
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Direct Effect Models

Mark J. van der Laan∗ Maya L. Petersen†

∗Division of Biostatistics, School of Public Health, University of California, Berkeley,
laan@berkeley.edu
†Division of Biostatistics, School of Public Health, University of California, Berkeley, may-

aliv@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper187

Copyright c©2005 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61320431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Direct Effect Models

Mark J. van der Laan and Maya L. Petersen

Abstract

The causal effect of a treatment on an outcome is generally mediated by sev-
eral intermediate variables. Estimation of the component of the causal effect of
a treatment that is mediated by a given intermediate variable (the indirect effect
of the treatment), and the component that is not mediated by that intermediate
variable (the direct effect of the treatment) is often relevant to mechanistic un-
derstanding and to the design of clinical and public health interventions. Under
the assumption of no-unmeasured confounders for treatment and the intermedi-
ate variable, Robins & Greenland (1992) define an individual direct effect as the
counterfactual effect of a treatment on an outcome when the intermediate variable
is set at the value it would have had if the individual had not been treated, and
the population direct effect as the mean of these individual counterfactual direct
effects. In this article we first generalize this definition of a direct effect. Given
a user-supplied model for the population direct effect of treatment actions, possi-
bly conditional on a user-supplied subset of the baseline co-variables, we propose
inverse probability of treatment weighted estimators, likelihood-based estimators,
and double robust inverse probability of treatment weighted estimators of the un-
known parameters of this model. The inverse probability of treatment weighted
estimator corresponds with a weighted regression and can thus be implemented
with standard software.



1 Introduction and overview.

Estimation of the (total) causal effect of a treatment on an outcome is a pri-
mary focus of epidemiological and clinical research and has been the subject
of major methodological advances. For an overview of various causal models
and corresponding literature (counterfactual framework, marginal structural
models, structural nested models, G-computation formula), and a presenta-
tion of a general locally efficient estimating function-based methodology for
estimation of the corresponding causal parameters, we refer to van der Laan
and Robins (2002). In many settings, it is of significant interest to identify
the pathways by which a treatment is acting and to quantify the component
of the treatment’s effect that is and is not mediated by a given intermedi-
ate variable (the indirect and direct effects of the treatment, respectively).
Estimation of the direct and indirect effects of a treatment can often inform
mechanistic understanding of the treatment’s action, as well as the design of
clinical and public health interventions.

Robins and Greenland (1992) and Pearl (2000) have addressed the iden-
tification and estimation of direct and indirect causal effects in both the epi-
demiological and non-epidemiological literature. In order to define a direct
causal effect, Robins and Greenland (1992) use the counterfactual frame-
work, in which one assumes for a randomly sampled subject the existence
of counterfactual outcomes Yaz and counterfactual intermediate variables Za

under set values of treatment A = a and the intermediate variable Z = z.
The observed data can now be viewed as a missing data structure on these
counterfactuals. Using this framework, an individual direct effect can be de-
fined as YaZ0 − Y0Z0 , or the counterfactual effect of a treatment A = a on an
outcome when the intermediate variable is set at the counterfactual value Z0

that it would have had if the individual had not been treated (i.e, A = 0).
Alternatively, an individual direct effect can be defined as Yaz − Y0z, or the
counterfactual effect of a treatment A = a when the intermediate is set at a
fixed level Z = z. In this article, we follow the lead of Pearl (2000) and call
YaZ0 − Y0Z0 the natural individual direct effect, and Yaz − Y0z the controlled
individual direct effect. The population direct effect is defined as the mean
of these individual counterfactual direct effects.

In Robins and Greenland (1992), the authors discuss at length the limita-
tions of multi-variable regression to estimate direct and indirect effects. Al-
though frequently used, Robins and Greenland illustrate that this approach
can lead to a biased estimate of the direct effect of treatment, even if there are
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no unmeasured confounders of the relationship between the treatment and
outcome. In the setting of longitudinal treatment, unbiased estimation of
direct effects using traditional multi-variable regression is often not possible.
Robins and Greenland further introduce an additional assumption needed
for natural direct effects to be identifiable from the observed data; Robins
and Greenland (1992)’s No Interaction Assumption states that the individual
direct effect at a fixed level of the intermediate variable (controlled direct ef-
fect) does not depend on the level at which the intermediate variable is fixed.
Pearl (2000) provides an alternative identifying assumption for natural di-
rect effects; he assumes that an individual’s outcome under a fixed level of
the intermediate variable does not depend on the level of the intermediate
variable that the individual would have had under no treatment. Both of the
assumptions proposed to date to make direct effects identifiable have been
considered both unrealistic and restrictive for applications in epidemiology
and clinical medicine.

In recent work (van der Laan and Petersen (2004)), we introduced an al-
ternative assumption to make natural direct effects identifiable. We showed
that the identifiability result of Pearl (2000) also holds under a new condi-
tional independence assumption which states that, within strata of baseline
co-variables, the individual direct causal effect at a fixed level of the inter-
mediate variable (controlled direct effect) is independent (in the mean sense)
of the no-treatment counterfactual intermediate variable. Using both theo-
retical arguments and an example drawn from our research, we argued that
our assumption is more realistic and less restrictive than the assumptions of
Robins and Greenland (1992) and Pearl (2000). We refer to Petersen et al.
(2006) for an epidemiological discussion and interpretation of direct effects.

Under randomization assumptions (assumptions of no unmeasured con-
founders) and the conditional independence assumption, the natural direct
effect parameter is identifiable from the observed data. In this article we first
note that if the conditional independence assumption fails to hold, then the
parameter that the identifiability result for the natural direct effect parame-
ter E(YaZ0 − Y0Z0) targets equals the population mean of a subject-specific
average of z-specific controlled direct effects, Yaz−Y0z, w.r.t. to a conditional
distribution of Z0, given the subject’s baseline co-variables. The latter is it-
self an interesting direct effect parameter, which can be interpreted as the
population mean of a subject-specific average of its controlled individual di-
rect effects. Therefore, in this article, we focus on modelling and estimation
of this direct effect parameter, which happens to agree with the conventional
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natural direct effect parameter E(YaZ0 − Y0Z0) under our conditional inde-
pendence assumption, but does not rely on it. In addition, we generalize this
parameter by allowing the choice of conditional distribution used to obtain
an average of the z-specific controlled individual direct effects Yaz − Y0z to
be user-supplied.

Given a user-supplied parametrization (i.e., model) of this direct effect
parameter, adjusted for a user-supplied subset of the baseline co-variables,
in this article we are concerned with estimation and inference of the un-
known parameters in this parametrization. By the curse of dimensionality,
further modelling assumptions are typically necessary to obtain estimators
with good practical performance. In this article, analogue to the current
literature on marginal structural models introduced by Robins (e.g., Robins
(2000a), Robins (2000b)), we propose new classes of inverse probability of
censoring weighted (IPCW) estimators, double robust inverse probability of
censoring weighted (DR-IPCW) estimators, and likelihood/regression-based
estimators. (In our technical report van der Laan and Petersen (2004) we
discussed plug-in estimators based on the identifiability result for the direct
effect, which were not based on a model for the direct effect parameter.)

