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Rank Regression in Stability Analysis

Ying Qing Chen, Annpey Pong, and Biao Xing

Abstract

Stability data are often collected to determine the shelf-life of certain charac-
teristics of a pharmaceutical product, for example, a drug’s potency over time.
Statistical approaches such as the linear regression models are considered as ap-
propriate to analyze the stability data. However, most of these regression models
in both theory and practice rely heavily on their underlying parametric assump-
tions, such as normality of the continuous characteristics or their transformations.
In this article, we propose and study some rank-based regression procedures for
the stability data when the linear regression models are semiparametric with un-
specified error structure. Numerical studies including Monte Carlo simulations
and practical examples are demonstrated with the proposed procedures as well.



1 Introduction

According to the Guidance for Industry: Guideline for Submitting Documentation for the

Stability of Human Drugs and Biologics by the Food and Drug Administration (FDA, 1987),

a stability study is to determine the shelf-life within which the capacity of a drug product

remains its identity, strength, quality, and purity. In the United States, the shelf-life is

required by the FDA for every proposed market formulation or post approval market product.

The stability data are hence often collected on the product samples stored in the controlled

conditions to measure these properties changing over time. To be specific, if the drug capacity

is hypothesized by a degradation curve in time as illustrated in Figure 1, the shelf-life is

usually determined as the time point at which one of the 95% confidence bounds of the

estimated degradation curve intersects the specification limit.

Figure 1: Illustration of shelf-life with decreasing mean degradation curve
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Apparently there are two logical stages in the process of determining the reasonable

shelf-lives:

(1) develop statistical models to characterize and estimate the product’s outcomes of interest

changing over time;

(2) determine the shelf-life based on the allowable specification limit of drug products.
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Although stage (2) is the ultimate goal of the stability analysis, a sensible model in stage (1)

is critical to the entire analysis. For the models in stage (1), as indicated in a draft consen-

sus guideline of Evaluation of Stability Data recently issued by the International Conference

on Harmonization (ICH) Steering Committee (2002), “regression analysis is considered an

appropriate approach to evaluating the stability data for a quantitative attribute and es-

tablishing a retest period or shelf life” (p. 6). In fact, the linear regression models have

been used extensively in both research and industrial practice. For example, in an article by

Shao and Chow (2001), when the batch-to-batch variation of the tested product is not con-

cerned, the following simple linear regression model can be used to describe the continuous

characteristics over time:

Y = α + βt + e, (1)

where α and β are unknown parameters, t is the fixed measurement time determined by

the study design and e is zero-mean normal deviate. When the batch-to-batch variation is

concerned, the random effects models, which often assume that (α, β) in (1) varies among

batches according to some parametric bivariate normal distribution, are suggested to use.

There are variations of the linear regression models similar to (1), e.g., see Chen, Hwang

and Tsong (1995) and Chen, Ahn and Tsong (1997). Nevertheless, most of the linear regres-

sion models in stability analysis have been used with resort to certain parametric assump-

tions. In reality, however, it may not be always true that these parametric assumptions are

appropriate. For example, when the number of manufacturing batches is actually limited for

the drug product, then the continuous bivariate normal assumption on (α, β) is questionable

in dealing with the batch-to-batch variations.

The parametric models and their associated maximum likelihood methods do have much

advantage in gaining efficiency and are generally easy to compute with today’s computer

resources. The trade-off is that their subsequent inferences rely heavily upon the parametric

assumptions. Without strong belief in these assumptions, however, there is imminent need

to develop alternative flexible models with less restrictive assumptions.

In this article, the semiparametric linear regression models are proposed and studied as

alternatives to the parametric models such as (1), without restrictive normality assumptions

on the errors while the parametric linear trend over time is preserved. Accordingly, the

rest of this article is organized as follows. In §2.1, the semiparametric regression models

are presented and discussed. The rank-based inference procedures to determine shelf-life
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are studied and investigated in §2.2. Numerical studies including Monte-Carlo simulations

and applications of the new methods in practice are in §3. Some remarks and discussion on

potential methodology extensions are in §4.

