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Abstract

This paper focuses on marginal regression models for correlated binary responses
when estimation of the association structure is of primary interest. A new esti-
mating function approach based on orthogonalized residuals is proposed. This
procedure allows a new representation and addresses some of the difficulties of
the conditional-residual formulation of alternating logistic regressions of Carey,
Zeger & Diggle (1993). The new method is illustrated with an analysis of data on
impaired pulmonary function.
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1 Introduction

This paper focuses on marginal regression models for correlated binary re-

sponses when estimation of the association structure is of primary interest.

Throughout, all vectors are column vectors. Suppose data are available on K

independent subjects, families, pedigrees or clusters. Let i identify a cluster

and j and k index observations within a cluster. The triple index ijk refer-

ences observations j and k of cluster i, 1 ≤ j < k ≤ ni, where ni is the cluster

sample size. For cluster i, the response vector is Yi = (Yi1, . . . , Yini
)⊤, where

each Yij is a Bernoulli random variable with mean µij = pr(Yij = 1). Define

also µijk = E[YijYik] = pr(Yij = Yik = 1). The dependence or association

between Yij and Yik can be represented by the odds ratio

ψijk =
µijk(1 − µij − µik + µijk)

(µij − µijk)(µik − µijk)
,

the correlation coefficient, ρijk = corr(Yij, Yik), or by other measures such as

the kappa coefficient.

Dependence of the mean on covariates is modeled through a link func-

tion g1, g1(µij) = x⊤ijβ, where xij is a covariate p-vector associated with Yij

and the components of β are the mean parameters. Dependence of the pair-

wise association on covariates is modeled through a second link function g2,

g2(µij, µij, µijk) = z⊤ijkα, where zijk is a covariate q-vector associated with

the pair (Yij, Yik) and the components of α are the association parameters.

Common choices for link functions include logit and probit for the mean
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structure and log odds ratio and Fisher’s z-transformation of the correlation

coefficient for the association structure. Most of the discussions below are

not dependent on any particular choice of link functions. Finally, define θ be

the (p+q)-vector (β⊤, α⊤)⊤ and note that the covariance matrix Σi = cov(Yi)

is completely determined by θ.

The regression model described above is a marginal model because the

expectations involved in µij and µijk are not conditional on other responses

or on latent random effects. Differences in interpretation and applicability

of marginal, conditional and random-effects models have been elaborated

by Zeger, Liang & Albert (1988), Neuhaus, Kalbfleish & Hauk (1991) and

Heagerty & Zeger (2000). For ni > 2, the marginal model parameters θ

do not fully specify the joint distribution of Yi so that maximum-likelihood

estimation is not possible without further assumptions. Because the joint

distribution of Yi is determined by 2ni probabilities, except for small ni,

computation of maximum-likelihood estimates becomes very demanding.

To reduce this burden, second-order generalized estimating equations

were developed by Liang, Zeger & Qaqish (1992) for estimation of θ with

minimal further assumptions. The basic idea is to append to Yi the mi =

ni(ni − 1)/2 products Wijk = YijYik, then develop an estimating equation

based on the extended vector. The second-order generalized estimating equa-

3

Hosted by The Berkeley Electronic Press



tions are

Uθ,GEE2 =
K

∑

i=1









Di 0

Ai Ci









⊤

(Σ∗

i )
−1









Yi − µi

Wi − δi









, (1)

where Wi = (Wi12, · · · ,Wi,ni−1,ni
)⊤, δi = E[Wi], Ai = ∂δi/∂β, Ci = ∂δi/∂α

and Σ∗

i = cov((Y ⊤

i ,W
⊤

i )⊤). The matrix Σ∗

i involves third- and fourth-order

cross-moments not specified by the marginal model. A working version of Σ∗

i

is obtained by assuming that third- and fourth-order logistic contrasts are

zero (Liang et al., 1992).

For future reference we define the first-order generalized estimating equa-

tions for β (Liang & Zeger, 1986),

Uβ,GEE1 =
K

∑

i=1

D⊤

i Σ−1

i (Yi − µi) = 0, (2)

where

Σi = cov(Yi) = diag(σ
1

2

ijj)Ri diag(σ
1

2

ijj),

σijj = var(Yij) = µij(1 − µij) and Ri = corr(Yi).

A practical difficulty in implementing (1) for large clusters is that the

computational effort grows very quickly with ni. Computing (1) requires

solving a linear system in ni(ni + 1)/2 unknowns with effort O(n6

i ) float-

ing point operations. Besides computational complexity, another reason for

seeking alternatives to second-order generalized estimating equations is the

sensitivity of the β estimates to misspecification of the association model.
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Several alternatives to (1) combine Uβ,GEE1 with a pairwise kernel, κijk,

whose sum over all pairs defines the cluster’s contribution to the estimating

function for α,

Uα =
K
∑

i=1

∑

j<k

κijk.