This article is organized as follows. In Section 2 we present our proposed
models for direct effects, based on the statistical counterfactual framework
as used by Robins and Greenland (1992) and Robins (2003), which assumes
sequential randomization so that (total) causal effects are identifiable. In
Section 3 we present the three methods for estimation. In Section 4 we
present methods for statistical inference for the direct effect parameter. We
end this article with a discussion.

For the sake of presentation, in the main part of this article we present our
models and corresponding estimators of the direct effect of a point-treatment
(that is, treatment is assigned at a single point in time and is not subject to
subsequent random changes) followed by a single intermediate variable and
outcome of interest. In the Appendix (Section 5) we generalize the statisti-
cal models and estimators to direct effects of time-dependent treatment reg-
imens, not mediated by a specified time-dependent covariate process, based
on general longitudinal data structures.

3
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2 Direct Effect Models: The point treatment

case.

Consider a longitudinal study in which one collects on n randomly sampled
subjects the chronological data structure O = (W,A, Z, Y ), where W is a
vector of baseline co-variables measured before the initiation of treatment
A, and Z is an intermediate variable of interest on the causal pathway from
treatment to the final outcome Y of interest. Let P0 denote the sampling
distribution of O.

2.1 The definition of direct effect in current literature.

In this subsection, we present the statistical framework and definitions of
direct and indirect effects as presented in Robins and Greenland (1992)
and Robins (2003), and followed in van der Laan and Petersen (2004) and
Petersen et al. (2006). This statistical framework represents the observed
data structure observed on a randomly sampled individual as a missing data
structure, where the full data structure is a collection of counterfactual data
structures corresponding with set values of the treatment and intermediate
variables. Specifically, the full data structure consists of the value of the
intermediate variable resulting from each possible treatment, and the value
of the outcome, resulting from each combination of possible treatment and
possible intermediate variable. Instead, our observed data structure is only
a subset of this full data structure, consisting of a single treatment, and the
corresponding intermediate variable and outcome.

Formally, we assume the existence of a random variable X ≡ ((Za : a ∈
A), (Yaz : (a, z) ∈ B)) of treatment-specific counterfactuals Za and counter-
factuals Yaz (for the randomly sampled subject), and that

O = (W,A, Z = ZA, Y = YAZ) (1)

is a missing data structure on the full data structure X. That is, X is the full
data structure of interest, A is the missingness variable, and O is a specified
function of X and A. Here A and B denote the support of A and (A,Z),
respectively. The density of O can be factorized as

P (W,A, Z, Y ) = P (W )P (A | W )P (Z | A,W )P (Y | W,A,Z).
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Because O is a function of A and X, its distribution can be parameterized
by the probability distribution g(· | X) of A, given X (called the treatment
mechanism), and the distribution FX of X. Thus P0 = PFX0,g0 .

One defines the natural direct effect of changing treatment from 0 (e.g.,
representing a conventional treatment or no treatment) to a within strata of
our sampling population defined by a baseline co-variate V ⊂ W as

E(YaZ0 − Y0Z0 | V ).

In order to identify controlled direct effects E(Yaz − Y0z | V ) at a fixed
level of the intermediate variable, we make the following randomization as-
sumption:

(A,Z) ⊥ (Yaz : a, z) | W. (2)

In order to identify a conditional distribution of Za, given W , we assume

A ⊥ (Za : a ∈ A) | W. (3)

Because of these randomization assumptions (3) and (2), we have the follow-
ing relation between observed data probabilities and counterfactual proba-
bilities:

P (A = a, Z = z | W ) = P (A = a, Z = z | (Yaz : a, z),W )

P (Z = z | A = a, W ) = P (Za = z | W )

P (Y = y | W = w,A = a, Z = z) = P (Yaz = y | W ).

Consider also the conditional independence assumption (in the mean sense)
of van der Laan and Petersen (2004):

E(Yaz − Y0z | Z0 = z, W ) = E(Yaz − Y0z | W ) for all (a, z) ∈ B. (4)

In the above model for the observed data distribution defined by (1), (2),
(3), and (4), van der Laan and Petersen (2004) show that E(YaZ0 −Y0Z0 | V )
equals

EW |V
∫

z
{E(Y | A = a, Z = z, W )−E(Y | A = 0, Z = z, W )}P (Z = z | A = 0, W ),

(5)
and thus that E(YaZ0−Y0Z0 | V ) is a (non-parametric) identifiable parameter.

5

Hosted by The Berkeley Electronic Press



2.2 A generalized class of direct effect parameters.

We argue that, even without the identifiability assumption (4), (5) is still
an important direct effect parameter of interest, since, by the randomization
assumptions only, (5) equals

DE(a, V ) ≡ E

(∑
z

(Yaz − Y0z)P (Z0 = z | W ) | V
)

. (6)

That is, it equals the conditional expectation, given V , of a subject-specific
average,

∑
z(Yaz − Y0z)P (Z0 = z | W ), of the z-specific individual controlled

direct effects Yaz − Y0z w.r.t. to the conditional distribution of Z0, given W .
Therefore, if one is not comfortable with the identifiability assumption (4),
then one can view the latter direct effect parameter DE(a, V ) as the para-
meter of interest, and our proposed estimators are estimators of DE(a, V ).

We actually wish to generalize this definition (6) of direct effect to also
handle subject-specific weighted averages of the z-specific individual con-
trolled direct effects w.r.t. to a user-supplied conditional distribution Q0(· |
W ), given W . Therefore, we will define the parameter of interest as

DE(a, V ) = DE(a, V | Q0) ≡ E

(∑
z

(Yaz − Y0z)Q0(z | W ) | V
)

, (7)

where Q0 could be known, or it could be the unknown P (Z0 = z | W ) =
P (Z = z | A = 0,W ) in which case this definition reduces to (6).

2.3 Modelling the direct effect parameter.

Since DE(a, V ) is our parameter of interest, representing the answer to the
scientific question of interest about our population, it is sensible practice,
if DE(a, V ) is high dimensional (e.g., A or V is continuous, and/or high-
dimensional), to model this function DE(a, V ). Consider a user-supplied
parametrization/model β → m(a, V | β) for this direct effect parameter
DE(a, V ) in terms of a Euclidean parameter β:

DE(a, V ) = E(
∑
z

(Yaz − Y0z)Q0(z | W ) | V ) = m(a, V | β0). (8)

This parametrization has to be chosen so that it satisfies m(0, V | β) = 0
for all V and β. The true β0 represents now our parameter of interest of the
true data generating distribution P0.
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2.4 Models for the observed data distribution.

We note that, if Q0 is a known conditional distribution, then DE(a, V ) is a
parameter of the distribution of the full data structure X∗ ≡ ((Yaz : (a, z) ∈
B),W ), and (A,Z) can now be viewed as the joint missingness variable defin-
ing the observed missing data structure

O = (W,A, Z, YAZ), (9)

where we assume that (A,Z) is randomized as defined by (2), or equivalently,
that this joint missingness mechanism satisfies coarsening at random (van der
Laan and Robins (2002)). We will denote the missing data model for P0,
defined by (9), (2), and (8) with M∗(CAR).

