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Empirical Bayes Approach to Controlling
Familywise Error: An Application to HIV

Resistance Data

Rhoderick N. Machekano and Alan E. Hubbard

Abstract

Statistical challenges arise in identifying meaningful patterns and structures from
high dimensional genomic data sets. Relating HIV genotype (sequence of amino
acids) to phenotypic resistance presents a typical problem. When the HIV virus is
under antiretroviral drug pressure, unfavorable mutations of the target genes often
lead to greatly increased resistance of the virus to drugs, including drugs the virus
has not been exposed to. Identification of mutation combinations and their corre-
lation to drug resistance is critical in guiding efficient prescription of HIV drugs.
The identification of a subset of codons associated with drug resistance from a
set of several hundreds of codons presents a multiple testing problem. Statistical
issues arising from genomic data multiple testing procedures include the choice
of the null test-statistic distribution used to define cut-offs. Controlling family-
wise error rate implies controlling the number of false positives among true nulls.
Given the large number of hypotheses to be tested, the number of true nulls is un-
known. We apply two multiple testing procedures (MTPs) controlling familywise
error rate: an adhoc augmented-Bonferroni method and a Empirical Bayes pro-
cedure originally proposed in van der Laan, Birkner and Hubbard(2005). Using
simulations, we demonstrate that the proposed MTPs are less conservative than
the traditional methods such as Bonferroni and Holm’s procedures. We apply
the methods to HIV resistance data where we wish to identify mutations in the
protease gene associated with Amprenavir resistance.



1 Introduction

New technologies, such as micro-arrays, have revolutionized the genetic study of
human disease. Statistical challenges arise in identifying meaningful patterns and
structures from high dimensional genomic datasets. One area of statistical research
that has generated renewed interest is multiple testing, where several hundreds or
thousands of hypotheses are simultaneously tested. This article is motivated by HIV
genotype-phenotype association studies, investigating which of hundreds of codon
mutations might cause resistance to HIV drugs.

Management of HIV disease requires judicious use of regimens of multiple drugs
that target two genes in the HIV genome: the protease (PR) and reverse transcrip-
tase (RT) genes. When the HIV virus is under suboptimal drug pressure, the genes
(sequences of amino-acids) often mutate at certain codon positions1. Unfavorable
mutations lead to greatly increased resistance of the virus to the drugs, including
resistance to drugs the virus has not been exposed to, resulting in limited treatment
options.

Identification of mutation combinations and their correlation to drug resistance
is therefore critical in guiding efficient prescription of HIV drugs in order to suppress
viral replication. The RT and PR genes are about 560 codons and 99 codons long
respectively. In wild-type virus, codons have a fixed arrangement, with particular
codons found at certain positions of the gene. To identify mutant codons in the RT
gene associated with drug resistance, 560 hypothesis tests need to be performed, one
for each position. With no prior information on the effect of each codon position
on drug resistance, the true null hypotheses are unknown. Test statistics generated
from these type of data are often correlated in someway because of correlation be-
tween codons. The occurrence and effect of mutations at any given position are
influenced by the presence of mutations at other positions - engendering potential
correlation among positions. These issues motivates the statistical question of how
to control the false positive rate when carrying out a large number of tests in which
the test statistics maybe correlated and the true null hypotheses are unknown. Since
our analyses are exploratory, we desire a testing procedure that is not overly con-
servative. We want a procedure that helps us identify a small proportion of codons
potentially associated with drug resistance for further study.

In the following section, a brief review of the multiple testing framework is given.
Section (3) describes two procedures controlling FWER: an adhoc Augmented Bon-
ferroni method (AB) and an Empirical Bayes procedure (EB) proposed by van der
Laan, Birkner and Hubbard for the control of the tail probability of the proportion
false positives (TPPFP) and adopted here for controlling FWER. In section (4), we
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investigate the performance of AB and EB procedures in comparison to the standard
Bonferroni and Holm’s procedures using simulation studies. In section (5), we apply
the procedures to a HIV drug susceptibility dataset where we wish to identify posi-
tions in the HIV protease gene associated with resistance to HIV drug amprenavir.
Section(6) summarizes our findings.

2 Multiple Testing Framework

For each codon j = 1 · · ·m, the hypothesis H0j : µ1j = µ0j is tested against H1j :
µ1j 6= µ0j, where µ1j and µ0j is the mean phenotypic resistance in subjects with and
without mutation at codon j respectively. Let Tn1, Tn2, · · · , Tnm be the corresponding
test statistics and let p1, p2, · · · , pm be the associated p-values, where pi summarizes
the strength of evidence against the null hypothesis H0j. In single hypothesis testing,
H0j is rejected if |Tnj| > cj(α), or if pj ≤ α, for some chosen α ∈ (0, 1), j = 1, · · · ,m.
It is often assumed that if H0j is true, Tnj comes from some standard theoretical
distribution (e.g. normal or t-distribution) from which we get the critical values
cj(α). Define H = H0j : j = 1, · · · ,m the set of all null hypothesis, H0 the set of all
true null hypotheses and let H1 represent the set of true non-null hypotheses.