2 Stability Analysis Based on Rank Regression

2.1 Semiparametric regression models

The linear regression models are frequently used in the stability analysis to describe the

product’s characteristics of interest. Because of the products manufactured with variablity

by batches, it is suggested that the samples selected in stability studies should “constitute

a random sample from the population of production batches” (FDA, 1987). Suppose that

there are n batches in the stability analysis. Denote Yij the continuous outcome of the

characteristic for the jth measurement of the ith batch, i = 1, 2, . . . , n, and j = 1, 2, . . . , mi.

Then in general the linear regression model assumes that

Yij = αi + βiXij + eij, (2)

where Xij are the associated covariates, (αi, βi)
T are the parameters and eij are the indepen-

dent random errors. Specifically in stability analysis, since the shelf-life need to be finally

determined, X often includes a variable of time in certain scale. In addition, the random er-

rors are usually assumed to be identically zero-mean Normal deviates with constant standard

variance σ2
e . The superscript T denotes the transpose of vector or matrix.

In practice, when the batch-to-batch variation is of little concern, it is often assumed

that αi = α0 and βi = β0 for any i. One special situation of such, for example, is that

there is only one single batch, i.e., n ≡ 1. The usual multiple linear regression models with

the method of the ordinary least squares are suggested by Chow and Shao (2002, p. 83) to

obtain the estimates of (α0, β0)
T.

When the batch-to-batch variation is suspected, there are indeed three occasions of model

(2) that may allow certain degree of batch-to-batch variation:

(1) intercept terms but not slopes, or

3
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(2) slopes but not intercept terms, or

(3) both,

are different from batch to batch, as demonstrated in Figure 2(a), 2(b) and 2(c), respectively.

The random effects models have been advocated to deal with the batch-to-batch variation.

For example, in the afore-mentioned occasion (3) of model (2), (αi, βi) can be further assumed

to follow a Normal distribution, N((α0, β0)
T, Σ), say (Chow and Shao, 1991). In addition to

the straightforward estimation procedure using the maximum likelihood of the final mixture

distributions, the random effects models also bear the implication of describing the “future”

batches.

Figure 2: Illustration of three potential batch-to-batch variations
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It is well known that the fully parametric approaches carry much benefit in model in-

terpretation, estimation and readily available softwares. However, they also have to heavily

depend on the validity of their parametric assumptions. For example, a normal approxi-

mation of the batch-to-batch varying (αi, βi)
Ts has to be degenerated in either α or β to
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accommodate the first two afore-mentioned occasions of model (2), respectively. Therefore,

there is need in developing more flexible models with less assumptions. One of such effort

can be made by semiparametric modeling. Specifically, the following semiparametric model

is assumed:

h(Yij) = αi + βiXij + eij, (3)

where eij are independent zero-mean deviates with unknown density function of f(·) and

h(·) is some known monotonic transformation function.

The model in (3) is quite flexible without assuming the underlying distribution of normal-

ity or constant variance. Moreover, as shown in the following section it does not necessarily

assume the parametric distributions on (αi, βi)
T as random effects but leaving them as fixed

effects, when appropriate rank-based inference procedures are utilized for the corresponding

models. The parametric component in model (3) is still the linear combination of parameter

βi and covariates Xij. So the sign and quantity of βi characterizes the direction and magni-

tude of linear trend of Yij with respect to Xij, respectively. For example, when Xij are the

times at which Yij are measured, βi may stand for the “degradation” of measurements over

time for its negative sign.

2.2 Rank-based shelf-life determination

We first consider model (3) for the stability analysis when one batch of stability data is to

be analyzed. That is, n ≡ 1. So the index i is ignored to simply the notations. Furthermore,

without loss of generality, we assume h(·) is an identity link. Then the model becomes

Yj = α + βXj + ej.

