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Data Adaptive Estimation of the Treatment
Specific Mean

Yue Wang, Oliver Bembom, and Mark J. van der Laan

Abstract

An important problem in epidemiology and medical research is the estimation
of the causal effect of a treatment action at a single point in time on the mean of
an outcome, possibly within strata of the target population defined by a subset of
the baseline covariates. Current approaches to this problem are based on marginal
structural models, i.e., parametric models for the marginal distribution of counter-
factural outcomes as a function of treatment and effect modifiers. The various es-
timators developed in this context furthermore each depend on a high-dimensional
nuisance parameter whose estimation currently also relies on parametric models.
Since misspecification of any of these models can lead to severely baised esti-
mates of causal effects, the dependence of current methods on such parametric
models represents a major limitation. In this article we introduce estimators that
allow the marginal structural model as well as the parametric model for the rele-
vant nuisance parameter to be selected data-adaptively. Our methodology is based
on the unified loss-based estimation approach recently developed by van der Laan
and Dudoit (2003) that in particular extends loss-based estimation to missing data
problems. We study the practical performance of our proposed estimators in an
extensive simulation study and also apply them to data derived from an epidemi-
ologic study to assess the causal effect of forced expiratory volume on mortality
in the elderly. All of the estimators presented in this article are made publicly
available in the R package cvDSA.



1 Introduction

Epidemiologists and medical researchers frequently wish to estimate the causal effect of a
treatment action A at a single time point on the mean of a subsequently measured outcome
Y . Often it is desirable to estimate this causal effect within strata of the target population
defined by a subset V of the baseline covariates W . For example, a researcher may be
interested in estimating the causal effect of administering a certain vaccine on the subsequent
risk of infection with the disease of interest within different age groups.

Such causal effects are defined through the notion of a counterfactual outcome Y (a) that
we would have measured had the subject, possibly contrary to the fact, followed treatment
a (Rubin, 1978). Causal inference is now based on a hypothetical full data structure X,
that contains for each subject the entire collection of counterfactual outcomes Y (a) as a
ranges over the set of possible treatment actions A: X = ((Y (a) : a ∈ A),W ). Given this
full data structure, the average marginal causal effect of A on Y within strata defined by
V can now be defined as the effect of a on E[Y (a) | V ]. The observed data O, of course,
only contain the single counterfactual outcome Y (A) that corresponds to the treatment the
subject actually followed: O = (W,A, Y ≡ Y (A)). Within the counterfactual framework,
causal inference can thus be viewed as a missing data problem, with A playing the role of a
missingness variable.

Current methods for estimation of the parameter E[Y (a) | V ] are based on paramet-
ric models, referred to in this context also as marginal structural models (Robins, 2000a,b;
van der Laan and Robins, 2002). The resulting causal analyses are thus based on the as-
sumption that E[Y (a) | V ] = m(a, V | β) for some value of β, where m(a, V | β) is a
particular functional form that is specified a priori by the researcher. A simple choice, for
example, might be a linear model including a one-way interaction term: E[Y (a) | V ] =
β0 + β1a+ β2V + β3aV .

Unfortunately, it is generally unrealistic to arrive at an appropriate parametric model for
E[Y (a) | V ] on the basis of subject-matter knowledge alone. Since model misspecification
can lead to severely biased estimates of the causal effect of A on Y , the dependence of current
methods on such parametric models represents a major limitation.

In other regression problems, a number of model selection techniques have been stud-
ied that are aimed at selecting the appropriate functional form data-adaptively. One ap-
proach to this problem relies on optimizing a penalized version of the likelihood function,
such as Akaike’s Information Criterion (Akaike, 1973) or the Bayesian Information Crite-
rion (Schwarz, 1978). These model selection techniques fail if estimation is not based on
the likelihood principle, as for example in the context of many semi-parametric or non-
parametric models. An attractive alternative in these situations is based on minimiz-
ing the expectation of an appropriately specified loss function that measures the perfor-
mance of a candidate model at a particular observation. For the purpose of estimating
E[Y (a) | V ], for example, one might use a squared-error loss function for repeated measures,
L(X,m) =

∑
a∈A(Y (a) −m(a, V | β))2h(a, V ), where h(a, V ) denotes a particular choice of

weight function.
This approach appears to be infeasible if the observed data represent only a coarsened
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version of some hypothetical full data structure that is required to define the parameter
of interest. In such instances, loss functions appropriate for estimating the parameter of
interest are functions of that full data structure, but not functions of the observed data. In
our example, we do not observe Y (a) for all possible treatments a so that the loss function
L(X,m) cannot be evaluated using only the observed data.

van der Laan and Dudoit (2003), however, recently demonstrated how full data loss
functions can be mapped into corresponding observed data loss functions with the same
expectation, making it possible to apply the general loss-based estimation methodology in
the context of missing data problems. We here apply this approach to the data-adaptive
estimation of E[Y (a) | V ] in the setting of a point treatment study, a problem that has
previously not been addressed in the causal inference literature.

Current methods in this area in fact rely not only on a correctly specified marginal
structural model for E[Y (a) | V ], but also on a correctly specified parametric model for a
high-dimensional nuisance parameter that is involved in the estimation process. For Inverse-
Probability-of-Treatment-Weighted (IPTW) estimators, this nuisance parameter consists of
the probability of following a given treatment a given the collection of baseline covariates W ;
G-computation estimators rely on a regression of the outcome Y on baseline covariates W
and treatment A; double robust estimators, finally, involve both of these nuisance parameters
(Robins, 2000a,b; van der Laan and Robins, 2002). In contrast, the methodology we present
here does not rely on correctly specified parametric models for these nuisance parameters,
but rather applies the general loss-based estimation approach described above to select an
appropriate model data-adaptively.

Another limitation of the methods currently in use is the lack of a publicly available
implementation. While IPTW estimators and G-computation estimators are fairly straight-
forward to implement from scratch in a point treatment setting, the double robust estimator
is involved enough to deter a number of potential users. Along with this article, we intro-
duce the publicly available R package cvDSA that implements both the standard parametric
approach as well as our novel data-adaptive methodology. We hope that this R package
makes these general causal inference tools available to a broader class of epidemiologists and
medical researchers.

The remainder of this article is organized as follows: We first formally define our data
structure, model assumptions, and parameter of interest. The following section then de-
scribes in detail how we apply the general loss-based estimation road map laid out in van der
Laan and Dudoit (2003) to this particular problem. In section 4 we present a simulation
study aimed at comparing the behavior of the resulting three estimators. Our methodology
is then applied to a data set derived from an epidemiologic study in an attempt to study the
causal effect of forced expiratory volume on mortality in the elderly. We conclude with a brief
discussion of the benefits of as well as potential extensions to the data-adaptive methods we
develop in this article.
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2 A nonparametric marginal structural model

In this section, we formally define our data structure, model assumptions, and parameter of
interest. The hypothetical full data structure X = ((Y (a) : a ∈ A),W ) ∼ FX0 contains for
each subject baseline covariates W as well as the entire collection of counterfactual outcomes
Y (a) as a ranges over the set of possible treatment actions A. We denote the conditional
probability distribution of the treatment variable A by g0(a | X) ≡ Pr(A = a | X), a ∈ A.
The observed data now consist of n i.i.d. observations of O = (W,A, Y ≡ Y (A)), containing
only the single counterfactual outcome Y (A) that corresponds to the treatment the subject
actually followed. Hence O represents a coarsened version of the full data structureX, with A
playing the role of a missingness variable. Consequently, we can parameterize the distribution
of the observed data by the full data distribution FX0 and the treatment mechanism g0:
P0 = PFX0

,g0 .
We make no assumptions about the full data distribution FX0 and denote the correspond-

ing non-parametric full data model by MF . The treatment mechanism is left unspecified
as well except for the following two standard assumptions which are necessary to make the
parameter of interest identifiable. First, the randomization assumption (RA) requires that
treatment is randomized within strata of W :

g0(a | X) = g0(a | W ) for all a ∈ A.

