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Application of a Variable Importance Measure
Method to HIV-1 Sequence Data

Merrill D. Birkner and Mark J. van der Laan

Abstract

van der Laan (2005) proposed a method to construct variable importance mea-
sures and provided the respective statistical inference. This technique involves
determining the importance of a variable in predicting an outcome. This method
can be applied as an inverse probability of treatment weighted (IPTW) or double
robust inverse probability of treatment weighted (DR-IPTW) estimator. A respec-
tive significance of the estimator is determined by estimating the influence curve
and hence determining the corresponding variance and p-value. This article ap-
plies the van der Laan (2005) variable importance measures and corresponding
inference to HIV-1 sequence data. In this data application, protease and reverse
transcriptase codon position on the HIV-1 strand are assessed to determine their
respective variable importance, with respect to an outcome of viral replication ca-
pacity. We estimate the W-adjusted variable importance measure for a specified
set of potential effect modifiers W. Both the IPTW and DR-IPTW methods were
implemented on this dataset



1 Introduction

In many genomic cases, the prediction of a phenotypic outcome by genetic
markers is of biological importance. In particular, variable importance mea-
sures can be calculated for individual genetic components when predicting
an outcome. Variable importance measures can be used to determine the
effect of each variable with respect to the outcome. In this article, we will
apply the variable importance measure methodology, proposed by van der
Laan (2005) to an HIV-1 sequence dataset. In this application the variable
importance of each codon is assessed with respect to its relationship to viral
replication. A variable importance measure for each codon will be recorded
and a corresponding significance will be calculated with the use of the esti-
mator’s influence curve. We estimate the W -adjusted variable importance
measure for a specified set of potential effect modifiers W . Both the in-
verse probability of treatment weighted estimator (IPTW) and the double
robust inverse probability of treatment weighted estimator (DR-IPTW) will
be calculated.

1.1 Biological Motivation

Sequencing a virus, such as HIV-1, could potentially give further insight into
the genotype-phenotype associations of a virus. The replication ability of a
virus is vital, especially in the case of HIV, where replication is proportional
to the severity of disease. In many cases, genetic mutations on the viral
strand are associated with a change in the replication capacity of the virus.
This in turn can change the virulence of the virus and/or cause resistance
to previously effective antiretrovial drugs. As mentioned above, the applica-
tion of the variable importance measure methodology is applied to the HIV
sequence data. The motivation behind this analysis in focused on deter-
mining the significant codons which are related to replication capacity. The
data consists of codon positions which are coded as mutated or non-mutated.
Therefore one is interested in determining which position specific mutations
are related to viral replication. This is a biologically relevant question since
antiretroviral medications are manufactured to target specific regions on the
viral strand. Therefore determining the importance of specific regions or
codons is vital when assessing the viral regions which must be targeted by
antiretroviral medications. In this article, codons will be assessed by their
respective variable importance measure.
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2 Data Description

Studying sequence variation for the Human Immunodeficiency Virus Type
1 (HIV-1) genome could potentially give important insight into genotype–
phenotype associations for the Acquired Immune Deficiency Syndrome (AIDS).
In this context, a key phenotype is the replication capacity (RC) of HIV-1, as
it reflects the severity of the disease. A measure of replication capacity may
be obtained by monitoring viral replication in an ideal environment, with
many cellular targets, no exogenous or endogenous inhibitors, and no im-
mune system responses against the virus (Barbour et al., 2002a; Segal et al.,
2004).

Genotypes of interest correspond to codons in the protease and reverse
transcriptase regions of the viral strand. The protease (PR) enzyme af-
fects the reproductive cycle of the virus by breaking protein peptide bonds
during viral replication. The reverse transcriptase (RT) enzyme synthesizes
double-stranded DNA from the virus’ single-stranded RNA genome, thereby
facilitating integration into the host’s chromosome. Since the PR and RT
regions are essential to viral replication, many antiretrovirals (protease in-
hibitors and reverse transcriptase inhibitors) have been developed to target
these specific genomic locations. Studying PR and RT genotypic variation in-
volves sequencing the corresponding HIV-1 genome regions and determining
the amino acids encoded by each codon (i.e., each nucleotide triplet).