Under the Null Hypothesis of β = 0, a standard rank test statistic is then

U =

m
∑

j=1

(Xj − X̄)R(Yj),

where X̄ is mean of X’s and R(Y1), R(Y2), . . . , R(Ym) are the ranks of Y1, Y2, . . . , Ym, re-

spectively. When β is not necessarily zero, a straightforward extension is to consider the

residuals of ej = Yj − (α + βXj):

U(β) =
m

∑

j=1

(Xj − X̄)R(ej).

5
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Apparently E[U(β); β] = 0 for any β ∈ B ⊂ R, where B is the parameter space and R is

the real line. Therefore it is reasonable to solve the unbiased estimating equation of U(β) to

obtain appropriate estimates of β:

U(β̂) = 0.

It is noticeable that the parameter of α is not estimable from U(β), because it serves as

baseline effect for every observation and therefore the ranks are invariant to the constant

intercept. However, it is critical in stability analysis, because it has to be determined for

further estimation of the shelf-life. One remedy to determine α is in use the median of

(Yj − β̂Xj), j = 1, 2, . . . , m. When the distribution of error terms are further symmetric, α

can be estimated by the median of the Walsh average of residuals of (ei+ej)/2, 1 ≤ i ≤ j ≤ m

(Hettmansperger, 1984). Denote α̂ the estimate of α.

Since U(β) is monotonically decreasing step function in β, there may not exist values of

β to allow U(β) = 0 exactly. One alternative is to define β̂ that satisfies U(β+)U(β−) ≤ 0.

The other alternative is to obtain the rank estimate β̂ by minimizing the

D(β) =

m
∑

j=1

wjR(ej)ej,

where wj are nonconstant sequence of scores such that wj + wm−j+1 = 0. Then D(β) is a

nonnegative, continuous and convex function of β. Suppose that β0 is the true value of β,

according to Theorem 5.2.3 in Hettmansperger (1984),

m1/2(β̂ − β0)
D→ N(0, τ 2Σ−1),

where τ = (
√

12
∫ ∞

0
f 2(u)du)−1 and Σ is the variance-covariance matrix of e = (e1, e2, . . . , em)T.

Furthermore, when α̂ is the median of êj = Yj − β̂Xj, it can be shown that m1/2[(α̂, β̂)T −
(α0, β0)

T] would have an asymptotic distribution of multivariate normal with mean zero and

variance-covariance

V = τ 2

[

[2f(0)τ ]−2 + µTΣ−1µ −µTΣ−1

−µTΣ−1 Σ−1

]

,

where µ is the mean vector of Y ’s and f(·) is the density function of ei’s. When α̂ is

the median of the Walsh averages, m1/2[(α̂, β̂)T − (α0, β0)
T] would have the asymptotic

distribution of multivariate normal with mean zero and variance-covariance of

V = τ 2Λ−1,
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where Λ−1 = limm→∞[1,X]T[1,X]. Here 1 is unit vector and X the design matrix.

As a result, an approximately 95% pointwise confidence bound for EYi is then (LBi, UBi)

where

LBi = α̂ + β̂Xi + Z0.025

√

(1, Xi)V̂ (1, Xi)T

and

UBi = α̂ + β̂Xi + Z0.975

√

(1, Xi)V̂ (1, Xi)T.

Therefore, an estimate of shelf-life is the point of time, Tshelf , at which Li or Ui intersects

the pre-defined most allowable specification, η, say, depending on whether β is negative or

positive, respectively.

When the batch-to-batch variation is present as in occasion (1):

Yij = αi + βXij + eij

where β is the common slope for every batch. This model is most plausible when the

degradation of product substances is uniform and the batch-to-batch variation only comes

from the difference in initial value after manufacturing of each batch. If the aforementioned

rank-based estimating equation is used for this model, then it is not necessarily to assume

that αi have to follow some parametric random effects, but rather be treated as unknown

fixed quantities:

U(β) =

n
∑

i=1

Ui,

where Ui =
∑mi

j=1
(Xij − X̄i)R(eij). Here X̄i = m−1

i

∑

j Xij and eij = Yij − (αi + βXij).