This requirement is equivalent with assuming that the missingness mechanism satisfies coars-
ening at random (van der Laan and Robins, 2002). Second, the experimental treatment as-
signment assumption (ETA) requires that within each stratum of W each possible treatment
a is assigned with positive probability:

inf
a∈A

g0(a | W ) > 0, F0W -a.e.

In our case, it will be sufficient to rely on a weaker V -specific version of this assumption
according to which there exists a conditional density g(· | V ) such that

sup
a∈A

g(a | V )

g(a | W )
<∞, F0W -a.e.

Under these two assumptions on the treatment mechanism, the density of O factorizes as

p(O) = p(W )p(Y | A,W )g(A | W ) = p(W ) p(Y (a) | W )|a=A g(A | X)

where the first two terms represent the FX-part of the density of O and the last term
corresponds to the treatment mechanism.

Let G(RA) be the model for the treatment mechanism g(A | X) implied by RA and
ETA. Our model for the observed data structure O is then given by the model implied by
the nonparametric full data model for FX and G(RA) for the treatment mechanism g(A | X):
M = {PFX ,g : FX ∈ MF , g ∈ G(RA)}. We will refer to this model as the nonparametric
marginal structural model.
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The parameter of interest is given by the treatment-specific mean of the counterfactual
outcomes Y (a), possibly within strata defined by a subset V of the baseline covariates W .
Note that this is a parameter of the full data distribution FX0 . To emphasize that it is a
mapping from the full data model MF to the class D(S) of real-valued functions defined on
a Euclidean set S containing all possible outcomes of (A, V ), we denote this parameter by
ΨF : MF → D(S), ΨF (FX)(a, V ) = EFX

(Y (a) | V ).
Under the two assumptions we make about the treatment mechanism, it follows that

E(Y (a) | V ) = E(E(Y | A = a,W ) | V ), implying that the full data parameter ΨF is
identified by the observed data. In fact, we have that ΨF (FX) = Ψ(PFX ,g) where the observed
data model parameter Ψ is defined by Ψ : M → D(S), Ψ(PFX ,G)(a, V ) = EPFX,G

(EPFX,G
(Y |

A = a,W ) | V ). We denote the true value of this parameter by ψ0 = Ψ(P0) and the
corresponding parameter space by Ψ ≡ {Ψ(P ) : P ∈ M} = {ΨF (FX) : FX ∈ MF}.
We note that Ψ only depends on the FX-part of the data-generating distribution since the
conditional expectations used to define it only involve the a-specific conditional distributions
of Y (a) given W , a ∈ A, and the marginal distribution of W .

Our goal is to use a sample of n i.i.d. observations O1, . . . , On to estimate the parameter
ψ0. The information contained in the sample can be summarized through its empirical
distribution Pn, i.e. the distribution that places probability 1/n on each realization Oi. In
the following, it will be useful to distinguish between an estimator Ψ̂ and its realization ψ̂:
An estimator Ψ̂ is a mapping from empirical distributions to the parameter space Ψ while
ψ̂ = Ψ̂(Pn) is the value of this mapping applied to the actual empirical distribution of our
sample.

3 Data-adaptive loss-based estimation

van der Laan and Dudoit (2003) present a general road map for unified loss-based estimation
that in particular allows this approach to be applied to missing data problems. The general
cross-validation selector proposed by these authors is shown to be asymptotically optimal in
the following sense: Given a collection of K(n) candidate estimators for a given sample size
n, the cross-validation selector performs asymptotically as well as an oracle selector that is
allowed to choose among these estimators based on knowledge about the true data-generating
distribution. The number of candidate estimators K(n) is allowed to grow polynomially in
n, enabling the cross-validation selector to search very aggressively through a large space
of candidate estimators as sample size increases. This capability makes unified loss-based
estimation a very appealing approach for the problem at hand.

In this section, we develop estimators for our parameter of interest by applying the steps
of the road map laid out by van der Laan and Dudoit (2003) to our particular problem. The
first step consists of specifying a function whose expectation is minimized at the true parame-
ter value. In our discussion, we will focus on three possible classes of such loss functions that
each depend on a nuisance parameter, namely Inverse-Probability-of-Treatment-Weighted
(IPTW) loss functions, G-computation based loss functions, and double robust (DR) loss
functions. The second step requires us to define a sequence of subspaces of the parameter

4
http://biostats.bepress.com/ucbbiostat/paper159



space that can approximate the parameter space arbitrarily well. Here we construct such a
sieve based on various restrictions on the tensor products of polynomial basis functions we
use to parameterize our parameter space. We now define for each subspace a corresponding
candidate estimator as the minimizer of the empirical mean of a given loss function over that
subspace. To find these candidate estimators, we first obtain an estimate of the nuisance
parameter indexing our loss function and then carry out the minimization problem by ap-
plying the Deletion/Substitution/Addition algorithm developed by Sinisi and van der Laan
(2004). Finally, we use cross-validation to select among these candidate estimators.

3.1 Defining the parameter of interest in terms of a loss function

We first need to specify a function of the observed data whose expectation is minimized at
the true parameter value. If we observed the full-data structure X, a possible choice for this
loss function would be given by

Lh(X,ψ) =
∑
a∈A

(Y (a) − ψ(a, V ))2h(a, V ),

where h(a, V ) denotes a particular weight function. Since we only observe one of the counter-
factual outcomes Y (a) for each subject, however, Lh(X,ψ) is not a function of the observed
data structure O.

A fundamental objective of the estimating function theory for censored data structures
presented in van der Laan and Robins (2002) consists of mapping an estimating function
of a full data structure into an observed data function with the same expectation. To this
end, van der Laan and Robins (2002) provide an Inverse-Probability-of-Treatment-Weighted
(IPTW) mapping as well as a double robust (DR) mapping that is optimal in the sense
that it yields observed data estimating functions with minimal variance. van der Laan and
Dudoit (2003) show that such mappings form the basis for extending loss-based estimation
to missing data problems since they allow us to map infeasible full data loss functions into
functions of the observed data whose expectation is likewise minimized at the true parameter
value.

In contrast to loss functions used previously, however, loss functions obtained through
such mappings are unknown in the sense that they depend on a nuisance parameter. There-
fore, it will be necessary to first state precisely how the definitions currently used in loss-based
estimation are extended to this more general situation.

For this purpose, let Υ : M → Dnuis(Snuis) be a nuisance parameter that maps our model
M into a space Dnuis(Snuis) of real-valued functions on a Euclidean set Snuis. We denote its
true value by υ0 = Υ(P0). A loss function (O,ψ, υ) → L(O,ψ | υ) ∈ IR is now a function
that maps an observation O, candidate parameter value ψ ∈ Ψ, and nuisance parameter
value υ ∈ Υ into a real number whose expectation at the true nuisance parameter value υ0

is minimized at ψ0:
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ψ0 = argminψ∈Ψ

∫
L(o, ψ | υ0)dP0(o)

= argminψ∈ΨE0L(O,ψ | υ0)

In accordance with terminology used in the prediction literature, we define the risk of a
candidate parameter value ψ ∈ Ψ as EP0L(O,ψ | υ0). Furthermore, we will refer to the
difference between the risk at ψ and the minimal risk at ψ0 as the risk difference at ψ:

d(ψ, ψ0) ≡ E0{L(O,ψ | υ0) − L(O,ψ0 | υ0)}
We note that d(ψ, ψ0) ≥ 0 for all ψ ∈ Ψ, and if the minimum ψ0 is unique, then d(ψ, ψ0) = 0
if and only if ψ = ψ0.