On the other hand, if Q0 = P (Z0 | W ), then β0 is a parameter of the dis-
tribution of the full data structure X = ((Za : a ∈ A), (Yaz : (a, z) ∈ B),W ),
where now only A plays the missingness variable, and in order to identify
Q0 one will also need the randomization assumption (3). So in this case the
model for P0 is defined by (1), (2), (3), and (8), and we will denote this model
for P0 with M(CAR). Our approach for construction of estimating functions
for β0 will be based on the missing data model M∗(CAR) for X∗ assuming
Q0 is known. Simple substitution of estimators of Q0 now also results in the
wished class of estimators of β0 in the model M(CAR).

Models for nuisance parameters: As we will see, the class of all es-
timating functions for β0 in model M∗(CAR) is indexed by potentially high
dimensional nuisance parameters so that the construction of asymptotically
linear estimators requires specification of models for these nuisance para-
meters. That is, in order to deal with the curse of dimensionality in the
model M∗(CAR), depending on the choice of class of estimators, we will
also need to assume models for 1) PA|W , PZ|A,W , or equivalently, the miss-
ingness mechanism P(A,Z)|X∗ (IPCW, DR-IPCW), and 2) E(Y | A,Z, W )
(Likelihood-based, DR-IPCW). In the case that Q0 = PZ0|W , and is thus
unknown, then the consistency for all three classes of estimators relies upon
a consistent estimator of PZ|A,W . In addition, the consistency of the IPCW-
estimators relies upon a consistent estimator of PA|W , PZ|A,W , the consis-
tency of the Likelihood-based estimators rely upon a consistent estimator
of E(Y | A,Z, W ), while the consistency of the DR-estimators relies upon
either a consistent estimator of PA|W , PZ|A,W or a consistent estimator of
E(Y | A,Z, W ) (but it uses both estimators).

7
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Working model: Our estimators also require a specification of a working
model {m0(V | η) : η} for

m0(V ) ≡ E(
∑
z

Y0zQ0(z | W ) | V ),

and a corresponding estimator. However, the validity of this working model
for m0 (i.e., the consistency of the corresponding estimator of m0) does only
potentially affect the efficiency of our estimators of β0, but it does not affect
the consistency and asymptotic linearity of our estimators.

Given user-supplied models for these nuisance parameters, we can use the
maximum likelihood estimator defined as the maximizers over these models
of the relevant partial likelihoods given by

L(fA|W ) =
n∏

i=1

fA|W (Ai | Wi)

L(fZ|A,W ) =
n∏

i=1

fZ|A,W (Zi | Ai,Wi)

L(fY |A,Z,W ) =
n∏

i=1

fY |A,Z,W (Yi | Ai, Zi,Wi).

Other (e.g., estimating function-based) procedures for estimation of the nui-
sance parameters can be used as well, and, in particular, one could use cross-
validation methodology to data-adaptively select the models for these para-
meters.

3 Estimation.

This section is organized as follows. In the next two subsections we present
the IPCW estimating functions and corresponding estimators. Subsequently,
we present the more general class of DR-IPCW estimating functions, and
corresponding DR-IPCW estimators. We also present likelihood-based esti-
mators. Finally, we discuss the properties of these three classes of estimators.

3.1 Inverse Probability of Censoring Weighted esti-
mating functions.

Let g0(· | X∗) denote the true conditional probability distribution of (A,Z),
given X∗, and let g denote elements of our model for this conditional distri-
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bution: note, g0(A,Z | X∗) = g0(A | W )g0(Z | A,W ). Recall that Q0(· | W )
is either user supplied and known, or equals the unknown PZ0|W = PZ|A=0,W .

Consider the following class of inverse of probability of censoring weighted
(IPCW) estimating functions for β0 indexed by a user supplied functions
h(A, V ) = (h1(A, V ), h2(V ), g∗(A | V )) of A, V , and nuisance parameter g:

Dh,IPCW (O | β, g,Q0) ≡
g∗(A|V )

g(A,Z|X∗){h1(A, V )− Eg∗(h1(A, V ) | V )}Q0(Z | W )(Y −m(A, V | β)− h2(V )).

Here g∗(· | V ) can be any user supplied conditional density of A, given V .
The following lemma establishes that these estimating functions are indeed
unbiased for β0 at a correctly specified censoring mechanism g0.

Lemma 1 In addition to assuming model M∗(CAR) for P0, we also assume
the following experimental treatment assignment assumptions for the joint
“treatment” (A,Z):

max
(a,z)∈B

h1(a, V )

g0(a, z | W )
< ∞ a.e.. (10)

Then for any function h = (h1, h2, g
∗) of A, V

EP0Dh,IPTW (O | β0, g0, Q0) = 0.

We also have that, if h2(V ) = m0(V ) = E(
∑

z Y0zQ0(z | W ) | V ), then

E(Dh,IPCW (O | β0, g0, Q0) | X∗) = (11)∑
a

g∗(a | V ){h1(a, V )− Eg∗(h1(A, V ) | V )}{∑
z

Q0(z | W )(Yaz − Y0z)−m(a, V | β0)}.

Remark regarding (11). In the full data model for X∗ = ((Yaz : (a, z) ∈
B),W ) defined by only the restriction (8), E(

∑
z Q0(z | W )(Yaz−Y0z) | V ) =

m(a, V | β0) for some β0, the orthogonal complement of the nuisance tangent
space at P0 for β0 (for known Q0) is given by:

T F,⊥
nuis(FX∗0) =

{∑
a

h(a, V )

(∑
z

Q0(z | W )(Yaz − Y0z)−m(a, V | β0)

)
: h

}
.

This follows from the fact that this full data model (8) is simply a re-
peated measures regression model for the outcome vector (Ha =

∑
z Q0(z |

9
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W )(Yaz − Y0z) : a) on V , and application of Theorem 2.2 in van der Laan
and Robins (2002). Therefore, the latter property in Lemma 1 shows that
the conditional expectations of the IPCW-estimating functions, given the full
data X∗, contain the orthogonal complement of the nuisance tangent space
in the full data model. The latter property formally proves that the class of
estimating functions {Dh,IPCW ; h} are indeed IPCW estimating functions as
defined in van der Laan and Robins (2002). This property teaches us that
our augmented class of DR-IPCW estimating functions as presented in the
next subsection provide a representation of the orthogonal complement of the
nuisance tangent space at P0 of β0 in the observed data model M∗(CAR):
see Theorem 1.3, page 64 in van der Laan and Robins (2002).
Proof of Lemma 1: For notational convenience, we suppress the “IPCW”
labelling. Firstly, we condition on X∗ = (Yaz : a, z),W ), which corresponds
with integrating over A,Z w.r.t. g0(A,Z | W ). This yields

E(Dh(O | β0, g0, Q0) | X∗) =∑
a,z g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))Q0(z | W )(Yaz −m(a, V | β0)− h2(V ))

=
∑

a g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V )) (
∑

z Q0(z | W )Yaz −m(a, V | β0)− h2(V ))
=

∑
a g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))×

(
∑

z Q0(z | W )(Yaz − Y0z)−m(a, V | β0) + m0(V )− h2(V )) ,

where we recall that m0(V ) = E(
∑

z Q0(z | W )Y0z | V ). At the first equality,
we relied on the ETA (10) so that the denominator g0(a, z | X∗) cancels out
for all a, z for which h1(a, V ) 6= 0. Conditioning on V now yields,

∑
a

g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V )){m0(V )− h2(V )} = 0,

which completes the proof of Lemma 1. 2

3.2 Inverse probability of censoring weighted estima-
tors.

Estimation of the index: A convenient choice for the function h indexing
the IPCW-estimating functions Dh,IPCW is given by

h∗1(A, V ) ≡ d

dβ0

m(A, V | β0)

h∗2(V ) = m0(V ) = E0(
∑
z

Y0zQ0(z | W ) | V )

g∗(A | V ) = g0(A | V ).