Similarly, U(β) is not able to estimate αi’s. However, the medians of Yij − βXij, j =

1, 2, . . . , mi, can be used to estimate αi, i = 1, . . . , n, individually.

When the batch-to-batch variation is present as in occasion (2):

Yij = α + βiXij + eij

where α is the common slope for every batch. This model is most plausible when the

degradation of product substances does not share identical rate of change although its initial

value of characteristics are controlled to be the same. To estimate individual βi, consider:

Ui(β̂i) = 0

7
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for every individual i to solve for β̂i. Then the medians of Yij − β̂iXij, j = 1, 2, . . . , mi,

i = 1, . . . , n, can be used to estimate α.

When the batch-to-batch variation is present as in occasion (3):

Yij = αi + βiXij + eij

where the intercepts and slopes are both different from batch-to-batch. This model is most

plausible when the batches of products are quite heterogeneous in either the initial value of

characteristics or the degradation rates. To estimate individual βi, consider:

Ui(β̂i) = 0.

And the medians of Yij − β̂iXij, j = 1, 2, . . . , mi can be used to estimate αi, i = 1, . . . , n,

respectively. An interesting observation is that the β̂i solved from Ui(β̂i) should be identical

to the estimates in occasion (2), demonstrating some robustness of rank-based estimating

equation in terms of estimating the slope of degradation rate.

If the batch-to-batch variation exists, computing the appropriate shelf-life becomes chal-

lenging and controversial, because there is not one set of (α̂, β̂) but several (α̂i, β̂i) to deter-

mine the confidence bands. One straightforward approach is to use the method suggested

by the FDA guidelines. That is, first compute Tshelf for each individual batch, and the final

shelf-life is then min(Tshelf,i, i = 1, 2 . . . , n). Or, when the number of batches are enough large

and potentially the so-called “future” batches may also show variability, then the shelf-life

can be computed based on the prediction bounds of the average values of αi and βi, following

the approach by Shao & Chen (1997).

To test the batch-to-batch variation, the method in Chow & Shao (2002, p. 98), which is

similar to the Woolfe’s test for stratified samples in strata homogeneity, can be extended to

the obtained rank-based estimates. Specifically, suppose that (α̂i, β̂i) are obtained in occasion

(3) for individual batches and (α̂, β̂) in the occasion without considering the batch-to-batch

variation. Then the statistics

TS =

n
∑

i=1

(α̂i − α̂, β̂i − β̂)TV̂ −1
i (α̂i − α̂, β̂i − β̂),

where V̂i are the estimates of the variance of (α̂i, β̂i), respectively, under the null hypothesis

that there is no batch-to-batch variations. It approximately follows χ2-distribution with

degrees of freedom of n−1. The null hypothesis is rejected if TS tends to be unusually large,

for example, when its associated p-value is not bigger than 0.25.
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3 Numerical Studies

Like other rank-based linear regression approaches, the computation of the proposed rank-

based approaches in previous sections are generally tedious. In fact, there are some chal-

lenging issues in actual implementation. One challenge involved is to solve the estimating

function itself. When the covariates are of one dimension or even low dimensions, the usual

bisection or grid search should be suffice. But when the covariates are of relatively higher

dimensions, then the finding of solution using grid search may be intractable. One way to

solve this is using the so-called “recursive bisection” programming (Chen and Jewell, 2001).

The idea is, given the solution at the kth step, the (k + 1)st solution can be obtained by

bisectional approach. In practice, this approaches well within reasonable time frame.

Another challenge is to compute the appropriate confidence bands of (LBi, UBi). Al-

though they are of usual simple form similar to their counterparts in linear regression mod-

els with the least-squares, the actual computation is not as straightforward because of the

parameter τ = (
√

12
∫

f 2(u)du)−1 involved with unknown density function f . Without an

appropriate estimate of τ̂ , it is foreseeable that V̂ would be difficult to estimate in any

straightforward sense. One estimate of
∫

f 2(u)du is by Schuster (1974). That is, first obtain

a kernel type of estimate of f(u):

f̃(u) =
1

mh

m
∑

j=1

k

(

u − ej

h

)

,

where k(·) is a uniform kernel function

k(u) =

{

1 u ∈ [−1/2, 1/2]
0 otherwise

,

and h is kernel bandwidth. Then δ =
∫

f 2(u)du =
∫

f(u)dF (u) can be estimated by

δ̂ =
1

m2h

m
∑

i=1

m
∑

j=1

I

(

|ei − ej| <
h

2

)

.