In the following, we describe how the IPTW and DR mappings are applied to Lh(X,ψ)
to obtain two classes of observed data loss functions. We furthermore provide a mapping
that is based on the G-computation formula to obtain a third class of observed data loss
functions. As in van der Laan and Robins (2002), we denote the mappings from full data
functions to observed data functions with L→ IC(O | Q, g, L), where Q denotes a nuisance
parameter based on the FX-part of the likelihood and g denotes the treatment mechanism.

3.1.1 G-computation loss function

The G-computation loss function is defined as

Lh,Gcomp(O,ψ | υ0) = ICGcomp(O | Q0, Lh(·, ψ))

≡
∑
a∈A

E0((Y − ψ(A, V ))2h(A, V ) | A = a,W )

=
∑
a∈A

{Q02(a,W ) − 2Q01(a,W )ψ(a, V ) + ψ(a, V )2}h(a, V ),

where Q01(A,W ) = E0(Y | A,W ), Q02(A,W ) = E0(Y
2 | A,W ) and the nuisance parameter

υ0 = Q0 = (Q01, Q02).
We can verify explicitly that the G-computation mapping Lh(·, ψ) → ICGcomp(O |

Q0, Lh(·, ψ)) maps the full data loss function Lh(·, ψ) into an observed data function with
the same expectation:

E(Lh,Gcomp(O,ψ | υ0)) = E0

(∑
a∈A

E0((Y − ψ(A, V ))2h(A, V ) | A = a,W )

)
= E0

∑
a∈A

{Y (a)2 − 2Y (a)ψ(a, V ) + ψ(a, V )2}h(a, V )

= E0

(∑
a∈A

(Y (a) − ψ(a, V ))2h(a, V )

)
= E0Lh(X,ψ)

This implies in particular that the expectation of Lh,Gcomp(O,ψ | υ0) is minimized at the
true parameter value ψ0.
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3.1.2 IPTW loss function

Choosing h(a, V ) = g0(a | V ), the IPTW-loss function is defined as

Lh,IPTW (O,ψ | υ0) = ICIPTW (O | g0, Lh(·, ψ))

≡ (Y − ψ(A, V ))2

g0(A | W )
g0(A | V ),

where the nuisance parameter υ0 = g0 = (g0(A | W ), g0(A | V )).
To see that the expectation of Lh,IPTW (O,ψ | υ0) is in fact minimized by ψ0, we can

again verify explicitly that the IPTW-mapping Lh(·, ψ) → ICIPTW (O | Q0, Lh(·, ψ)) maps
the full data loss function Lh(·, ψ) into an observed data function with the same expectation:

E(Lh,IPTW (O,ψ | υ0)) = E0

(
(Y − ψ(A, V ))2

g0(A | W )
g0(A | V )

)
= E0

(
E0

(Y − ψ(A, V ))2

g0(A | W )
g0(A | V ) | X

)
ETA
= E0

(∑
a∈A

{
(Y (a) − ψ(a, V ))2

g0(A = a | W )
g0(A = a | V ) | g0(A = a | W )

})
= E0Lh(X,ψ)

3.1.3 Double robust loss function

Choosing h(a, V ) = g0(a | V ), the double robust (DR) loss function is given by

Lh,DR(O,ψ | υ0) = ICDR(O | Q0, g0, Lh(·, ψ))

≡ (Y − ψ(A, V ))2

g0(A | W )
g0(A | V ) − g0(A | V )

g0(A | W )
E0

[
(Y − ψ(A, V ))2 | A,W ]

+
∑
a∈A

E0

[
(Y (a) − ψ(a, V ))2 | A = a,W

]
g0(a | V ),

where

E0[(Y − ψ(A, V ))2 | A,W ] = Q02(A,W ) − 2Q01(A,W )ψ(A, V ) + ψ(A, V )2,

E[(Y (a) − ψ(a, V ))2 | A = a,W ] = Q02(a,W ) − 2Q01(a,W )ψ(a, V ) + ψ(a, V )2,

and the nuisance parameter υ0 includes both g0 and Q0 = (Q01, Q02). Note that the con-
ditional expectations in this observed data loss function are indeed identified by these first
two conditional moments of the conditional distribution of Y given W .

It can be verified (van der Laan and Robins (2002), section 6.3) that for any treat-
ment mechanism g1 satisfying the experimental treatment assignment assumption, that is,
infa∈A g1(a | W ) > 0 P0-a.e., we have

EP0IC(O | Q1, g1, Lh(·, ψ)) = EFX0
Lh(X,ψ) if either g1 = g0 or Q1 = Q0
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In van der Laan and Robins (2002) this identity is referred to as double robustness of the
estimating function IC(O | Q0, g0, Lh(· | ψ)) for E0Lh(X,ψ) w.r.t. misspecification of Q0, g0.
Thus, if υ is an element of

Υ(P0) ≡ {(Q, g) : Q = Q0 or g = g0},

where g ranges over conditional distributions satisfying the ETA assumption, then

E0Lh,DR(O,ψ | υ) = E0Lh,DR(O,ψ | υ0) = E0Lh(X,ψ),

implying in particular that

ψ0 = argminψEP0Lh,DR(O,ψ | υ)

3.2 Constructing a sieve

Let Pn → Υ̂(Pn) be a given estimator of the nuisance parameter υ0 of the loss function. Let
υn = Υ̂(Pn). We will present a data-adaptive estimator of υ0 in section 3.5. The minimum
empirical risk estimator

Pn → argminψ∈Ψ

∫
L(o, ψ | υn)dPn(o)

suffers from the curse of dimensionality due to the size of the parameter space Ψ which is
given by the space D(S) of all real-valued functions on a Euclidean set S ⊂ IRd containing
all possible outcomes of (A, V ) = (A, V1, . . . , Vd−1).

One general approach advocated in the theoretical literature for dealing with this problem
is based on the construction of a sieve, i.e. a sequence of subspaces that can approximate the
whole parameter space Ψ arbitrarily well (LeCam, 1986; Barron, 1989; LeCam and Yang,
1990; Barron, 1991; Shen, 1997; Barron et al., 1999). For each subspace a corresponding
candidate estimator is defined as the minimizer of the empirical risk over that subspace. The
final estimator is then selected from among these candidate estimators as the minimizer of an
appropriately penalized empirical risk or a cross-validated empirical risk. We here follow this
approach by first parameterizing the parameter space in terms of linear combinations of a
particular choice of basis functions and then defining subspaces based on various restrictions
on these linear combinations.