In a multiple testing problem, we would like to accurately estimate the subsetH0,
thus its complement H1, while controlling probabilistically some error rate under an
assumed significance level α. Choosing the rejection region, cj(α) : j = 1, · · · ,m is
challenging, because the theoretical joint null distribution for the m test-statistics
is not always obvious. Moreover, the difference between the theoretical null and
empirical null distributions affects simultaneous inference2.

2.1 Examples of Type I errors

Several experimentwise type I error rates have been proposed and the choice depends
on how many false positives one can tolerate. If a significant test results in expensive

Table 1: Possible outcomes from testing m hypotheses

Accept Null Reject Null

Null True Un Vn m0

Null False Tn Sn m−m0

Wn Rn m
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follow-up testing, then a researcher might want to preclude having (almost) any false
positives. If the analysis is more exploratory, perhaps a greater tolerance will be
warranted. We review four type I errors that we may wish to control: familywise
error rate (FWER), generalized familywise error rate (gFWER), tail probability of
the proportion of false positives (TPPFP) and false discovery rate (FDR).

Let Vn =
∑p

j=1 I(|Tnj
| > cj|H0j true) be the number of false rejections. Let

Rn =
∑p

j=1 I(|Tnj| > cj) be the total number of rejected hypotheses - Table 1. Then

The familywise error rate (FWER) is defined as the probability of making at least
one error by rejecting a true null hypothesis among all tests i.e. FWER =
P (Vn > 0). FWER is the most conservative.

The generalized familywise error rate (gFWER) is the probability of making at
least k false positives, P (Vn > k), for some k = 1, · · · ,m. gFWER generalizes
the FWER to tolerate more false positives.

The tail probability of the proportion of false positives (TPPFP) among the total

number of rejected hypotheses is defined by P
(

Vn

Rn
> q

)
for some set q ∈ [0, 1].

TPPFP controls the proportion of false positives.

The false discovery rate (FDR) is the expectation of the proportion of false pos-

itives, E
(

Vn

Rn

)
. FDR also controls the proportion of false positives, but does

not control the bounds as TPPFP and is the most liberal.

2.2 Background to Multiple Testing Procedures

Traditionally, multiple testing procedures (MTPs) have sought to control the family-
wise error rate (FWER). Commonly used procedures that achieve control of FWER
include the Bonferroni method and its modifications (e.g. Holm’s step down pro-
cedure, Hochberg, and Hommel)3–5. While these procedures reduce the probability
of spurious findings, they also severely reduce the probability of identifying real ef-
fects6. Alternative methods that control less conservative error rates, such as the
false discovery rate (FDR) introduced by Benjamin and Hochberg3,7,8 and its modifi-
cations, control the expected proportion of false-positive findings among all rejected
hypotheses. The choice of which error to control is often guided by the problem at
hand: exploratory versus confirmatory analyses. In exploratory analysis, we want to
relax our control on type I error rates, whereas, confirmatory analyses demand strict
control of type I error rates. Thus methods controlling FWER have been preferred in
confirmatory analyses compared to methods controlling FDR. On the contrary, FDR
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procedures have been preferred in exploratory analyses than procedures controlling
FWER.

In HIV genomic analyses, we prefer methods that are less conservative because
we are searching for new sites of drug resistance. We do not want to rule out those
mutations that may induce even the slightest level resistance. Thus, Bonferroni-like
procedures might be too conservative because of their strict control of the type I er-
ror under all data-generating distributions. Researchers have noted the conservatism
of the Bonferroni procedure, particularly when the data (hence the test statistics)
are correlated. The Bonferroni procedure provides sharp FWER control only under
independence of test statistics. In addition, in the presence of dependence between
test statistics, the power of the Bonferroni procedure sharply diminishes with the
number of tests4,9. Establishing associations between drug resistance and DNA se-
quences is complicated by the presence of dependence particularly between codons
within the same region. The Bonferroni procedure as well as other single-step pro-
cedures assume that all null hypothesis are true. Clearly, these assumptions do not
hold with genomic data.

Westfall and Young (1993) introduced a resampling based approach in estimat-
ing the test statistic null distribution that takes into consideration the dependence
between test statistics5. Pollard, van der Laan and Dudoit proposed a resampling
based multiple testing methodology that controls FWER but does not require the
subset pivotality condition, a requirement in Westerfall and Young’s resampling
method10,11–14. Subset pivotality is satisfied when the joint distribution of the test
statistics does not dependent on the subset of true null hypothesis. This requires
that the covariance of the test statistics under the true data generating distribu-
tion is the same as the covariance of the test statistics under a null data generating
distribution. On page 42 of their book, Westfall and Young give multiple testing
examples where subset pivotaility property is either satisfied (when testing if sev-
eral means equal zero using t-tests) or violated (when testing if pairwise correlations
between several variables equal zero)5.