It is shown to be consistent as in Aubuchon (1982). A modified version of the above estimate,

δ̂c, is proposed in Hettmansperger (1984) to ease the computation,

1

mc
+

1

m(m − 1)h

m
∑

i=1

∑

j 6=i

k

(

ei − ej

h

)

,

9
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where c is any fixed constant. The modified δ̂c is also consistent of δ when h = cm−1/2

(Theorem 5.2.4, Hettmansperger, 1984). To actually implement δ̂c, the following algorithm

can be applied.

Algorithm1:

1. obtain β̂ and residuals êi = yi − β̂xi, i = 1, 2, . . . , m;

2. compute the inter-quartile range, d, of êi, i = 1, 2, . . . , m;

3. compute δ̂c as

1

4.11md
+

2

m1/2(m − 1)4.11d

∑ ∑

i<j
I

(

m1/2(êi − êj)

4.11d

)

.

In our simulations, we study the performance of rank-based estimation procedure under

different error structures. For simplicity, we only consider the following single covariate data

generation model of occasion (1)

yij = αi + βxij + eij, for i = 1, . . . , n and j = 1, . . . , m,

where yij is the characteristic of interest of the jth measurement for the ith batch, xij is the

time of the jth measurement for the ith batch, eij is random error of the jth measurement

for the ith batch, αi is batch-specific intercept and β is common slope. Note that this is

the common slope model. But it is straightforward to expand all the simulations described

below to other occasions with batch-to-batch variation.

The FDA (1987) recommends at least three batches are tested to obtain the shelf-life

for an NDA submission. In our simulation study, we considered both n = 1 and n = 3.

Furthermore, we assume that the characteristic of interest decreases over time, as β =

−0.5, i.e., 0.5 unit decreasing change per month, say. In addition, α = 100 for n = 1

and α = {100, 101, 102} for n = 3. The sampling time points are of a full FDA plan, i.e.,

x = (0, 3, 6, 9, 12, 18). Three error distributions are considered: (1) Normal (eij ∼ N(0, 1));

(2) Uniform (eij ∼ U(−2, 2)); and (3) Log-normal (log eij ∼ N(0, 1)). Note that the error

distributions of (2) and (3) are not the commonly used normal distributions.

1Here c = 4.11d is calculated as if f(·) were normal density, when the bias in δ̂c is set to be zero. The

actual formula for c is c = d ·
{

0.5
∫

[f ′

1
(x)]2dx ·

∫

x2I(|x| ≤ 0.5)dx
}

−1/3

, where f1(x) = d · f(d · x). The
different choices of density function f(·) should not lead to dramatic change in c.
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One thousand sets of data for each error distribution and for number of batch n = 1 and

n = 3, respectively. The mean and standard deviation of the estimated intercepts and slopes

are reported in Table 1. Histograms of the estimated slopes are shown in Figure 3. It is

noticeable that the parameter estimates of rank regression models are comparable in terms

of efficiency with those of normal linear regression models with the ordinary least squares

(OLS) for data with normal errors, or other errors that deviate not too much from normal

errors. In these cases, the OLS estimates for normal linear models tend to be a bit more

efficient than the rank regression estimates with the normal assumption, as can be seen from

their smaller standard deviations. However, the rank regression is more robust and efficient

for data with errors that deviate much from normal errors (e.g., log-normal errors). It can

be seen from Table 1 that the standard deviations for the estimated intercepts and slopes

for the rank regression models are much smaller than those correspond to the estimates for

the normal linear models fitted by OLS. Note that since the expectation of log-normal error

is positive, the estimated intercepts for both rank regression models or normal linear models

are biased for data with log-normal errors.