The HIV-1 sequence dataset consists of n = 317 records, linking viral
replication capacity (RC) with protease (PR) and reverse transcriptase (RT)
sequence data, from individuals participating in studies at the San Francisco
General Hospital and Gladstone Institute of Virology (Segal et al., 2004).
Protease codon positions 4 to 99 (i.e., pr4 – pr99) and reverse transcriptase
codon positions 38 to 223 (i.e., rt38 – rt223) of the viral strand are studied
in this analysis.

The outcome/phenotype of interest is the natural logarithm of a continu-
ous measure of replication capacity, ranging from 0.261 to 151. The M covari-
ates correspond to the M = 282 codon positions in the PR and RT regions,
with the number of possible codons ranging from one to ten at any given
location. A majority of patients typically exhibit one codon at each position.
Codons are therefore recoded as binary covariates, with value of zero (or
“wild-type”) corresponding to the most common codon among the n = 317
patients and value of one (or “mutation”) for all other codons. Previous bio-
logical research was used to confirm mutations and hence provide accurate PR
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and RT codon genotypes for each patient (hivdb.stanford.edu/cgi-bin/
RTMut.cgi). The data for each of the n = 317 patients therefore consist of a
replication capacity outcome/phenotype Y and an M–dimensional covariate
vector X = (X(m) : m = 1, . . . , M) of binary codon genotypes in the PR
and RT HIV-1 regions.

3 Methods

The variable importance measure is based on n i.i.d. observations, a set of
covariates, and an outcome. This section will outline the methods presented
in the van der Laan (2005) paper. We refer the reader to van der Laan
(2005) for a detailed description of the methods. This section will general-
ize the method to the case of the HIV mutation example. In this example
n = 317 individuals and each individual has a vector of length 282 corre-
sponding to the mutation status of the virus at each codon and a continuous
measure of viral replication. The variable importance measure method is
based on determining the individual importance of each codon. Before be-
ginning this analysis, several codons were removed from the analysis for a
variety of reasons. Firstly, a set W was constructed as a group of codons
which were potential confounders of the individual codon effect on the out-
come. In order to choose the set of W we applied the FDR procedure to the
set of test statistics built from the marginal association of each codon against
the outcome of replication capacity. In total, 16 mutations were chosen with
an FDR adjusted p-value less than 0.05. Of these 16 mutations, there are
three codons which are predicted perfectly by pr29 (pr31, pr44, and pr52).
Therefore, pr31, pr44, and pr52 are removed as codons that we are interested
in assessing since their significance should be identical to that of pr29. In
addition, the remaining codons (282 − 16) were assessed to determine the
P (Ai = 1), which corresponds to the probability that the codon Ai is mu-
tated. We want to note that A will be defined as a single codon, whereas in
the case when A ∈ W , W is the set of codons omitting A. Only those codons
with P (Ai = 1) ≥ 0.1 were chosen to obtain variable importance measures,
since a P (Ai = 1) ≥ 0.1 corresponds to the case where there is experimenta-
tion among the individuals. In conclusion, 37 codon positions were assessed
to determine the subsequent variable importance measures and respective
significance.

After the data was defined, the variable importance was calculated for
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37 positions. We estimate the W -adjusted variable importance measure for
a specified set of potential effect modifiers W . The inverse probability of
weighted method (IPTW) estimator as well as the double robust IPTW
method (DR-IPTW) estimator were applied. The various methods will be
discussed below as well as a technique to estimate the respective inference.
Again, the reader is referred to van der Laan (2005) for more detail regarding
these methods.