Efron and Tibshirani used an Empirical Bayes approach to control the FDR2 in
which an attempt to guess the set of true nulls is made. van der Laan proposed
a method for controlling FWER following Efron’s Empirical Bayes approach, com-
bining it with Pollard’s resampling-based null distribution estimation method11,15.
Interestingly, Schweder and Spjotvoll, in an earlier paper, demonstrated a graphi-
cal method to identify true null hypotheses, and suggested an improved Bonferroni
method by dividing α by the estimated number of true nulls16. We take a similar
approach here for our Augmented Bonferroni approach.

4
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3 Using the Mixture Model to control FWER

First, we take a Bayesian perspective that

1. the indicator of whether a test statistic comes from a null distribution is a
random variable, and

2. there is a prior probability that the null hypothesis is true.

As discussed by van der Laan15 this view of the data-generating mechanism provides
sensible control of type I error rates even though the motivation, in reality, is fre-
quentist (whether or not a test statistic is from a null data generating distribution
is fixed).

Formally, let ~B = (B1, · · · , Bm) be a joint vector of Bernoulli indicator variables
Bj = 1 − I(H0j true), where I(.) is the indicator function (i.e. Bj = 0 when H0j

is true). Assume the marginal distribution of Bj is Bernoulli(1 − p0), i.e. P (Bj =
0) = p0, ∀j = 1, · · · ,m. Let S0 = {j : Bj = 0, j = 1, · · · ,m} represent the set

of true null hypotheses. Let ~Tn ≡ (Tn1, · · · , Tnm) be the m vector of test statistics
corresponding to testing each of the m null hypothesesH = {H0j : j = 1, · · · ,m} and

let Qn| ~B denote the joint conditional distribution of ~Tn. Assume that the marginal

distributions of Qn| ~B corresponding with the true null hypotheses H0j (i.e. Bj = 0)
equal a common known distribution F0,n, and that the other marginal distributions
equal a common unknown distribution F1,n with corresponding density functions f0,n

and f1,n. We assume the marginal distribution of test statistics are from a mixture
of the known null density f0,n (e.g. N (0, 1)) and unknown alternative density f1,n

with unknown mixing proportion p0:

Tnj ∼ fn ≡ p0f0,n + (1− p0)f1,n

.
Under the mixture model, the posterior probability that Tnj came from a true

H0j given its observed value Tnj is given by:

P (Bj = 0|Tnj) ≡ Φn = p0
f0,n(Tnj)

fn(Tnj)
(1)

In order to calculate this posterior probability, one needs an estimate of both
f0,n and fn. As stated above, typically one assumes f0,n is known (e.g. N(0, 1)).
Density estimation procedures (e.g. Kernel smoothing) applied to the test statistics
{Tjn : j = 1, · · · , m} can be used to estimate fn. The proportion of true null

5
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hypotheses p0 = |S0|
m

is the user’s choice, where p0 = 1 is a natural conservative
choice.

Below, we discuss two methods that use this posterior distribution to estimate
the proportion of true nulls among the set of hypotheses. The idea is to increase
the power of typical single-step procedures, which control under a global null, type I
error rates by using empirical information to ”adjust” the procedures to the actual
(estimated) number of true nulls.

3.1 Augmented Bonferroni

The Bonferroni procedure rejects hypothesis H0j when the p-value pj is less than α
m

,
where α is the preset FWER level and m is the number of null hypotheses. This leads
to the Bonferroni single-step adjusted p-value p̃j = min(mpj, 1)5. The Bonferroni
method controls the FWER under the complete null hypotheses assumption (i.e.
all the null hypotheses are true). However, it is desirable to be able to control the
FWER regardless of the subset of true null hypotheses (strong control)4. Of course,
the problem is that we do not know the number true null hypotheses. However, we
can simply use equation (1) to estimate the number of true null hypotheses, and
propose a modified Bonferroni-like method that attempts to control FWER only
among the true nulls. Specifically, the Augmented Bonferroni method estimates
adjusted p-value (p̃j) by multiplying the ”raw” p-value (pj) by the estimated number
of true null hypotheses m̂0 (i.e. p̃j = min(m̂0pj, 1)) , where

m̂0 =
m∑

j=1

P̂ (Bj = 0|Tnj) (2)

=
m∑

j=1

p0f0,n(Tnj)

f̂(Tnj)
(3)

By rejecting the null hypothesis if the unadjusted p-value for the jth test pj is less
than α

m̂0
or if the adjusted p-value p̃j is less than α and failing to reject H0j when

otherwise. We speculate that FWER ≤ α and this procedure is more powerful than
the standard Bonferroni correction.