Table 1: Mean and Standard Deviation of Estimated Model Parameters

Parameter eij ∼ N(0, 1) eij ∼ U(−2, 2) log eij ∼ N(0, 1)
[n=1]

RRM α 100.0048 (0.6057) 99.9829 (0.8052) 101.1343 (0.7491)
RRM β -0.4995 (0.0328) -0.5010 (0.0384) -0.4941 (0.0462)
NLM α 100.0077 (0.5489) 99.9992 (0.6230) 101.6468 (1.1458)
NLM β -0.4994 (0.0316) -0.5012 (0.0359) -0.4997 (0.0623)
[n=3]

RRM α1 99.9860 (0.5051) 100.0252 (0.6642) 101.0751 (0.4958)
RRM α2 100.9893 (0.5012) 101.0363 (0.6622) 102.1150 (0.5241)
RRM α3 101.9936 (0.4877) 102.0038 (0.6615) 103.1259 (0.5476)
RRM β -0.4996 (0.0193) -0.4998 (0.0227) -0.4981 (0.0182)
NLM α1 99.9915 (0.4411) 100.0097 (0.4955) 101.6286 (0.9150)
NLM α2 100.9961 (0.4302) 101.0180 (0.4847) 102.6333 (0.9056)
NLM α3 101.9827 (0.4275) 102.0043 (0.4960) 103.6305 (0.8960)
NLM β -0.4995 (0.0176) -0.4997 (0.0205) -0.4993 (0.0382)

Note: RRM: Rank Regression Model. NLM: Normal Linear Model (fitted by OLS).
Standard deviations are enclosed in parenthesis. n = 1 or n = 3 represents number of
batches. True parameters are: β = −0.5, α = 100 for n = 1, and α1 = 100, α2 = 101, and
α3 = 102 for n = 3.
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Figure 3: Histograms of Estimated Slopes
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In Shao and Chow (1994), a data set of the stability study on a 300-mg tablet of a drug

product to determine appropriate labeled shelf-life was given and analyzed. The tablets

from five batches were stored at room temperature in two types of containers (high-density

polyethylene bottle and blister packages). Tests of potency were conducted at 0, 3, 6, 9, 12

and 18 months. The data are plotted in Figure 4.

Figure 4: Shao and Chow (1994) data
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It can be seen in the figure that the potency is generally degrading as time progresses.

Furthermore, simple linear regression models are fitted with the OLS to each batch. Their

residuals are plotted in Figure 5. The residuals are plotted against the fitted values and

their corresponding normal quantiles, respectively, for each batch. As seen in Figure 5, the

residual plots does not always show random pattern, but some of them may suggest the

violation of normal assumption.

A closer look at Figure 4 would find that the variation of degradation curves tends to

be bigger in intercepts while the slopes of these curves tend to be similar. Therefore, the

models of occasion (1) of common slope with different intercepts

yij = αi + βXij + eij

are fitted to the data. Its associated rank-based estimating function of β is plotted in Figure

6. As shown in the figure, the estimating function is non-increasing with β and the estimate
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Figure 5: Shao and Chow (1994) data: Residual Plot (OLS Fit)
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of β are -0.32 and -0.29 for the bottle container and blister package, respectively. For the

bottle container, the estimates of intercept for five batches are 103.45, 103.98, 103.35, 103.27

and 104.00. For the blister package, the estimates of the intercept for five batches are then

102.57, 102.43, 102.85, 102.68 and 103.64.

In addition, the model of varying (αi, βi)

yij = αi + βiXij

are fitted to the data as well. The estimates of (αi, βi)’s for bottle container are (104.20,−0.42),

(103.75,−0.28), (103.25,−0.30), (101.50,−0.10) and (105.90,−0.53). Similarly, the esti-

mates of (αi, βi)’s for blister package are (102.00,−0.13), (102.50,−0.30), (102.52,−0.09),

(102.47,−0.28) and (105.20,−0.47). The estimated mean degradation curves from both

models for their respective package type are also plotted in Figure 7. Based on these esti-

mates, the estimated shelf-lives for the bottle container and blister package with specification

limit of 90% are approximately 22 and 21 months, respectively, which are comparable to the

situation of ε = 0.05 given in Shao and Chow (1994).

