition, knowledge

of prevalence makes it possible to estimate other paramefezpidemiological interest. For

instance, data from a case-control sample can be weightereabe data representative of the
population by using weights equal to the inverse samplimdpgioilities for the cases and con-
trols, the calculation of which requires knowledge of ptemae. The weighted data that result
can be used to obtain approximately unbiased estimatespofigtion parameters, such as the
exposure-disease risk difference and the exposure-disésdsratio, that cannot be obtained
from case-control studies unless the sampling fractiormaieés and controls is known. (In con-
trast, the exposure-disease odds ratio can, of course thiaeth from case-control data without

weighting them.)

Several limitations should be noted. For one, when the dised interest aggregates in
families, disease status will be positively correlated ifatividuals within the same family,
which will have the effect of inflating the errors and intdsvéor 7+ andz#®. Thus, in this case,
the prevalence estimators in Equations (2.1) and (2.2)heilless precise than corresponding
estimators based on the same number of unrelated indigiduah a cross-sectional sample.
Further, the estimates and intervals would probably ndbparwell for very small proportions
unless the sample size were very large, but this would aldaueefor estimates and intervals

calculated from cross-sectional samples.

Second, the prevalence estimators may no longer be unbfasezlor more of the assump-
tions enumerated in Section 2 are violated. For examplendlier families have a greater
proportion of affected individuals, a violation of Assungpt (ii.), then prevalence may be un-
derestimated (Kendler and Eaton, 1988). This scenariaissiidle for early-onset diseases that
impair individuals’ ability to have children or for diseasthat result in early death. However,
results from the simulation experiment suggest that vimhat of Assumption (ii.) introduce

only a very small amount of bias, as shown in the right-handmoos of Tables 2 and 3 in

11
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the appendices. As another example, if probands are sglbated not only on their disease
status but also on disease characteristics such as seaeriplation of Assumption (iii.), then
the resulting prevalence estimates may be biased. This atemtl problem for the Aus-
trian study because the case probands were sampled frontlaigtsig clinic rather than from
the community. In contrast, if probands are selected basedmly on disease status but also
on measured covariates such as sex or age, another viotditAssumption (iii.), estimates of
stratum-specific prevalence can still be obtained by apgl#quation (2.2) only to the relatives
of those probands who belong to the stratum of interest. Agifdations of Assumption (iv.),
the simulation experiment in Section 3 suggests that ouhogeis robust to at least moderate
departures from single ascertainment. Next, if the aftecedatives of the probands are less
likely to participate in the study, a violation of Assumgti¢v.), then prevalence will be under-
estimated. Finally, if the disease of interest is extrenoelynmon or if it is somewhat common
and aggregates extensively in families, then it may not be thatZ (1 — pU) > E(pA). It

is easy to see why this inequality will not hold if the diseasguestion is extremely common
(prevalence oves0%), since in that cas&(p , ) will be large andE(1 —p, ) will be small even

if the disease does not aggregate in families. Another caseenthe inequality will not hold is
when the disease aggregates in families to such an exténE'thais large and when the dis-
ease is common enough so tiatl — p,,) is not large. However, for most diseases (including
MDD), the inequality will hold. Further, since the assuroptithat £(1 — pU) > E(pA) is
required only to ensure that the biassins downwards, our method will still be approximately

unbiased even when this assumption is violated.

In general, though, our method appears to be reasonablgtrabuhe violation of most
assumptions. The most crucial assumption is likely to betteeabout relative sampling, which
assumes that individuals with the disease are no more olikeisto be included in the sample
than individuals without the disease. This assumption @ayply equally to cross-sectional
samples. The second-most crucial assumption is likely tbédassumption that family size and

disease status are uncorrelated in the population of sitetethese two crucial assumptions

12

http://biostats.bepress.com/cobra/art31



hold, then our method of estimating disease prevalence ¢ase-control family data is a useful

tool, especially for diseases and populations where nsestional samples are available.
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APPENDIX A