Prentice (1988) suggested the pairwise kernel

κijk = −
∂Tijk

∂α

⊤ Tijk

var(Tijk)
(3)

where

Tijk =
(Yij − µij)(Yik − µik)

(σijjσikk)
1

2

− ρijk.

Lipsitz, Laird & Harrington (1991) developed an estimating function us-

ing the kernel

κijk =
∂δijk
∂α

⊤Wijk − δijk
var(Wijk)

. (4)

One final method is alternating logistic regressions (Carey, Zeger & Dig-

gle, 1993) which, along with Uβ,ALR = Uβ,GEE1, defines Uα,ALR using a pair-

wise kernel based on conditional residuals

κijk =
∂ζijk
∂α

⊤Mijk

Sijk

, (5)
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where

ζijk = E[Yij|Yik] = µij +
σijk

σikk

(Yik − µik),

σijk = cov(Yij, Yik) = µijk−µijµik,Mijk = Yij−ζijk, and Sijk = var(Yij|Yik) =

ζijk(1 − ζijk).

Lipsitz & Fitzmaurice (1996) showed that (5) can be used to model cor-

relations while Klar, Lipsitz & Ibrahim (1993) used it to estimate models for

rater agreement through the kappa coefficient.

In what follows, let Mi denote the vector with components Mijk and Si

denote the diagonal matrix with diagonal elements Sijk.

Note that the matrix Si is stochastic and does not consist of the diagonal

elements of any genuine covariance matrix; clearly var(Mijk) 6= ζijk(1− ζijk).

Stochastic covariance matrices in estimating equations are feasible (Heyde,

1997, section 2.6) in the context of nested sigma fields leading to a martin-

gale structure, but that is not the case with (5). The stochastic nature of

Si and ∂ζi/∂α makes theoretical investigation of (5) through standard esti-

mating equation theory not possible. Another point is that although Uα,ALR

is invariant to permutations of the Yi vector (Carey, 1992; Kuk, 2004) the

associated robust variance estimator is not. In the current SAS software, ver-

sion 9.2, the robust variance estimator is averaged over estimators obtained

from the original yi and a reversed version of yi (personal communication

with Vincent Carey and with Gordon Johnston at SAS Institute). While
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this approach achieves invariance to the permutations of Yi, it is unclear if

this approximation is appropriate.

Asymptotic efficiency calculations reported by Carey et al. (1993) show

Uα,ALR to be nearly as efficient as Uα,GEE2. The calculations were limited

to equal size clusters, ni = 4, with a common covariate pattern used for all

clusters. Lipsitz & Fitzmaurice (1996) found that Uα,ALR is more efficient

than methods that rely on (3) or (4), especially when the pairwise correlation

is high or when cluster size is variable. However, their efficiency calculations

were limited to the case ni ≤ 3.

2 Orthogonalized Residuals

2.1 Genesis

The orthogonalized residuals approach is based on two ideas. First, pair-

wise residuals are developed via a projection argument. Second, a weighted

combination of these residuals is formed using an approximate covariance

matrix that is still computationally feasible for larger clusters. Let RiY W =

corr((Y ⊤

i ,W
⊤

i )⊤) and RiWW = corr(Wi). The matrix RiY W has elements of

the form corr(Yij′,Wijk). It is natural to expect elements with j′ = j or j′ = k

to be largest in magnitude. To eliminate these correlations, the orthogonal-

ized residuals approach utilizes the residuals from the linear regressions of

7

Hosted by The Berkeley Electronic Press



the Wijk on Yij and Yik. Specifically, Qijk =

Wijk − {µijk + bijk:j(Yij − µij) + bijk:k(Yik − µik)} , (6)

where

bijk:j = µijk(1 − µik)(µik − µijk)/dijk,

bijk:k = µijk(1 − µij)(µij − µijk)/dijk,

dijk = σijjσikk − σ2

ijk.

It follows that corr(Yij, Qijk) = corr(Yik, Qijk) = 0, so this definition of Qijk

introduces ni − 1 zeros into each row of RiY Q = corr((Y ⊤

i , Q
⊤

i )⊤), where Qi

is an mi-vector with elements Qijk. In addition, we have observed that this

construction tends to reduce the magnitude of the other entries in RiY Q as

compared to RiY W , and also the magnitude of the off-diagonal elements in

RiQQ = corr(Qi) as compared RiWW . A numerical example is given below.

