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Doubly Robust Ecological Inference

Daniel B. Rubin and Mark J. van der Laan

Abstract

The ecological inference problem is a famous longstanding puzzle that arises in
many disciplines. The usual formulation in epidemiology is that we would like to
quantify an exposure-disease association by obtaining disease rates among the ex-
posed and unexposed, but only have access to exposure rates and disease rates for
several regions. The problem is generally intractable, but can be attacked under
the assumptions of King’s (1997) extended technique if we can correctly specify
a model for a certain conditional distribution. We introduce a procedure that it is
a valid approach if either this original model is correct or if we can pose a correct
model for a different conditional distribution. The new method is illustrated on
data concerning risk factors for diabetes.



1 Introduction

Can air pollution lead to diabetes? Lockwood (2002) posed this question
and suggested it warranted attention, because dioxin exposure was a possible
mechanism, and diabetes prevalences for U.S. states strongly correlated with
a measure of statewide toxic releases (r = 0.54, p < .0001). Others were
skeptical, such as Nicolich (2002), who showed these prevalences also strongly
correlated with irrelevant variables like state capital latitudes or state places
in an alphabetical list. Lockwood’s question appears open, as there does not
seem to be convincing evidence for or against the hypothesis.

Why didn’t the correlation settle that toxic emmisions cause diabetes?
First, as Lockwood implied, confounding was a possibility. Maybe people
in polluted states had different diets than those in other states, or different
demographics (Marquez et al., 2004). Confounding could have been an issue
even if there had been observational data on individuals instead of states,
and people were asked about both diabetes and their exposure to pollution.
A second problem was that the state-level correlation did not even determine
an individual-level association, as there was no way to tell whether diabetics
in polluted states were the ones actually breathing the polluted air.

Unlike confounding, this second difficulty arose because the study was
ecological, meaning observational units were not individuals, but regions. To
incorrectly assume that an exposure-disease association among aggregates of
individuals implies the association holds among individuals themselves is to
commit what is known as the ecological fallacy. Because ecological studies
cannot always determine an individual-level association, they are considered
weak evidence when investigating an exposure-disease relationship.

Nevertheless, ecological studies are common in epidemiology, as reviewed
in Wakefield (2008). This is primarily due to the ease of data collection.
Lockwood’s pollution and diabetes data were found from the web pages of
two government agencies, and it would have taken much longer to sample
individuals from a population, determine if they were diabetic, and quantify
their exposure to pollution. If two surveillance systems have released data
on an exposure and a disease, ecological studies are often convenient. They
can therefore serve as starting points for epidemiological inquiry, which was
clearly Lockwood’s aim. They have played supporting roles in many success
stories, including John Snow’s classical work on cholera, and arguments for
conducting clinical trials that showed circumcision to be protective against
HIV (Bongarrts et al., 1989; Moses et al., 1990; Bailey et al., 2001).
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A great deal of work has gone into ecological inference, or the analysis
of ecological studies. We give pointers to references in Section 14, but the
impetus for this paper is the literature growing out of King’s (1997) extended
model. King’s book is influential and highly cited, his approach has the
distinction of being accepted in U.S. courts for legal testimony, and a report
for the U.S. National Academy of Science concluded “it is not premature
to note that this estimation procedure to date represents the most dramatic
advance in researchers’ ability to draw microlevel inferences from aggregate-
level data” (Schuessler, 1999).

Under King’s assumptions, it is possible to estimate an individual-level
exposure-disease association from an ecological study if one can specify an
approximately correct statistical model for a certain conditional distribution.
To state our contribution convincingly but vaguely, we present a method
allowing one to also specify a statistical model for a different conditional
distribution, and obtain desirable overall performance if at least one of the
two models is approximately valid. This property of having two chances for
success is known as double robustness in the statistical literature.

2 The statistical problem

Suppose we have data for n regions. The data for region i are

Wi = vector of regional covariates, including regional population size Ni

Ai = proportion of people subject to an exposure

Yi = proportion of people with a disease.

The air pollution and diabetes example does not fall exactly into this frame-
work, because Lockwood’s state-level exposure measurements are pounds of
released toxins. However, it is easy to imagine there instead being state-
level data on the proportion of people living in highly polluted cities. The
covariate vector could include prevalences for potential confounders of the
exposure-disease relationship. In the diabetes example, we could imagine
obtaining state-level dietary information and demographic profiles.

The main problem for inferring an exposure-disease association is that we
don’t know regional exposure-specific disease rates

YE,i = proportion diseased among those exposed

YU,i = proportion diseased among those unexposed.
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Instead, observed exposure and disease rates are related to the unobserved
exposure-specific disease rates through

Yi = AiYE,i + (1 −Ai)YU,i.

If we had access to regional exposure-specific disease rates, we could com-
pute the exposure-specific disease rates among all individuals, or

µE =
number of exposed with disease

number of exposed
=

n−1
∑n

i=1 NiAiYE,i

n−1
∑n

i=1 NiAi

µU =
number of unexposed with disease

number of unexposed
=

n−1
∑n

i=1 Ni(1 −Ai)YU,i

n−1
∑n

i=1 Ni(1 −Ai)
.

The two unknowns are building blocks for epidemiology, as they determine
measures of association like the excess risk, relative risk, and odds ratio.
Our goal will consequently be to estimate these total exposure-specific dis-
ease rates. To make denominators nonzero we ignore trivial scenarios where
everyone is exposed or unexposed. In such cases one exposure-specific dis-
ease rate is the disease rate itself while the other is undefined. We are less
ambitious than other analysts who estimate exposure-specific disease rates
for each of the n regions. Rather than two unknowns the latter problem
entails estimating 2n unknowns. In the given example, our two quantities of
interest would be the total proportion of diabetics among those who live or
do not live in heavily polluted cities.

