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Estimating the Prevalence of Disease Using
Relatives of Case and Control Probands

Kristin N. Javaras, Nan M. Laird, James I. Hudson, and Brian D. Ripley

Abstract

We introduce a method for estimating the prevalence of disease using data from
a case-control family study performed to investigate the aggregation of disease in
families. The families are sampled via case and control probands, and the result-
ing data consist of information on disease status and covariates for the probands
and their relatives. We introduce estimators for overall prevalence and for covari-
ate stratum-specific prevalence (e.g., sex-specific prevalence) that yield approx-
imately unbiased estimates of their population counterparts. We also introduce
corresponding confidence intervals that have good coverage properties even for
small prevalences. The estimators and intervals address the over-representation
of diseased individuals in case-control family data by using only the relatives (of
the probands) and by taking into account whether each relative was selected via a
case or a control proband. Finally, we describe a simulation experiment in which
the estimators and intervals were applied to case-control family datasets sampled
from a fictional population that resembled the catchment area for an Austrian fam-
ily study of major depressive disorder. The resulting estimates varied closely and
symmetrically around their population counterparts, and the resulting intervals
had good coverage properties.



1. INTRODUCTION

The gold standard approach to estimating prevalence involves first obtaining a cross-sectional

(or prevalence) sample from the population of interest, then assessing whether the disease is

present in the sampled individuals, and finally calculatingthe proportion of sampled individuals

with the disease, sometimes with individuals weighted to reflect the probability that they were

sampled and responded. Often, researchers do not have access to an existing cross-sectional

sample that is relevant to both the population and the disease of interest, and the cost of collect-

ing one would be prohibitive. However, if they do have accessto a case-control family sample

from the population of interest that was originally collected to investigate familial aggregation

of the disease, it can be used to obtain valid estimates of prevalence, as we show below.

Case-control family studies are conducted to investigate the extent to which a disease aggre-

gates (with itself) within families, or co-aggregates withother diseases within families (Hudson

et al., 2001). In these studies, researchers select case probands who are affected by the disease

and control probands who are not, and then select relatives from among the case and control

probands’ family members (e.g., first-degree relatives). The resulting data consist of informa-

tion on disease status and covariates for the case and control probands and their relatives. When

the data is used to investigate familial aggregation, the most basic analysis entails comparing

the proportion of affected relatives for case probands to the proportion of affected relatives for

control probands. Here, we refer to an example that is a case-control family study of major

depressive disorder (MDD) conducted at Innsbruck University Clinics in Innsbruck, Austria

(Hudson et al., 2003). In the study,64 adults with MDD (case probands) were selected from the

psychiatric unit, and58 adults without MDD (control probands) were selected from the surgical

and ophthalmology units. Three hundred and thirty of the probands’ adult first-degree relatives

(parents, siblings, children) consented to participate inthe study. Table 1 presents the numbers

of relatives with and without MDD, by proband disease statusand relative sex.

The probands provide no information on prevalence because the proportion of affected (or
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case) probands is fixed by design. The relatives, on the otherhand, do provide information on

prevalence, but the simple proportion of affected relatives is a biased estimate of prevalence if

the disease aggregates in families because, in that case, the relatives’ probability of selection

depends on their disease status, albeit indirectly (through the probands’ disease statuses). How-

ever, by using only the relatives and conditioning on the disease status of the probands through

which the relatives were selected, we can obtain valid estimates and confidence intervals for

overall and stratum-specific (e.g., sex-specific) prevalence, provided that certain commonly-

made assumptions about sampling and the population structure hold. Our method yields es-

timates that are biased only slightly downwards for their population counterparts. Further,

they are less seriously biased than estimates from other commonly-used methods of estimating

prevalence from case-control family data, such as the proband or propositus method (Kendler

and Eaton, 1988; Strömgren, 1948). Our method performs very well when applied to datasets

sampled from a fictional population: the resulting estimates vary closely and symmetrically

around their population counterparts, with only a very small downwards bias, and the resulting

intervals have good coverage properties.

The paper is organized as follows. Section 2 introduces our estimators for overall preva-

lence and stratum-specific prevalence, as well as the assumptions on which they rely. Section

3 presents the results of the simulation experiment, and Section 4 is a discussion of the advan-

tages and limitations of the method. Appendices A and B contain proofs that the overall and

stratum-specific estimators, respectively, are approximately unbiased for their population coun-

terparts. Finally, Appendix C introduces standard errors and confidence intervals for overall

and stratum-specific prevalence.

2. ESTIMATION

Before presenting estimators for overall and stratum-specific prevalence, it is necessary to in-

troduce some notation, as well as several assumptions. These assumptions are commonly, if
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implicitly, made when analyzing data from case-control family studies; here, they are used to

guarantee that the proposed estimators will be approximately unbiased. The assumptions de-

scribe a simplified model for the underlying population and for the ascertainment of case-control

families from it. Although not a perfect representation of reality, this simplified model is an ad-

equate approximation to reality when the size of the population is sufficiently large (relative to

the sizes of the families that comprise the population and relative to the number of probands

ascertained in the study). Further, the results of the simulation experiment in Section 3 suggest

that our method is robust to violations of the assumptions underlying the simplified model.

We will assume that the population of interest is finite (but very large) and that it can be

partitioned intoF mutually exclusive and exhaustive families of siblings. These families are

indexed byi. Family i hasNi members, who are indexed byij, wherej = 1, . . . , Ni. For

individual ij, we useYij to denote disease status, with1 corresponding to presence of the dis-

ease and0 corresponding to absence of the disease. The population prevalence,π, is defined

asf(Yij = 1), where individualij is randomly selected from the population. Similarly, the

stratum-specific prevalence,πx, is defined asf(Yij = 1|Xij = x), whereXij is a categorical

variable whose levels define covariate strata of interest (e.g., males and females);x is a par-

ticular value ofXij (e.g., the female stratum); and individualij is randomly selected from the

population in stratumx. Note thatXij may result from coarsening the values of a continuous

variable (e.g., age) or from crossing the levels of multiplecategorical variables (e.g., sex and

race).

Families are ascertained for the case-control family studyvia F
A

unrelated probands with

the disease andF
U

unrelated probands without the disease. Once families havebeen ascer-

tained, they are renumbered, as are their members. The re-numbered families are now indexed

by i
˜
, where, for the sake of convenience, the valuesi

˜
= 1, . . . , F

A
refer to families ascertained

via case probands, the valuesi
˜

= F
A

+ 1, . . . , F
A

+ F
U

refer to families ascertained via control

probands, and the valuesi
˜

= F
A

+ F
U
, . . . , F refer to unascertained families. For ascertained
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family i
˜
, disease status and covariate information is obtained for only ni

˜
− 1 of theNi

˜
− 1 re-

maining (i.e., non-proband) family members. The re-numbered members of ascertained family

i
˜

are now indexed byi
˜
j
˜
, wherej

˜
= 1 refers to the proband,j

˜
= 2, . . . , ni

˜
refer to the sampled

relatives, andj
˜

= ni
˜

+ 1, . . . , ni
˜

+ Ni
˜

refer to the unsampled relatives. The original indexj,

which refers to an individual as a member of a family in the population, has a 1:1 mapping to

the indexj
˜
, which refers to the individual as a member of his or her family once it has been

ascertained. We useri(j) to refer to the renumbered index for thejth member of theith family

in the population once his or her family has been ascertained.