3.1 IPTW Method

The IPTW estimator is an estimator which assesses the difference in the
mean replication capacity between the mutated and non-mutated individuals,
weighting the probability of each mutation given the set of confounders W ,
P (A|W ). We will initially define D(Oi|Πn) as:

D(Oi|Πn) = Yi

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)

The estimator Ψn is defined in terms of D(Oi|Πn) and can be written as:

Ψn =
1

n

n∑
i=1

D(Oi|Πn) =
1

n

n∑
i=1

Yi

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)

In this equation, Π(A = a|W ) corresponds to the probability obtained
from fitting a logistic regression, which regresses the binary A values on the
other W values, or potential confounders. In the specific HIV-1 example
A = (0, 1). In the case of this analysis the logistic regression was estimated
with the POLYCLASS function in R.

POLYCLASS is an exploratory, data-adaptive, or black box regression
technique used to predict categorical or binary outcomes. This classification
method, uses forward addition and backward deletion, searches through a se-
ries of models defined by main effects, splines and cross-products to create a
logistic regression model. The procedure uses cross-validation to choose the
complexity (number of basis functions) of the model. This method there-
fore attempts to balance the variance/bias of the classification error. This
data-adaptive logistic regression technique combines stepwise (hierarchical)
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addition and deletion of variables and finds a linear combination of variables
that provides a better predictor of the outcome event. For example, with
respect to the addition steps, proposed new predictors are either 1) main
effects not already in the model 2) knots to existing main effects creating
linear spline terms or 3) any product of terms already in the model. For the
deletion step, terms are removed hierarchically (e.g., a main effect term is
not removed before it’s corresponding interaction term).

3.2 DR-IPTW Method

The double robust method differs from the IPTW method in that it incorpo-
rates a regression of E(Y |A, W ), which is referred to as θ(A, W ). In addition
to this regression, the quantity E(Y |A = 1, W ) − E(Y |A = 0, W ) is com-
puted. This quantity is referred to as θ(A = 1, W ) − θ(A = 0, W ), which
corresponds to the difference in effect of A = 1 and A = 0. We will initially
define D(Oi|Πn, θn) as:

D(Oi|Πn, θn) = Yi

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)
−

θ(A, W )

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)
+ θ(1, W ) − θ(0, W )

The estimator Ψn is defined in terms of D(Oi|Πn, θn) and can be written as:

Ψn =
1

n

n∑
i=1

D(Oi|Πn, θn) =
1

n

n∑
i=1

Yi

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)

−θ(A, W )

(
I(Ai = 1)

Πn(A = 1|W )
− I(Ai = 0)

Πn(A = 0|W )

)
+ θ(1, W ) − θ(0, W )

When calculating the DR-IPTW estimator, θ(A, W ) is calculated in this
example with the POLYMARS function in R. This method is similar to the
POLYCLASS method with the exception that it is adapted to continuous out-
comes, whereas the POLYCLASS method is based on the logit function and

Hosted by The Berkeley Electronic Press



therefore adapted to binary or categorical outcomes. The POLYMARS func-
tion is an adaptive regression procedure which uses linear splines to model
the response. Therefore this method examines all main effects, interactions
and splines to model the outcome by a set of predictor variables.

The advantage of the DR-IPTW method is that the estimator remains
consistent if either Πn or θn is modelled correctly. In this case, the estimator
Ψn is consistent and asymptotically linear if either Πn or θn converge to the
truth of Π0 or θ0 respectively.

3.3 Inference of Ψn

Once the IPTW or DR-IPTW estimator is computed, one is often interested
in the inference and therefore statistical significance of the respective variable
importance measures. In order to determine the inference on the estimator
the influence curve is used. In the case of the IPTW estimator we will define
Ψn as follows:

Ψn =
1

n

n∑
i=1

D(Oi|Πn)

The asymptotic variance of
√

n(Ψn − Ψ) can be conservatively estimated
with:

σ̂2 =
1

n

n∑
i=1

(D(Oi|Πn) − Ψn)2

In the case of the DR-IPTW estimator, the θn portion of the estimator must
also be incorporated in the construction of the variance. Therefore in this
case, the estimator will be defined as:

Ψn =
1

n

n∑
i=1

D(Oi|θn, Πn)