Proof that# is approximately unbiased at the first-order for

The overall population prevalence is definedras: f(Y;; = 1), where individual:; is ran-
domly selected from the population of interest. Assumptignabout the availability of rela-

tives allows us to expanfi(Y;; = 1) as follows

= [y =1Yyy = 1)f(Yiy =1) + f(Yy = 1Yy = 0)f(Yi» =0), (A1)

where individualij’ is randomly selected from amorlg;’s relatives with disease stati$;:.
(In the remainder of this proof, we will assume that4 j.) We can rewrite the above equation

as
T = f(Yiy=1Yyy =Dr+ f(Yy = 1Yy = 0)(1 — ),

which can be rearranged to give

o= Ty (A.2)

l—7, +m,’

wherer f(Yi; = 1|Y; = 0) andnw, = f(Y;; = 11Y;» = 1). The parameters, andr,,

v —

can be defined in terms of the finite population:

T, = f(Y;J = 1‘Yij’ = 1)
S N S (Y = 1) (Y = 1)
S N S (Vi = 1)
S S (Y = 1)(NA - 1)
Y Z;V:H (1(Yij = O)NA +1(Yi; = D(NA — 1))
S (N = 1)NA
SEL(N; = )NAT

(A.3)

14
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whereN/ = Zj\’;’l I(Y;; = 1), the number of affected members in familyand

T, = f(Yi =1]Yy =0)
i E;V:H >z 1(Yij = 1) 1Yy = 0)
iy Z;V:H > 1(Yijr = 0)
>l Y (Vi = )N
il E;V:Zi (1(Y;; = 0)(NY — 1) + 1(Y;; = 1)NY)
i NN

A A4

whereNY = Zj.\’:il 1(Y;; = 0), the number of unaffected members in family

Now, recall that
Py

R 4 o A—
1—p, +p,

(A.5)

wherep , is the proportion of case probands’ relatives who are aftict

The estimatort in (A.5) can be approximated by a second-order Taylor expareround

15
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Ep, and B, the expected values pf, andp ,, respectively:

. Ep, o on
o ==+, —Bpy) 53— + (s —Epy) 5—
1-Ep, +Ep, v ! Opy Epy Epy ! ! Op 4 Epy-Epy
1 y 0?7 1 , 0?7
+§(pU_EpU) o 2 +§(pA_EpA) O 2
Py Ep,,Epy Py EpyEpy
%7
+ @y —Epy) Py —Epy) -—F—
(0~ Bu) (00~ Bp) 5o

Epy Epy

Inserting expressions for the derivatives and then takirgexpectation of both sides of the

above equation yields

B~ Ep, Var(p,) (1 — Ep,) Var(p,, )Ep,
T = - 3t 3
1_EpA_‘_EpU (1_EpA+EpU) (1_EpA+EpU)
Cov(p,,p,) (1 —Ep, —Ep,)
(1-Ep, +Ep,)*

(A.6)

In order to determine the bias in the leading term on the 4figintd side of (A.6), we must
derive expressions for the bias pf andp, as estimators forr, and~,,, respectively. Be-
ginning with the former, we introduce indicators in orderréwrite p, as a sum over every
member of every family in the population, except for one @ffd member of each family who

is arbitrarily designated as the (case) proband:

F

YooY Yy =1)

i=1{j: jedi}

> Y

=1 {j: jeLi}

whereJ; = {j : 1 < j < N; andr;(j) # 1}, a set containing the indices of the non-proband
members of familyi (after ascertainment); ani;l} equalsl if family member:; is sampled as
part of a case-ascertained family and equadgherwise. The indicatoﬁ;‘;. will depend ondg“,

the case-ascertainment indicator for famiJywhich equalsl if family i is ascertained via an
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affected proband and otherwise (with the constraint th&t >, 64 = F,.) If 6 = 0, then

i=1"

&;; = 0 by definition, but if5;* = 1, thend;} can equab or 1.

To obtain an expression for the biasygf as an estimator far ,, we employ the strategy of
Hartley and Ross (1954) for determining the bias of a ratioredor. This strategy begins by

expanding the covariance betwgepand its denominator:

cofpe Y. Y i) - (XY o -0) e E(3 Y )

i=1 {j: jel;} i=1 {j:jedi} =g ieds
F F
= > > BV =1)-Ep,- > >
i=1 {j: jeJ;} i=1{j: jeLi}
:ZZ E(E(5167) )1(vy =1 —EpAZZ E(E(57167))-
i=1{j: jeti} i=1{j: jets}

Under Assumption (v.), the probability that relatiijeis sampled is a constant referred tosas

Using this fact to replace @5316{‘) in the last line of the above equation yields