Below, we show how data from a case-control family study can be used to obtain estimates

of overall prevalence and stratum-specific prevalence. Several more assumptions must hold for

the proposed estimators to yield approximately unbiased estimates:

(i.) Availability of Relatives: Each member of the population of interest has at least one living

relative.

(ii.) Family Size and Disease Status are Uncorrelated: Cor(Ni,
NA

i

Ni
) = 0, whereNA

i =

∑Ni

j=1 I(Yij = 1), the number of affected members in familyi.

(iii.) Proband Sampling: The case probands are randomly sampled from the affected members

of the population, and the control probands are randomly sampled from the unaffected

members of the population.

(iv.) Single Ascertainment: The number of case (control) probands is sufficiently smallrelative

to the number of affected (unaffected) members of the population to guarantee that no

family will be selected via more than one proband.

(v.) Relative Sampling: Given that familyi has been ascertained, the probability that indi-

vidual i
˜
j
˜

(j
˜
6= 1) is included in the study is a constant (referred to ass) and, thus, does

not depend onYi
˜
j

˜
(his or her disease status),Xi

˜
j

˜
(his or her covariates),Yi

˜
(−j

˜
) (the dis-

ease statuses for the other members of the family),Xi
˜
(−j

˜
) (the covariates for the other
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members of the family), or onNi
˜

(the family’s size).

(vi.) Disease Status is Independent of Other Family Members’ Covariates: For individualij,

Yij (his or her disease status) is independent ofXi(−j) (the covariates for the other mem-

bers of the family), conditional onXij (the individual’s covariate)

If Assumptions (i.)-(v.) hold, then the following estimator is approximately unbiased at the

first-order for the overall prevalence of disease in the population (see Appendix A for a proof):

π̂ =
p

U

1 − p
A

+ p
U

, (2.1)

wherep
A

is the proportion of case probands’ relatives who are affected,

p
A

=

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

I(Yi
˜
j

˜
= 1)

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

1

;

andp
U

is the proportion of control probands’ relatives who are affected,

p
U

=

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

j

˜
=2

I(Yi
˜
j

˜
= 1)

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

i
˜
=2

1

.

Further, we can show that the slight bias introduced by the second-order terms is downward

whenF
A
≈ F

U
(the number of case probands is approximately equal to the number of control

probands) and whenE(1 − p
U
) > E(p

A
) (the expected proportion of control probands’ rela-

tives who are unaffected is greater than the expected proportion of case probands’ relatives who

are affected).
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Note that the estimator in (2.1) adjustsp
U

, an estimate of prevalence based on relatives of

control probands only, by the factor 1
1−p

A
+p

U

. SinceE(p
A
) > E(p

U
) for diseases that aggre-

gate in families, this adjustment will usually have the effect of moving the prevalence estimate

upwards fromp
U

. Thus, usingp
U

to estimate overall prevalence—an approach that is referred

to as the proband or propositus method and has been widely used in genetic-epidemiologic

studies of psychiatric disorders (Kendler and Eaton, 1988;Strömgren, 1948)—results in greater

downward bias than using the estimator in (2.1), except whenthe disease does not aggregate

in families. Similar arguments reveal thatp
A

overestimates prevalence except when the disease

does not aggregate in families.

Next, if Assumptions (i.)-(vi.) hold, then the following estimator is biased only slightly at

the first-order for the prevalence of disease in stratumx (see Appendix B for a proof):

π̂x = px
A
π̂ + px

U
(1 − π̂), (2.2)

wherepx
A

is the proportion of case probands’ relatives who have covariate valuex and are

affected

px
A

=

F
A∑

i
˜
=1

ni∑̃

j=2

I(Xi
˜
j

˜
= x)I(Yi

˜
j

˜
= 1)

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

I(Xi
˜
j

˜
= x)

;

and px
U

is the proportion of control probands’ relatives who have covariate valuex and are

affected

px
U

=

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

j

˜
=2

I(Xi
˜
j

˜
= x)I(Yi

˜
j

˜
= 1)

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

j

˜
=2

I(Xi
˜
j

˜
= x)

.
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Further, we can show that the slight first-order bias is downwards when, again,F
A
≈ F

U
and

E(1 − p
U
) > E(p

A
). Note that, as above, an examination of Equation (2.2) reveals that using

only the relatives of control probands to estimate stratum-specific prevalence results in more

serious underestimation than using the estimator in (2.2),except when the disease does not ag-

gregate in families.

In Appendix C, we provide approximate standard errors and confidence intervals for̂π and

π̂x. The standard errors and confidence intervals are appropriate for dependent observations

since disease status will be positively correlated within families when the disease aggregates in

families. The confidence intervals are based on the same concept as the Agresti-Coull (1998)

interval, which modifies the standard Wald interval for binomial proportions so that it will at-

tain actual coverage levels near the nominal coverage leveleven for small proportions. The

modification, which has strong roots in the work of Wilson (1927), involves replacing the max-

imum likelihood estimate of the proportion used to calculate the center and standard error of

the Wald interval with an estimate that is smoothed towards the uniform probability distribution

by adding a small number (e.g., two) of successes and the samenumber of failures to the ob-

served data. Because the Agresti-Coull interval appears toperform well for small independent

samples (1998) and, more relevantly for our data, medium-sized dependent samples (Miao and

Gastwirth, 2004), we use a similar approach to form confidence intervals: the intervals’ center

and spread are calculated usingp̃
A

, p̃
U

, p̃x
A

, andp̃x
U

, which smoothp
A

, p
U

, px
A

, andpx
U

, respec-

tively, towards the uniform distribution by adding two failures and two successes for every100

observations.

To illustrate the use of our method, we apply it to the data from the Austrian case-control

family study. Equations (2.1) and (C.3) yield an estimate of8.8% and a95% confidence in-

terval of [5.9%, 15%], respectively, for the overall lifetime prevalence of MDD in the Tyrol

region. Equations (2.2) and (C.4) yield an estimate of6.0% and a95% confidence interval of

[2.3%, 13%] for male lifetime prevalence, and11.3% and [6.4%, 20.0%] for female lifetime

7
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prevalence. Note that the overall, male, and female prevalence estimates are larger than the

affected proportions of all relatives, male relatives, andfemale relatives of control probands

(7.9%, 5.5%, and10.1%, respectively), but considerably smaller than the affected proportions

of all relatives, male relatives, and female relatives of case probands (18.5%, 11.0%, and23.8%,

respectively).

3. RESULTS OF THESIMULATION EXPERIMENT

We conducted a simulation experiment to investigate how well the estimators from Section 2

and the confidence intervals from Appendix C perform in practice. The experiment was de-

signed to mimic the Austrian case-control family study of MDD, which is at the smaller end of

case-control family studies.