3.2 Empirical Bayes Procedure

Empirical Bayes procedure goes a step further than Augmented Bonferroni by esti-
mating the test statistic null distribution among the true nulls. The null distribution
comes from the distribution of the maximum of the m correlated test statistics or
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the minimum of the p-values. As the distribution of these maxima for an unknown
correlation structure is unknown, use of a bootstrap procedure seems the reasonable
way to estimate the null distribution17. Common cut-offs that guarantee control of
FWER are chosen from the maximum test statistic distribution.

The method for choosing the cut-off c involves controlling the tail probability of
a random variable ṽn(c) defined as

ṽn(c) =
m∑

j=1

I(T̃n,j > c, j ∈ S0n)

representing the guessed number of false positives, defined by drawing a random
set S0n which represents a guessed set of true null hypotheses S0 and a draw T̃
from a null distribution of the test statistic vector. From van der Laan, Birkner and
Hubbard15, the distribution of S0n and null distribution of T̃ are chosen so that ṽn(c)
asymptotically dominates in distribution the true number of false positives Vn(c).
The result of lemma (1) in appendix 1 justifies this approach to FWER control.

3.2.1 Implementation: Empirical Bayes method

Draw guessed set of null hypothesis B̃0n

1. Estimate the posterior probability P (Bj = 0|Tnj), ∀j = 1, · · · ,m using equation (1)

2. Generate m Bernoulli random variables using probability estimated above

3. Repeat 2 B times to form m×B matrix

B̃0n =

B columns︷ ︸︸ ︷
i
1 1 1 · · · 0
2 1 0 · · · 1
...

...
...

...
...

m 0 1 · · · 0

Test Statistics Null Distribution

1. Sample with replacement from data

2. Calculate re-scaled, null centered test statistics Tkj for j = 1, · · · , m
(a) First calculate the test statistic for each hypothesis

7
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(b) Repeat 1 and 2 B times and generate m×B matrix

TBoot =

B columns︷ ︸︸ ︷
i
1 T11 T12 · · · T1B

2 T21 T22 · · · T2B

...
...

...
...

...
m Tm1 Tm2 · · · TmB

(c) For each row j calculate the mean T̄j and standard error of the test statistics SD(T ).

(d) For each row entry in T , subtract the associated row mean and divide by the standard
error, multiply by the ”desired” null standard error σ, then add the ”desired” null
mean µ as follows: T̃ji = (Tji−T̄j)σ

SD(Tji)
+ µ, for j = 1, · · · ,m and i = 1, · · · , B.

This gives a test statistic null distribution under the complete null hypothesis with mean µ
and variance σ2. However, we need to correct this distribution to take into consideration the fact
that a subset of the null hypothesis is false.

Corrected Test Statistic Null Distribution

1. Take the Hadamard product (entry-wise product) of B̃0n and T̃

T̃ • B̃0n = T0 =

B columns︷ ︸︸ ︷
j
1 T11 T12 · · · 0
2 T21 0 · · · T2B

...
...

...
...

...
m 0 Tk2 · · · 0

2. Get maximum in each column Tmax
1 , · · · , Tmax

B to get the max-T distribution only among
the null hypothesis

3. Adjusted p-value for position j, p̃j , is given by

p̃j =
1
B

B∑

k=1

I(Tnj ≥ Tmax
k ) (4)

4. OR, the critical value c(α) is given as the 1− α
2 quartile of the max-T distribution. Reject

H0j if |Tnj | ≥ c(α) otherwise do not reject H0j .

The max-T distribution above guarantees asymptotic control of FWER at level less than or equal
to α given the distribution of null-centered rescaled T ’s dominates the null distribution of observed
test statistics (see Duboit for proof18,19).
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4 Simulation studies

We undertake simulation studies to assess the performance of the proposed MT procedures in
controlling FWER under a range of test-statistic correlation structures and two codon effect sizes.
The simulations are intended to examine the effect of increasing correlation in the data on the
relative performance of the test procedures. Three sets of simulations using the following data
generating mechanisms

1. Things in common in simulations

(a) the model for generating mean outcome by covariate group (codon). Given X, we
assume a linear model for each independent observation i.e.

Y = Xβ + ε (5)

where β is a real-valued vector of coefficients representing the effect of each codon on
the outcome, X is a vector of binary indicators for presence or absence of mutation
at each codon, and ε ∼ N (0, 1), some random error.

(b) β = 0 for the nulls (i.e. codons with no effect on outcome) and β = 0.2 or β = 1 for
codons that have an effect on the outcome because the X’s are uncorrelated between
group of nulls and alternatives. The codon effect sizes were chosen based on the
observed unadjusted codon effects on drug resistance from the Stanford Sequence
data.

(c) In all the three simulations, a vector of 200 codons for each individual X is generated
from a multivariate binary distribution assuming varying correlation structures. In
each simulation, the proportion of mutations for each codon (i.e.P (Xj = 1), j =
1, · · · ,m) was obtained by randomly sampling a number in the interval [0.4, 0.7]. The
X vector was generated using the bindata package20 from the comprehensive R archive
network CRAN (www.r-project.org).