10
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Let hn be an estimator of this function h∗ based on substitution of an esti-
mator g∗n of g0 = pA|V , and a regression estimator h2n(V ) of m0. Since

m0(V ) = E0(
∑
z

Q0(z | W )E0(Y | A = 0, Z = z, W ) | V ),

we have that h2n can be obtained as a regression estimator obtained by
regressing

∑
z Q0(z | Wi)Ê(Y | A = 0, Z = z,Wi) on Vi according to the

working model m(V | η) for m0. In case m(A, V | β) is non-linear in β, then
h∗1(A, V ) depends on β0, so that one will need an initial estimator of β0 to
estimate h∗1, which can be obtained by first using an h∗1 at an initial guessed
β.

The corresponding IPCW-estimator: In addition, let gn be an es-
timator of the missingness/censoring mechanism g0(A,Z | W ) = g0(A |
W )g0(Z | A,W ). If the weight function Q0 is unknown, then let Q0n be
an estimator of Q0, but otherwise Q0n = Q0. The corresponding IPCW-
estimator of β0 is now defined as the solution βn,IPCW of the estimating
equation in β:

0 =
n∑

i=1

Dhn,IPCW (Oi | β, gn, Q0n).

Since this estimator is a special case of the double robust IPCW estimator,
we discuss implementation of this estimator in the next subsection.

Weighted least squares IPCW-estimators under a correctly speci-
fied model for m0. At cost of robustness w.r.t. misspecification of m0(V ),
we can proposes a class of IPCW-estimators which can be represented as a
weighted least squares estimator. These estimators are based on the observa-
tion that m(· | β) and m(V | η) imply the model E(

∑
z Q0(z | W )Yaz | V ) =

m1(a, V | θ0) ≡ m(a, V | β0) + m(V | η0), where now θ0 = (β0, η0) represents
the parameter of interest. This full data repeated measures regression model
suggests as class of IPCW-estimating functions for θ0:

{
g∗(A | V )

g(A, Z | X∗)
h(A, V )Q0(Z | W )(Y −m1(A, V | θ)) : h

}
.

It is straightforward to verify that these estimating functions are indeed
unbiased for θ0 at a correctly specified g0. The IPCW-estimator indexed by
the choice h(A, V ) = d/dθm1(A, V | θ) minimizes a weighted sum of squared
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residuals of the regression of Y on A, V based on the model m(A, V | θ).
Specifically, this estimator is defined as

θn,IPCW ≡ arg min
θ

n∑

i=1

(Yi −m1(Ai, Vi | θ))2weighti,

where

weighti ≡
g∗n(Ai | Vi)Q0n(Zi | Wi)

gn(Ai | Wi)QZn(Zi | Ai,Wi)
.

As a consequence, this IPCW-estimator θn,IPCW can be implemented with
standard regression software. Since this estimator is not protected against
misspecification of m0(V ) (in other words, the working model m(V | η) needs
to be correctly specified), in the case that the parameter of interest is only
β0, and not both (β0, η0), then we only recommend to use this weighted least
squares regression estimator as a starting value for solving the wished IPCW
estimating equation.

Remark. In model M∗(CAR), assuming Q0 is known, it follows from the
general Theorem 2.3 in van der Laan and Robins (2002) that the asymptotic
efficiency of βn,IPCW improves if we estimate the missingness mechanism
g0(A,Z | X∗) more nonparametrically.

In the model M(CAR) in which Q0 = PZ0|W , X is the full data struc-
ture, and A is the missingness variable, this same Theorem 2.3 teaches us
that βn,IPTW ’s efficiency improves if we estimate the missingness/treatment
mechanism g0(A | W ) more nonparametrically. For example, if treatment is
randomized so that g0(A | W ) = g0(A) is known, then the IPCW estimator
using an estimator of g0(A) based on a logistic regression model including
co-variables extracted from W will be significantly more efficient than the
estimator using the known g0. Since in this case the parameter of interest
β0 is not variation independent of PZ|A,W , it is unclear how the size of the
model for PZ|A,W affects the efficiency of the resulting estimator βn,IPCW .

3.3 Double robust IPCW-estimating functions.

Given a class of IPCW-estimating functions, van der Laan and Robins (2002)
(Theorem 1.3) show that the class of all (i.e., relevant) estimating functions
in model M∗(CAR) is obtained by subtracting from the IPCW estimating
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function its projection on TCAR, where TCAR ⊂ L2
0(P0) equals all possible nui-

sance scores corresponding with one dimensional fluctuations of the true miss-
ingness mechanism g0(A,Z | X∗) only assuming CAR (i.e., g0(A, Z | X∗) =
g0(A,Z | W )). That is, one subtracts from the inverse probability of missing-
ness weighted estimating function its projection on the sub-Hilbert space of
functions of A,Z,W with conditional mean zero, given W , within the Hilbert
space L2

0(P0) of functions of the observed data structure O with mean zero
and finite variance, endowed with inner product 〈f1, f2〉P0 ≡ E0f1(O)f2(O)
being the covariance operator. Thus these estimating function are derived as
Dh,DR = Dh,IPTW (O)− {E(Dh,IPTW (O) | A,Z,W )− E(Dh,IPTW (O) | W )}.

This class of estimating functions represents all estimating functions in
the sense that {Dh,DR : h} ⊂ L2

0(P0), evaluated at the true parameter values,
contains the orthogonal complement of the nuisance tangent space at P0 of β0

in model M∗(CAR). This implies that the corresponding class of estimating
equations generates all regular asymptotically linear estimators of β0 up till
a second order term. This follows from Theorem 1.3 in van der Laan and
Robins (2002) and the established property (11) of the IPCW-estimating
functions. This means that there also exists a hopt so that Dhopt,DR

is an
optimal estimating function resulting in an efficient estimator if the nuisance
parameters are correctly specified. Estimation of hopt would result in locally
efficient estimators, but that is beyond the scope of this article.

We have that

E(Dh,IPCW (O | β, g,Q0) | A,Z,W ) =
g∗(A|V )

g(A,Z|X∗){h1(A, V )− Eg∗(h1(A, V ) | V )}Q0(Z | W )×
{E(Y | A,Z,W )−m(A, V | β)− h2(V )}.

Thus,

E(Dh,IPCW (O | β, g, Q0) | W ) =∑
a,z g∗(a | V ){h1(a, V )− Eg∗(h1(A, V ) | V )}Q0(z | W )×

(E(Y | A = a, Z = z, W )−m(a, V | β)− h2(V )).