We created a fictional population with approximately500, 000 individuals, which corre-

sponds to the number of people between18 and70 years old reported to be living in the Tyrol

region of Austria, the catchment area for the Austrian study, in 2003 (Statistik Austria, 2003).

To create a population of this size, we generated data for approximately125, 000 families, which

involved three steps: (a) generating family sizes based on the distribution of family sizes in the

Austrian data; (b) generating the sexes of and relationships between (e.g., siblings, parents, etc.)

family members based on the percentage of females between18 and70 years in the Tyrolean

population in 2003 (=50.5%) and the distribution of family relationships and sex in the Austrian

data, and; (c) generating lifetime disease statuses for thefamily members conditional on their

sexes and relationships, based on parameter estimates fromthe Austrian data.

To generate the disease statuses in step (d), we used the ACE (A = additive genetic effects, C

= common or shared family environment, and E = unique environment) model for case-control

family data (Javaras et al., 2007). In this model, a subject is affected if his or her ‘liability to the

disease’ exceeds a threshold that corresponds to disease prevalence for the relevant covariate

8
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stratum. The liabilities for subjects from familyi are modeled by anNi-variate normal distri-

bution with mean vector set to zero and correlations that area function ofa2 (the percentage

of variation in liability due to A) andc2 (the percentage of variation in liability due to C). In

our experiments, we set the ACE model’s parameters to valuesbased on analysis of the actual

MDD data (Javaras et al., 2007, Section 6): we seta2 to 0.45, c2 to 0, lifetime disease preva-

lence among males to6.0%, and lifetime disease prevalence among females to11.3%. Note that

the male and female prevalences, along with the proportion of females, determine the overall

lifetime prevalence of disease (= 8.8%) for the fictional population.

Next, we sampled1, 000 small case-control family datasets from the fictional population.

Each dataset was formed by selectingF
A

= 64 case probands andF
U

= 58 control probands,

and then including all of the probands’ family members (s = 1). (F
A

, F
U

, ands were set

equal to their values in the Austrian study.) For each sampled dataset, Equation (2.1) was used

to estimate overall prevalence, and Equation (2.2) was usedto estimate the male and female

prevalences. In addition, we used Equation (C.3) to form two-sided and lower and upper one-

sided95% confidence intervals for the overall prevalence, and we usedEquation (C.4) to form

the same confidence intervals for the male and female prevalences.

In the1, 000 case-control family datasets sampled, the number of included individuals (rel-

atives plus probands) ranged between449 and541. Even for this relatively small study size,

the population was not sufficiently large to ensure single ascertainment: in122 of the 1, 000

datasets, at least one family was doubly ascertained. In these instances, the first family member

to be selected as a proband was retained as the sole proband for his or her family. Figure 1

presents boxplots of the resulting prevalence estimates for the1, 000 datasets. The plots reveal

that the prevalence estimates vary symmetrically and closely around the population prevalences,

which are indicated by “X”s. The downward bias in the estimates is extremely small (especially

relative to the length of the confidence intervals): the means of the1, 000 estimates are within

−0.0008 (−0.9%), −0.0006 (−0.5%), and−0.0011 (−1.9%) of the overall, male, and female

9
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prevalences, respectively. The two-sided95% confidence intervals for overall, male, and female

prevalence have mean lengths0.105, 0.146, and0.114, respectively. Although these intervals

are fairly wide, especially for such small estimates, this is to be expected due to the positive

correlation of MDD status within families. The actual coverage probabilities of the intervals for

overall, male, and female prevalence are94.9%, 90.5%, and98.8% for the two-sided95% con-

fidence intervals,96.2%, 94.4%, and97.2% for the one-sided lower95% confidence intervals,

and94.7%, 93.1%, and96.8% for the one-sided upper95% confidence intervals. Note that the

two-sided intervals, which will be used most often in practice, attain actual coverage levels very

close to the nominal level of95%. Note also that the actual coverage levels are generally a little

too high for the upper one-sided intervals and generally a little too low for the lower one-sided

intervals. This phenomenon reflects the fact that the intervals are calculated using estimated

proportions that are smoothed away from zero.

The simulation experiment suggests that the prevalence estimators in (2.1) and (2.2) are

approximately unbiased and reasonably efficient, even whenthe population size is relatively

small and the assumption of single ascertainment does not hold. As would be expected, our

estimators and confidence intervals perform even better in additional similar experiments (not

described here) that involve a larger fictional population with over2 million individuals.

4. DISCUSSION

We have introduced a method of forming estimates and confidence intervals for overall and

stratum-specific prevalence based on case-control family data.

It is clear from the simulation experiment (Section 3) and proofs (Appendices A and B) that

the proposed estimators and intervals yield valid information about the prevalence of disease.

The ability to glean valid information about disease prevalence from case-control family data

is useful to medical researchers when no population-based data (from a cross-sectional sample)
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are available for the population of interest. Knowledge of prevalence augments epidemiologi-

cal understanding of the disease and also informs resource allocation. In addition, knowledge

of prevalence makes it possible to estimate other parameters of epidemiological interest. For

instance, data from a case-control sample can be weighted tocreate data representative of the

population by using weights equal to the inverse sampling probabilities for the cases and con-

trols, the calculation of which requires knowledge of prevalence. The weighted data that result

can be used to obtain approximately unbiased estimates of population parameters, such as the

exposure-disease risk difference and the exposure-disease risk ratio, that cannot be obtained

from case-control studies unless the sampling fractions ofcases and controls is known. (In con-

trast, the exposure-disease odds ratio can, of course, be obtained from case-control data without

weighting them.)

Several limitations should be noted. For one, when the disease of interest aggregates in

families, disease status will be positively correlated forindividuals within the same family,

which will have the effect of inflating the errors and intervals for π̂ andπ̂x. Thus, in this case,

the prevalence estimators in Equations (2.1) and (2.2) willbe less precise than corresponding

estimators based on the same number of unrelated individuals from a cross-sectional sample.

Further, the estimates and intervals would probably not perform well for very small proportions

unless the sample size were very large, but this would also betrue for estimates and intervals

calculated from cross-sectional samples.

Second, the prevalence estimators may no longer be unbiasedif one or more of the assump-

tions enumerated in Section 2 are violated. For example, if smaller families have a greater

proportion of affected individuals, a violation of Assumption (ii.), then prevalence may be un-

derestimated (Kendler and Eaton, 1988). This scenario is plausible for early-onset diseases that

impair individuals’ ability to have children or for diseases that result in early death. However,

results from the simulation experiment suggest that violations of Assumption (ii.) introduce

only a very small amount of bias, as shown in the right-hand columns of Tables 2 and 3 in

11
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the appendices. As another example, if probands are selected based not only on their disease

status but also on disease characteristics such as severity, a violation of Assumption (iii.), then

the resulting prevalence estimates may be biased. This is a potential problem for the Aus-

trian study because the case probands were sampled from a psychiatric clinic rather than from

the community. In contrast, if probands are selected based not only on disease status but also

on measured covariates such as sex or age, another violationof Assumption (iii.), estimates of

stratum-specific prevalence can still be obtained by applying Equation (2.2) only to the relatives

of those probands who belong to the stratum of interest. As for violations of Assumption (iv.),

the simulation experiment in Section 3 suggests that our method is robust to at least moderate

departures from single ascertainment. Next, if the affected relatives of the probands are less

likely to participate in the study, a violation of Assumption (v.), then prevalence will be under-

estimated. Finally, if the disease of interest is extremelycommon or if it is somewhat common

and aggregates extensively in families, then it may not be true thatE(1 − p
U
) > E(p

A
). It

is easy to see why this inequality will not hold if the diseasein question is extremely common

(prevalence over50%), since in that caseE(p
A
) will be large andE(1−p

U
) will be small even

if the disease does not aggregate in families. Another case where the inequality will not hold is

when the disease aggregates in families to such an extent that Ep
A

is large and when the dis-

ease is common enough so thatE(1 − p
U
) is not large. However, for most diseases (including

MDD), the inequality will hold. Further, since the assumption thatE(1 − p
U
) > E(p

A
) is

required only to ensure that the bias inπ̂ is downwards, our method will still be approximately

unbiased even when this assumption is violated.