Again, the asymptotic variance of
√

n(Ψn − Ψ) can be conservatively esti-
mated with:
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σ̂2 =
1

n

n∑
i=1

(D(Oi|θn, Πn) − Ψn)2

In both the IPTW and DR-IPTW cases, the test statistic for the estimator
is compared to a N(0, 1) distribution and is defined as:

Tn =
Ψn√

σ̂2

n

∼ N(0, 1)

3.4 Assessing the DR-IPTW Estimator

The DR-IPTW estimator was defined previously in terms of D(Oi|θn, Πn).
Each codon results in a summary Ψn value which corresponds to D(Oi|θn, Πn).
Another estimator can be defined to assess the variables in set W which best
predict D(Oi|θn, Πn) for each codon. We will define D = E(D(Oi|θn, Πn)|W )
as the appropriate estimator. In order to determine the confounding factors
in the set W which predict D(Oi|θn, Πn) we will build models using POLY-
MARS to predict this outcome measure. In this case, the vector correspond-
ing to D(Oi|θn, Πn) for each codon position was regressed against the set W
using this data adaptive regression method.

4 Results

The IPTW and DR-IPTW procedures produced variable importance mea-
sures and respective p-values for the codons illustrated in Table 2 and Table
3. These estimates are the W -adjusted variable importance measure for a
specified set of potential effect modifiers W . The W -adjusted variable im-
portance measure can be interpreted as the difference in mean replication
capacity among strata W between those with a mutation at that specific
codon versus those with no mutation at that specific codon. Therefore this
variable importance measure is the average impact of the codon within strata
of W . These two methods gave slightly different estimate values for several
codons, but gave consistent measures of significance in the two cases. In the
cases where the two values (IPTW and DR-IPTW) differ, the DR-IPTW
variable importance measure is close in value to θ(A = 1, W )− θ(A = 0, W ),
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Table 1: Codon Test Statistics and Marginal p-values

Codon Test Statistic p-value
pr90 -6.2378 <0.00001
rt184 -6.1626 <0.00001
pr43 -6.1184 <0.00001
pr54 -5.5391 <0.00001
rt41 -5.2253 <0.00001
pr46 -5.2239 <0.00001
pr82 -4.5206 <0.00001
rt215 -4.4794 <0.00001
rt121 -4.0703 0.00004
pr10 -3.7900 0.00015
pr71 -3.3939 0.00068
rt102 -3.0874 0.00201
rt214 2.1518 0.00314
pr57 1.5776 0.1146
pr14 -2.4362 0.0148
rt196 -0.1872 0.8514
rt103 -1.3612 0.1734
pr13 1.4431 0.1489
pr15 1.6171 0.1058
pr36 1.2917 0.1964
pr64 0.6550 0.5124
rt83 2.458 0.0139
pr41 -0.3640 0.7158
rt177 2.0754 0.0379
pr35 1.3597 0.1138
pr62 0.4136 0.6791
rt200 -1.3211 0.1864
rt207 0.6699 0.5029
rt162 1.1116 0.2663
pr77 -1.8474 0.0646
pr37 1.4975 0.1342
rt122 -1.3460 0.1782
rt135 -2.8680 0.0041
pr93 0.1422 0.8868
pr63 1.5628 0.1181
rt211 2.3058 0.0211
rt178 -1.8435 0.0652
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Table 2: IPTW Estimators and p-values