If we let QY (A, Z, W ) represent a parameter value for QY 0(A,Z,W ) = E0(Y |
A,Z, W ), then we have

Dh,DR(O | β, g,QY , Q0) =
g∗(A|V )

g(A,Z|X∗){h1(A, V )− Eg∗(h1(A, V ) | V )}Q0(Z | W )(Y −QY (A,Z, W ))

+
∑

a,z g∗(a | V ){h1(a, V )− Eg∗(h1(A, V ) | V )}Q0(z | W )×
(QY (a, z,W )−m(a, V | β)− h2(V )).
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As predicted by the general estimating function theory (Section 1.6, van der
Laan and Robins (2002)), these estimating functions are double robust w.r.t.
the pair of nuisance parameters (g0, QY 0).

Result 1 Consider the class of double robust IPCW estimating functions:

{(O, β, g, QY ) → Dh,DR(O | β, g, QY , Q0) : h} .

If (10) holds at g, then for any index h

EDh,DR(O | β0, g, QY , Q0) = 0 if either g = g0 or QY = QY 0. (12)

This can be straightforwardly explicitly verified. That is, this estimating
function for β0, which is indexed by two nuisance parameters, is unbiased if
the ETA (10) holds at the possibly misspecified missingness-mechanism g,
and one the two nuisance parameters g0 = pA,Z|W , QY 0 = E0(Y | A,Z, W )
is correctly specified as well. In practice, the requirement that the ETA (10)
holds at g translates into using an estimator of g0 which satisfies the ETA
(10) (which can always be arranged).

3.4 Double robust IPCW-estimators.

Let hn, gn, QY n be estimators of h∗, g0, QY 0. The corresponding DR-IPCW-
estimator of β0 is now defined as the solution βn,DR of the estimating equation
in β:

0 =
n∑

i=1

Dhn(Oi | β, gn, QY n, Q0).

If the weight function Q0 in the definition of β0 is unknown, then one replaces
Q0 by an estimator Q0n.

Implementation: As communicated to us by Dan Rubin in our Depart-
ment through personal communication, if m(· | β) is linear in β, then this
estimating equation is just a linear system of equations in β, and can thus be
solved trivially in closed form. For general parameterizations this estimator
can be computed with the Newton-Raphson algorithm, and a standard line
search correction guaranteeing that at each step the Euclidean norm of the
estimating equation decreases (to zero). In this case one can use βn,IPTW

as initial estimator. For more details, we refer to van der Laan and Robins
(2002) (pages 118-119).
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3.5 A likelihood-based estimator.

Consider the identifiability result (5) for DE(a, W ) = E(
∑

z Q0(z | W )(Yaz−
Y0z) | W ) given by:

DE(a,W ) =
∫

z
{E(Y | A = a, Z = z, W )−E(Y | A = 0, Z = z,W )}Q0(z | W ).

(13)
The fact that E0(DE(a,W ) | V ) = m(a, V | β0) suggests to plug in an esti-
mator QY n of QY 0(A,Z,W ) = E(Y | A,Z, W ) to obtain a fitted D̂E(a,W ),
and subsequently regress the vector (DE(a,Wi) : a), on V according to the
repeated measured regression model E(D̂E(a,W ) | V ) = m(a, V | β).

Alternative methods for obtaining such a substitution type estimator of
DE(a,W ) are discussed in detail in van der Laan and Petersen (2004), and
are therefore not repeated here.

3.6 Discussion of the three types of estimators.

The consistency of the IPCW-estimator of β0 relies on the consistency of
gn as an estimator of the missingness mechanism g0(· | X∗), and on the
experimental ”treatment” assumption (10) on g0 jointly for (A,Z). The
consistency of the likelihood-based estimator of β0 relies on the consistency
of QY n as estimator of E(Y | A,Z, W ). Finally, if (10) holds for g0, then
the consistency of the DR-estimator of β0 relies on the consistent estimation
of either g0 or Q0Y , but, if (10) fails to hold for g0, then it fully relies on
consistent estimation of Q0Y .

The double robust estimator has the attractive property as being the
most nonparametric estimator, which will be consistent if either the IPTW-
estimator or the likelihood-based estimator is consistent. In the case that
one expects a serious violation of the joint ETA (10), then the likelihood-
based estimator might be the preferred estimator, since the double robust
estimator now fully relies on the consistent estimation of E(Y | A,Z,W ) as
well. That is, in the latter case, the DR estimator is not more robust than the
likelihood-based estimator. The bias caused by the violation of the joint ETA
assumption (10) can be established by computing the sampling distribution
of the IPCW-estimator under a maximum likelihood estimator of the data
generating distribution (i.e., one implements a parametric bootstrap), and
comparing the mean of the sampling distribution with the β0 as calculated
from the fitted likelihood. Off course, the latter parametric bootstrap can
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also be used to estimate the sampling distribution of the DR-IPTW estimator
(and thereby its mean squared error and bias), and it can be used as a model
based inference tool to construct confidence intervals.

4 Statistical Inference.

Consider the case that Q0 is a known weight function. Under the above
stated assumptions regarding correct estimation of the nuisance parameters
g0, QY 0, and regularity conditions guaranteeing that second order terms of
differences between gn and g0 and QY n and QY 0 are oP (1/

√
n), it can also

be shown that the IPTW and DR-IPTW estimators βn of β0 are root-n
consistent, and that

√
n(βn−β0) is asymptotically normally distributed with

mean zero and certain variance: see Theorems 2.4 and 2.5 in van der Laan
and Robins (2002). Under these regularity conditions, one can also establish
the asymptotic validity of the bootstrap for obtaining confidence regions for
β0. These confidence regions can also be used for testing purposes.

We will discuss here the conclusions of this Theorem 2.4 in van der Laan
and Robins (2002) which relies on assuming a correctly specified model for
g0. Since the IPCW-estimating functions correspond with setting QY = 0 in
the double robust estimating functions, it suffices to present the statements
for the double robust estimator of β0, which we denote with βn here. Firstly,
in the unrealistic case that gn = g0, then under regularity conditions specified
in Theorems 2.4, we have that

βn − β0 =
1

n

n∑

i=1

IC0(Oi) + oP (1/
√

n),

where the influence curve IC0 is given by

IC0(O) = −c(β0)
−1Dh,DR(O | β0, g0, QY 1, Q0)

and QY 1 denotes the possibly misspecified limit of QY n (e.g., QY n = 0 =
QY 1). Here c(β0) ≡ d/dβ0EDh,DR(O | β0, g0, QY 1, Q0) is the matrix obtained
by differentiating the expectation of the estimating function w.r.t. β at β0.
The latter matrix can be easily estimated as the derivative matrix of the
actual estimating equation.

If one now uses an actual maximum likelihood estimator gn of the miss-
ingness mechanism g0 according to a correctly specified model with tangent
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space TG(P0) ⊂ TCAR(P0) (space spanned by nuisance scores for the true
missingness mechanism g0), then Theorem 2.4 in van der Laan and Robins
(2002) states that the influence curve improves to

IC = IC0 − Π(IC0 | TG(P0)),

where Π(IC0 | TG(P0)) denotes the projection of IC0 onto TG(P0) in the
Hilbert space L2

0(P0) (see also Theorem 2.3 van der Laan and Robins (2002)).
In the special case that QY 1 = QY 0, that is, our regression estimator of

E(Y | A,Z,W ) is asymptotically consistent, then IC0 is already orthogonal
to all possible missingness mechanism scores (i.e., TCAR(P0)), so that IC =
IC0 (i.e., the projection now equals zero). In general, one can use IC0 as a
conservative influence curve. In other words, we can estimate the covariance
matrix of βn conservatively with

Σn ≡ 1

n

n∑

i=1

ˆIC0(Oi) ˆIC0(Oi)
>,

where ˆIC0 is an estimate of the true influence curve IC0 obtained by substi-
tuting our estimators βn, gn, QY n into the expression for IC0:

ˆIC0(Oi) = −cn(βn)−1Dh(Oi | βn, gn, QY n, Q0), i = 1, . . . , n.