3 Incorporating deterministic information

Before viewing the data, we can only know the total exposure-specific disease
rates are somewhere in the unit square. The data tell us they live on a line
segment in the unit square, and estimators can exploit this knowledge.

From Duncan and Davis (1953), we can bound regional disease rates
under exposure through

YE,i ∈ [Li, Ri] = [max(0, (Yi − 1 + Ai)/Ai), min(1, Yi/Ai)] .

The implication for the total disease rate under exposure is the bound

µE ∈ [L,R] =

[
n−1

∑n
i=1 NiAiLi

n−1
∑n

i=1 NiAi
,

n−1
∑n

i=1 NiAiRi

n−1
∑n

i=1 NiAi

]
.
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The total exposure-specific disease rates (µE, µU) must also satisfy Ȳ =
ĀµE + (1 − Ā)µU , where Ā =

∑n
i=1 NiAi/

∑n
i=1 Ni is the total proportion

of people exposed, and Ȳ =
∑n

i=1 NiYi/
∑n

i=1 Ni is the total proportion of
people with the disease. Together with the bound on µE , it follows that
total exposure-specific disease rates (µE, µU) live on the line segment con-
necting (L, (Ȳ − ĀL)/(1− Ā)) and (R, (Ȳ − ĀR)/(1− Ā)) in the unit square.
Following King (1997), this segment is often called the tomography line.

Even though our two proportions of interest must live on the tomography
line, many estimates returned by common procedures do not. An example is
Goodman’s (1953, 1959) ecological regression estimate, which can be outside
the unit square, even though the object is to find two rates. Our initial doubly
robust estimate shares this disadvantage. The difficulty can be avoided by
mapping an initial estimate to a point on the tomography line. For instance,
we could take our final estimate µ̃ = (µ̃E, µ̃U) to be the closest point on
the line segment to the initial estimate µ̂ = (µ̂E, µ̂U) in terms of Euclidean
distance. There is a simple solution to

µ̃ = (µ̃E , µ̃U) = argmin(x,y)‖(µ̂E, µ̂U)− (x, y)‖2
such that L ≤ x ≤ R and Ȳ = Āx + (1− Ā)y.

We project the initial µ̂ on the extension of the tomography line to the
plane, set µ̃ equal to this projection result if it is on the tomography line,
and otherwise set µ̃ to whichever tomography line endpoint is closer to µ̂.

It is thus relatively simple for any estimator to benefit from potentially
valuable deterministic constraints, including our doubly robust estimator.

4 Assumptions of King’s extended model

A consensus exists in the ecological inference literature that any point esti-
mation procedure must depend on strong suppositions that cannot be verified
from the data. Techniques related to King’s extended model make the three
assumptions described below, which we modify and relax in a new way.

On matters of notation, King supposes there are two covariates for each
region, with one related to the exposed and the other to the unexposed, but
we combine all covariates in one vector. He also presents our epidemiological
problem as a mathematically equivalent one in political science. Finally, we
have referenced King’s “extended model,” but his basic model is the special
case with no covariates.

4
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4.1 No spatial autocorrelation

We begin by thinking of regional exposure rates and exposure-specific disease
rates as random variables. The variables corresponding to different regions
are assumed to be independent. It makes little difference whether covari-
ates are fixed or random. Although King’s model was introduced in the
fixed design setting, we take them to be random. Formally, the assumption
is then that (W1, A1, YE,i, YU,i), ..., (Wn, An, YE,n, YU,n) are mutually indepen-
dent. Although the assumption is not intuitive for many applications, King
(1997), Cho (1998), and King et al. (2004) note that reasonable dependence
across regions does not introduce major problems for standard estimators.

Numerators n−1
∑n

i=1 NiAiYE,i and n−1
∑n

i=1 Ni(1−Ai)YU,i of our desired
quantities can be handled by extensions of the law of large numbers to the
non-i.i.d. setting. With many regions and no handful of terms dominating
variances of these numerators, they will with large chance be approximately

θE = n−1
n∑

i=1

E[NiAiYE,i]

θU = n−1
n∑

i=1

E[Ni(1−Ai)YU,i].

We will thus view the problem through the lens of parameter estimation, and
estimate total exposure-specific disease rates with

µ̂E =
θ̂E

n−1
∑n

i=1 NiAi

µ̂U =
θ̂U

n−1
∑n

i=1 Ni(1 −Ai)
.

This µ̂ = (µ̂E, µ̂U ) can then be mapped into a final µ̃ = (µ̃E, µ̃U ) obeying
deterministic constraints, as discussed in Section 3.

4.2 No unmeasured aggregation bias

The second condition is that we collect enough covariate information to
ensure a region’s exposure rate can provide no additional insight into its
exposure-specific disease rates, written as the conditional independence

{(YE,i, YU,i) ⊥ Ai|Wi}. (1)

5
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Unfortunately, this assumption cannot be tested from the data. It is also
not entirely clear to what extent domain knowledge can help in collecting
covariates to guarantee it holds.

Viewing observed regional data (Wi, Ai, Yi = AiYE,i + (1 − Ai)YU,i) as
a coarsened version of unavailable (Wi, YE,i, YU,i), Imai et al. (2008) remark
that the assumption corresponds to Heitjan and Rubin’s (1991) coarsening at
random, meaning the coarsening process only depends on data that is always
available. This is generally the weakest condition allowing one to ignore
the unavailable information when fitting statistical models with maximum
likelihood in coarsened data structures, and is used by the most popular
methods for missing data problems, causal inference, and survival analysis.