(d) We generated 200 observations in simulation studies.

2. Things that are different between simulations

(a) In simulation 1, we assumed the 200 codons were independent from each other (ρ = 0).

(b) In simulation 2, we assumed a weak correlation (ρ = 0.2) structure between 190 codons
in the null group and weak correlation (ρ = 0.2) between 10 codons in the alternative
group. However, we assumed independence between codons in null and alternative
groups.

(c) In the third simulation, we assumed strong correlation (ρ = 0.9) between codons
within each of the two groups, but independence of codons between the groups as
described in simulation 2.

3. Choice of f0n: we assumed the test-statistic null distribution fon was a t-distribution with
n− 1 degrees of freedom.

9
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4. Estimation of f : to estimate the marginal distribution of the test statistics f , we used
kernel density estimation, assuming a gaussian kernel. We choose the default bandwidth in
R (version 2.2.0) which equals 0.9 times the minimum of the standard deviation and the
interquartile range divided by 1.34 times the sample size to the negative one-fifth power
(this Silverman’s ”rule of thumb”, Silverman (1986, page 48, eqn (3.31)).

5. Choice of the prior proportion of true nulls, p0: we conservatively assumed all nulls were
true i.e. p0 = 1.

6. For each study, treating the entire dataset as the population, we repeatedly random sample
with replacement an equal number of observations (n = 200) to create 2000 data sets. For
each data set, we estimate the number of type I and type II errors for each MTP:

# type I error =
m∑

j=1

I(H0j true)I(adj. p-value(j) ≤ α)

where adj. p-value(j) is the adjusted p-value for the hypothesis j. We estimate the FWER
for each procedure by counting the number of times the number of type I errors is greater
than or equal to 1 and dividing by the total number of simulations (S=2000).

4.1 Simulation Results

Simulation results are presented in tables 2-4. Table 2 shows the FWERs for the two effect sizes
assuming complete independence between codons. All the procedures have comparable FWERs ≈
0.05. The Bonferroni and Holm procedures perform as well as the proposed procedures because the
data satisfies independence of test statistics assumption, a cornerstone of the Bonferroni procedure.
Under weak codon correlation (table 3), the Bonferroni and Holm procedures (≈ 0.04) are slightly
more conservative compared to the Augmented Bonferroni and Empirical Bayes procedures (≈ 0.05
or 0.06). The FWERs are consistent across the two effect sizes. Similarly, when correlation between
codons within a group is strong (table 4), the Bonferroni and Holm procedures are appreciably
more conservative with FWERs as low as 0.0131 and 0.019. On the contrary, the Augmented
Bonferroni procedure is anti-conservative with FWER at 0.065 and 0.0765 for the β = 0.2 and β = 1
respectively. The Empirical Bayes procedure (FWERs = 0.0392 and 0.034) is less conservative
compared to the Bonferroni and Holm procedures but still gives proper control (≤ 0.05). For
all three correlation structures, all four procedures tend to give slightly higher FWERs when
there are strong codon effects (β = 1) compared to when codon effects are weak (β = 0.2).These
results highlight the fact that the Bonferroni and Holm procedures are overly conservative by not
accounting for the correlation structure of the test statistics.

5 Application: Identification of mutant codon po-

sitions associated with drug resistance

We apply the Augmented Bonferroni and Empirical Bayes MTPs to HIV resistance data from the
Stanford HIV Sequence Database, comparing the new Empirical Bayes procedures to the standard
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Bonferroni and Holms procedures. The data consists of amino acid sequences from the protease
gene and the corresponding fold-resistance as a measure of phenotypic resistance. The aim of the
study was to identify mutant codon positions that are significantly associated with viral phenotypic
resistance. In this article, we restrict our analysis to identifying protease mutations associated with
viral resistance to the HIV drug Amprenavir among 876 patients from the Stanford HIV Sequence
Database. The sequence data is represented by 99 binary variables for each codon, taking values 1
when there is a mutation at the codon, and 0 when the codon is wildtype. Each ith patient provides
a vector of Xi = (Xi,1, Xi,2, · · · , Xi,99) with Xi,j = 1 or 0 indicating whether or not a mutation
occurred at codon j and a fold-resistance measure Yi, which we log transform. Before calculating
the test statistic, we filtered out conserved positions. We defined conserved positions to be those
positions with less than 3% mutation rate. The resulting dataset had forty three positions, and
for each position, a test statistic Tnj is calculated based on the usual t-test for comparison of two
group means:

Tnj =
ȳ1j − ȳ0j√

s2
1j

n1j +
s2
0j

n0j

(6)

where ȳ1j =
∑n

i=1
Xi,jYi∑n

i=1
Xi,j

, ȳ0j =
∑n

i=1
(1−Xi,j)Yi∑n

i=1
(1−Xi,j)