Figure 6: Shao and Chow (1994) data: Rank-based Estimating Function
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Figure 7: Shao and Chow (1994) data: Estimated Mean Degradation Curves
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Note: Row 1: fitted mean degradation curves with batch-to-batch variation in both
intercept and slope; Row 2: fitted mean degradation curves with batch-to-batch variation
in intercept only.
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4 Discussion

In this article, the semiparametric regression models and their associated rank-based infer-

ence procedures in obtaining the self-life provide an alternative approach when the para-

metric assumptions are not necessarily true in the fully parametric models. Although they

may carry disadvantages in efficiency or computation, its flexibility to allow non-standard

continuous outcomes in stability data is appealing in practice when the regulatory agencies

or drug manufactures tend to be conservative in determining shelf life of actual products.

In fact, the feature of the nonparametric components in this model also have profound

practical interpretation. They do not need parametric assumptions but rather are treated

as fixed. By doing so, however, we do have the risk of falling into the classical Neyman-

Scott problem of great number of nuisance parameters. Without the usual way of further

assumptions in reducing the dimensionality of parameter space, the estimation and inference

procedures may lead to biased results. Therefore, the approaches in this article may be

of more advantage when the existence of the general batch-to-batch variation has limited

range. But, it may be extended to the situation of extensive batch-to-batch variations

when only the intercepts are different between batches, i.e., in occasion (1). In this case,

the proposed approaches echoes the semiparametric models for stratifies samples when the

baseline parameters are not of concern.

As argued in Shao and Chow (1994), when the batch-to-batch variation presents, the

FDA guidelines (1987) on choosing the shelf life “lacks statistical justification.” While the

parametric approaches were further developed in their article with more reasonable justifi-

cation, its practical implementation may be hindered by the choice of the ε in their method.

Therefore, the final determination of shelf-life would be still up to the subjective discretion

of regulatory agency itself with several reported choices under different circumstances. In

this article, the proposed approaches does not explore the statistical justification whether

or not the determined shelf-life estimates its true counterpart, but simply adopts the FDA

guidelines because of their simplicity and uniform as an algorithm in choosing an intuitive

“shelf-life.” Thus, the results are also comparable to the available ones that are conformed

with the FDA guidelines.

There are some potential extensions of the proposed methodologies in different scenarios.

Some of the scenarios are listed as follows.
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1. The approaches discussed in this article are for the so-called “full sampling” plan

in obtaining measurements. There are alternative designs such as “bracketing” and

“matrix” design as alternative (ICH, 1993). When the sampling points of response are

sparse, the nonparametric estimates of variance may not be stable and hence jeopardize

the semiparametric gesture of flexibility. So, how will the proposed methodologies

indeed perform under different stability design schemes?

2. The approaches discussed in this article are for single major ingredient of a pharma-

ceutical product. When multiple active ingredients have to be considered to reach a

single shelf-life for the product, can the proposed approaches accommodate it?

3. The outcomes of the proposed approaches are limited to continuous outcomes. Can

the proposed methods overcome the obstacle of generalizing themselves to other types

of outcomes, discrete or mixed outcomes, say?

4. The linear regression models are usually assumed for the degradation curves of out-

come measurements, because of the belief in prior knowledge of decreasing benefits or

increasing hazards. In fact, with such prior knowledge, it is more general to assume

the degradation curves following

h(EY (t)) = βX + µ0(t),

where µ0(t) is nonparametric monotone baseline function in t and X are other con-

comitant covariates such as temperature. Although this kind of partial linear models

may be of more interest, its difficulty in developing sound estimation and inference pro-

cedures may be formidable, which would incur tremendous research effort and needs

to be developed in theory and computation.
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