The orthogonalized residuals estimating equation for the marginal asso-

ciation parameters is

Uα,ORTH =
K

∑

i=1

E

[

−∂Qi

∂α

⊤
]

P−1

i Qi =
K

∑

i=1

C⊤

i P
−1

i Qi, (7)

where Pi is a diagonal matrix with elements vijk = var(Qijk) =

µijk(µij − µijk)(µik − µijk)(1 − µij − µik + µijk)

µijµik(1 − µij − µik + 2µijk) − µ2

ijk

.
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The estimating equation for β is Uβ,ORTH = Uβ,GEE1. The computational

advantage of the diagonal structure for Pi is that a simple explicit inverse

exists, and matrices of dimension mi ×mi need never be formed in computer

memory. The computational effort is identical to that for (3), (4) and (5).

Computation proceeds by iteratively reweighted least squares.

Following arguments similar to Prentice (1988) and Liang & Zeger (1986),

the asymptotic distribution of K
1

2 (θ̂−θ) is multivariate Gaussian with mean

zero and covariance matrix consistently estimated by KL−1ΛL−⊤ where L

and Λ consist of the following blocks

L11 =
K

∑

i=1

D̂⊤

i V̂
−1

i D̂i,

L12 = 0,

L21 = −
K

∑

i=1

Ĉ⊤

i P̂
−1

i Ê

[

∂Qi

∂β

]

,

L22 =
K

∑

i=1

Ĉ⊤

i P̂
−1

i Ĉi,

Λ11 =
K

∑

i=1

D̂⊤

i V̂
−1

i ˜cov(Yi)V̂
−1

i D̂i,

Λ12 =
K

∑

i=1

D̂⊤

i V̂
−1

i ˜cov((Y ⊤

i , Q
⊤

i )⊤)P̂−1

i Ĉi,

Λ21 = Λ⊤

12
,

Λ22 =
K

∑

i=1

Ĉ⊤

i P̂
−1

i ˜cov(Qi)P̂
−1

i Ĉi,

where hats denote evaluation at θ̂, ˜cov(Yi) = (Yi−µ̂i)(Yi−µ̂i)
⊤, ˜cov((Y ⊤

i , Q
⊤

i )⊤) =
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(Yi − µ̂i)Q̂
⊤

i , and ˜cov(Qi) = Q̂iQ̂
⊤

i . It is clear from (6) that Qijk = Qikj

which implies that both Uα,ORTH and its associated robust variance estima-

tor KL−1ΛL−⊤, are invariant to permutations of the data yi.

It is shown in the appendix that orthogonalized residuals is equivalent

to alternating logistic regressions, and is true for all link functions g1 and

g2. However, the formulation of (7) offers the advantage that it follows a

standard estimating equation approach. Thus it resolves the difficulties men-

tioned above with the formulation of alternating logistic regressions and offers

insight into their efficiency behaviour. A practical advantage of Uα,ORTH is

that the associated robust variance estimator is invariant to permutations of

yi.

2.2 Example

The effectiveness of orthogonalization is illustrated using data from the 6-City

Study (Ware et al., 1984). The response vector Yi consists of ni = 4 binary

observations per child, indicating respiratory illness at ages 7–10. Only data

from the 350 children with non-smoking mothers are used. The data are

summarized in Table 1.

The 16 observed proportions, (237/350, · · · , 11/350), are used as the true

distribution under which the correlation matrices presented below are calcu-
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Table 1: Summary of 6-City Outcomes

y1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
y2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
y3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Count 237 24 16 6 15 3 7 5 10 3 2 2 4 2 3 11

lated. The correlation between the residuals Yi − µi and Wi − δi is

RiY W =

























0.62 0.58 0.53 0.35 0.36 0.33

0.65 0.44 0.38 0.68 0.56 0.38

0.41 0.62 0.39 0.69 0.42 0.60

0.38 0.42 0.68 0.40 0.68 0.72

























The largest entries, bolded, are those of the type corr(Yij′,Wijk) where j′ = j

or k with an average of 0.63. The average of the remaining correlations is

0.39. In contrast, the correlation between Yi − µi and the orthogonalized

residuals Qi is

RiY Q =

























0 0 0 0.08 0.09 0.08

0 0.11 0.10 0 0 0.06

0.10 0 0.09 0 0.07 0

0.14 0.14 0 0.09 0 0

























The construction of Qi introduces ni−1 = 3 zeros into each row of RiY Q.
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Remarkably, the other correlations have gone down considerably; from an

average of 0.39 to 0.10. Overall, the average entry has gone down from 0.51

to 0.05. This shows that orthogonalization is quite effective in achieving ap-

proximate orthogonality between the two sets of residuals. An added benefit

occurs in RiQQ. The matrix RiWW has off-diagonal elements ranging from

0.47 to 0.72, and averaging 0.62. By comparison, for RiQQ, the range is 0.15

to 0.44, and the average is 0.30.