, s2
1j =

∑n

i=1
Xi,j(Yi−ȳ1j)

2∑n

i=1
Xi,j−1

, s2
0j =

∑n

i=1
(1−Xi,j)(Yi−ȳ1j)

2∑n

i=1
(1−Xi,j)−1

,

and n = 876.
After eliminating conserved positions, we computed standardized t-statistics Tnj comparing

mean log fold-resistance between mutant sequences and wild-type sequences and associated p-
values pj for each position j. Figure (5) shows the empirical distribution of 43 test statistics and
a kernel density estimate of the distribution. The distribution of the test-statistics suggest that
we have a mixture distribution, clear evidence against a global null distribution. Thus Empirical
Bayes is an appropriate candidate for multiple testing in this data.

We used kernel density estimation assuming a Gaussian kernel to estimate the marginal
density of the test statistics Tnj (f(Tnj)). We first assumed the null distribution of the test-
statistics,f0(Tnj), was a t-distribution with (n − 1) degrees of freedom t(n−1).We then estimated
the probability of a true null hypothesis given the test-statistic, pnj ≡ P (Bj = 0|Tnj) ≡ p0

f0(Tnj)
f(Tnj)

,
where we set p0 = 1, and calculated the expected number of true nulls (equation (2)).

Following the estimation outline above, the Augmented Bonferroni and Empirical Bayes ad-
justed p-values were calculated. Using the multtest package in R, Bonferroni-adjusted and Holms-
adjusted p-values were obtained. R esults are summarized in table 5 and table 6.

5.1 Data Analysis Results

Table (5) shows the number of rejected null hypotheses by procedure. The unadjusted analysis
identified 27 out of 43 positions in the protease gene significantly associated with resistance to
Amprenavir at α = 0.05. After adjusting for multiple comparison (FWER control), the Bonferroni
and Holm’s procedures both identify 18 positions associated with amprenavir resistance at α = 0.05
significance level. The augmented Bonferroni and Empirical Bayes procedures are less conservative,
identifying 2 more positions than regular Bonferroni procedure. Table (6) lists in detail the protease
codon positions and the corresponding unadjusted, Bonferroni, Holms, Augmented Bonferroni and
Empirical Bayes adjusted p-values.
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Figure 1: Histogram of 43 t-values from the protease gene mutation-drug resistance analysis

We compared our data analysis results to genotype-drug resistance profiles published at the
Stanford HIV Resistance website (http://hivdb.stanford.edu/cgi-bin/PIResiNote.cgi). Our pro-
posed methods confirmed 14 of the the 19 published protease mutations associated with resistance
to amprenavir. In addition, we identified 6 new mutations which may have influence on virologic
response to treatment with amprenavir. Of these 6 new mutations, position 30 has been associated
with increased sensitivity to another drug, Nelfinavir. Our analysis shows that any mutation at
this position is also associated with virus sensitivity to amprenavir. Position 89 which is associated
with increased resistance to amprenavir is next to position 90 which has been confirmed as highly
resistant to amprenavir. The remaining 4 positions (13, 37, 41, and 57) among the new discoveries
are associated with increased sensitivity to amprenavir and need to be confirmed through further
studies.

6 Discussion

We have presented two recently proposed multiple testing procedures for controlling FWER high-
lighting their motivation, estimation algorithms and their performance under varying correlation
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structures. The procedures follow a Bayesian framework in estimating the number of true nulls
(Augmented Bonferroni), and uses resampling methods to estimate the test-statistic null distribu-
tion among true nulls (Empirical Bayes). Using simulation studies under different codon position
correlation structures we compared their performance in controlling FWER to the classical single-
step Bonferroni and step-down Holm approaches.

We assumed a linear model between drug resistance and codon positions. A linear model is
probably an oversimplified representation of the relationship between drug resistance and codon
mutations because interaction between codon positions are likely to influence drug resistance. In
reality, because HIV drugs target certain parts of the gene,”active sites”, it is likely that mutation
changes occur in groups and may interact between each other to either enhance or reduce resistance.
However, this should not undermine the usefulness of the methods at all, besides the fact that
adding interaction terms increases the number of tests to be performed.

The performance of the Bonferroni and Holm procedures depend on the strength of correla-
tion between codons, while the Augmented Bonferroni and Empirical Bayes procedures are less
influenced by the correlation structure. Under strong correlation, Bonferroni and Holm procedures
are extremely conservative with FWERs as low as 0.013. Under weak correlation, Bonferroni and
Holm procedures are less conservative with estimated FWERs around 0.04. However, under inde-
pendence of codon positions, Bonferroni and Holm procedures achieve FWERs consistent with an
upper bound on the type I error probability of 0.05. On the contrary, the augmented Bonferroni
and Empirical Bayes procedures consistently control FWER around 0.05 irrespective of the corre-
lation of the test statistics. In the data analysis, we discovered two more protease codon mutations
associated with amprenavir resistance when we used the Augmented Bonferroni and Empirical
Bayes procedures compared to the classical Bonferroni and Holm procedures.