F
cOv<pA,z 3 5;3> _ Z S E (s 4 0(1— 60 1Yy = 1)

=1 {j: jEL;} =1 {j:jeLi}

—Ep, - Z > E(s6 +0(1—47)

=1 {j: jeJ;}

F F
= s E@) > I(Y;=1)-Ep,-s> E@EH > 1
= i=1

{3:5€ L}

F
= s E(@E(N? —1)—Ep,-s Y _E(G) (N — 1)
] =1

= sF,s, ZNA —-Ep,-sF,s, ZNA -1)
1=1

where the third line follows becausk does not include one affected member of faniilyho

is designated as the case proband; and where the fourttoliog$ because, under Assumption

17

Hosted by The Berkeley Electronic Press



(iii.) about proband selection and Assumption (iv.) abdogke ascertainment, (B”) can be
rewritten asN/* F, s ,, wheres,, = 1/ "5 NA, the sampling fraction for case probands. The

last line above can be rearranged to give

F

F
A
> ONAWNA 1) C°V<pA’ > > 5z‘j>
i—1 i=1{j: jei}
Epa =% - F
> NAN - 1) sF,s,> NAN; - 1)
i=1 =1

Since the second term on the lefthand side of the above equatjustr, as written in (A.3),

the bias ofp,, can be written as

F F
COl’(pA, >y 53) -SD(p,,) - SD(Z > 55})
i=1 {j: jeJ:} =1 {j: jeLi}
= . (A7)

F
SFASAZNiA(Ni -1)
i=1

Since the denominator on the righthand side of the abovetiequagquals the expectation of

S Y jess) 04 we can rewrite (A.7) as

F F
Ep, — 7, = — COf(pA,Z 3 53) .SD(p,,) cv(Z 3y 5;‘;), (A.8)

i=1 {j: jedi) i=1 {j jedi}

where C\,(Z;F:1 Z{j: jedi} 5{]‘-), the coefficient of variation, is defined as the ratio of trast

dard deviation ofy /", > i,y /) tothe mean of ", 3" o,y 04

We examine the magnitude of each of the three multiplicandb®righthand side of (A.8).
First, SO(p ,) must be less thaf.5 because , is a proportion. Second, it is difficult (if not im-
possible) to construct a population where @f‘;l Z{j: jedi} 5{;) is larger thar2, as would

be expected for a quantity that is effectively the sum of hyinariables (albeit non-identical,
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non-independent ones). Third, under Assumption (ii.),clvhétates that family size and dis-
ease status are uncorrelated, épx, Ele Z{j: jedi) 5{}) is negligible. This is true because
Assumption (ii.) ensures that the average size of the cesedained families included in the
study will have a negligible correlation with the proportiof the relatives in those families
who have the disease. Putting these three facts togethegevhat the bias of, is negligible

when Assumption (ii.) holds.

To illustrate the importance of Assumption (ii.) in guaesihg thatp,, is approximately
unbiased forr ,, we examine the bias @f, in two fictional populations. The first is the same
population used in the simulation experiment in Sectiont® Jecond is a population created in
an identical fashion, except that the prevalence of diseaseset lower for males and females
from families with more than three members and set highemfales and females from fami-
lies with fewer than three members. Note that the overallglemce of disease is equal in both
populations, but in the second population, a dispropoatiely large number of the diseased
individuals belong to small families. For each populatiore sampledl, 000 datasets, each
consisting of64 case probands{, = 64) and all of their relativess(= 1). We calculateg ,
and>"F > jedi) 6;3. for each dataset and then used the resulting values to ¢stingthree
multiplicands in (A.8) for that population. Table 2 presetiite values of the three multiplicands
in the two populations, as well as the biaspgf in percentage terms. The middle column of
Table 2 reveals that Cémm Ele Z{j: jedi} 5;‘3) and the percentage biasf are negligi-
ble in the first population, where Assumption (ii.) holds.ngmaring the middle column to the
right-most column in Table 2 reveals that the percentage ddfia, is approximatelyl00 times

larger for the second population, where Assumption (ii@sloot hold. This increase in bias is

due to the larger value of Cé LE 2 o{: jeds 63).