3 Application

The orthogonalized residuals approach was applied to data from parents and

siblings of subjects with chronic obstructive pulmonary disease (COPD) and

their controls (Cohen, 1980). The outcome of interest is impaired pulmonary

function. The model for the marginal mean is the same as that used in Qaqish

& Liang (1992) and includes the covariates: intercept, sex, race, age centered

at 50, smoking staus and an indicator as to whether the subject was a relative

of someone with COPD or a control. Associations are modeled through log

odds ratios with distinct parameters for each familial relationship: parent-

parent (αpp), sibling-sibling (αss) or parent-sibling (αps).

Table 2 displays estimates obtained from GEE2 (Qaqish & Liang, 1992),

alternating logistic regressions from SAS GENMOD (ALR; SAS Institute

Inc.) and by orthogonalized residuals(ORTH). Results for the parameter

estimates for ALR and ORTH are identical by definition; however, the stan-
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Table 2: Association Parameter Estimates and Empirical Standard Errors
Model Parent-Parent(αpp) Sibling-Sibling(αss) Parent-Sibling(αps)
GEE2 -1.09 0.873 0.984

(1.09) (0.565) (0.519)
ORTH -1.177 1.108 0.986

(1.138) (0.764) (0.673)
ALR -1.177 1.108 0.986

(1.385) (0.603) (0.717)
Results are parameter (stderr). GEE2 from Qaqish & Liang (1992).

dard errors for αpp and αss are quite different due to the approximation used

within GENMOD. In fact, ALR under- or overestimates the standard errors

computed by ORTH by as much as 21% or 22%, respectively.

4 Discussion

This paper described a new method for estimation of association parame-

ters for correlated binary responses. Orthogonalized residuals offer a new

representation of alternating logistic regressions through marginal residuals,

and thus provide insight into the alternating logistic regressions estimating

equations. Further, orthogonalized residuals eliminate the need for the ap-

proximation to the robust variance estimator currently used for alternating

logistic regressions.

An additional consequence of the formulation of alternating logistic re-

gressions in Carey et al. (1993) is that it is not clear how to allow a non-
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diagonal Si to improve efficiency for the marginal association parameters.

However, orthogonalized residuals does not have this difficulty. It is possible

to expand the diagonal structure of Pi by assuming a working correlation

matrix R∗

iQQ(λ) for RiQQ and approximating cov(Qi) using

Pi := diag(v
1

2

ijk)R
∗

iQQ(λ)diag(v
1

2

ijk),

where λ is an r-vector of nuisance parameters to be estimated. One par-

ticular structure of interest would have two correlation parameters; one for

pairs (j, k) and (j′, k′) that share an index and another for the case where

all indices are distinct. However, complex formulations of R∗

iQQ(λ) will be

limited to clusters of small to moderate size since it is necessary to invert Pi.

A possibility for clusters of any size is an exchangeable structure of R∗

iQQ(λ).

Exploring these methods is a topic of future research.
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Appendix

Proof that the orthogonalized residuals estimating equation is equivalent to

alternating logistic regressions. Since Uβ is the same for both approaches, it

suffices to show that Uα,ALR = Uα,ORTH where

Uα,ALR =
K

∑

i=1

∑

j<k

∂ζijk
∂α

⊤ Yij − ζijk
ζijk(1 − ζijk)

and

Uα,ORTH =
K
∑

i=1

∑

j<k

∂µijk

∂α

⊤Qijk

vijk

.

Further, it suffices to show that the contributions from each (j, k) pair are

equal. Note that µijk = µijµik + ρijk(σijjσikk)
1

2 and

ζijk = µij +
σijk

σikk

(Yik − µik) = µij + ρijk(σijjσikk)
1

2

(Yik − µik)

σikk

.

Writing

∂ζijk
∂α

=
∂ρijk

∂α

∂ζijk
∂ρijk

=
∂ρijk

∂α
(σijjσikk)

1

2

(Yik − µik)

σikk

=
∂ρijk

∂α

∂µijk

∂ρijk

(Yik − µik)

σikk

=
∂µijk

∂α

(Yik − µik)

σikk

,

it follows that the contributions are equal if

Yik − µik

σikk

Yij − ζijk
ζijk(1 − ζijk)

=
Qijk

vijk

.
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Straightforward algebra shows that the above equality is true for each of

the four possible patterns of (Yij, Yik), that is, for

(Yij, Yik) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
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