In general, though, our method appears to be reasonably robust to the violation of most

assumptions. The most crucial assumption is likely to be theone about relative sampling, which

assumes that individuals with the disease are no more or lesslikely to be included in the sample

than individuals without the disease. This assumption would apply equally to cross-sectional

samples. The second-most crucial assumption is likely to bethe assumption that family size and

disease status are uncorrelated in the population of interest. If these two crucial assumptions
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hold, then our method of estimating disease prevalence fromcase-control family data is a useful

tool, especially for diseases and populations where no cross-sectional samples are available.
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APPENDIX A

Proof thatπ̂ is approximately unbiased at the first-order forπ

The overall population prevalence is defined asπ ≡ f(Yij = 1), where individualij is ran-

domly selected from the population of interest. Assumption(i.) about the availability of rela-

tives allows us to expandf(Yij = 1) as follows

π ≡ f(Yij = 1)

= f(Yij = 1|Yij′ = 1)f(Yij′ = 1) + f(Yij = 1|Yij′ = 0)f(Yij′ = 0), (A.1)

where individualij′ is randomly selected from amongYij ’s relatives with disease statusYij′.

(In the remainder of this proof, we will assume thatj′ 6= j.) We can rewrite the above equation

as

π = f(Yij = 1|Yij′ = 1)π + f(Yij = 1|Yij′ = 0)(1 − π),

which can be rearranged to give

π =
π

U

1 − π
A

+ π
U

, (A.2)

whereπ
U
≡ f(Yij = 1|Yij′ = 0) andπ

A
≡ f(Yij = 1|Yij′ = 1). The parametersπ

A
andπ

U

can be defined in terms of the finite population:

π
A

≡ f(Yij = 1|Yij′ = 1)

=

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij = 1) I(Yij′ = 1)

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij′ = 1)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)(NA
i − 1)

∑F
i=1

∑Ni

j=1

(
I(Yij = 0)NA

i + I(Yij = 1)(NA
i − 1)

)

=

∑F
i=1(N

A
i − 1)NA

i∑F
i=1(Ni − 1)NA

i

; (A.3)
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whereNA
i =

∑Ni

j=1 I(Yij = 1), the number of affected members in familyi, and

π
U

≡ f(Yij = 1|Yij′ = 0)

=

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij = 1) I(Yij′ = 0)

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij′ = 0)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)NU
i∑F

i=1

∑Ni

j=1

(
I(Yij = 0)(NU

i − 1) + I(Yij = 1)NU
i

)

=

∑F
i=1 NA

i NU
i∑F

i=1(Ni − 1)NU
i

, (A.4)

whereNU
i =

∑Ni

j=1 I(Yij = 0), the number of unaffected members in familyi.

Now, recall that

π̂ =
p

U

1 − p
A

+ p
U

, (A.5)

wherep
A

is the proportion of case probands’ relatives who are affected,

p
A

=

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

I(Yi
˜
j

˜
= 1)

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

1

;

andp
U

is the proportion of control probands’ relatives who are affected,

p
U

=

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

j

˜
=2

I(Yi
˜
j

˜
= 1)

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

j

˜
=2

1

.

The estimator̂π in (A.5) can be approximated by a second-order Taylor expansion around
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Ep
U

and Ep
A

, the expected values ofp
U

andp
A

, respectively:

π̂ ≈ Ep
U

1 − Ep
A

+ Ep
U

+ (p
U
− Ep

U
)

∂π̂

∂p
U

∣∣∣∣
Ep

U
,Ep

A

+ (p
A
− Ep

A
)

∂π̂

∂p
A

∣∣∣∣
Ep

U
,Ep

A

+
1

2
(p

U
− Ep

U
)2

∂2π̂

∂p
U

2

∣∣∣∣
Ep

U
,Ep

A

+
1

2
(p

A
− Ep

A
)2

∂2π̂

∂p
A

2

∣∣∣∣
Ep

U
,Ep

A

+ (p
U
− Ep

U
) (p

A
− Ep

A
)

∂2π̂

∂p
U
∂p

A

∣∣∣∣
Ep

U
,Ep

A

Inserting expressions for the derivatives and then taking the expectation of both sides of the

above equation yields

Eπ̂ ≈ Ep
U

1 − Ep
A

+ Ep
U

− Var(p
U
) (1 − Ep

A
)

(1 − Ep
A

+ Ep
U
)3

+
Var(p

A
)Ep

U

(1 − Ep
A

+ Ep
U
)3

(A.6)

+
Cov(p

U
, p

A
) (1 − Ep

A
− Ep

U
)

(1 − Ep
A

+ Ep
U
)3

In order to determine the bias in the leading term on the right-hand side of (A.6), we must

derive expressions for the bias ofp
A

andp
U

as estimators forπ
A

andπ
U

, respectively. Be-

ginning with the former, we introduce indicators in order torewrite p
A

as a sum over every

member of every family in the population, except for one affected member of each family who

is arbitrarily designated as the (case) proband:

p
A

=

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij I(Yij = 1)

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

whereJ
˜i = {j : 1 ≤ j ≤ Ni andri(j) 6= 1}, a set containing the indices of the non-proband

members of familyi (after ascertainment); andδA
ij equals1 if family memberij is sampled as

part of a case-ascertained family and equals0 otherwise. The indicatorδA
ij will depend onδA

i ,

the case-ascertainment indicator for familyi, which equals1 if family i is ascertained via an
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affected proband and0 otherwise (with the constraint that
∑F

i=1 δA
i = F

A
.) If δA

i = 0, then

δA
ij = 0 by definition, but ifδA

i = 1, thenδA
ij can equal0 or 1.

To obtain an expression for the bias ofp
A

as an estimator forπ
A

, we employ the strategy of

Hartley and Ross (1954) for determining the bias of a ratio estimator. This strategy begins by

expanding the covariance betweenp
A

and its denominator:

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
= E

( F∑

i=1

∑

{j: j∈J
˜i}

δA
ij I(Yij = 1)

)
− Ep

A
· E

( F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)

=
F∑

i=1

∑

{j: j∈J
˜i}

E(δA
ij)I(Yij = 1) − Ep

A
·

F∑

i=1

∑

{j: j∈J
˜i}

E(δA
ij)

=

F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δA
ij |δA

i

))
I(Yij = 1) − Ep

A
·

F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δA
ij |δA

i

))
.