Codon IPTW Ψn p-value
pr90 -1.821 <0.00001
rt184 -2.119 <0.00001
pr43 -2.262 <0.00001
pr54 -2.838 <0.00001
rt41 -2.302 <0.00001
pr46 -2.435 <0.00001
pr82 -2.297 <0.00001
rt215 -1.173 0.00512
rt121 -2.252 <0.00001
pr10 -1.532 0.000915
pr71 -1.148 0.0190
rt102 -1.026 0.0691
rt214 -0.341 0.550
pr57 0.268 0.688
pr14 -0.896 0.0917
rt196 -0.616 0.288
rt103 -0.570 0.324
pr13 -0.460 0.367
pr15 0.240 0.675
pr36 0.314 0.617
pr64 -0.643 0.168
rt83 -0.531 0.261
pr41 -0.0488 0.921
rt177 0.0531 0.917
pr35 0.243 0.637
pr62 0.0954 0.853
rt200 -0.0210 0.964
rt207 0.111 0.821
rt162 0.022 0.962
pr77 -0.143 0.743
pr37 0.0297 0.948
rt122 0.118 0.785
rt135 -0.244 0.581
pr93 0.0464 0.918
pr63 -0.0663 0.878
rt211 0.231 0.594
rt178 0.101 0.814
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Table 3: DR-IPTW Estimators and p-values

Codon DR-IPTW Ψn p-value
pr90 -0.519 <0.00001
rt184 -0.584 0.00006
pr43 -0.646 <0.00001
pr54 -0.322 0.00002
rt41 -0.288 0.00275
pr46 -0.544 <0.00001
pr82 -0.0772 0.249
rt215 0.0557 0.502
rt121 -0.561 <0.00001
pr10 -0.242 0.0170
pr71 0.238 0.00423
rt102 0.256 0.0164
rt214 0.366 0.00029
pr57 0.264 0.0577
pr14 -0.168 0.186
rt196 0.00734 0.955
rt103 -0.109 0.299
pr13 0.190 0.1668
pr15 0.227 0.1275
pr36 0.307 0.1455
pr64 0.0612 0.585
rt83 0.321 0.0361
pr41 -0.0633 0.577
rt177 0.256 0.0511
pr35 0.227 0.1521
pr62 0.0842 0.444
rt200 0.0151 0.876
rt207 0.134 0.158
rt162 0.108 0.233
pr77 -0.128 0.267
pr37 0.0904 0.478
rt122 0.0743 0.468
rt135 -0.129 0.187
pr93 -0.0142 0.891
pr63 0.0509 0.603
rt211 0.159 0.187
rt178 0.011 0.986
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Table 4: FDR on IPTW Estimator’s p-values

Codon FDR p-value
pr90 <0.00001
rt184 <0.00001
pr43 <0.00001
pr54 <0.00001
rt41 <0.00001
pr46 <0.00001
pr82 <0.00001
rt215 0.0199
rt121 <0.00001
pr10 0.000396
pr71 0.06741
rt102 0.2246
rt214 0.9648
pr57 0.9648
pr14 0.2751
rt196 0.6605
rt103 0.7013
pr13 0.7538
pr15 0.9648
pr36 0.9648
pr64 0.4686
rt83 0.6350
pr41 0.9648
rt177 0.9648
pr35 0.9648
pr62 0.9648
rt200 0.9648
rt207 0.9648
rt162 0.9648
pr77 0.9648
pr37 0.9648
rt122 0.9648
rt135 0.9648
pr93 0.9648
pr63 0.9648
rt211 0.9648
rt178 0.9648
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Table 5: FDR on DR-IPTW Estimator’s p-values

Codon FDR p-value
pr90 0.00009
rt184 0.00037
pr43 0.00009
pr54 0.000148
rt41 0.01271
pr46 0.00009
pr82 0.3838
rt215 0.6191
rt121 0.00009
pr10 0.05718
pr71 0.01739
rt102 0.05718
rt214 0.00153
pr57 0.1524
pr14 0.3145
rt196 0.9815
rt103 0.4255
pr13 0.3145
pr15 0.31450
pr36 0.31450
pr64 0.6760
rt83 0.11130
pr41 0.6760
rt177 0.1454
pr35 0.31450
pr62 0.6084
rt200 0.9419
rt207 0.31450
rt162 0.3748
pr77 0.3951
pr37 0.6098
rt122 0.6098
rt135 0.3145
pr93 0.9419
pr63 0.6760
rt211 0.3145
rt178 0.9860
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otherwise known as the likelihood based estimator (van der Laan, 2005). All
of the codons which were claimed significant with a p-value less than 0.05 with
the IPTW or DR-IPTW methods also had an unadjusted univariate p-value
less than 0.05, refer to Table 1. In order to account for the multiple tests
which were performed, FDR adjusted p-values are reported in Tables 4 and
5. The results produced in these tables correspond to biological significance
and statistical significance outlined in Birkner et al. (2005).