We can use the approach employed above to obtain an analegpression for the bias of
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p,, as an estimator for,,

F F
Ep, — 7, = - C0r<pU, > 55) -SD(p,) - CVO . Y. &) (A9)
i=1{j:jeLi} i=1{j:jedi}
whereég equalsl if relative 5 is sampled as part of a control-ascertained family and squal
0 otherwise. Since the same arguments made for the multipl&can (A.8) also apply to the
multiplicands in (A.9), we see that the bias gf will be negligible when Assumption (ii.)
holds. For both populations described above, Table 3 ptesatues of the three multiplicands
in (A.9) and the percentage bias @f, calculated froml, 000 datasets containing,, = 58
control probands and all of their relatives £ 1). The bias ofp,, is negligible for the first
population, but is again approximatel90 times larger for the second population because the
correlation betweep,, and its denominator is larger. Thus, the biagppfis negligible when

Assumption (ii.) holds.

The fact thafp, andp,, have negligible bias under the assumptions enumeratecctioSe
2 implies that the bias in the leading term of (A.6) is nedfligi Thus, to a first-degree approx-

imation, 7 is an unbiased estimator fat

We now turn to the bias introduced by the second-order tenm#i6). First, note that
the final second-order term in (A.6) introduces no bias beeabovp,,p,,) = 0. Next,
note that the numerators of the first two second-order term@\i6) can be re-written as

By (1= Epy)/ S5 [ (ng = 1)] (1= Bp,) and [ Ep,, (1 = Ep,)/ S (ng—1)] By,

respectively. We can ignore the summations in the denoorisialf these terms because they
are approximately equal under assumption (ii.) that dese#atus is uncorrelated with family
size and under the assumption tigt ~ F,,. Now, the only difference between the two terms
is that(1 — Ep,)Ep, is multiplied by(1 — Ep,,) in the first term and byZp , in the second
term. Thus, if we assume that(1 —p, ) > Ep,, then the first second-order term, which has

a negative sign in front of it, is larger in magnitude than skeond second-order term, which
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has a positive sign in front of it. As a result, the bias introeld through the second-order terms
in (A.6) will be non-positive ifE (1 —p,,) > Ep, andF, ~ F,. However, the results of the
simulation experiment in Section 3, wheteunderestimates by only a very small amount,
suggest that the bias introduced through the second- (ah@) order terms is very small in

practice.ll
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APPENDIX B

Proof that7® is only slightly biased at the first-order far®

We definer” = f(Y;; = 1|X;; = z), where individualij is randomly selected from among
the members of the population witk;; = x. Assumption (i.) allows us to expanfY;; =

1|XZ] = :L') as

= f(Y;=1Yyy =1,X =2)f(Yij = 11Xy =) (B.1)

+ f(Y;; = 1Y =0, X5 = x) f(Yi = 01Xy = x),

where individualij’ is randomly selected from amorlg;’s relatives with disease stati$;:.
(In the remainder of this proof, we will assume that# j.) Under Assumption (vii.) about the

independence of probands’ disease status and relativesiates,
™ = f(Yy = 1Yy =1 Xy =a)f(Yiy =1) + f(Vi; = 1|y = 0, X5 = ) f (Vi = 0),
follows from (B.1). We can rewrite the preceding equation as

™ = mimtm(l—7), (B.2)

wherer? = f(YVi; = 1|V = 1,X;; = x) andn] = f(Y;; = 11Y;y = 0,X;; = z). The

parameters and; can be defined in terms of the finite population:

p | T X Yy = DX = 2) Yy | (Vg = 1)

S Y Xy = 1) Sy (Y = 1)
Sy S (Y = DX = 2) (N = 1)
Sl o (X = o)1 (Vi = D(NA = 1) +1(Xy5 = 2)I(Yy; = 0)N/)
iy N (N~ 1)

— y B-S
S (NENA - N &2
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and

= S N (Vi = DX = 2) 350 1(Yijr = 0)
Sy o (X = 2) X 1 (Vi = 0)
S S 1Yy = DX = 2)NY
S SN (1 = )1 (Y = DNY +1(Xy; = 2)l (Vg = 0)(NY — 1))
Sy NN
S (VPN — NP (8.4)

where N/ = Y I(Y; = =

D; NV = 33y = 0) NF
N = Y0 1Yy = DXy = o) and NP

Z;V:il I(Y;j — O)I(Xij = :L')