4.3 Correct exposure-specific disease rate model

The final assumption is that exposure-specific disease rates for different re-
gions are drawn from a common conditional distribution given covariates,
and that this distribution can be correctly modeled.

We write this as {YE,i, YU,i|Wi} ∼ f0, and suppose f0 belongs to some
parametric family. In King’s model, exposure-specific disease rates (YE,i, YU,i)
are bivariate normal with mean [α0 + αT

1 Wi, β0 + βT
1 Wi] and unknown co-

variance matrix, but conditioned to fall in the unit square. Other models
have been proposed. Imai and Lu (2005) take [logit YE,i, logit YU,i] to be
bivariate normal with mean [α0 +αT

1 Wi, β0 +βT
1 Wi] and unknown covariance

matrix, and Wakefield (2004) discusses a related strategy. More complex
models involve beta and binomial distributions (King et al., 1999).

With no spatial autocorrelation and no unmeasured aggregation bias, it
is possible to factor the observed data likelihood into a part only depending
on f0, and fit the model with f̂ through an MLE or a Bayes estimate. Due
to no unmeasured aggregation bias, E[YE,i|Wi, Ai, Yi] and E[YU,i|Wi, Ai, Yi]
do not depend on parts of the (Wi, Ai, YE,i, YU,i) distribution other than f0.
Our parameters of interest can then be estimated through

θ̂E = n−1
n∑

i=1

NiAiEf̂ [YE,i|Wi, Ai, Yi]

θ̂U = n−1

n∑

i=1

Ni(1−Ai)Ef̂ [YU,i|Wi, Ai, Yi], (2)

which would be unbiased if we could substitute the unknown f0 for fit f̂ .

6
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5 An exposure rate model

In addition to modeling the conditional distribution just discussed in Section
4.3, we need to model another conditional distribution. If the new model is
accurate, we exploit information previous methods have ignored.

The second model supposes exposure rates for different regions are drawn
from a common conditional distribution given covariates, so {Ai|Wi} ∼ g0,
and we can form a fit ĝ as g0 belongs to a parametric family. We treat
exposure rates as continuous, and hence take g0 to be a conditional density,
but our estimator could be formulated with g0 a conditional mass function.

In our data analysis of Section 10 we formed ĝ with the beta regression
of Ferrari and Cribari-Neto (2004), available through the Comprehensive R
Archive Network in the betareg package (Bustamante Simas, 2004). The
model specifies that conditional on covariate Wi, exposure rate Ai follows a
beta distribution with shapes φσ(β0 +βT

1 Wi) and φ(1−σ(β0 +β1Wi)), where
φ is a dispersion parameter and σ(x) = (1 + exp(−x)) is the sigmoidal link.

Although not done in our data analysis, we recommend artificially bound-
ing the fitted function ĝ away from zero, because our estimator involves in-
verse density weights 1/ĝ(Ai|Wi) that can lead to instability if too large.

6 Doubly robust estimator

We are now ready to present a new method that should perform well if one
of two models is approximately correct.

Our procedure depends on a user-specified weight function h on the unit
interval that is nonnegative, bounded, and nonzero in that

∫ 1

0
h(s)ds > 0.

We will have more to say about how to choose the weight function in the next
section, but for now suppose we have made a decision. Define the matrix

H =



∫ 1

0
h(s)ds

∫ 1

0
sh(s)ds

∫ 1

0
sh(s)ds

∫ 1

0
s2h(s)ds


 ,

and note that it is nonsingular. We also define the functions

VE(a;h) =

(
[1, 1]TH−1

[
1
a

])
h(a)

VU (a;h) =

(
[1, 0]TH−1

[
1
a

])
h(a).

7
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For given f and g not necessarily related to the unknown data generating
distribution, we additionally define functions of regional data according to

DE(Wi, Ai, Yi;h; f ; g) = NiAiEf [YE,i|Wi]

+NiEg[Ai|Wi]
VE(Ai;h)

g(Ai|Wi)
(Yi −AiEf [YE,i|Wi]− (1 −Ai)Ef [YU,i|Wi])

DU (Wi, Ai, Yi;h; f ; g) = Ni(1−Ai)Ef [YU,i|Wi]

+Ni(1− Eg[Ai|Wi])
VU(Ai;h)

g(Ai|Wi)
(Yi −AiEf [YE,i|Wi]− (1 −Ai)Ef [YU,i|Wi]) .

With fits f̂ and ĝ from models described in Section 4.3 and Section 5, the
doubly robust parameter estimates are

θ̂E = n−1

n∑

i=1

DE(Wi, Ai, Yi;h; f̂ ; ĝ)

θ̂U = n−1

n∑

i=1

DU (Wi, Ai, Yi;h; f̂ ; ĝ),

which induce total exposure-specific disease rate estimates as in Section 4.1.
The following theorem expresses that our parameter estimators should

behave in large samples like unbiased empirical means if one of f̂ or ĝ is
based on a correct model. The previously given estimators of (2) can behave
similarly, but depend on f̂ being built from a correct model.

Theorem 1. Assume no unmeasured aggregation bias as in (1). Let f0,i

and g0,i denote the true conditional distribution and conditional density for
{YE,i, YU,i|Wi} and {Ai|Wi}, and let f and g denote another conditional dis-
tribution and another conditional density. Assume Ni is bounded, and take
g to be bounded away from zero on the support of weight function h in that
h(Ai)/g(Ai|Wi) is bounded. Suppose that either f = f0,i in the sense that

Ef [YE,i|Wi] = Ef0,i [YE,i|Wi] and Ef [YU,i|Wi] = Ef0,i [YU,i|Wi] almost surely,

or g = g0,i in the sense that

h(Ai)

g(Ai|Wi)
=

h(Ai)

g0,i(Ai|Wi)
and Eg[Ai|Wi] = Eg0,i [Ai|Wi] almost surely.