4.1 Assessing the DR-IPTW Estimator

Table 6 displays the models assessing the DR-IPTW variable importance
measure for each codon. For example, the first codon pr90, produces the
following model: D = −0.449 − 2.719(pr43) + 1.014(pr54). In this case,
the codons pr43 and pr54 best predict the variable importance measure
D(Oi|θn, Πn)). Therefore, the impact of pr90 is negative with regards to
replication capacity among strata where there is a mutation in pr43. The
effect is only positive among strata where there is a mutation at pr54 and
no mutation at pr43. Another example is with regards to rt178. In this case
the following model was obtained: D = 0.1780−0.9007(rt41). Therefore the
impact of rt178 is positive with regards to replication capacity among strata
where rt41 is not mutated and negative when rt41 is mutated.

4.2 Biological Results

The procedures identified several codon positions as significantly associated
with viral replication capacity. The models presented in Table 6 present sev-
eral interactions of codons which predict D(Oi|θn, Πn)). In some cases, these
interactions include protease and reverse transcriptase positions. The cur-
rent HIV-1 literature does not mention interactions of this nature (protease
and reverse transcriptase), so we cannot relate it to the known literature,
but they might represent interesting findings. With regards to the individual
codon mutations, these analysis included positions which are known to be
associated with viral replication and antiretroviral resistance. In particular,
protease positions pr43, pr46, pr54, and pr90, and reverse transcriptase posi-
tions rt184, and rt215, have been singled out in previous research as related
to replication capacity and/or antiretroviral resistance (Birkner et al., 2004;
Segal et al., 2004; Shafer et al., 2001a). The specific mutations observed in
our dataset parallel those found in the literature. For example, Mpr46I,
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Table 6: DR-IPTW Models (Note: D = E(D(Oi|θn, Πn)|W )
Codon Model
pr90 D = −0.449 − 2.719(pr43) + 1.014(pr54)
rt184 D = −0.584
pr43 D = −0.098 − 2.160(pr90) − 1.041(rt102)
pr54 D = −0.324 − 0.4886(rt121) + 0.6677(pr90) − 0.100(pr46) − 0.225(pr10)

−9.3028(rt121 ∗ pr10) − 1.65(pr43) + 4.05(pr43 ∗ pr46) + 3.952(pr10 ∗ pr43)
rt41 D = −0.339 + 0.982(rt184) + 0.475(pr82) + 0.9821(pr43) − 0.357(pr46) − 1.303(pr43 ∗ pr46)

+2.008(rt184 ∗ pr43) + 10.256(pr43 ∗ pr82) − 0.239(rt215) − 10.619(pr43 ∗ rt215)
pr46 D = −0.369 − 3.152(rt121) + 0.580(pr90) − 0.372(pr71) − 0.557(rt41)

−2.849(pr90 ∗ rt41) + 3.586(rt41 ∗ pr71)
pr82 D = −0.117 − 1.515(pr43) + 0.0381(rt121) + 0.611(pr90) − 0.351(pr54) + 0.334(rt41)