A general class of basis functions for the space D(IRd) of real-valued functions on IRd

can be obtained from tensor products of univariate basis functions. We here choose the
polynomial powers e1 = 1, e2 = x, e3 = x2, . . . as univariate basis functions, but we note
that many other choices are possible. One may for example consider spline basis functions
of fixed degree with corresponding fixed set of knot points or wavelet basis functions. Given
a vector �p = (p1, . . . , pd) ∈ INd, we let φ�p(A, V ) = ep1(A) × ep2(V1) × . . . × epd

(Vd−1) denote
the tensor product of univariate basis functions identified by �p. Using polynomial powers
as univariate basis functions, we have φ�p(A, V ) = Ap1V p2

1 . . . V pd

d−1. The collection {φ�p : �p}
provides now a basis for the space D(IRd) of real-valued functions on IRd.
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If the conditional expectation of Y (a) given V can only take on values in some proper
subset Y of IR, the parameter space is a proper subset of the space of real-valued functions
on S. If Y is binary, for example, the parameter space consists of all functions S → Y =
[0, 1]. To respect such constraints, we parameterize Ψ in terms of a known transformation
t : IR → Y of linear combinations of basis functions for D(IRd). These transformations
represent the familiar link functions used in generalized linear models, as for example the
logit link function for binary outcomes. This allows us to write

Ψ =

⎧⎨⎩t
⎛⎝∑

�p∈I
β�pφ�p

⎞⎠ : I ⊂ I, β
⎫⎬⎭ ,

where I denotes an index set containing a collection of vectors �p, I denotes the collection of
indices of the allowed subsets of basis functions, and β ranges over Euclidean sets guarantee-
ing that the linear combinations are contained in the parameter space. Thus, for each subset
of basis functions I ⊂ I, we have that β ∈ BI ≡ {β :

∑
�p∈I β�pφ�p ∈ Ψ}. In the following, we

will use

ψI,β ≡ t

⎛⎝∑
�p∈I

β�pφ�p

⎞⎠
to denote the element of the parameter space Ψ corresponding to a given index set I and
given β ∈ BI .

Given this parameterization, we can now define subspaces Ψs ⊂ Ψ by requiring the
subsets I of basis functions to be contained in Is ⊂ I or requiring the values for the corre-
sponding coefficients (β�p : �p ∈ I) to be contained in BI,s ⊂ BI :

Ψs = {ψI,β : I ∈ Is ⊂ I, β ∈ BI,s ⊂ BI}

In our R package cvDSA, a subspace Ψs is currently indexed by s = (k1, k2), with k1 giving
the maximum number of basis functions that each linear combination may consist of and k2

giving the maximum number m(�p) of non-zero components in �p:

Ψk1,k2 =

⎧⎨⎩t(∑
�p∈I

β�pφ�p) : | I |≤ k1, max
�p∈I

m(�p) ≤ k2

⎫⎬⎭
One might also consider other functions m(�p) to measure the ’complexity’ of a given basis
function. In addition, one could introduce another parameter k3 to restrict the parameter
vector β, letting for example BI,s=(k1,k2,k3) = {β ∈ BI :

∑
�p∈I | β�p |≤ k3}. Finally, we note

that the set An containing all possible values of s may be allowed to depend on the sample
size n.
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3.3 Generating candidate estimators

For each subspace Ψs, we now define a corresponding estimator Ψ̂s as the minimizer of the
empirical risk over that subspace:

Ψ̂s(Pn) ≡ argminψ∈Ψs

∫
L(o, ψ | υn)dPn(o)

The task of computing Ψ̂s(Pn) is naturally split into two sequential steps. Given a particular
subset I ∈ Is of basis functions, it is straightforward to obtain an estimate of β by minimizing
the empirical mean of the loss function of interest:

β(Pn | I, s) ≡ argminβ∈BI,s

∫
L (o, ψI,β | υn) dPn(o)

For the IPTW and DR loss functions, it is easily seen that this estimator is equivalent
with solving the IPTW and DR estimating equations for the parametric marginal structural
model E(Y (a) | V ) = ψI,β(a, V ), treating I as given (van der Laan and Robins, 2002). The
estimate βIPTW (Pn | I, s) based on the IPTW loss function, for example, is thus obtained
through a weighted least-squares regression of Y on A and V according to the model E(Y |
A, V ) = ψI,β(A, V ), with weights given by wi = gn(Ai|Vi)

gn(Ai|Wi)
, i = 1, . . . , n.

For each I, this first step results in an estimator ψI,s,n = Ψ̂I,s(Pn) ≡ ψI,β(Pn|I,s). Now,
it remains to minimize the empirical risk over all allowed subsets I ∈ Is of basis functions.
Specifically, one needs to minimize the function fE : Is → IR defined by

fE(I) ≡
∫
L
(
o, Ψ̂I,s(Pn)

)
dPn(o)

This step corresponds to searching through candidate functional forms for the marginal struc-
tural model and is carried out here by using the Deletion/Substitution/Addition (D/S/A)
algorithm developed by Sinisi and van der Laan (2004). In contrast to previously proposed
forward/backward selection approaches, this algorithm performs an extensive and aggressive
search over the set of candidate functional forms that is truly aimed at identifying the cor-
responding minimum empirical risk. This provides us now with the empirical risk minimizer
ψs,n = Ψ̂s(Pn) for each choice of subspace Ψs, where

Ψ̂s(Pn) = Ψ̂Is(Pn),s(Pn) = ψIs(Pn),β(Pn|Is(Pn),s)

These estimators Ψ̂s(Pn), s ∈ An, represent the set of candidate estimators of ψ0.

3.4 Selecting among candidate estimators by cross-validation

We select among these candidate estimators by cross-validation. The general idea of this
approach is to divide the original dataset into a training set that is used to arrive at a
candidate estimator Ψ̂s and a validation set that is then used to obtain an independent
estimate of the risk of that estimator.
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For this purpose, let Bn ∈ {0, 1}n be a random vector whose observed value defines a
split of the observed data O1, . . . , On into a validation sample and a training sample. If
Bn(i) = 0, then observation i is placed in the training sample, and if Bn(i) = 1, it is
placed in the validation sample. We will denote the empirical distribution of the data in the
training sample and validation sample with P 0

n,Bn
and P 1

n,Bn
, respectively. The proportion of

observations in the validation sample is denoted by p =
∑

iBn(i)/n.
The choice of distribution for Bn corresponds now with different possible cross-validation

schemes presented in the literature such as V -fold cross-validation or Monte-Carlo cross-
validation. In our application, we focus on V -fold cross-validation by dividing the data set
into V separate groups and letting the split vector Bn have a uniform distribution on V
different realizations such that each of the V groups is used exactly once as the validation
sample.

After applying the estimator Ψ̂s to a given training sample, its performance is measured
through the empirical mean of the loss function over the corresponding validation sample.
We note that the nuisance parameter υ0 indexing the loss function is estimated by applying
the corresponding estimator Υ̂ only to the training sample as well rather than to the entire
data set. The cross-validated empirical risk is then given by the expectation of this estimated
empirical risk over different realizations of the split vector Bn; in the case of V -fold cross-
validation, this expectation corresponds to the simple mean of the estimated empirical risk
over the V different splits of the observed data. We now choose the index s that minimizes
the cross-validated empirical risk:

Ŝ(Pn) ≡ argmins∈An
EBn

∫
L(o, Ψ̂s(P

0
n,Bn

) | Υ̂(P 0
n,Bn

))dP 1
n,Bn

(o)

Our final estimator of ψ0 is obtained by applying the corresponding estimator Ψ̂Ŝ(Pn) to the
entire sample:

ψn = Ψ̂(Pn) ≡ Ψ̂Ŝ(Pn)(Pn)

3.5 Estimating the nuisance parameter υ0 data-adaptively

It remains to present an estimator for the nuisance parameter υ0 indexing the loss function.
For the IPTW loss functions, this nuisance parameter consists of the treatment mechanism
g0 = (g0(A | V ), g0(A | W )); for the G-computation loss functions, it is given by the
regressions Q0 = (E0(Y | A,W ), E0(Y

2 | A,W )); the DR loss functions, finally, rely on both
of these nuisance parameters.