Then DE(Wi, Ai, Yi;h; f ; g) and DU (Wi, Ai, Yi;h; f ; g) have expected values
E[NiAiYE,i] and E[Ni(1−Ai)YU,i].

8
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Proof. The conditions on Ni and h(Ai)/g(Ai|Wi) being bounded ensure the
expectations that follow will be well defined and finite. The latter implies
VE(Ai;h)/g(Ai|Wi) and VU (Ai;h)/g(Ai|Wi) are also bounded random vari-
ables, almost surely equal to VE(Ai;h)/g0,i(Ai|Wi) and VU(Ai;h)/g0,i(Ai|Wi)
if the theorem’s g = g0,i condition holds. We also note that it is a simple

calculation to show
∫ 1

0
sVE(s;h)ds = 1 and

∫ 1

0
(1− s)VE(s;h)ds = 0.

We find E[DE(Wi, Ai, Yi;h; f ; g)] by first conditioning on (Wi, YE,i, YU,i).
As L(Ai|Wi, YE,i, YU,i) = L(Ai|Wi) by no unmeasured aggregation bias, this
conditional mean is an integral with respect to g0,i(·|Wi), and is given by

NiEg0,i [Ai|Wi]Ef [YE,i|Wi]

+NiEg[Ai|Wi](YE,i − Ef [YE,i|Wi])

∫ 1

0

g0,i(s|Wi)

g(s|Wi)
sVE(s;h)ds

+NiEg[Ai|Wi](YU,i −Ef [YU,i|Wi])

∫ 1

0

g0,i(s|Wi)

g(s|Wi)
(1− s)VE(s;h)ds.

Taking a further conditional expectation by conditioning on W , we obtain

NiEg0,i [Ai|Wi]Ef [YE,i|Wi]

+NiEg[Ai|Wi](Ef0,i[YE,i|Wi]− Ef [YE,i|Wi])

∫ 1

0

g0,i(s|Wi)

g(s|Wi)
sVE(s;h)ds

+NiEg[Ai|Wi](Ef0,i[YU,i|Wi]− Ef [YU,i|Wi])

∫ 1

0

g0,i(s|Wi)

g(s|Wi)
(1-s)VE(s;h)ds.

If f = f0,i as in the theorem, the second and third terms vanish and the
first is equal to NiEg0,i [Ai|Wi]Ef0,i [YE,i|Wi]. If g = g0,i as in the theorem,

then
∫ 1

0
sVE(s;h)ds = 1 and

∫ 1

0
(1 − s)VE(s;h)ds = 0 imply the integrals in

the second and third terms respectively are one and zero, so the third term
vanishes. With Eg[Ai|Wi] = Eg0,i[Ai|Wi], we combine the first and second
terms to again obtain NiEg0,i [Ai|Wi]Ef0,i [YE,i|Wi]. We conclude from the law
of iterated expectations that DE(Wi, Ai, Yi;h; f ; g) has mean

E[E[E[DE(Wi, Ai, Yi;h; f ; g)|Wi, YE,i, YU,i]|Wi]]

= E[NiEg0,i [Ai|Wi]Ef0,i [YE,i|Wi]]

= E[E[NiAiYE,i|Wi]] by no unmeasured aggregation bias

= E[NiAiYE,i].

To show the result for DU (Wi, Ai, Yi;h; g; f), we repeat the argument,

only now use that
∫ 1

0
sVU (s;h)ds = 0 and

∫ 1

0
(1− s)VU (s;h)ds = 1.

9
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Remark 1. The theorem uses fixed f and g, but our estimator uses fits f̂ and
ĝ depending on the data. It would require finer analysis to examine the bias
and variance of actual estimators, or to establish consistency and asymptotic
normality. To our knowledge, this project has also not been undertaken for
the existing estimators of Section 4.3.

Remark 2. With trivial f̂ such that Ef̂ [YE,i|Wi] = Ef̂ [YU,i|Wi] = 0, the
theorem implies the resulting Horvitz-Thompson style estimator using inverse
density weighting should be appropriate with correct modeling of the regional
exposure rate. To our knowledge, such estimators depending entirely on this
model are also new to ecological inference.

7 The weight function

Rescaling the weight function does not change the estimator, so we can with-
out loss of generality take

∫ 1

0
h(s)ds = 1. The problem is in determining how

much of the unit interval should be heavily weighted.
We recommend choosing the weight function to make h(Ai) small when-

ever ĝ(Ai|Wi) can be large, so extreme h(Ai)/ĝ(Ai|Wi) do not destabilize
results. However, if h(Ai) is frequently close to zero then the estimator starts
depending less on our exposure-rate model fit, and we lose protection if the
model is correct. Thus, there is a tradeoff in choosing the weight function.

In our data analysis we used the estimator with h(a) = n−1
∑n

i=1 ĝ(a|Wi).
Section 11 develops an analogy between our problem and one in causal in-
ference, and our choice of h was analogous to what in the latter context is
called a stabilizing weight function.

The matrix H in the estimator involves integrals with respect to h, and
in our data analysis we computed these with Monte Carlo by viewing h as
a density function and making 10, 000 draws. For a single draw, we drew a
covariate at random from W1, ...,Wn and then drew a random exposure rate
from our fitted conditional density ĝ.