One can now construct conservative confidence regions for β0 based on the
multivariate normal working model βn ∼ N(β0, Σn/n).

The advantage of the above conservative approach is that it requires no
extra work beyond evaluation of the estimating equation we already need
in our construction of βn, and it avoids the computer intensive re-sampling
approach. It is our experience that this approach is not very conservative
at all for the DR-IPCW estimators, assuming one does a reasonable job in
estimating QY 0, but that it can be very conservative for the IPCW estimator,
which corresponds with extreme misspecification of QY 0. That is, in the
case one uses the IPCW-estimator it is really worthwhile to calculate the
projection component onto the tangent space of the missingness mechanism
model of the true influence curve (except if one knows and uses (unwisely)
the true g0).

We suggest that, even in the double robust model (Theorem 2.5 in van der
Laan and Robins (2002)) the above influence curve IC0 will typically be con-
servative, but calculation of the true influence curve is now more involved. In
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general, we remind the reader that the bootstrap is asymptotically valid, and
provides typically more accurate estimates of the finite sample distribution
than the influence curve (Wald-type) approach described above.

In the case that the weight function Q0 is unknown and thus estimated
by an estimator Q0n, then the influence curve of βn equals the influence
curve above, plus an additional component due to the estimation of Q0,
which can typically be explicitly calculated. In case one wishes to avoid such
calculations, we suggest to to simply use the bootstrap.

5 Discussion.

The aim of this article is to give direct effect estimation in the causal infer-
ence literature the same place as estimation of total causal effects through
(e.g.) marginal structural models. In fact, our approach has been to model
the observed data distribution with the standard causal model treating A, Z
as a joint treatment, only assuming sequential randomization, but we de-
fined our parameter of interest as a new kind of causal parameter in this
model. By adding the conditional independence assumption of van der Laan
and Petersen (2004) and selecting as weight function Q0 = PZ0|W this para-
meter happens to reduce to the conventional definition of direct effect, but
it remains an interesting direct effect parameter if this assumption fails to
hold. Our proposed causal parameter is also meaningful in the case that Z
represents the role of another treatment component (say) A2. In this case
our direct effect parameter represents a population mean of a subject specific
average of a2-specific treatment effects Ya,a2 − Y0,a2 , fixing the other compo-
nent of treatment, over a2 w.r.t. to a conditional distribution of a2 indexed
by observed baseline characteristics of the subject.
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Appendix: Generalization to time-dependent

treatments.

Consider the longitudinal data structure

O = (W = L(0), A(0), Z(0), . . . , L(K), A(K), Z(K), Y = L(K + 1)),

and suppose that we observe n i.i.d. copies of O. We will use the notation
A = (A(0), . . . , A(K)), Z = (Z(0), . . . , Z(K)), and for a time-dependent
process (say) X, we denote its history with X̄(t) = (X(0), . . . , X(t)).

We assume the existence of a random variable X ≡ ((Za : a ∈ A), (Laz :
(a, z) ∈ B)) of treatment specific counterfactuals Za and counterfactuals Laz

(for the randomly sampled subject), and that

O = (W = L(0), A(0), ZA(0), . . . , LA,Z(K), A(K), ZA(K), YA,Z = LA,Z(K+1))
(14)

is a missing data structure on the full data structure X. That is, X is
the full data structure of interest, A is the missingness variable, and O is
a specified function of X and A. The temporal ordering assumption states
that LA,Z(j) = LĀ(j−1),Z̄(j−1)(j). Here A and B denote the support of A and
(A, Z), respectively.

Because O is a function of A and X, its distribution can be parameterized
by the probability distribution g(· | X) of A, given X (called the treatment
mechanism), and the distribution FX of X. Thus P0 = PFX0,g0 .

One defines the natural direct effect of changing treatment from 0 (e.g.,
representing a conventional treatment or no treatment) to a within strata of
our population defined by a baseline co-variate V ⊂ W as

E(YaZ0 − Y0Z0 | V ).

In order to identify controlled direct effects E(Yaz − Y0z | V ) at a fixed level
of the intermediate variable, we assume sequential randomization of the joint
(A(j), Z(j)):

A(j), Z(j) ⊥ X∗ ≡ (Laz : (a, z)) | Ā(j − 1), Z̄(j − 1), L̄(j). (15)

In order to identify a conditional distribution of Za, given W , we assume the
sequential randomization assumption for treatment:

A(j) ⊥ X | Ā(j − 1), Z̄(j − 1), L̄(j). (16)
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Specifically, because of these randomization assumptions (16) and (15), we
have the following G-computation identifiability results for the marginal dis-
tributions of Laz and (Za, La = LaZa):

PLaz(L) =
∏

j

P (L(j) | L̄(j − 1), Ā(j − 1) = ā(j − 1), Z̄(j − 1) = z̄(j − 1))

PZa,La(Z, L) =
∏

j

P (Z(j), L(j) | Z̄(j − 1), L̄(j − 1), Ā(j − 1) = ā(j − 1)).

Consider also the conditional independence assumption (in the mean sense)
of van der Laan and Petersen (2004):

E(Yaz − Y0z | Z0 = z,W ) = E(Yaz − Y0z | W ) for all (a, z) ∈ B. (17)

In the above model for the observed data distribution defined by (14), (15),
(16), and (17), van der Laan and Petersen (2004) show that E(YaZ0−Y0Z0 | V )
equals

EW |V
∫

z
{E(Yaz | W )− E(Y0z | W )}P (Z0 = z | W ), (18)

and thus, by the G-computation formulas above, that E(YaZ0 − Y0Z0 | V ) is
a (non-parametric) identifiable parameter.

A generalized class of direct effect parameters.

We argue that, even without the identifiability assumption (17), (18) is still
an important direct effect parameter of interest, since, by the sequential
randomization assumptions only, we have that (18) equals

DE(a, V ) ≡ E

(∑
z

(Yaz − Y0z)P (Z0 = z | W ) | V
)

. (19)

That is, it equals the conditional expectation, given V , of a subject-specific
average,

∑
z(Yaz − Y0z)P (Z0 = z | W ), of the z-specific individual controlled

direct effects Yaz − Y0z w.r.t. to the conditional distribution of Z0, given W .
Therefore, if one is not comfortable with the identifiability assumption (17),
then one can view the latter direct effect parameter DE(a, V ) as the para-
meter of interest, and our proposed estimators are estimators of DE(a, V ).