Our study confirms that the Bonferroni procedure is conservative unless test statistics are
independent and one can do better in situations where there is some correlation between test-
statistics. The Holm procedure is also an attempt to control FWER only among the nulls and is a
less conservative procedure compared to the Bonferroni procedure. However, when there is strong
correlation between test statistics, Holm procedure can also be conservative. The Augmented Bon-
ferroni procedure is similar to the Holm procedure in that it attempts to control FWER only among
nulls, but uses an ad hoc procedure based on posterior probability of the null to identify the ’́trué’
nulls. The Augmented Bonferroni procedure achieves the desired effect i.e. makes the Bonferroni
procedure less conservative, but in simulations, is sometimes anti-conservative. Empirical Bayes
procedure controls FWER among true nulls and takes into account the dependence structure of the
test statistics. Empirical Bayes is our preferred method given similar data structures because it is
consistent, with the probability of falsely rejecting any type hypothesis that is a member of the set
of true null hypothesis approaching α = 0.05). Our proposed methods can be easily implemented
and the R code is included in the appendix.
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Table 2: Simulation results: independent covariance structure

MTP FWER
β = 0.2 β = 1

Bonferroni 0.052 0.047
Holm 0.054 0.047
Augm. Bonf 0.049 0.043
Emp. Bayes 0.057 0.051

Table 3: Simulation results: weak covariance structure

MTP FWER
β = 0.2 β = 1

Bonferroni 0.039 0.039
Holm 0.042 0.039
Augm. Bonf 0.061 0.047
Emp. Bayes 0.057 0.049

Table 4: Simulation results: strong covariance structure

MTP FWER
β = 0.2 β = 1

Bonferroni 0.013 0.017
Holm 0.013 0.019
Augm. Bonf 0.076 0.065
Emp. Bayes 0.039 0.034
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Table 5: Number of rejected null hypotheses out of 43

Method Rejections
Unadjusted 27
Bonferroni 18
Holms 18
Augmented Bonferroni 20
Empirical Bayes 20
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Table 6: Protease Codons associated with resistance to Amprenavir

No. Codon(j) Tjn pj Bonf. Holms Aug. Bonf. Emp. Bayes
1 84 -16.13 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
2 10 -15.45 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
3 46 -12.53 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
4 54 -10.68 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
5 71 -9.23 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
6 90 -8.70 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
7 82 -7.91 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
8 88 7.40 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
9 33 -7.06 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
10 47 -7.03 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
11 24 -6.38 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
12 32 -5.62 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
13 73 -5.60 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
14 20 -4.06 0.00005 0.00234 0.00163 0.00250 0.00096
15 30 3.84 0.00014 0.00586 0.00395 0.00460 0.00240
16 13 3.69 0.00024 0.01041 0.00678 0.00670 0.00427
17 37 3.54 0.00042 0.01815 0.01139 0.00990 0.00744
18 41 3.41 0.00069 0.02964 0.01792 0.01610 0.01215
19 89 -3.08 0.00217 0.09346 0.05434 0.04010 0.03832
20 57 3.03 0.00256 0.10993 0.06136 0.04450 0.04507
21 64 2.98 0.00302 0.12971 0.06938 0.05120 0.05318
22 63 2.70 0.00719 0.30908 0.15814 0.09870 0.12672
23 35 2.63 0.00868 0.37340 0.18236 0.11550 0.15309
24 12 2.48 0.01325 0.56994 0.26509 0.16000 0.23366
25 14 2.42 0.01567 0.67391 0.29778 0.18140 0.27629
26 53 -2.34 0.01972 0.84782 0.35490 0.22350 0.34758
27 45 2.19 0.02859 1.00000 0.48597 0.30270 0.50395
28 48 -1.96 0.05090 1.00000 0.81435 0.47370 0.89726
29 62 1.93 0.05457 1.00000 0.81852 0.49680 0.96197
30 93 1.88 0.06049 1.00000 0.84679 0.53430 1.00000
31 15 1.65 0.09885 1.00000 1.00000 0.72100 1.00000
32 36 -1.40 0.16070 1.00000 1.00000 0.89390 1.00000
33 69 1.23 0.21964 1.00000 1.00000 0.96060 1.00000
34 70 1.12 0.26237 1.00000 1.00000 0.98230 1.00000
35 61 1.03 0.30315 1.00000 1.00000 0.99230 1.00000
36 50 -0.80 0.42478 1.00000 1.00000 0.99990 1.00000
37 55 -0.67 0.50029 1.00000 1.00000 1.00000 1.00000
38 77 0.67 0.50302 1.00000 1.00000 1.00000 1.00000
39 19 0.33 0.74050 1.00000 1.00000 1.00000 1.00000
40 16 0.22 0.82540 1.00000 1.00000 1.00000 1.00000
41 74 -0.22 0.82815 1.00000 1.00000 1.00000 1.00000
42 60 0.13 0.89902 1.00000 1.00000 1.00000 1.00000
43 72 0.02 0.98764 1.00000 1.00000 1.00000 1.00000
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Appendix 1