We estimate these nuisance parameters data-adaptively by applying the same loss-based
estimation approach used to estimate the parameter of interest E[Y (a) | V ]. If the treatment
variable A is binary, g0(A | V ) and g0(A | W )) are densities and we accordingly rely on the
− log(·) loss function; if the treatment variable A is continuous, these nuisance parameters are
regressions and we rely on the squared-error loss function, which is also used for estimating
E0(Y | A,W ) and E0(Y

2 | A,W ). In contrast to the loss functions used to estimate our
parameter of interest, these loss functions do not depend on a nuisance parameter, thus
simplifying the estimation problem somewhat. As above, we use a polynomial sieve and
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search aggressively over candidate subspaces by applying the D/S/A algorithm. We note
that since the resulting estimator Υ̂ of the nuisance parameter υ0 is itself based on cross-
validation, the selection of the index s described in section 3.4 involves in fact a nested
cross-validation, consisting of an inner one for the estimation of υ0 and an outer one for the
selection of s.

By the G-computation formula for point-treatment studies

ψ0 = E0[Y (a) | V ] = E0[E0[Y | A,W ] | V ] = E0[Q01(A,W ) | V ]

so that ψ0 is a function of the nuisance parameter Q01. Thus it may happen that the model
selected for Q01 is in fact not compatible with the model selected for ψ0. Furthermore, the
model selected for Q02 = E[Y 2 | A,W ] may not be compatible with the model selected for
Q01 = E[Y | A,W ]. Such incompatibilities do not represent a major problem, however,
since Q01 and Q02 are only involved in estimating the loss function and are thus not used to
make any claims about the functional form of ψ0. Forcing the models for Q01 and Q02 to be
compatible with each other and the model for ψ0 would complicate the the model selection
process considerably and might in fact result in worse estimation of the loss function.

3.6 Assessing the performance of an estimator

The performance of machine-learning algorithms is commonly assessed on the basis of an es-
timated risk. Our R package reports the cross-validated empirical risk for a given estimator,
obtained through V -fold cross-validation, We thus apply the entire estimation procedure de-
scribed above to each of V learning samples separately and evaluate the resulting estimators
on the corresponding validation samples, forcing us to add another layer of cross-validation
to those already inherent in the estimation procedure itself. We note that the loss function
used to obtain this empirical risk estimate need not be the same as the loss function indexing
the estimator itself.

A general problem with data-adaptive model selection techniques lies in the difficulty to
obtain honest measures of statistical variability and significance. Our R package currently
does not report standard errors or confidence intervals for parameter estimates, but we note
that, where desired, these may be obtained by the user through re-sampling based methods
such as the bootstrap. Optimistic inference can furthermore be obtained by treating all
selected models as fixed and given.

4 Simulation study

In the previous section we developed three data-adaptive estimators of the treatment-specific
mean that differ in the type of loss function they employ: A G-computation loss function, an
IPTW loss function, or a DR loss function. Each of these loss functions depends on a different
nuisance parameter υ0, consisting either of the regressions Q0 = (E0[Y | A,W ], E0[Y

2 |
A,W ]), the treatment mechanism g0 = (g0(A | V ), g0(A | W )), or both. The performance
of the corresponding estimators can thus be expected to vary depending on how well these
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nuisance parameters can be estimated using the polynomial sieve proposed here. The IPTW
estimator can furthermore be expected to be sensitive to violations of the experimental
treatment assignment (ETA) assumptions. In this section, we present a simulation study
that is aimed at examining the impact of these different dependencies in practice.

In each simulation, the data set consists of continuous baseline covariatesW = (V,W1,W2),
a binary treatment variable A, and a continuous outcome Y . The baseline covariates are
independent of each other and distributed as

V ∼ U(0, 1)

W1 ∼ U(−10, 10)

W2 ∼ U(0, 1)

The counterfactual outcomes Y (a) are distributed as Y (a) = Q0(a,W ) + ε, ε ∼ N(0, 1),
where we consider two choices for Q0(A,W ) ≡ E0[Y | A,W ]:

Q0,1(A,W ) = −2 + 0.7A+ V + 0.5V 2 + 0.2W1 −W2

Q0,2(A,W ) = −2 + 0.7A+ sin 10V + 0.5V 2 + sinW1 −W2

Note that Q0,1 can be much more easily approximated by a polynomial sieve than Q0,2,
suggesting that the G-computation loss function and possibly also the DR loss function will
be more reliably estimated under Q0,1 than under Q0,2. The corresponding true treatment-
specific mean ψ0(A, V ) is given by

ψ0,1(A, V ) = −2.5 + 0.7A+ V + 0.5V 2

ψ0,2(A, V ) = −2.5 + 0.7A+ sin 10V + 0.5V 2

Since ψ0,1 can again be much more easily captured by a polynomial sieve than ψ0,2, we expect
in fact that all three estimators will behave more poorly in selecting an appropriate marginal
structural model under Q0,2 than under Q0,1. We consider four choices for the treatment
mechanism g0(W ) ≡ P (A = 1 | W ) that differ both in how well they can be captured by a
polynomial sieve and in the extent to which they violate the ETA assumption:

g0,1(W ) = logit−1(−1 + 2V + 0.0004W1 − 0.5W2)

g0,2(W ) = logit−1(−1 − 1.5V − 0.02W1 + 3W2)

g0,3(W ) = logit−1(0.2 + 0.5 × sin 10V + 0.5 × sinW1 − 0.7 × sin 10W2)

g0,4(W ) = logit−1(1 + sin 10V + 1.5 × sinW1 − 0.5 × sin 10W2)

The first two treatment mechanisms are much more easily captured by a polynomial sieve
than the remaining two. The first and the third treatment mechanism generate no observa-
tions with g0(A | W ) < 0.1 or g0(A | W ) > 0.9), representing practical violations of the ETA
assumption, while g0,2 and g0,4 generate approximately 35% and 22% of practical ETA vio-
lations, respectively. The IPTW loss function can thus be expected to be reliably estimated
only under g0,1, with the remaining three choices representing more difficult scenarios.
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We assess the performance of a given estimator using the risk dissimilarity

d(Ψ̂(Pn), ψ0) = E0L(X, Ψ̂(Pn)) − E0L(X,ψ0)

=
∑

a∈{0,1}

∫
(Ψ̂(Pn)(a, V ) − ψ0(a, V ))2dF0(V ),

where we approximate the minimum of the full data risk function

E0L(X,ψ0) = E[
∑

a={0,1}
(Y (a) − ψ0(a, V ))2]

=
∑

a={0,1}
E(Q0(a,W ) + ε− ψ0(a, V ))2

numerically as the mean of L(X,ψ0) over 20,000 realizations of X.
For each of the eight possible choices for (Q0, g0), we generated 100 data sets each con-

sisting of 1000 i.i.d. observations. We note that the number of replications we were able to
carry out for this simulation study was limited by the considerable time requirements of the
proposed data-adaptive methodology. Table 1 summarizes the mean risk dissimilarities for
each of the three estimators.