We actually wish to generalize this definition (19) of direct effect to
also handle subject-specific weighted averages of the z-specific individual
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controlled direct effects w.r.t. to a user-supplied conditional distribution
Q0(· | W ), given W . Therefore, we will define the parameter of interest as

DE(a, V ) = DE(a, V | Q0) ≡ E

(∑
z

(Yaz − Y0z)Q0(z | W ) | V
)

, (20)

where Q0 could be known, or it could be the unknown P (Z0 = z | W ) in
which case this definition reduces to (6).

Modelling the direct effect parameter.

Since DE(a, V ) is our parameter of interest, representing the answer to the
scientific question of interest about our population, it is sensible practice,
if DE(a, V ) is high-dimensional (e.g., A or V is continuous, and/or high-
dimensional), to model this function DE(a, V ). Consider a user-supplied
parametrization/model β → m(a, V | β) for this direct effect parameter
DE(a, V ) in terms of a Euclidean parameter β:

DE(a, V ) = E(
∑
z

(Yaz − Y0z)Q0(z | W ) | V ) = m(a, V | β0). (21)

This parametrization has to be chosen so that it satisfies m(0, V | β) = 0
for all V and β. The true β0 represents now our parameter of interest of the
true data generating distribution.

Models for the observed data distribution.

We note that, if Q0 is a known conditional distribution, then DE(a, V ) is a
parameter of the distribution of the full data structure X∗ ≡ (Laz : (a, z) ∈
B), and (A,Z) can now be viewed as the joint missingness variable defining
the observed missing data structure

O = (A,Z, LAZ), (22)

where we assume that (A,Z) is sequentially randomized as defined by (15),
or equivalently, that this joint missingness mechanism satisfies coarsening at
random (van der Laan and Robins (2002)). We will denote the missing data
model for P0, defined by (22), (15), and (8) with M∗(CAR).

On the other hand, if Q0 = P (Z0 | W ), then β0 is a parameter of the
distribution of the full data structure X = ((Za : a ∈ A), (Laz : (a, z) ∈ B)),
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where now A plays the missingness variable, and in order to identify Q0 one
will also need the randomization assumption (16). So in this case the model
for P0 is defined by (14), (15), (16), and (8), and we will denote this model
for P0 with M(CAR).

Our approach for construction of estimating functions for β0 will be based
on the missing data model M∗(CAR) for X∗ assuming Q0 is known. Sim-
ple substitution of estimators of Q0 now also results in the wished class of
estimators of β0 in the model M(CAR).

Models for nuisance parameters: As we will see the class of all
estimating functions for β0 in model M∗(CAR) is indexed by potentially
high dimensional nuisance parameters so that the construction of asymp-
totically linear estimators requires specification of models for these nuisance
parameters. That is, in order to deal with the curse of dimensionality in
model M∗(CAR), depending on the choice of class of estimators, we will
also need to assume models for 1) g0(A,Z | X∗) (IPCW, DR-IPCW), and
2) QL0 =

∏
j P (L(j) | L̄(j − 1), Ā(j − 1), Z̄(j − 1)) (Likelihood-based, DR-

IPCW). Obviously, in the case that Q0 = pZ0|W , and is thus unknown, then
the consistency for all three classes of estimators relies upon a consistent
estimator of Q0. In addition, the consistency of the IPCW estimators re-
lies upon a consistent estimator of g0(A,Z | X∗), the consistency of the
Likelihood-based estimators rely upon a consistent estimator of QL0, while
the consistency of the DR estimators relies upon either a consistent estimator
of g0 or QL0 (but it uses both estimators).

Working model: Our estimators also require a specification of a work-
ing model {m0(V | η) : η} for m0(V ) ≡ E(

∑
z Y0zQ0(z | W ) | V ), and a

corresponding estimator. We have

m0(V ) = E

(∑
z

Q0(z | W )E(Y0z | W ) | V
)

.

The validity of this working model for m0 does only potentially affect the
efficiency of our proposed IPTW and DR-IPTW estimators of β0, but it does
not affect the consistency and asymptotic linearity of our estimators.

The missingness mechanism g could be modelled as g1∗g2, by noting that

g(A,Z | X) =
∏

j

g1(A(j) | Ā(j−1), Z̄(j−1), L̄(j))
∏

j

g2(Z(j) | Ā(j), Z̄(j−1), L̄(j)).

Given user-supplied models for these nuisance parameters (g = (g1, g2), QL),
we can use the maximum likelihood estimator defined as the maximizers over
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these models of the relevant partial likelihoods given by

L(g) =
n∏

i=1

∏

j

g(Ai(j), Zi(j) | Āi(j − 1), Z̄i(j − 1), L̄i(j))

L(QL) =
n∏

i=1

∏

j

QL(Li(j) | L̄i(j − 1), Āi(j − 1), Z̄i(j − 1)).

Other (e.g., estimating function-based) procedures for estimation of the nui-
sance parameters can be used as well, and, in particular, one could use cross-
validation methodology to data-adaptively select the models for these para-
meters.

Estimation.

This section is organized as follows. In the next two subsections we present
the IPCW estimating functions and corresponding estimators. Subsequently,
we present the more general class of DR-IPCW estimating functions, and
DR-IPCW estimators. We also present likelihood-based estimators.

Inverse Probability of Treatment Weighted estimating functions

Let g0(· | X∗) denote the true conditional probability distribution of (A,Z),
given X∗, and let g denote elements of our model for this conditional distri-
bution. Recall that Q0(· | W ) is either user-supplied and known, or equals
the unknown PZ0|W = PZ|A=0,W .

Consider the following class of inverse of probability of treatment weighted
(IPCW) estimating functions for β0 indexed by a user-supplied functions
h(A, V ) = (h1(A, V ), h2(V ), g∗(A | V )) of A, V , and nuisance parameter g:

Dh,IPCW (O | β, g,Q0) ≡
g∗(A|V )

g(A,Z|X∗){h1(A, V )− Eg∗(h1(A, V ) | V )}Q0(Z | W )(Y −m(A, V | β)− h2(V )).

Here g∗(· | V ) can be any user-supplied conditional density of A = (A(0), . . . , A(K)),
given V . The following lemma establishes that these estimating functions are
indeed unbiased.

Lemma 2 In addition to assuming model M∗(CAR) for P0, we also assume
the following experimental treatment assignment assumptions for the joint
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“treatment” (A,Z):

max
(a,z)∈B

h1(a, V )

g0(a, z | X∗)
< ∞ a.e.. (23)

Then for any function h

EP0Dh,IPTW (O | β0, g0, Q0) = 0.

We also have that, if h2(V ) = m0(V ) = E(
∑

z Y0zQ0(z | W ) | V ), then

E(Dh,IPCW (O | β0, g0, Q0) | X∗) = (24)

∑
a

g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))

(∑
z

Q0(z | W )(Yaz − Y0z)−m(a, V | β0)

)
.

Remark regarding (24). In the full data model for X∗ = ((Laz : (a, z) ∈
B),W ) defined by the only restriction (8), E(

∑
z Q0(z | W )(Yaz−Y0z) | V ) =

m(a, V | β0) for some β0, the orthogonal complement of the nuisance tangent
space at P0 for β0 (for known Q0) is given by:

T F,⊥
nuis(FX∗0) =

{∑
a

h(a, V )

(∑
z

Q0(z | W )(Yaz − Y0z)−m(a, V | β0)

)
: h

}
.