Under Assumption (v.), the probability that relativeij is sampled is a constant referred to ass.

Using this fact to replace E
(
δA
ij |δA

i

)
in the last line of the above equation yields

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
=

F∑

i=1

∑

{j: j∈J
˜i}

E
(
sδA

i + 0(1 − δA
i )

)
I(Yij = 1)

− Ep
A
·

F∑

i=1

∑

{j: j∈J
˜i}

E
(
sδA

i + 0(1 − δA
i )

)

= s

F∑

i=1

E(δA
i )

∑

{j: j∈J
˜i}

I(Yij = 1) − Ep
A
· s

F∑

i=1

E(δA
i )

∑

{j: j∈J
˜i}

1

= s
F∑

i=1

E(δA
i )(NA

i − 1) − Ep
A
· s

F∑

i=1

E(δA
i )(Ni − 1)

= sF
A

s
A

F∑

i=1

NA
i (NA

i − 1) − Ep
A
· sF

A
s

A

F∑

i=1

NA
i (Ni − 1)

where the third line follows becauseJ
˜i does not include one affected member of familyi who

is designated as the case proband; and where the fourth line follows because, under Assumption

17
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(iii.) about proband selection and Assumption (iv.) about single ascertainment, E(δA
i ) can be

rewritten asNA
i F

A
s

A
, wheres

A
= 1/

∑F
i=1 NA

i , the sampling fraction for case probands. The

last line above can be rearranged to give

Ep
A
−

F∑

i=1

NA
i (NA

i − 1)

F∑

i=1

NA
i (Ni − 1)

= −

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)

sF
A

s
A

F∑

i=1

NA
i (Ni − 1)

.

Since the second term on the lefthand side of the above equation is justπ
A

as written in (A.3),

the bias ofp
A

can be written as

Ep
A
− π

A
= −

Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
· SD

(
p

A

)
· SD

( F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)

sF
A

s
A

F∑

i=1

NA
i (Ni − 1)

. (A.7)

Since the denominator on the righthand side of the above equation equals the expectation of
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij , we can rewrite (A.7) as

Ep
A
− π

A
= − Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
· SD

(
p

A

)
· CV

( F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
, (A.8)

where CV(
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij), the coefficient of variation, is defined as the ratio of the stan-

dard deviation of
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij to the mean of

∑F
i=1

∑
{j: j∈J

˜i}
δA
ij .

We examine the magnitude of each of the three multiplicands on the righthand side of (A.8).

First, SD(p
A
) must be less than0.5 becausep

A
is a proportion. Second, it is difficult (if not im-

possible) to construct a population where CV
(∑F

i=1

∑
{j: j∈J

˜i}
δA
ij

)
is larger than2, as would

be expected for a quantity that is effectively the sum of binary variables (albeit non-identical,
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non-independent ones). Third, under Assumption (ii.), which states that family size and dis-

ease status are uncorrelated, Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij

)
is negligible. This is true because

Assumption (ii.) ensures that the average size of the case-ascertained families included in the

study will have a negligible correlation with the proportion of the relatives in those families

who have the disease. Putting these three facts together, wesee that the bias ofp
A

is negligible

when Assumption (ii.) holds.

To illustrate the importance of Assumption (ii.) in guaranteeing thatp
A

is approximately

unbiased forπ
A

, we examine the bias ofp
A

in two fictional populations. The first is the same

population used in the simulation experiment in Section 3. The second is a population created in

an identical fashion, except that the prevalence of diseasewas set lower for males and females

from families with more than three members and set higher formales and females from fami-

lies with fewer than three members. Note that the overall prevalence of disease is equal in both

populations, but in the second population, a disproportionately large number of the diseased

individuals belong to small families. For each population,we sampled1, 000 datasets, each

consisting of64 case probands (F
A

= 64) and all of their relatives (s = 1). We calculatedp
A

and
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij for each dataset and then used the resulting values to estimate the three

multiplicands in (A.8) for that population. Table 2 presents the values of the three multiplicands

in the two populations, as well as the bias ofp
A

in percentage terms. The middle column of

Table 2 reveals that Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij

)
and the percentage bias ofp

A
are negligi-

ble in the first population, where Assumption (ii.) holds. Comparing the middle column to the

right-most column in Table 2 reveals that the percentage bias ofp
A

is approximately100 times

larger for the second population, where Assumption (ii.) does not hold. This increase in bias is

due to the larger value of Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij

)
.

We can use the approach employed above to obtain an analogousexpression for the bias of
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p
U

as an estimator forπ
U

Ep
U
− π

U
= − Cor

(
p

U
,

F∑

i=1

∑

{j: j∈J
˜i}

δU
ij

)
· SD

(
p

U

)
· CV(

F∑

i=1

∑

{j: j∈J
˜i}

δU
ij) (A.9)

whereδU
ij equals1 if relative ij is sampled as part of a control-ascertained family and equals

0 otherwise. Since the same arguments made for the multiplicands in (A.8) also apply to the

multiplicands in (A.9), we see that the bias ofp
U

will be negligible when Assumption (ii.)

holds. For both populations described above, Table 3 presents values of the three multiplicands

in (A.9) and the percentage bias ofp
U

, calculated from1, 000 datasets containingF
U

= 58

control probands and all of their relatives (s = 1). The bias ofp
U

is negligible for the first

population, but is again approximately100 times larger for the second population because the

correlation betweenp
U

and its denominator is larger. Thus, the bias ofp
U

is negligible when

Assumption (ii.) holds.

The fact thatp
A

andp
U

have negligible bias under the assumptions enumerated in Section

2 implies that the bias in the leading term of (A.6) is negligible. Thus, to a first-degree approx-

imation,π̂ is an unbiased estimator forπ.

We now turn to the bias introduced by the second-order terms in (A.6). First, note that

the final second-order term in (A.6) introduces no bias because Cov(p
A
, p

U
) = 0. Next,

note that the numerators of the first two second-order terms in (A.6) can be re-written as
[
Ep

U
(1 − Ep

U
)/

∑F
A

+F
U

i
˜
=F

A
+1 (ni

˜
− 1)

]
(1−Ep

A
) and

[
Ep

A
(1 − Ep

A
)/

∑F
A

i
˜
=1 (ni

˜
− 1)

]
Ep

U
,

respectively. We can ignore the summations in the denominators of these terms because they

are approximately equal under assumption (ii.) that disease status is uncorrelated with family

size and under the assumption thatF
A
≈ F

U
. Now, the only difference between the two terms

is that(1 − Ep
A
)Ep

U
is multiplied by(1 − Ep

U
) in the first term and byEp

A
in the second

term. Thus, if we assume thatE (1 − p
U
) > Ep

A
, then the first second-order term, which has

a negative sign in front of it, is larger in magnitude than thesecond second-order term, which
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has a positive sign in front of it. As a result, the bias introduced through the second-order terms

in (A.6) will be non-positive ifE (1 − p
U
) > Ep

A
andF

A
≈ F

U
. However, the results of the

simulation experiment in Section 3, whereπ̂ underestimatesπ by only a very small amount,

suggest that the bias introduced through the second- (and higher-) order terms is very small in

practice.�
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APPENDIX B

Proof thatπ̂x is only slightly biased at the first-order forπx

We defineπx ≡ f(Yij = 1|Xij = x), where individualij is randomly selected from among

the members of the population withXij = x. Assumption (i.) allows us to expandf(Yij =

1|Xij = x) as

πx = f(Yij = 1|Yij′ = 1,Xij = x)f(Yij′ = 1|Xij = x) (B.1)

+ f(Yij = 1|Yij′ = 0,Xij = x)f(Yij′ = 0|Xij = x),

where individualij′ is randomly selected from amongYij ’s relatives with disease statusYij′.