+1.719(pr43 ∗ pr54) − 4.514(pr54 ∗ rt121) − 2.632(pr90 ∗ pr43) + 3.093(rt41 ∗ rt121)
rt215 D = 0.175 − 1.713(pr43)
rt121 D = 0.0609 − 4.346(pr10) + 0.975(pr43) + 0.673(rt41)
pr10 D = −0.0000935 − 4.037(rt121)
pr71 D = 0.351 − 0.603(pr43) − 0.190(rt102) − 2.644(pr43 ∗ rt102)
rt102 D = 0.425 − 2.442(pr43)
rt214 D = 0.192 + 0.469(rt41) − 0.0535(rt121) + 2.697(rt121 ∗ rt41)
pr57 D = 0.2642
pr14 D = 0.0926 − 3.679(pr43)
rt196 D = 0.007347
rt103 D = −0.1091
pr13 D = 0.1334 + 0.1184(pr10) − 1.6556(pr43) + 3.648(pr43 ∗ pr10)
pr15 D = 0.1359 + 0.4573(pr43) − 0.4048(rt121) + 4.414(pr43 ∗ rt121)
pr36 D = −0.0613 + 1.0887(rt215) + 1.7347(rt121)
pr64 D = −0.07115 + 0.527(rt121) + 0.396(pr43) + 3.876(pr43 ∗ rt121)
rt83 D = 0.238 + 0.335(pr43) + 0.0114(rt102) + 3.0613(pr43 ∗ rt102)
pr41 D = −0.2120 + 0.571(pr46) + 0.1438(rt121) + 3.4048(pr46 ∗ rt121)
rt177 D = 0.20437 − 0.1530(rt121) − 0.3593(pr43) + 4.546(pr43 ∗ rt121)
pr35 D = 0.00792 + 1.4499(rt121) + 1.003(pr46)
pr62 D = 0.08422
rt200 D = 0.00647 − 0.69739(rt102) + 0.81504(rt41) − 0.14504(pr43) − 3.2498(pr43 ∗ rt102)
rt207 D = 0.0768 + 0.5336(rt121) + 0.0735(pr43) + 3.2798(pr43 ∗ rt121)
rt162 D = 0.00971 + 1.6486(rt121)
pr77 D = 0.0544 − 1.561(pr54)
pr37 D = −0.1186 − 0.1748(rt121) + 0.4457(rt215) + 3.5289(rt121 ∗ rt215)
rt122 D = 0.1603 − 1.239(pr43)
rt135 D = −0.0495 − 1.155(pr43)
pr93 D = −0.0142
pr63 D = −0.2001 + 1.0782(pr46) + 0.9524(rt102)
rt211 D = 0.0559 + 0.4844(rt121) + 0.2141(pr43) + 3.1499(pr43 ∗ rt121)
rt178 D = 0.1780 − 0.9007(rt41)
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Ipr54V/L/T , and Lpr90M , correspond to protease positions in which muta-
tions increase the resistance to various protease inhibitors. An example of a
protease mutation is position pr10, where Lpr10I/F/V/R, one of the most
common mutations, is associated with resistance to all protease inhibitors
when present with another mutation. Position pr90 has an impact on the
substrate cleft of the virus and L90M causes resistance to saquinavir when
combined with various other mutations (Shafer et al., 1998). For example,
the Gpr48V /Lpr90M double mutation has shown delayed viral replication,
whereas Lpr90M alone had a higher replication capacity (Goudsmit et al.,
1997). Position Ipr54V/L/T also causes resistance to the other protease
inhibitors when present with other mutations. Mutations at residues pr54
and pr82 produce resistance to Indinavir and Ritonavir. Additionally, mu-
tations within V pr82A, Ipr84V , and Lpr90M have been associated with a
median change in replication capacity (Barbour et al., 2002b; Shafer et al.,
2001b). Mutations in several of the identified codons also have an impact
on the replication capacity of the virus. Mutation Mrt184V/I suppresses
the wild-type activity of Trt215Y , thus decreasing AZT resistance (Shafer
et al., 2001a). AZT, also known as Zidovudine, is a nucleoside reverse tran-
scriptase inhibitor. It affects HIV’s ability to replicate by producing faulty
reverse transcriptase and hence inhibiting the transcription of RNA to DNA.

The results presented in this paper are consistent with previous research
and other analyses of this HIV-1 dataset. The reader is referred to earlier ar-
ticles by Birkner et al. (2004) and Segal et al. (2004) for alternative statistical
analyses and biological discussion of a related HIV-1 dataset.
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