Table 1: Mean risk dissimilarities
∫

(Ψ̂(Pn) − ψ0)
2 based on 100 samples of size n = 1000

Q0 g0 ETA Estimator
(Q0, g0) polynomial polynomial holds G-comp IPTW DR

(Q0,1, g0,1) � � � 0.0215 0.0325 0.0236
(Q0,1, g0,2) � � 0.0486 0.1532 0.0641
(Q0,1, g0,3) � � 0.0179 0.0305 0.0275
(Q0,1, g0,4) � 0.0216 0.0416 0.0351
(Q0,2, g0,1) � � 0.7915 0.5151 0.4440
(Q0,2, g0,2) � 0.8124 0.7487 0.6537
(Q0,2, g0,3) � 0.9148 0.8813 0.8839
(Q0,2, g0,4) 1.2604 1.2021 1.1946

As is to be expected, all three estimators perform considerably better if ψ0 is easily
approximated by sums of polynomial powers than if this is not the case. Thus the mean risk
dissimilarities under Q0,1 are about 30 to 50 times smaller than under Q0,2.

The G-computation estimator depends only on a good estimate of Q0 and thus performs
very well if Q0 is easily captured by a polynomial sieve, but rather poorly if this is not the
case. If Q0 = Q0,1, this estimator is in fact more efficient than either of the two remaining
estimators, regardless of the choice for the treatment mechanism. If Q0 = Q0,2, however, it
is the least efficient of the three estimators.

14
http://biostats.bepress.com/ucbbiostat/paper159



The IPTW estimator, depending only on g0, is expected to work well if the treatment
mechanism satisfies the ETA assumption and is easily approximated by sums of polynomial
powers. Hence it performs competitively under g0 = g0,1, but considerably worse under the
remaining treatment mechanisms. It appears particularly sensitive to the large proportion
of practical ETA violations caused by g0 = g0,2.

The DR estimator relies on estimating either Q0 or g0 sufficiently well, giving it a broader
range of data-generating distributions under which it performs favorably. Under Q0 = Q0,1,
it is slightly less efficient than the G-computation estimator, but more efficient than the
IPTW estimator. If the treatment mechanism violates the ETA assumption or is hard to
approximate by sums of polynomial powers, it performs considerably better than the IPTW
estimator by being able to rely on a polynomial Q0. Under Q0 = Q0,2 and g0 = g0,1, it
gains considerably in efficiency relative to the G-computation estimator by being able to
rely on a polynomial treatment mechanism satisfying the ETA assumption. Under these
circumstances, it is also slightly more efficient than the IPTW estimator. If both Q0 and
g0 are difficult to capture by a polynomial sieve, the DR estimator is still somewhat more
efficient than the G-computation estimator, although the gains are far less pronounced.

These results confirm our theoretical understanding and are also in agreement with sim-
ulation studies presented by Neugebauer and van der Laan (2004) and Yu and van der
Laan (2003) that compare the performance of these three estimators assuming pre-specified
parametric models for Q0, g0, and ψ0.

5 Application to SPPARCS data

In this section we apply our methodology to a data set derived from the ”Study of Physical
Performance and Age-Related Changes in Sonomans” (SPPARCS) (Tager et al., 1998). The
SPPARCS project is a population-based study of people aged 55 years and older living in
and around Sonoma, CA, that is aimed at investigating the effect of physical activity and
cardiopulmonary function on morbidity and mortality in the elderly.

We here wish to assess the causal effect of differences in lung function, as measured by
forced expiratory volume (FEV), on the survival experience of this population. While it
is hard to imagine an intervention that would allow one to set FEV to any desired level,
estimation of this causal effect is still interesting from a mechanistic point of view in that
it might shed light on the extent to which changes in FEV lie on the causal pathway to
mortality. We are furthermore interested in identifying factors that might modify the effect
of FEV on survival.

5.1 Data structure

A population-based sample of 846 men and 1,246 women aged 55 years and older was re-
cruited during the years of 1993 and 1994. Table 2 summarizes the available baseline co-
variates W that will be used in our analysis. The set V of potential stratification variables
contains all variables in W except for diabet, ldl, hdl, and bmi. The treatment variable A is
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given by the forced expiratory volume in one second (FEV1), measured in L/min.

Table 2: Definition of baseline covariates W . ETS stands for environmental tobacco smoke.

Variable Definition
age Age in years

female Indicator for female sex
cardio Indicator for diagnosis with cardiovascular condition
diabet Indicator for diagnosis with diabetes
ldl Indicator for high LDL cholesterol
hdl Indicator for high HDL cholesterol
bmi Body mass index

currsmk Indicator for currently smoking
pastsmk Indicator for previously smoking
etshome Number of years of ETS exposure at home
etsspouse Number of years of ETS exposure from spouse
etswork Number of years of ETS exposure at work

The survival status of the entire cohort is available until the end of the study in August
2003. A total of 541 subjects died during the study period. Let S denote survival time
measured in months since the beginning of the study. Let C denote follow-up time measured
in months from recruitment until the end of the study. Due to censoring by C, the mean of S
is not identifiable from the data that have been collected. A common solution to this problem
is to model a comparatively low quantile of the survival time distribution, the first decile, for
example, as a function of the explanatory variables of interest. Although the methodology
presented here could easily be extended to such models, our current implementation, is
restricted to modelling the treatment-specific mean of a particular outcome,

We here define a truncated survival time T as the minimum of S and C and let Y = log(T )
be our outcome of interest. The parameter of interest is now given by the treatment-specific
mean of this log-transformed truncated survival time T . In contrast to the treatment-specific
mean of the original survival times S, this parameter is identifiable. While causal effects of
FEV on T do not have as straightforward an interpretation as causal effects of FEV on S,
we further note that this parameter is capable of capturing causal effects of FEV on S that
manifest themselves within the nine or ten years comprising the study period. In future work
we also plan to consider the outcome Y = I(S > C), with the corresponding parameter of
interest given by the treatment-specific probability of survival over the entire study period.
In fact, this approach can be applied to estimate the treatment-specific probability of survival
past an arbitrary time point during the study period, allowing us to obtain an estimate of
the entire treatment-specific survival function.

16
http://biostats.bepress.com/ucbbiostat/paper159



5.2 Missing covariate and treatment measurements

A significant proportion of subjects have missing covariate or treatment measurements. As
mentioned above, the outcome Y is observed for the entire cohort. We handle missing values
differently for stratification variables V , baseline covariates W that are not included in V ,
and the treatment variable A.

Fortunately, the stratification variables V have only a very small proportion of missing
values. We therefore simply remove the subjects with missing values for V from our analysis.
For baseline covariates W that are not included in V , we re-define the variables to include an
indicator ∆j that equals 1 if the measurement for variable Wj is available: Wj ≡ (∆j,∆jWj).
This is useful since the missingness of baseline covariates W may itself contain valuable
information about a subject. We note that the randomization assumption now requires that
treatment assignment is conditionally independent of the counterfactual outcomes given this
re-defined collection of baseline covariates W .