8 Relaying uncertainty

The nonparametric bootstrap (Efron, 1979) is probably the simplest way to
put a standard error on an exposure-specific disease rate estimate, although
results could be sensitive to the assumption of no spatial autocorrelation.

10
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9 Implementation with regression

Although we alluded to models that others have proposed for the conditional
distribution of exposure-specific disease rates, they are few in number. On
the other hand, there are many techniques for regressing an outcome on
explanatory variables, and these can ease implementation.

Notice that the exposure-specific disease rate model fit f̂ only enters our
estimator through Ef̂ [YE,i|Wi] and Ef̂ [YU,i|Wi]. We do not need to know
the entire joint density of (YE,i, YU,i) given Wi to proceed. Also note that
the no unmeasured aggregation bias assumption {(YE,i, YU,i) ⊥ Ai|Wi} of (1)
implies the regression of Yi on (Wi, Ai) has the form

m(w, a) = E[Yi|Wi = w,Ai = a]

= E[AiYE,i + (1−Ai)YU,i|W = w,A = a]

= aE[YE,i|Wi = w,Ai = a] + (1− a)E[YU,i|Wi = w,Ai = a]

= aE[YE,i|Wi = w] + (1− a)E[YU,i|Wi = w]

= E[YU,i|Wi = w] + (E[YE,i|Wi = w]− E[YU,i|Wi = w]) a.

The representation tells us that if we have an accurate fit m̂ of the regres-
sion function, we should be able to approximate the two functions needed for
the doubly robust estimator. Because a→ m(w, a) is linear in a, the inter-
cept and slope for the simple linear regression of [m̂(w, a1), ..., m̂(w, aB)] on
[a1, ..., aB] can estimate E[YU,i|Wi = w] and E[YE,i|Wi = w]−E[YU,i|Wi = w].
The number of values B and their place in the unit interval are up to the
user, but matter less as the regression fit m̂ becomes more accurate. The
implication of no unmeasured aggregation bias is therefore that we can use
any type of method to regress (Y1, ..., Yn) on (W1, A1), ..., (Wn, An). If we do
a good job then the doubly robust estimator should perform well. Other-
wise, performance will depend on the other of the two models. An even more
direct approach to finding the two desired functions is to initially make the
regression fit have the form m̂(w, a) = m̂0(w) + m̂1(w)a.

In our data analysis we regressed disease rates on covariates and expo-
sure rates with the same beta regression procedure discussed in Section 5. To
make the linear approximation of a→ m̂(w, a), we drew a1, ..., a100 uniformly
in the range of observed regional exposure rates, and as just discussed, per-
formed a simple linear regression of [m̂(w, a1), ..., m̂(w, a100)] on [a1, ..., a100],
where the same 100 random points were used for different values of w.

11
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10 Risk factors for diabetes

A nice feature of ecological inference is that estimator performance can be
evaluated on datasets where the truth is known, by aggregating individual-
level data and feeding aggregate data to estimators. We didn’t know true
diabetes rates for those exposed and unexposed to air pollution, but found
that our doubly robust estimator could use ecological data to reliably capture
other risk factor associations with diabetes.

The Centers for Disease Control and Prevention (CDC) operates a large
telephone survey called the Behavioral Risk Factor Surveillance System,
and their Web Enabled Analysis Tool allows cross tabulation of the 2005
data concerning individuals over 18 in the 50 U.S. States, Washington D.C.,
Puerto Rico, and the U.S. Virgin Islands. 2005 prevalence information for
risk factors and diseases in the various regions are also given by the CDC
at http://apps.nccd.cdc.gov/brfss/index.asp. We used this data to estimate
risk factor-specific diabetes rates (type 1 or 2 diabetes, excluding pregnancy-
related cases). Ecological inference would only truly have been needed for this
problem if the information on risk factors and diabetes had been collected
by two different surveillance systems, such as the CDC and the American
Diabetes Association.

Risk factors were hypertension (has had high blood pressure?), age (65
or older?), cholesterol (has had high cholesterol), obesity (obese?), exercise
(any exercise in the last month?), alcohol use (any drinks in the past 30
days?), income (annual household income over $50,000?), asthma (has ever
had asthma?), race (white?), diet (five or more fruits and vegetables daily?),
health care (any kind of coverage?), and smoking (a current smoker?) Hence,
we had regional data on the prevalence of diabetes and 12 risk factors. When
examining a single risk factor, data on other risk factors were considered
covariates, and we thus had 11 covariates for each region concerning risk
factor prevalences.

We ignored more available regional covariates, including finer categoriza-
tions of the risk factors, more information on demographics, more information
on physical activity, and data on immunizations. There were also data on
arthritis, cardiovascular disease, and disability that we could not figure out
how to cross tabulate with diabetes on the CDC website. We did not attempt
to obtain any more covariates from different sources.

The number of people over 18 living in each region in 2005 was found from
census data at www.census.gov/popest/states/asrh/SC-EST2005-01.html.

12

http://biostats.bepress.com/ucbbiostat/paper236



As discussed in Section 9, we evaluated Ef̂ [YE,i|Wi] and Ef̂ [YU,i|Wi] in
the doubly robust estimator by making a linear approximation to a beta
regression of diabetes prevalences on covariates and exposure rates. We also
formed the exposure rate model fit ĝ with this beta regression technique,
as discussed in Section 5, and chose the stabilizing weight function h as in
Section 7. Even though we have considered the regional population size Ni to
be part of the covariate vector, it was not included as an explanatory variable
in the two beta regressions, because for some reason this led to termination
errors with the betareg package. We then formed doubly robust estimates of
risk factor-specific disease rates. Along the lines of Section 8, we used 1000
bootstrap resamples to obtain standard errors.