Now, recall that

(B.5)
where
F, ™
I(Xll_ a:)I(YNZ-jN-: 1)
=1 j=2
e s
P, = P
i=1 j=2
and
F,+F,

The estimatori® in (B.5) can be approximated by a second-order Taylor exparsound
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E, Ep?, and B°:

7 ~ (EpEr +Ep; (1 —Er))

R . on® on® on®
+ (7 —ER) 5= + (v —Er) 5= + (v —Ep) 52
E#Ep? Ep? Dy Ex Ep? Ep? Dy Er Ep? Ep?,
1 . g O%R® 1 5 0277
+§(7T_E7T) BES) +§(ple_EplwI) O 2
Efr,Ep?, .Ep% v Ef.Ep? EpT
1 9 0277
+§ (pi—Epf\) a T 2
Dy e Ep? Epz
~ N T 82 nd . ~ . 82 AT
—|—(7T—E7T)(pA EpA) 57 +(7T—E7T)(pU EpU)a 3
P EAEp? Ep?, Py EfEp? Ep®
02
+ (v —Epp) () —EpY)
U U A A 8p§8pi

- i T
E7,Epy, EpY

Taking the expectation of both sides of the above equatieldyi

Ex* ~ (Ep"Ef +Ep”(1—E#)) (B.6)
1 &7 1 & 1 &
+ 5 Var() a—f; + g var(py) > . + SVarpl) 5 .
T lExEpr Ep7 Py e Epz Epe Pa” les Epz Epe
0?7 0?7
+ Cov(7,p*) = + Cov(7r,p?) —
A7 Oropy Er Ep? Ep?, Y7 Omopy, Er EpT Ep?
Ry
+ Cov(p®, p®
(py %) o

E#r,Ep? .Ep%

We focus now on the leading term of the expectation of thedfagxpansion in (B.6): & Ex +
Ep; (1 — Ex). We have already shown in Appendix A that, under conditiong{), 7 has a
very small negative bias as an estimatorforTo derive the bias ip” andp;, we introduce

indicators in order to rewrite them as

Z DR il [P +Z > 6T NX = 2)(Y; = 1)

J Zl{]jeJ} =1 {j:je i}
) = I
=1y JEJ} =1 {j: jeLi}
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whered;; (or 6;3°°) equalsl if family memberij is sampled as part of a family ascertained
through a case proband with covariate vaiu@r covariate value in the complement:gfand

equalsd otherwise; and

F
Z X =Yy =1+ > STTI(Xy = a)l(Y;; = 1)

. i=1 {j: JEJ} =1 {j:jet;}

p, =
Z > dGnIXG; = +Z > 60Xy =)
=1 {j: jeJ;} =1 {j:jet;}

wheredg"” (or 5%5”6) equalsl if family memberij is sampled as part of a family ascertained
through a control proband with covariate valti€or covariate value in the complement of
and equal® otherwise. For the sake of brevity, we will refer to the denwators ofp? andp?,

asd? andd;, respectively.

To derive the bias op? as an estimator for?, we use the same Hartley-Ross (1954)

approach employed far, in Appendix A:

Cov(p®,d®) = (Z Y sdnx +Z Al ac)l(YZ-jzl))

i=1 {j: jeJ;} =1 {j: jeJ;}
F
- B (Z Soosnxg =)+ > Y Xy :ac))
=1 {j: jet;} i=1{j: jeJ;}
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- [Y Y E(BOAT16M) )1y = 2) + Z > E(E(57167) )1 = )]
i=1 {j: jeJ;} =1 {j:jeti}
whereé{‘x equalsl if family 7 is ascertained via an affected proband with covariate value
and 0 otherwise, and Wheré{‘acc equalsl if family ¢ is ascertained via an affected proband
with covariate value in the complement ofand 0 otherwise. Invoking Assumption (v.), the

preceding line reduces to

F
Cov(p®,d”) = [SZ 3 EEI(XG = ) + sz 3 EGN(Xy = a)l(Yy = 1)}
i=1{j: jeLi} =1{ggedi}
F
SB[ D B —i—sz > BN = )]
i=1 i jed} i=1 (j: G}
F F
_ [s SCEGATNAT -1 45y E(é{”c)Nf”]
=1 . =1 .
~ B - [3 SEGATNF -1 45y E(é;“xc)Nﬂ
FZZI =1 B
= [sFusy Y NATNAT 1) 4 5 F, s, 30 NN
i=1 B i=1 B
- B [s Fos, Y NM(NF —1)+sF, 5,5 N;‘ECN;”}
i=1 i=1

where N/A* = Zj.v;'l I(X;; # z)I(Y;; = 1). Note that the last expression above follows from

the second-to-last expression above under Assumptioh &iiout proband selection and As-
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sumption (iv.) about single ascertainment. The last egivasabove can be rewritten as