This approach for handling missing values does not apply to missing treatment mea-
surements since we are not interested in estimating the causal effect of FEV on survival
conditional on having a valid treatment measurement. Instead we address such missing val-
ues using an inverse-probability-of-missingness approach. Specifically, we define an indicator
ξ that equals one if FEV is observed and zero otherwise. The loss function of interest is then
weighted by I(ξ = 1)/P̂ (ξ = 1 | W ), where P̂ (ξ = 1 | W ) is an estimate of the missingness
mechanism P0(ξ = 1 | W ). Like υ0, this additional nuisance parameter is estimated data-
adaptively by loss-based estimation using a polynomial sieve, the D/S/A algorithm, and
V -fold cross-validation. Ideally, the cross-validation procedure would estimate the missing-
ness mechanism separately for each split into training and validation sample, but the current
version of our R package cvDSA does not yet have this capability. Instead, the missingness
mechanism is estimated once and for all at the beginning of the analysis and then treated
as fixed for all remaining step. The fit we obtained is given by

P̂ (ξ = 1 | W ) = logit−1(4 − 0.06 age+ 0.02 age× hdl)

5.3 Data-adaptive fits for the nuisance parameters Q0 and g0

We obtained the following data-adaptive fits for the nuisance parameters g0 and Q0:

ĝ(A | V ) = 6.02 − 0.043 age− 0.94 female− 0.46 currsmk −
0.20 cardio× pastsmk − 0.0083 pastsmk × etswork

ĝ(A | W ) = 5.91 − 0.043 age− 0.93 female− 0.0093 pastsmk × etswork −
0.45 currsmk × bmi+ 0.12 bmi× ldl

Ê(Y | A,W ) = 6.97 − 0.55 A− 0.036 age− 0.67 female+ 0.0087 A× age−
0.12 A× cardio− 0.0050 age× cardio+ 0.011 age× female−
0.43 cardio× diabet− 0.0051 currsmk × etswork −
0.058 female× pastsmk

Ê(Y 2 | A,W ) = 24.84 − 0.00068 age2 − 0.00026 age2 × cardio
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Since the survival time S of about 75% of the subjects is truncated by the end of the study,
we might expect that the nuisance parameters E0[Y | A,W ] and E0[Y

2 | A,W ] are not easily
captured by a polynomial sieve. We therefore examined the fit of the models we obtained for
these parameters by plotting observed against fitted values. Plots (c) and (d) of figure 1 do in
fact show that the models we obtained for E0[Y | A,W ] and E0[Y

2 | A,W ] fit the data quite
poorly. The models for g0(A | W ) and g0(A | V ) on the other hand appear to fit the data quite
well. We also examined the validity of the ETA assumption supa g0(a | V )/g0(a | W ) < ∞
by inspecting the observed weights ĝ(Ai | Vi)/ĝ(Ai | Wi). Since these observed weights were
nicely bounded, we are comfortable that the ETA assumption is not practically violated.
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Figure 1: Plots of observed values against fitted values for the four nuisance parameters
g0(A | W ), g0(A | V ), E0[Y | A,W ], and E0[Y

2 | A,W ]
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5.4 Data-adaptive fits for the marginal structural model

We obtained the following data-adaptive fits for the parameter of interest ψ0. The perfor-
mance of each estimator is measured through its cross-validated empirical risk based on the
DR loss function, regardless of the loss function indexing the estimator.

• G-computation estimator:

Cross-validated risk estimate = 1.3628

E(Y (a) | V ) = 4.69 − 2.52 age× cardio− 0.0049 currsmk × etswork +

0.091 cardio× currsmk − 0.0000059 age× etshmtot−
0.00097 pastsmk × etshmtot+ 0.00085 currsmk × etshmtot−
0.00030 currsmk × etsspouse

• IPTW estimator:

Cross-validated risk estimate = 0.7781

E(Y (a) | V ) = 5.14 − 0.011 age− 0.0069 age× cardio+ 0.0019 age× female+

0.16 a× cardio+ 0.0013 a× age

• DR estimator:

Cross-validated risk estimate = 1.3122

E(Y (a) | V ) = 7.24 − 0.62 a− 0.040 age− 0.77 female− 0.48 cardio+

0.0099 a× age+ 0.013 age× female− 0.062 a× currsmk +

0.15 a× cardio− 0.056 female× pastsmk

The relative performances of the three estimators are in line with our observations above
regarding the fit of the data-adaptive models for Q0 and g0 as well as the validity of the ETA
assumption. The good performance of the IPTW estimator is not surprising since the model
for the treatment mechanism fits the data quite well and the ETA assumption appears to
hold. The comparatively poor performance of the G-computation estimator, as evidenced
in a nearly two-fold greater cross-validated risk, is likely due to the poor fit of the models
we obtained for E0[Y | A,W ] and E0[Y

2 | A,W ]. The DR estimator also suffers from the
resulting poor estimate of Q0, although it appears to benefit slightly from the good fit for
the treatment mechanism.

Table 3 summarizes the coefficient estimates obtained by the IPTW estimator. Standard
errors and p-values are based on the influence curve of this estimator, treating the models for
ψ0 and υ0 as given. Since they ignore the data-adaptive selection of these models, they can
be expected to exaggerate the significance of the estimates obtained. The resulting p-values
are small enough, however, to suggest that all parameter estimates are in fact significant at
a conventional level of α = 0.05.
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Table 3: Summary of MSM fit obtained by IPTW estimator

Estimate Std. Error t value Pr(> |t|)
(Intercept) 5.1397692 0.0979460 52.476 <2e-16
age -0.0114990 0.0012458 -9.230 < 2e-16
a× cardio 0.1585765 0.0305650 5.188 2.45e-07
a× age 0.0012705 0.0002729 4.656 3.55e-06
age× cardio -0.0069347 0.0009418 -7.363 3.10e-13
age× female 0.0018915 0.0003656 5.173 2.65e-07

The model suggests a positive effect of increased FEV on survival that is modified by age
and whether or not a subject has been diagnosed with a cardiovascular condition. Table 4
summarizes the estimated proportional change in predicted truncated survival T caused by
a 1L/min increase in FEV at different levels of these two effect modifiers.

Table 4: Estimated proportional change in predicted T caused by a 1L/min increase in FEV

Age in years 60 65 70 75 80
Cardio=0 1.079 1.086 1.093 1.100 1.107
Cardio=1 1.265 1.273 1.281 1.289 1.297

Our analysis suggests that the positive effect of greater FEV on survival is consider-
ably greater among people who have previously been diagnosed with cardiovascular disease.
Among this group of people, the predicted truncated survival T increases by 25% to 30%
for a 1L/min increase in FEV whereas the corresponding increase among people without a
previous diagnosis ranges only from 8% to 11%. Furthermore, the positive effect of FEV
on survival appears to increase slightly with age. Finally, we note that none of the environ-
mental tobacco smoke variables appear in the chosen marginal structural model, suggesting
that past tobacco smoke exposure may exert most of its effect on survival through changes
in FEV. Such a hypothesis may be more formally evaluated using statistical methods for the
estimation of direct and indirect effects (Robins and Greenland, 1992; Pearl, 2000; van der
Laan and Petersen, 2004).

6 Discussion

Current methodology for estimating the treatment-specific mean in a point-treatment study
requires the researcher to specify a priori a marginal structural model for the dependence of
counterfactual outcomes on treatment and effect modifiers as well as parametric models for
various nuisance parameters. Since model misspecification can lead to severely biased causal
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effect estimates, the dependence on such parametric models represents a major limitation.
In this article, we introduce estimators that allow the marginal structural model as well as
the parametric models for the relevant nuisance parameters to be selected data-adaptively.

The estimators we present are based on the unified loss-based estimation approach re-
cently developed by van der Laan and Dudoit (2003) that in particular extends loss-based
estimation to missing data problems such as causal inference. The key idea of this ap-
proach consists of mapping an infeasible full-data loss function into an observed-data loss
function with the same expectation. Starting from a squared-error full-data loss function
and applying three different mappings into an observed-data loss function, we thus obtain
the G-computation, IPTW, and DR estimators. These estimators differ primarily in their
dependence on two nuisance parameters Q0 and g0. Using both simulation studies and an
actual data analysis, we demonstrate how their performances are differentially affected by
how well these nuisance parameters can be estimated in a given situation.