(In the remainder of this proof, we will assume thatj′ 6= j.) Under Assumption (vii.) about the

independence of probands’ disease status and relatives’ covariates,

πx = f(Yij = 1|Yij′ = 1,Xij = x)f(Yij′ = 1) + f(Yij = 1|Yij′ = 0,Xij = x)f(Yij′ = 0),

follows from (B.1). We can rewrite the preceding equation as

πx = πx
A
π + πx

U
(1 − π), (B.2)

whereπx
A

≡ f(Yij = 1|Yij′ = 1,Xij = x) andπx
U

≡ f(Yij = 1|Yij′ = 0,Xij = x). The

parametersπx
A

andπx
U

can be defined in terms of the finite population:

πx
A

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)
∑

j′ 6=j I(Yij′ = 1)
∑F

i=1

∑Ni

j=1 I(Xij = x)
∑

j′ 6=j I(Yij′ = 1)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)(NA
i − 1)

∑F
i=1

∑Ni

j=1

(
I(Xij = x)I(Yij = 1)(NA

i − 1) + I(Xij = x)I(Yij = 0)NA
i

)

=

∑F
i=1 NAx

i (NA
i − 1)

∑F
i=1

(
Nx

i NA
i − NAx

i

) , (B.3)
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and

πx
U

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)
∑

j′ 6=j I(Yij′ = 0)
∑F

i=1

∑Ni

j=1 I(Xij = x)
∑

j′ 6=j I(Yij′ = 0)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)NU
i∑F

i=1

∑Ni

j=1

(
I(Xij = x)I(Yij = 1)NU

i + I(Xij = x)I(Yij = 0)(NU
i − 1)

)

=

∑F
i=1 NAx

i NU
i∑F

i=1

(
Nx

i NU
i − NUx

i

) (B.4)

where NA
i =

∑Ni

j=1 I(Yij = 1); NU
i =

∑Ni

j=1 I(Yij = 0); Nx
i =

∑Ni

j=1 I(Xij = x);

NAx
i =

∑Ni

j=1 I(Yij = 1)I(Xij = x); andNUx
i =

∑Ni

j=1 I(Yij = 0)I(Xij = x).

Now, recall that

π̂x = px
A
π̂ + px

U
(1 − π̂), (B.5)

where

px
A

=

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

I(Xi
˜
j

˜
= x)I(Yi

˜
j

˜
= 1)

F
A∑

i
˜
=1

ni∑̃

j

˜
=2

I(Xi
˜
j

˜
= x)

and

px
U

=

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

i
˜
=2

I(Xi
˜
j

˜
= x)I(Yi

˜
j

˜
= 1)

F
A

+F
U∑

i
˜
=F

A
+1

ni∑̃

i
˜
=2

I(Xi
˜
j

˜
= x)

.

The estimator̂πx in (B.5) can be approximated by a second-order Taylor expansion around
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Eπ̂, Epx
U

and Epx
A

:

π̂x ≈
(
Epx

A
Eπ̂ + Epx

U
(1 − Eπ̂)

)

+ (π̂ − Eπ̂)
∂π̂x

∂π̂

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
(
px

U
− Epx

U

) ∂π̂x

∂px
U

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
(
px

A
− Epx

A

) ∂π̂x

∂px
A

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
1

2
(π̂ − Eπ̂)2

∂2π̂x

∂π̂2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
1

2

(
px

U
− Epx

U

)2 ∂2π̂x

∂px
U

2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
1

2

(
px

A
− Epx

A

)2 ∂2π̂x

∂px
A

2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+ (π̂ − Eπ̂)
(
px

A
− Epx

A

) ∂2π̂x

∂π̂∂px
A

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+ (π̂ − Eπ̂)
(
px

U
− Epx

U

) ∂2π̂x

∂π̂∂px
U

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
(
px

U
− Epx

U

) (
px

A
− Epx

A

) ∂2π̂x

∂px
U
∂px

A

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

.

Taking the expectation of both sides of the above equation yields

Eπ̂x ≈
(
Epx

A
Eπ̂ + Epx

U
(1 − Eπ̂)

)
(B.6)

+
1

2
Var(π̂)

∂2π̂x

∂π̂2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
1

2
Var(px

U
)

∂2π̂x

∂px
U

2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+
1

2
Var(px

A
)

∂2π̂x

∂px
A

2

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+ Cov(π̂, px
A
)

∂2π̂x

∂π̂∂px
A

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+ Cov(π̂, px
U
)

∂2π̂x

∂π̂∂px
U

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

+ Cov(px
U
, px

A
)

∂2π̂x

∂px
U
∂px

A

∣∣∣∣
Eπ̂,Epx

U
,Epx

A

.

We focus now on the leading term of the expectation of the Taylor expansion in (B.6): Epx
A

Eπ̂+

Epx
U
(1 − Eπ̂). We have already shown in Appendix A that, under conditions (i.)-(v.), π̂ has a

very small negative bias as an estimator forπ. To derive the bias inpx
A

andpx
U

, we introduce

indicators in order to rewrite them as

px
A

=

F∑

i=1

∑

{j: j∈J
˜i}

δAx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J
˜i}

δAxc

ij I(Xij = x)I(Yij = 1)

F∑

i=1

∑

{j: j∈J
˜i}

δAx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J
˜i}

δAxc

ij I(Xij = x)
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whereδAx
ij (or δAxc

ij ) equals1 if family memberij is sampled as part of a family ascertained

through a case proband with covariate valuex (or covariate value in the complement ofx) and

equals0 otherwise; and

px
U

=

F∑

i=1

∑

{j: j∈J
˜i}

δUx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J
˜i}

δUxc

ij I(Xij = x)I(Yij = 1)

F∑

i=1

∑

{j: j∈J
˜i}

δUx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J
˜i}

δUxc

ij I(Xij = x)

whereδUx
ij (or δUxc

ij ) equals1 if family memberij is sampled as part of a family ascertained

through a control proband with covariate valuex (or covariate value in the complement ofx)

and equals0 otherwise. For the sake of brevity, we will refer to the denominators ofpx
A

andpx
U

asdx
A

anddx
U

, respectively.