F F
Covp®,d,) = sF,s, Y N*(N/—1)—Ep" sF,s, Y (NAN? - N7,
i=1 i=1

which, when rearranged and combined with (B.3), gives

B —f — — Cov(p?, d?%)

A

F
sF, s, (N/NF — N/)
i=1
= —Cor(p”,d”) - SD(p") - CV(d"). (B.7)

We can use the Hartley-Ross (1954) approach to obtain angmad expression for the bias

of p7, as an estimator for;:

. . Cov(p*,d*)
EPU _ 7TU — _ - U U
SFUSU (NZUNzx_NzUx)

=1

= — Cor(p?,d”) - SD(p?) - CV(d®). (B.8)

We can then use the same arguments made in Appendix A toisbkt#idt the right-hand
sides of (B.7) and (B.8) will be negligible when Assumptidit) (olds. Thus, under Assump-
tion (ii.), p; andpy, are approximately unbiased estimators#grand;, respectively. Using
our previous finding that slightly underestimater, along with the fact thap? will typically
exceedp; for diseases that aggregate in families, we see that thentgéerm in (B.6) under-
estimatesr, slightly. Thus, to a first-degree approximatiart, is a slightly downwardly biased
estimator forr,.. However, the results of the simulation experiment in $&c8 suggest that

the bias introduced by the leading term and also the higltarderms in (B.6) is very smalll
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APPENDIX C

Standard Errors and Confidence Intervals foand 7%

The delta method can be used to obtain approximate standard &r7# and7®. The approx-

imate standard error for is

sgr) = 7w(l—m) (C.1)
F, F, +F,
T, 2p, <nl - 1> (1—m,) 2p, <m - 1>
— T4 14 Pa * b Tul g g S * ,

F, <M F +F, <M .

whered, = 21:1 Z,JE? landd, = 2 F, 1 2= Lip, = Cor(Yll, YQ/) fori=1,...,F,,
j>1,4">1,andj # j’;andp, = ConYy;, Yiy) fori = F, +1,... ., F, + F,,j > 1,5/ > 1,
andj # l”. Note that the more the disease aggregates in familiesatperp,, andp,, will be

and therefore the larger the standard errorifovill be.

The approximate standard error fof is

sg#”) = VaXa, (C.2)
where
a= |7 (-m CT CGmRT C2:)
and ) )
01,1 0 01,3 0
0 o 0 o
¥ — 22 2 (C.2.b)
01,3 0 03,3 0
0 o024 0 o044
with
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and

Further,d’ = ZZ | ZJNQ (X5

ng

’I’Lz = Z] ZI(XJ

I>L7>Lj#i X

[ F,+F, 1
(1 —x%) z A n¥
g = U v 1 + v < L) ’
(1 )_ 2, A N
m,(l—m, Pa ng —
= 14 224A 2 ,
7 d, d, ; < 2 >
F,+F,
m,(1—m,) 20y 3 <ni——1>
O44 = 1+ —= = ,
7 i 2
1 A
01,3 = d o11+py" ;nfnf )
) FytFy
0924 = —dﬁdu 022+ P | Z nyng
i:FA‘H
F 4+F, <™ .
j =) anddg, = 37,4 o = 2 1(Xyj = );
=) andn = Z o I(Xy; # ); pf) = Cor(Yy;, Y

)forz_l

(Yy
T = Cor(Yy;

I>Lj">1j# ] Xy =Xy =2 p} i

J#J, Xij =, Xy # x; andp” —Cor(J,Y Nfori=F, +1,.

l#l’XZ,J;:x’XZ,JZ#x'

,YJ)forlzl,...,FA,l> Lj' >1,

LE 4+ Fy >,

In practice, the population parameters in Equations ((hil)(&€.2) are replaced with esti-

mates, which yields estimated standard errors that we teessg ) andsen”

Although estimating the parametersm,, w

), respectively.