While the data-adaptive methodology we develop here represents a major advance over
current parametric methods, it still leaves room for a number of improvements and exten-
sions. One of the greatest shortcomings lies certainly in the difficulty to arrive at honest
measures of statistical significance. Currently, these can only be obtained through computa-
tionally intensive resampling-based approaches like the bootstrap. As we pointed out above,
however, this represents a problem encountered with most machine-learning algorithms.

A more specific issue with the methodology presented here pertains to the experimental
treatment assignment assumption. Estimators based on the IPTW mapping rely fundamen-
tally on this assumption according to which, for any realization of baseline covariates W , all
possible treatments must have positive probability of being observed. While IPTW estima-
tors are becoming increasingly popular tools in the area of causal inference, this assumption
is seldomly examined in a systematic manner, if at all. Most current approaches are based
on examining fitted treatment probabilities over a range of plausible covariate values and
ensuring that these are bounded away from zero and one. While such approaches may reveal
whether or not the ETA assumption is practically violated, they do not give us a sense of
how severely biased we may expect our parameter estimates to be as a consequence.

We are currently working on a simulation approach that aims to evaluate the validity of
the ETA assumption exactly by estimating the size of this bias. For this purpose, we first
carry out the entire data-adaptive estimation procedure described in this article to select a
marginal structural model and to obtain fits for the nuisance parameters Q0 and g0. Estimat-
ing the distribution of baseline covariates W by the corresponding empirical distribution and
assuming that continuous treatment or outcome variables are normally distributed, we then
have an estimate of the entire data-generating distribution. We can now obtain a sampling
distribution of IPTW estimates by applying the parametric IPTW estimator proposed by
Robins (2000b) to data sets simulated according to this data-generating distribution. The
true parameter values corresponding to this distribution can be approximated by using the
parametric G-computation estimator (Robins, 2000b). Finally we can estimate the bias in-
troduced by a potential violation of the ETA assumption by the difference between these
G-computation estimates and the mean of the IPTW estimates. We are currently working
on implementing this approach for a future version of the R package cvDSA.
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Another issue regarding the estimators we present here pertains to the estimation of the
nuisance parameters Q0 and g0. As described above, we currently employ the squared-error
loss function or the − log(·) loss function for this purpose. These loss functions are targeted
at estimating Q0 and g0 efficiently. Our primary concern in estimating Q0 and g0, however,
lies in estimating the risk of a given candidate estimator, which is a particular functional
of Q0 and g0. We therefore believe that more efficient estimators of ψ0 can be obtained
by targeting the loss functions for estimating Q0 and g0 at this particular functional rather
than at Q0 and g0 themselves. We are currently investigating this question by applying
the estimating function based cross-validation methodology proposed by van der Laan and
Rubin (2005).

Lastly, we would like to point out that some causal inference questions may be formu-
lated more directly by considering parameters other than the treatment-specific mean. In
particular, many causal analyses are concerned with estimating the causal effect of a treat-
ment A on an outcome Y conditional on some baseline covariates V , but are not interested
per se in understanding how Y is affected by changes in V alone. In interpreting the final
model fit for the SPPARCS analysis, for example, we summarized the causal effect of A
on Y conditional on V by collecting terms that contain A and evaluating them at different
values of V . Terms containing only stratification variables V were of little interest. If the
treatment variable A allows for the definition of an appropriate reference level A = 0, such
causal analyses may be framed more directly by considering a causal effect parameter such
as Ψ(P )(a, V ) = EP [Y (a) − Y (0) | V ].

Such parameters have two main advantages over the treatment-specific mean. First,
since analyses based on the treatment-specific mean are not targeted directly at the question
of interest, they run the risk of yielding results that in fact shed very little light on that
question. This is for example the case if none of the terms in the data-adaptively chosen
model contain the treatment variable. In such instances, one would be forced to conclude
that the analysis suggests no causal effect of A on Y , but obtains no direct estimate of that
causal effect. Second, the parameter space for Ψ(P )(a, V ) = EP [Y (a) − Y (0) | V ] does not
include those functions of a and V that are constant in a and hence is considerably smaller
than the parameter space for the treatment-specific mean. We therefore expect that causal
effect parameters can be estimated more precisely than the treatment-specific mean.

We are currently working on implementing the variable importance methodology devel-
oped by van der Laan (2005) to estimate Ψ(P )(a, V ) = EP [Y (a)−Y (0) | V ] data-adaptively
and hope to incorporate this approach in future versions of our R package cvDSA.
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A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization.
Probability Theory and Related Fields, 113:310–413, 1999.

A.R. Barron. Statistical properties of artificial neural networks. In Proceedings of the 28th
conference on decision theory and control, Tampa, Floria, 1989.

A.R. Barron. Nonparametric functional estimation and related topics, chapter Complex-
ity regularization with application to artificial neural networks, pages 561–576. Kluwer
Academic Publishers, the Netherlands, 1991.

L.M. LeCam. Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New
York, 1986.

L.M. LeCam and G. Yang. Asymptotics in Statistics: Some Basic Concepts. Springer Verlag,
New York, 1990.

R. Neugebauer and M.J. van der Laan. Why prefer double robust estimates. Journal of
Statistical Planning and Inference, 2004.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cam-
bridge, 2000.

J.M. Robins. Marginal structural models versus structural nested models as tools for causal
inference. In Statistical models in epidemiology, the environment, and clinical trials (Min-
neapolis, MN, 1997), pages 95–133. Springer, New York, 2000a.

J.M. Robins. Robust estimation in sequentially ignorable missing data and causal inference
models. In Proceedings of the American Statistical Association, 2000b.

J.M. Robins and S. Greenland. Identifiability and exchangeability for direct and indirect
effects. Epidemiology, 3(0):143–155, 1992.

D.B. Rubin. Bayesian inference for causal effects: the role of randomization. Annals of
Statistics, 6:34–58, 1978.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

X. Shen. On methods of sieves and penalization. Annals of Statistics, 25:2555–2591, 1997.

S. Sinisi and M.J. van der Laan. The deletion/substitution/addition algorithm in loss func-
tion based estimation: Applications in genomics. Journal of Statistical Methods in Molec-
ular Biology, 3(1), 2004.

23
Hosted by The Berkeley Electronic Press



I. Tager, M. Hollenberg, and W. Satariano. Self-reported leisure time physical activity
and measures of cardiorespiratory fitness in an elderly population. American Journal of
Epidemiology, 147:921–931, 1998.

M.J. van der Laan. Statistical inference for variable importance. Technical report 188,
Division of Biostatistics, University of California, Berkeley, August 2005.

M.J van der Laan and S. Dudoit. Unified cross-validation methodology for selection among
estimators and a general cross-validated adaptive epsilonnet estimator: Finite sample
oracle inequalities and examples. Technical report 130, Division of Biostatistics, University
of California, Berkeley, November 2003.

M.J. van der Laan and M.L. Petersen. Estimation of direct and indirect causal effects
in longitudinal studies. Technical report, University of California, Berkeley, Division of
Biostatistics, 2004.

M.J. van der Laan and J.M. Robins. Unified methods for censored longitudinal data and
causality. Springer, New York, 2002.

M.J. van der Laan and D. Rubin. Estimating function based cross-validation and learning.
Technical report 180, Division of Biostatistics, University of California, Berkeley, May
2005.

Z. Yu and M.J. van der Laan. Double robust estimation in longitudinal marginal structural
models. Technical report, Division of Biostatistics, University of California, Berkeley, 2003.

24
http://biostats.bepress.com/ucbbiostat/paper159


	text.pdf.1140543126.titlepage.pdf.9tRyV
	viewcontent-15.cgi.pdf