To derive the bias ofpx
A

as an estimator forπx
A

, we use the same Hartley-Ross (1954)

approach employed forp
A

in Appendix A:

Cov
(
px

A
, dx

A

)
= E

( F∑

i=1

∑

{j: j∈J
˜i}

δAx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J
˜i}

δAxc

ij I(Xij = x)I(Yij = 1)
)

− Epx
A
· E

( F∑

i=1

∑

{j: j∈J
˜i}

δAx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J
˜i}

δAxc

ij I(Xij = x)
)
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=
[ F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δAx
ij |δAx

i

))
I(Xij = x)I(Yij = 1)

+
F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δAxc

ij |δAxc

i

))
I(Xij = x)I(Yij = 1)

]

− Epx
A
·
[ F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δAx
ij |δAx

i

))
I(Xij = x) +

F∑

i=1

∑

{j: j∈J
˜i}

E
(

E
(
δAxc

ij |δAxc

i

))
I(Xij = x)

]

whereδAx
i equals1 if family i is ascertained via an affected proband with covariate valuex

and0 otherwise, and whereδAxc

i equals1 if family i is ascertained via an affected proband

with covariate value in the complement ofx and0 otherwise. Invoking Assumption (v.), the

preceding line reduces to

Cov(px
A
, dx

A
) =

[
s

F∑

i=1

∑

{j: j∈J
˜i}

E(δAx
i )I(Xij = x)I(Yij = 1) + s

F∑

i=1

∑

{j: j∈J
˜i}

E(δAxc

i )I(Xij = x)I(Yij = 1)
]

− Epx
A
·
[
s

F∑

i=1

∑

{j: j∈J
˜i}

E(δAx
i )I(Xij = x) + s

F∑

i=1

∑

{j: j∈J
˜i}

E(δAxc

i )I(Xij = x)
]

=
[
s

F∑

i=1

E(δAx
i )(NAx

i − 1) + s

F∑

i=1

E(δAxc

i )NAx
i

]

− Epx
A
·
[
s

F∑

i=1

E(δAx
i )(Nx

i − 1) + s

F∑

i=1

E(δAxc

i )Nx
i

]

=
[
sF

A
s

A

F∑

i=1

NAx
i (NAx

i − 1) + sF
A

s
A

F∑

i=1

NAxc

i NAx
i

]

− Epx
A
·
[
sF

A
s

A

F∑

i=1

NAx
i (Nx

i − 1) + sF
A

s
A

F∑

i=1

NAxc

i Nx
i

]

whereNAxc

i =
∑Ni

j=1 I(Xij 6= x)I(Yij = 1). Note that the last expression above follows from

the second-to-last expression above under Assumption (iii.) about proband selection and As-
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sumption (iv.) about single ascertainment. The last expression above can be rewritten as

Cov(px
A
, d

A
) = sF

A
s

A

F∑

i=1

NAx
i (NA

i − 1) − Epx
A
· sF

A
s

A

F∑

i=1

(
NA

i Nx
i − NAx

i

)
,

which, when rearranged and combined with (B.3), gives

Epx
A
− πx

A
= −

Cov(px
A
, dx

A
)

sF
A

s
A

F∑

i=1

(
NA

i Nx
i − NAx

i

)

= − Cor(px
A
, dx

A
) · SD(px

A
) · CV(dx

A
). (B.7)

We can use the Hartley-Ross (1954) approach to obtain an analogous expression for the bias

of px
U

as an estimator forπx
U

:

Epx
U
− πx

U
= −

Cov(px
U
, dx

U
)

sF
U

s
U

F∑

i=1

(
NU

i Nx
i − NUx

i

)

= − Cor(px
U
, dx

U
) · SD(px

U
) · CV(dx

U
). (B.8)

We can then use the same arguments made in Appendix A to establish that the right-hand

sides of (B.7) and (B.8) will be negligible when Assumption (ii.) holds. Thus, under Assump-

tion (ii.), px
A

andpx
U

are approximately unbiased estimators forπx
A

andπx
U

, respectively. Using

our previous finding that̂π slightly underestimateπ, along with the fact thatpx
A

will typically

exceedpx
U

for diseases that aggregate in families, we see that the leading term in (B.6) under-

estimatesπx slightly. Thus, to a first-degree approximation,π̂x is a slightly downwardly biased

estimator forπx. However, the results of the simulation experiment in Section 3 suggest that

the bias introduced by the leading term and also the higher order terms in (B.6) is very small.�
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APPENDIX C

Standard Errors and Confidence Intervals forπ̂ and π̂x

The delta method can be used to obtain approximate standard errors for π̂ andπ̂x. The approx-

imate standard error for̂π is

se(π̂) = π(1 − π) (C.1)

·

√√√√√ π
A

d
A
(1 − π

A
)


1 +

2ρ
A

d
A

F
A∑

i
˜
=1

(
ni
˜
− 1

2

)
 +

(1 − π
U
)

d
U
π

U


1 +

2ρ
U

d
U

F
A

+F
U∑

i
˜
=F

A
+1

(
ni
˜
− 1

2

)
,

whered
A

=
∑F

A

i
˜
=1

∑ni

˜j
˜
=2 1 andd

U
=

∑F
A

+F
U

i
˜
=F

A
+1

∑ni

˜j
˜
=2 1; ρ

A
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= 1, . . . , F

A
,

j
˜

> 1, j
˜
′ > 1, andj

˜
6= j

˜
′; andρ

U
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= F

A
+1, . . . , F

A
+F

U
, j
˜

> 1, j
˜
′ > 1,

andj
˜
6= j

˜
′. Note that the more the disease aggregates in families, the largerρ

A
andρ

U
will be

and therefore the larger the standard error forπ̂ will be.

The approximate standard error forπ̂x is

se(π̂x) =
√

aΣa
T , (C.2)

where

a =

[
π (1 − π)

(πx

A
−πx

U
)π2

π
U

(πx

A
−πx

U
)(1−π)2

1−π
A

]
; (C.2.a)

and

Σ =




σ1,1 0 σ1,3 0

0 σ2,2 0 σ2,4

σ1,3 0 σ3,3 0

0 σ2,4 0 σ4,4




(C.2.b)

with

σ1,1 =
πx

A
(1 − πx

A
)

dx
A


1 +

2ρx
A

dx
A

F
A∑

i
˜
=1

(
nx

i

2̃

)
 ,
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σ2,2 =
πx

U
(1 − πx

U
)

dx
U


1 +

2ρx
U

dx
U

F
A

+F
U∑

i
˜
=F

A
+1

(
nx

i

2̃

)
 ,

σ3,3 =
π

A
(1 − π

A
)

d
A


1 +

2ρ
A

d
A

F
A∑

i
˜
=1

(
ni
˜
− 1

2

)
 ,

σ4,4 =
π

U
(1 − π

U
)

d
U


1 +

2ρ
U

d
U

F
A

+F
U∑

i
˜
=F

A
+1

(
ni
˜
− 1

2

)
 ,

σ1,3 =
1

dx
A
d

A


σ1,1 + ρx,xc

A

F
A∑

i
˜
=1

nx
i
˜
nxc

i
˜


 ,

and

σ2,4 =
1

dx
U
d

U


σ2,2 + ρx,xc

U

F
A

+F
U∑

i
˜
=F

A
+1

nx
i
˜
nxc

i
˜


 .