We also applied the popular ecological regression procedure of Goodman
(1953, 1959). The method does not use covariates, and performs well when
exposure-specific disease rates are nearly constant across regions, but oth-
erwise can be unreliable. The technique fits a linear regression of disease
rates on exposure rates, and estimates disease rates under no exposure and
exposure with the fitted intercept and slope + intercept.

Both the doubly robust and ecological regression results were mapped to
the tomography line as in Section 3 to incorporate deterministic constraints.
In no cases did the initial doubly robust exposure-specific disease rate es-
timates fall outside Duncan-Davis bounds, but initial ecological regression
estimates did when estimating diabetes rates with risk factors of high blood
pressure, high cholesterol, and avoiding fruit.

King’s extended model was not used for this problem, because to our
knowledge no existing implementation allowed more than two covariates.

Results are shown in Table 1. Doubly robust point estimates were ac-
curate, and would generally have provided the same interpretation as true
values. In contrast, ecological regression overshot the diabetes association
for hypertension, age, cholesterol, obesity, and lack of exercise, and falsely
concluded that avoiding fruit and smoking were major risk factors.

The bootstrap suggested our method was somewhat prone to high stan-
dard errors. We did not follow our recommendation for artificially constrain-
ing inverse density weights 1/ĝ(Ai|Wi), and this may have hurt. It was also
unclear whether injecting unnecessary noise had an impact, as we used the
Monte Carlo method of Section 9 for the linear approximation to the initial
regression fit, and the Monte Carlo integration of Section 7 for matrix H.
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truth doubly robust ecological regression
high blood pressure 19.2 17.2 (7.0) 29.7 (0.4)
no high blood pressure 3.7 4.4 (2.5) 0.0 (0.0)

65 or older 17.8 14.5 (9.0) 23.9 (7.8)
under 65 5.8 6.4 (1.8) 4.5 (1.6)

high cholesterol 15.8 8.4 (4.4) 21.7 (1.8)
no high cholesterol 6.0 7.5 (2.5) 0.0 (1.0)

obese 15.7 13.5 (5.5) 28.7 (3.1)
not obese 5.7 5.9 (1.8) 1.0 (1.0)

don’t exercise 12.6 11.6 (4.4) 24.6 (1.4)
exercise 6.1 6.5 (1.5) 2.0 (0.5)

don’t drink alcohol 11.4 8.9 (1.3) 12.7 (1.5)
drink alcohol 4.6 6.8 (1.1) 3.5 (1.2)

no high income 10.5 8.1 (0.9) 12.1 (0.9)
high income 4.9 7.4 (1.2) 2.0 (1.2)

asthma 10.1 7.6 (7.1) 7.9 (11.4)
no asthma 7.4 7.8 (1.0) 7.8 (1.6)

nonwhite 9.2 9.6 (1.5) 9.9 (0.9)
white 7.1 7.0 (0.6) 6.8 (0.4)

eat fruit 8.3 8.4 (3.2) 0.0 (0.6)
don’t eat fruit 7.6 7.6 (1.0) 10.3 (0.3)

health coverage 8.3 7.6 (0.7) 7.1 (0.7)
no health coverage 5.3 8.9 (3.8) 11.5 (3.7)

nonsmoker 8.2 8.8 (1.2) 5.9 (1.8)
smoker 6.3 3.9 (4.6) 15.2 (6.7)

Table 1: Estimates and bootstrap standard errors for the percentage of the
U.S. adult population with diabetes, conditional on certain risk factors.
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11 Marginal structural model derivation

We have not explained our thought process in obtaining the doubly robust
method of Section 6, and it may appear to have been pulled out of the air.
Rather, it came from noticing that the ecological inference problem under our
assumptions is similar to the problem of having observational individual-level
data and wishing to make causal inferences under no unmeasured confound-
ing. We were able to transfer our problem to the latter setting, and modify
an existing doubly robust approach.

Perhaps we can clarify the derivation by explaining the transference.
While assumptions in the two problems look mathematically similar, they
require different types of domain knowledge (Greenland and Robins, 1994).

Temporarily suppose we have data on individuals instead of regions. The
data on individual i are (Wi, Ai, Yi), where Wi is a vector of covariates, Ai is
the level of an exposure, and Yi is an outcome. We can also consider a set of
counterfactual outcomes {Yi(a) : a}, where Yi(a) is the outcome that would
have occurred if we had intervened and set exposure at Ai = a. The observed
outcome is Yi = Yi(A). Further, we assume the n subjects constitute and
independent and identically distributed sample from a population, and no
unmeasured confounding in that {(Yi(a) : a) ⊥ Ai|Wi}. Finally, make the
assumption that E[NiAiYi(a)] = β0 + β1a, for Ni in covariate vector Wi.

We have also been writing the observed data in ecological studies as
(Wi, Ai, Yi). If we could strengthen our no spatial autocorrelation assumption
so variables for different regions were not only independent but identically
distributed, assumptions in the two problems would transfer as follows:

regional covariates Wi ←→ subject-level covariates Wi

regional exposure rate Ai ←→ subject-level exposure Ai

regional disease rate Yi ←→ subject-level outcome Yi

convex combination Yi(a) = aYE,i + (1− a)YU,i ←→ counterfactual Yi(a)

i.i.d. sample of regions ←→ i.i.d. sample of subjects

no unmeasured aggregation bias ←→ no unmeasured confounding

(θU , θE − θU ) = (E[NiAiYU,i], E[NiAiYE,i]− E[NiAiYU,i])←→ (β0, β1).