7’7, andr will not require additional calcula-

tion because they appear in Equations (2.1) and (2.2), tleengdersp ,, p,,, p%, p,, pi’xc, and

pff;wc will need to be calculated from the data using Pearson atioek.

The estimated quantities andsg7) could be used to form a Wald interval fat which

would take the form Ck= [ + 2, /25¢(7)], wherez, /, is thea/2 quantile of the standard nor-
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mal distribution. However, for small population prevalesadr < 0.2), Wald intervals do not
achieve their nominal coverage level because of the fraquasurrence of0, 0] intervals for
samples with no diseased relatives. Various adjusted emdeaintervals with improved cov-
erage probabilities have been proposed for populationgotiopms, including the Agresti-Coull
(1998) interval, which has its roots in the work of Wilson 2¢9. Simply put, the Agresti-Coull
interval improves the Wald interval’s coverage propettigsmoothing the proportion estimates
and the estimated standard errors away from zero. Miao asthv@th (2004) have performed
simulations to examine the performance of an Agresti-Ciyié interval (and various other
intervals) for proportions estimated from moderatelyedizamples containing dependent clus-
ters. Since the Agresti-Coull-type interval appears tdgeer well in the simulations and,

further, is easy to compute, we adopt confidence intervaedan the same concept.

For the overall prevalence, thé0 - (1 — a)% interval takes the form:
Cl=7 =+ 2,5V5e (C.3)

wherer andse are calculated using the formulas foandse(7), respectively, wittp, replaced

by
d,p, + (0522 ,)/100

d, + (zg/z)/loo

Pa=

andp,, replaced by
dy,py, + (0.5z§/2)/100

dy, + (22 ,)/100

by =

For the stratum-specific prevalene€,, the 100 - (1 — «)% interval takes the form:
Cl= 7% & 2, pV35e" (C.4)

where7” and se” are calculated using the formulas fof andse€#”), respectively, withp ,
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replaced by, , p,, replaced by, p” replaced by

At 4 (0522 ,)/100
pA =

dt + (22 ,)/100

andp; replaced by
. dipp + (0.5z§/2)/100

U
b, =

df, + (22 5)/100
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Table 1: Number of Relatives With (Without) Major Depressive Diserd

Proband Sex of Relatives
Disease Status Male Female
Case 8 (65) 25 (80)
Control 4 (69) 8 (71)

* MDD was diagnosed by interviewing probands and their netatusing
the German translation (Wittchen et al. 1996) of the StnectClinical
Interview for DSM-IV (First et al. 1994).

Table 2: Components of the Bias @f, When Assumption (ii.) Does and Does Not Hold

Term Value
(for F, =64 ands =1)
Population 1 Population 2
NA NA
Cor(N;, J-) = 0 Cor(N;, &) ~ —0.19

c:or(pA,zf_ L e 41.}523‘-) 0.001459 -0.137009
SD(p,,) 0.033318 0.038691

CV(Xi, Y jesn 00 0.058140 0.054310

Percentage bias of, f -0.0017% 0.173%

t Percentage bias @f, equalsl00 - (Epfri;“) , whererr, ~ 0.16; and where

Ep, —m, = COI’(pA,XF: > 53) -SD(pA)-cv<zF: > 5;3).

i=1 {j: jel;} i=1{j: jeL;}
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Table 3: Components of the Bias @f, When Assumption (ii.) Does and Does Not Hold

Term

Value

(for F,, =58 ands = 1)

Population 1 Population 2
Cor(N;, X2) ~ 0 Cor(N;, X2y ~ —0.19
c:or<pU,zf_ e 55) -0.008865 -0.098235
SD(p,,) 0.025768 0.020937
CV(Xl, Y jesy O0) 0.061170 0.060793
Percentage bias of, ' 0.0018% 0.2281%

1 Percentage bias ¢f, equalsl 00 - Ery—my , wherer,, ~ 0.055; and where
™ U
U

EpU—wU—C0r<pU,XF: > 55)-SD(pU)-cv(XF: > 55).

=1 {j:jeL:}

=1 {j:j€L:}

Boxplots of Prevalence Estimates for Small Case—Control Datasets
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Figure 1. Boxplots of overall, male, and female prevalence estimiaes 1,000 small case-
control family datasets witki4 case probands ari® control probands. Xs indicate the corre-

sponding population prevalences.
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