Further,dx
A

=
∑F

A

i
˜
=1

∑ni

˜j
˜
=2 I(Xi

˜
j

˜
= x) anddx

U
=

∑F
A

+F
U

i
˜
=F

A
+1

∑ni

˜j
˜
=2 I(Xi

˜
j

˜
= x);

nx
i
˜

=
∑ni

˜j
˜
=2 I(Xi

˜
j

˜
= x) andnxc

i
˜

=
∑ni

˜j
˜
=2 I(Xi

˜
j

˜
6= x); ρx

A
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= 1, . . . , F

A
,

j
˜

> 1, j
˜
′ > 1, j

˜
6= j

˜
′, Xi

˜
j

˜
= Xi

˜
j

˜
′ = x; ρx

U
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= F

A
+ 1, . . . , F

A
+ F

U
,

j
˜

> 1, j
˜
′ > 1, j

˜
6= j

˜
′, Xi

˜
j

˜
= Xi

˜
j

˜
′ = x; ρx,xc

A
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= 1, . . . , F

A
, j
˜

> 1, j
˜
′ > 1,

j
˜
6= j

˜
′, Xi

˜
j

˜
= x, Xi

˜
j

˜
′ 6= x; andρx,xc

U
= Cor(Yi

˜
j

˜
, Yi

˜
j

˜
′) for i

˜
= F

A
+ 1, . . . , F

A
+ F

U
, j
˜
, j
˜
′ > 1,

j
˜
6= j

˜
′, Xi

˜
j

˜
= x, Xi

˜
j

˜
′ 6= x.

In practice, the population parameters in Equations (C.1) and (C.2) are replaced with esti-

mates, which yields estimated standard errors that we referto asŝe(π̂) andŝe(π̂x), respectively.

Although estimating the parametersπ, π
A

, π
U

, πx
A

, andπx
U

will not require additional calcula-

tion because they appear in Equations (2.1) and (2.2), the parametersρ
A

, ρ
U

, ρx
A

, ρx
U

, ρx,xc

A
, and

ρx,xc

U
will need to be calculated from the data using Pearson correlations.

The estimated quantitieŝπ andŝe(π̂) could be used to form a Wald interval forπ, which

would take the form CI= [π̂ ± zα/2ŝe(π̂)], wherezα/2 is theα/2 quantile of the standard nor-
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mal distribution. However, for small population prevalences (π < 0.2), Wald intervals do not

achieve their nominal coverage level because of the frequent occurrence of[0, 0] intervals for

samples with no diseased relatives. Various adjusted confidence intervals with improved cov-

erage probabilities have been proposed for population proportions, including the Agresti-Coull

(1998) interval, which has its roots in the work of Wilson (1927). Simply put, the Agresti-Coull

interval improves the Wald interval’s coverage propertiesby smoothing the proportion estimates

and the estimated standard errors away from zero. Miao and Gastwirth (2004) have performed

simulations to examine the performance of an Agresti-Coull-type interval (and various other

intervals) for proportions estimated from moderately-sized samples containing dependent clus-

ters. Since the Agresti-Coull-type interval appears to perform well in the simulations and,

further, is easy to compute, we adopt confidence intervals based on the same concept.

For the overall prevalence, the100 · (1 − α)% interval takes the form:

CI = π̃ ± zα/2

√
s̃e (C.3)

whereπ̃ ands̃e are calculated using the formulas forπ̂ andŝe(π̂), respectively, withp
A

replaced

by

p̃
A

=
d

A
p

A
+ (0.5z2

α/2)/100

d
A

+ (z2
α/2)/100

andp
U

replaced by

p̃
U

=
d

U
p

U
+ (0.5z2

α/2)/100

d
U

+ (z2
α/2

)/100
.

For the stratum-specific prevalence,πx, the100 · (1 − α)% interval takes the form:

CI = π̃x ± zα/2

√
s̃ex (C.4)

whereπ̃x and s̃ex are calculated using the formulas forπ̂x andŝe(π̂x), respectively, withp
A
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replaced bỹp
A

, p
U

replaced bỹp
U

, px
A

replaced by

p̃x
A

=
dx

A
px

A
+ (0.5z2

α/2)/100

dx
A

+ (z2
α/2)/100

andpx
U

replaced by

p̃x
U

=
dx

U
px

U
+ (0.5z2

α/2)/100

dx
U

+ (z2
α/2)/100

.
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Table 1: Number of Relatives With (Without) Major Depressive Disorder∗

Proband Sex of Relatives
Disease Status Male Female

Case 8 (65) 25 (80)
Control 4 (69) 8 (71)

∗ MDD was diagnosed by interviewing probands and their relatives using
the German translation (Wittchen et al. 1996) of the Structured Clinical
Interview for DSM-IV (First et al. 1994).

Table 2: Components of the Bias ofp
A

When Assumption (ii.) Does and Does Not Hold

Term Value
(for F

A
= 64 ands = 1)

Population 1 Population 2

Cor(Ni,
NA

i

Ni
) ≈ 0 Cor(Ni,

NA

i

Ni
) ≈ −0.19

Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij

)
0.001459 -0.137009

SD(p
A
) 0.033318 0.038691

CV(
∑F

i=1

∑
{j: j∈J

˜i}
δA
ij) 0.058140 0.054310

Percentage bias ofp
A

† -0.0017% 0.173%

† Percentage bias ofp
A

equals100 ·
(

Ep
A
−π

A

π
A

)
, whereπ

A
≈ 0.16; and where

Ep
A
− π

A
= Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
· SD

(
p

A

)
· CV

( F∑

i=1

∑

{j: j∈J
˜i}

δA
ij

)
.
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Table 3: Components of the Bias ofp
U

When Assumption (ii.) Does and Does Not Hold

Term Value
(for F

U
= 58 ands = 1)

Population 1 Population 2

Cor(Ni,
NA

i

Ni
) ≈ 0 Cor(Ni,

NA

i

Ni
) ≈ −0.19

Cor

(
p

U
,
∑F

i=1

∑
{j: j∈J

˜i}
δU
ij

)
-0.008865 -0.098235

SD(p
U
) 0.025768 0.020937

CV(
∑F

i=1

∑
{j: j∈J

˜i}
δU
ij) 0.061170 0.060793

Percentage bias ofp
U

† 0.0018% 0.2281%

† Percentage bias ofp
U

equals100 ·
(

Ep
U
−π

U

π
U

)
, whereπ

U
≈ 0.055; and where

Ep
U
− π

U
= Cor

(
p

U
,

F∑

i=1

∑

{j: j∈J
˜i}

δU
ij

)
· SD

(
p

U

)
· CV

( F∑

i=1

∑

{j: j∈J
˜i}

δU
ij

)
.
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Figure 1. Boxplots of overall, male, and female prevalence estimatesfrom 1, 000 small case-
control family datasets with64 case probands and58 control probands. Xs indicate the corre-
sponding population prevalences.

http://biostats.bepress.com/cobra/art31