Double robustness in the individual-level problem refers to correctly spec-
ifying either the regression function m(w, a) = E[Yi|Wi = w,Ai = a] or the
conditional density function g0 of Ai given Wi, which by Section 9 is analo-
gous to double robustness in ecological inference.
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For individual-level causal inference, the assumption E[Y (a)] = α0 +α1a
that an individual’s counterfactual mean is linear in the counterfactual index
is a special type of marginal structural model (Robins, 1997), and doubly
robust estimators are available (van der Laan and Robins, 2003).

Unfortunately, in transferring a casual inference method to an ecological
inference method, the relevant parameter is not (α0, α1) of the marginal
structural model, but (β0, β1). This is not exactly a standard parameter in
causal inference problems, as it depends on the exposure distribution.

It requires only a slight tweaking of marginal structural model machinery
to form doubly robust estimates of (γ0, γ1) if E[NR(W )Y (a)] = γ0 + γ1a.
Our initial thought was to use this machinery with R(Wi) = Eĝ[Ai|Wi], as
in that case (γ0, γ1) = (β0, β1) if ĝ = g0. The method turned out to lack
double robustness, but we obtained our procedure after altering it through
inspection, replacing several instances of Eĝ[Ai|Wi] with Ai.

12 Extensions

Doubly robust estimation is not limited to ecological studies with binary
exposure and disease variables. We describe two generalizations, but do not
repeat the double robustness proof.

As in Section 3, the data can provide deterministic constraints on our
quantities of interest for extensions of the standard ecological inference prob-
lem, and in applications we could again map an initial doubly robust estimate
to one satisfying these restrictions.

12.1 Multiple exposures

Suppose A
(1)
i , ..., A

(p)
i , A

(p+1)
i = 1−

∑p
j=1 A

(j)
i are the ith region’s rates for p+1

exposures, the disease rate is again Yi, and Y
(1)
i , ..., Y

(p+1)
i are unobserved

exposure-specific disease rates. The assumption of no unmeasured aggrega-
tion bias becomes that (A

(1)
i , ..., A

(p)
i ) and (Y

(1)
i , ..., Y

(p+1)
i ) are independent

given covariate Wi. We must estimate parameter θj = 1
n

∑n
i=1 E[NiA

(j)
i Y

(j)
i ]

to approximate the jth total exposure-specific disease rate. Define a weight
function h : [0, 1]p → IR. Also define

Vj(A
(1)
i , ..., A

(p)
i ;h) = h(A

(1)
i , ..., A

(p)
i )

(
βj,0 +

p∑

k=1

βj,kA
(k)
i

)
,
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where (βj,0, ..., βj,p) is found by solving a linear system of p + 1 equations in
p + 1 unknowns given by

∫ 1

0

...

∫ 1

0

skVj(s1, ..., sp;h)ds1...dsp = I(j = k) for k = 1, ..., p

∫ 1

0

...

∫ 1

0

(1 −
p∑

k=1

sk)Vj(s1, ..., sp)ds1...dsp = I(j = p + 1).

If f0 is the conditional distribution for (Y
(1)
i , ..., Y

(p+1)
i ) given Wi and g0 is

the conditional density for (A
(1)
i , ..., A

(p)
i ) given Wi, define

Dj(Wi, A
(1)
i , ..., A

(p)
i , Yi;h; f ; g) =

NiEg[A
(j)
i |W ]

Vj(A
(1)
i , ..., A

(p)
i ;h)

g(A
(1)
i , ..., A

(p)
i |Wi)

(Yi −
p+1∑

k=1

A
(k)
i Ef [Y

(k)
i |Wi])

+NiA
(j)
i Ef [Y

(j)
i |Wi].

The parameter estimate is θ̂j = n−1
∑n

i=1 Dj(Wi, A
(1)
i , ..., A

(p)
i , Yi;h; f̂ ; ĝ), and

the doubly robust estimate of the total exposure-specific disease rate for
exposure j is µ̂j = nθ̂j/

∑n
i=1 NiA

(j)
i .

12.2 Continuous outcomes

In assessing the individual-level association between an exposure and an out-
come, the outcome does not have to be a binary indicator such as diabetes sta-
tus. With an outcome such as height, Yi = AiYE,i+(1−Ai)YU,i is the observed
average height in the ith region, while YE,i and YU,i are the unobserved aver-
age heights in the exposed and unexposed populations. Across all regions, the
average height for the exposed and unexposed are

∑n
i=1 NiAiYE,i/

∑n
i=1 NiAi

and
∑n

i=1 Ni(1−Ai)YU,i/
∑n

i=1 Ni(1−Ai). The doubly robust estimates can
be constructed as before, using identical notation. Our theorem still applies,
but we might require different types of models for the conditional distri-
bution of regional exposure-specific heights given regional covariates. It is
also straightforward to combine our two extensions and consider continuous
outcomes with more than two exposure levels.
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13 An open problem

Even though they depend on correctly specifying one model rather than one
of two, the existing estimators of Section 4.3 are admirable in that they
naturally satisfy the deterministic constraints of Section 3, and there is no
need for post hoc adjustment. From this standpoint, our new approach takes
steps both forward and backward. An open problem is whether there exist
doubly robust estimators naturally meeting constraints. As we now describe,
it appears a construction is theoretically possible but difficult to implement.

Recalling DE and DU in the doubly robust estimator, define functions of
the observed regional data according to

S(Wi, Ai, Yi;h; f ; g) = [SE(Wi, Ai, Yi;h; f ; g), SU(Wi, Ai, Yi;h; f ; g)]T

SE(Wi, Ai, Yi;h; f ; g) = NiAiEf [YE,i|Wi, Ai, Yi]−DE(Wi, Ai, Yi;h; f, g)

SU(Wi, Ai, Yi;h; f ; g) = Ni(1−Ai)Ef [YU,i|Wi, Ai, Yi]

− DU (Wi, Ai, Yi;h; f ; g).