Lemma (From Dudoit) 1. Consider the simultaneous test of m null hypothesis H0i, i = 1, · · · ,m,
based on an m-vector of test statistics Tn = (Tni : i = 1, · · · ,m), with true distribution Qn.
Consider null test statistics T0 = (T0i : i = 1, · · · ,m) and random guessed sets H0n ⊆ 1, · · · ,m
of true null hypotheses, where, given empirical distribution Pn, T0n and H0n are independent,
with respective conditional distributions Q0n and Hon. Given m-dimensional vectors of cut-offs
c = (ci : i = 1, · · · ,m), test statistics Tn and null test statistics T0n, and a random guessed
set H0n, define the number of false positives to be V (c). For type I error level α ∈ [0, 1], the
corresponding FWER is

FWER = Pr(V (c,H0n, Tn) > 0|Pn) ≤ α (7)

FWER = Pr(V (c,H0n, T0n) > 0|Pn) ≤ α (8)

Proof. For detailed proof, see Dudoit,van der Laan and Birkner
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Appendix 2

R code for Augmented Bonferroni and Emperical Bayes Pro-
cedures

Example using t-tests to compare mean virus growth between wild-type and mutant codons

# Get t-statistics for all codons
Tn.2<-apply(dat.faux,1,pairedt.teststat)

# Function to get density at each point
fd=function(x,Tn){dg=density(Tn,from=x,to=x,bw=’nrd’,kernel="gaussian") dg$y[1]}

# Get density of test statistics (f) and under null

Tn.mat.2<-matrix(Tn.2,length(Tn.2),1)
f.Tn.2<-apply(Tn.mat.2,1,fd,Tn=Tn.2)
n<-dim(dat.faux)[2]

# Assume null dist. is t-distribution with n-1 df

f.Tn.0<-dt(Tn.2,df=n-1)

# P(B(j)=0|T_n(j)) pn<-pmin(1,f.Tn.0/f.Tn.2)

# Bootstrap to get joint null dist of test stat
B=5000
p<-dim(dat.faux)[1]
boot.stat.mat<-matrix(0,p,B)
Sn0.mat<-matrix(0,p,B)

# Get a random sample of Sn0 B times as well as the null ## T-stats

for(i in 1:B) {
cat(" i =

",i,"\n")
ii<-sample(1:n,n,replace=T)
dat3<-dat.faux[,ii]

boot.stat.mat[,i]<-apply(dat3,1,pairedt.teststat)
Sn0.mat[,i]<-rbinom(p,1,pn) }

# Center distribution
boot.stat.centered<-boot.stat.mat-matrix(rep(apply(boot.stat.mat,1,mean),B),p,B)
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# Or boot.stat.centered<-boot.stat.mat-matrix(rep(Tn.2,B),p,B)

# Need distribution of maximum Tn’s only among nulls

Tn0.boot<-Sn0.mat*boot.stat.centered
abs.max<-function(x) {

max(abs(x))
}
maxT<-apply(Tn0.boot,2,abs.max)

# Adjusted p-values
cdf.F<-ecdf(maxT)
adj.pvalue<-1-cdf.F(abs(Tn.2))

# Adjusted p-value based on using p* = sum(pn) and Bonferroni
pstar<-sum(pn)
adj.bonf<-pmin(pvalue*pstar,1)

# Get number of Type I and Type II errors for different procedures

alpha<-0.05
inv.true<-1-true.Sn
typeI.bonf<-sum(inv.true[oo][res$adj[,"Bonferroni"]<alpha])
typeII.bonf<-sum(true.Sn[oo][res$adj[,"Bonferroni"]>alpha])
typeI.holm<-sum(inv.true[oo][res$adj[,"Holm"]<alpha])
typeII.holm<-sum(true.Sn[oo][res$adj[,"Holm"]>alpha])
typeI.ebayes<-sum(inv.true[adj.pvalue<alpha])
typeII.ebayes<-sum(true.Sn[adj.pvalue > alpha])
typeI.adjbonf<-sum(inv.true[adj.bonf < alpha])
typeII.adjbonf<-sum(true.Sn[adj.bonf > alpha])
results<-cbind(c(typeI.bonf,typeI.holm,typeI.ebayes,typeI.adjbonf),
c(typeII.bonf,typeII.holm,typeII.ebayes,typeII.adjbonf), rep(alpha,4))

rownames(results)<-c("Bonf","Holm","Ebayes","adjbonf")

colnames(results)<-c("type I","type II","alpha") results
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