For fits f̂ and ĝ, note that the doubly robust estimate and existing estimate of
the form (2) will be equal if n−1

∑n
i=1 S(Wi, Ai, Yi;h; f̂ ; ĝ) is zero. It seems we

can force this to occur by iteratively updating fit f̂ by maximizing likelihood
along well-chosen submodels, resembling van der Laan and Rubin’s (2006)
general targeted maximum likelihood algorithm.

We will not make a long digression into efficiency theory, but viewing ob-
served data (Wi, Ai, Yi) as a coarsened version of unavailable (Wi, YE,i, YU,i),
the fact that Ef [S(Wi, Ai, Yi;h; f ; g)|Wi, Ai] = [0, 0]T implies S is orthogonal
in a certain Hilbert space to what is known as the augmentation space or
TCAR (van der Laan and Robins, 2003; Tsiatis, 2006), and there is a func-
tion T such that Ef [T (Wi, YE,i, YU,i;h; f ; g)|Wi, Ai, Yi] = S(Wi, Ai, Yi;h; f ; g),
or at least such a sequence whose conditional means converge to S in the
right Hilbert space. If we make a regular parametric submodel through
conditional distribution f̂ that has score T (Wi, YE,i, YU,i;h; f̂ ; ĝ) at f̂ , such

as f̂ε(ye, yu|w) = (1 + εTT (w, ye, yu;h; f̂ ; ĝ))f̂(ye, yu|w), then the score at
ε = [0, 0]T for the corresponding submodel varying observed data distribution
L(Wi, Ai, Yi) can be made equal to S(Wi, Ai, Yi;h; f̂ ; ĝ). Consider iteratively
fitting the submodel with maximum likelihood until there is convergence in
that the MLE for ε is approximately [0, 0]T . As the score is the gradient of
the log likelihood, it has empirical mean zero at the likelihood maximizer.
Hence, n−1

∑n
i=1 S(Wi, Ai, Yi;h; f̂ ; ĝ) is zero at the updated f̂ , as desired.

18

http://biostats.bepress.com/ucbbiostat/paper236



The trouble with this story is that it’s easier to describe the algorithm
than implement it. For one, we don’t have a useful representation for the
needed function T , even though it exists, so we state the following problem:

what T yields Ef [T (Wi, YE,i, YU,i;h; f ; g)|Wi, Ai, Yi] = S(Wi, Ai, Yi;h; f ; g)?

Beyond finding the function, it remains to be seen whether there is practical
method for updating f̂ so the existing approach of (2) is made doubly robust.

14 Pointers to literature

Although the ecological inference problem has “fascinated scholars for nearly
a century” (Cho and Manski, 2008), the difficulties became widely known
following Robinson (1952). Isomorphic formulations arise across disciplines,
including political science, sociology, economics, marketing, geography, and
medical imaging. The best known application is probably in litigation related
to the U.S. Voting Rights Act of 1965. Achen and Shively (1995), Schuessler
(1999), Freedman (2001), and Cho and Manski (2008) provide overviews of
ecological inference, while Wakefield (2008) summarizes ecological studies
in epidemiology, and King et al. (2004) discuss recent developments. The
deterministic bounds on regional exposure-specific disease rates of Section
3 are due to Duncan and Davis (1953). Methods for point estimation are
proposed in Goodman (1953, 1959), Freedman et al. (1991), King (1997),
King et al. (1999), Wakefield (2004), Imai et al. (2008), and other papers.
The problem’s canonical formulation does not have regional covariates, even
though they are often available in practice. As we mentioned, many tech-
niques attempt to find exposure-specific disease rates in each region rather
than the total exposure-specific disease rates, although our quantities are of
primary interest in many applications.

Doubly robust estimators, which fit two models but only need one to
be correct, are used in problems involving missing data, causal inference,
survival analysis, current status data, and other fields (Scharfstein et al.,
1999; van der Laan and Robins, 2003; Tsiatis, 2006). They can be con-
structed quite generally in coarsened data structures under Heitjan and Ru-
bin’s (1991) coarsening at random. Neither of the two models will be exactly
correct in practice, but the motivating intuition is that we should expect
good performance if at least one model is approximately valid (Bang and
Robins, 2005).
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There is some disagreement over whether “approximately” is good enough
for double robustness to be useful. In the fields where doubly robust pro-
cedures are most popular, such debate and estimator comparison typically
involves simulations, while real data appear in methodological papers for
illustration (Lunceford and Davidian, 2004; Bang and Robins, 2005; Neuge-
bauer and van der Laan, 2005; Kang and Schafer, 2007; Freedman and Berk,
2008). This differs from standard practice in the ecological inference liter-
ature. We used the diabetes data mainly to illustrate our approach, but
noted that performance could be evaluated by aggregating individual-level
data where the truth was known. By developing our estimator in a problem
conducive to performance assessment, we hope to shed more light on the
phenomenon of double robustness and its practical benefits and limitations.

15 Conclusion

In a critique of King’s method used as our starting point, Freedman et
al. (1999) claimed “the models are just shots in the dark.” The advantage
of double robustness is getting to fire two shots instead of one, whether at
the witching hour or high noon, and we expect this allows more people to
hit their targets. While no procedure can overcome indeterminacies of the
ecological inference problem without assumptions, we can now make progress
by learning how relevant regional covariates relate to regional exposure rates.
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