This follows from the fact that this full data model (8) is simply a repeated
measures regression model for the outcome vector (Ha =

∑
z Q0(z | W )(Yaz−

Y0z) : a) on V , and application of Theorem 2.2 in van der Laan and Robins
(2002). Therefore, the latter property in Lemma 2 shows that the conditional
expectations of the IPCW-estimating functions at the true parameter values,
given X∗, contain the orthogonal complement of the nuisance tangent space
in the full data model. The latter property formally proves that the class of
estimating functions {Dh,IPCW ; h} are indeed IPCW estimating functions as
defined in van der Laan and Robins (2002). This property teaches us that
our augmented class of DR-IPCW estimating functions as presented in the
next subsection provide a representation of the orthogonal complement of the
nuisance tangent space at P0 of β0 in the observed data model M∗(CAR):
by Theorem 1.3, page 64 in van der Laan and Robins (2002).
Proof of Lemma 2: For notational convenience, we suppress the “IPCW”
labelling. Firstly, we condition on X∗ = (Yaz : a, z),W ), which corresponds
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with integrating over A,Z w.r.t. g0(A,Z | X∗). This yields

E(Dh(O | β0, g0, Q0) | X∗) =∑
a,z g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))Q0(z | W )×

(Yaz −m(a, V | β0)− h2(V ))
=

∑
a g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))×

(
∑

z Q0(z | W )Yaz −m(a, V | β0)− h2(V ))
=

∑
a g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V ))×

(
∑

z Q0(z | W )(Yaz − Y0z)−m(a, V | β0) + m0(V )− h2(V )) ,

where we recall that m0(V ) = E(
∑

z Q0(z | W )Y0z | V ). At the first equality,
we relied on the ETA (23) so that the denominator g0(a, z | X∗) cancels out
for all a, z for which h1(a, V ) 6= 0. Conditioning on V now yields,

∑
a

g∗(a | V )(h1(a, V )− Eg∗(h1(A, V ) | V )){m0(V )− h2(V )} = 0,

which completes the proof of Lemma 2. 2

Inverse probability of censoring weighted estimators.

Estimation of the index: A convenient choice for the function h =
(h1, h2, g

∗) indexing the IPCW-estimating functions Dh,IPCW is given by

h ∗1 (A, V ) ≡ d

dβ0

m(A, V | β0)

h∗2(V ) = m0(V ) = E0(
∑
z

Y0zQ0(z | W ) | V )

g∗(A | V ) = p0(A | V ).

Let hn be an estimator of this function h∗ based on substitution of an es-
timator g∗n of the conditional distribution of A, given V , and a regression
estimator h2n(V ) of m0. If Q0(z | W ) = pZ0|W , then, the estimate h2n can
be chosen to be an estimator of E(Y0 | V ) (and thus of m0(V ) under the
conditional independence assumption). In general, we have

m0(V ) = E0(
∑
z

Q0(z | W )E0(Y0z | W ) | V ),

so that h2n can be obtained as a regression estimator obtained by regressing∑
z Q0(z | Wi)Ê(Y0z | Wi) on Vi according to the working model m(V | η) for
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m0. Estimation of E(Yaz | W ) can be carried out with marginal structural
model methodology (e.g., van der Laan and Robins (2002), Chapter 6). In
case m(A, V | β) is non-linear in β, then h∗1(A, V ) depends on β0, so that one
will need an initial estimator of β0 to estimate h∗1, which can be obtained by
first using a h∗1 at an initial guess of β0.

The corresponding IPCW-estimator: In addition, let gn be an esti-
mator of the missingness mechanism g0(A,Z | X∗). If the weight function Q0

is unknown, then let Q0n be an estimator of Q0, but otherwise Q0n = Q0. The
corresponding IPCW-estimator of β0 is now defined as the solution βn,IPCW

of the estimating equation in β:

0 =
n∑

i=1

Dhn,IPCW (Oi | β, gn, Q0n).

Weighted least squares IPCW-estimators under a correctly speci-
fied model for m0. With some modifications at cost of robustness w.r.t.
misspecification of m0(V ), we can also propose IPCW-estimators which can
be represented as weighted least squares estimators. Firstly, we observe that
m(· | β) and m(V | η) implies the following model E(

∑
z Q0(z | W )Yaz | V ) =

m1(a, V | θ0) ≡ m(a, V | β0) + m(V | η0), where now θ0 = (β0, η0) represents
the parameter of interest. This full data repeated measures regression model
suggests as class of IPCW-estimating functions for θ0:

{
g∗(A | V )

g(A, Z | X∗)
h(A, V )Q0(Z | W )(Y −m1(A, V | θ)) : h

}
.

It is straightforward to verify that these estimating functions are indeed
unbiased for θ0 at a correctly specified g0. The IPCW-estimator indexed by
the choice h(A, V ) = d/dθm1(A, V | θ) minimizes a weighted sum of squared
residuals of the regression of Y on A, V based on the model m(A, V | θ).
Specifically, this estimator is defined as

θn,IPCW ≡ arg min
θ

n∑

i=1

(Yi −m1(Ai, Vi | θ))2weighti,

where

weighti ≡
g∗n(Ai | Vi)Q0n(Zi | Wi)

gn(Ai, Zi|X∗)
.

As a consequence, this IPCW-estimator θn,IPCW can be implemented with
standard regression software. Since this estimator is not protected against
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misspecification of m0(V ) (in other words, the working model m(V | η) needs
to be correctly specified), in the case that the parameter of interest is only
β0, and not both (β0, η0), then we recommend to only use this weighted least
squares regression estimator as a starting value for solving the wished IPCW
estimating equation.

Remark. In model M∗(CAR), assuming Q0 is known, it follows from the
general Theorem 2.3 in van der Laan and Robins (2002) that the asymptotic
efficiency of βn,IPCW improves if we estimate the missingness mechanism
g0(A,Z | X∗) more non-parametric.

In the model M(CAR) in which Q0 = PZ0|W , X is the full data struc-
ture, and A is the missingness variable, this same Theorem 2.3 teaches us
that βn,IPTW ’s efficiency improves if we estimate the missingness/treatment
mechanism g1(A | X) =

∏
j g1(A(j) | Ā(j − 1), X) under the SRA (16) more

nonparametric. For example, if treatment is randomized so that g10(A | X) =
g10(A) is known, then the IPCW estimator using an estimator of g10(A) based
on a logistic regression model for g10(A(j) | Ā(j− 1), Z̄(j− 1), L̄(j)), includ-
ing co-variables extracted from the observed past, will be significantly more
efficient than the estimator using the known treatment mechanism g0. Since
the dependence of the parameter of interest β0 on PZ0|W implies that it is
not variation independent of the intermediate-variable mechanism g20, it is
unclear how the size of the model for g20 affects the efficiency of the resulting
estimator βn,IPCW .

Double robust IPCW-estimating functions.

Given a class of IPCW-estimating functions, van der Laan and Robins (2002)
show that the class of all (i.e., relevant) estimating functions in modelM∗(CAR)
is obtained by subtracting from the IPCW estimating functions its projection
on all possible nuisance scores corresponding with one dimensional fluctua-
tions of the true missingness mechanism g0(A,Z | X∗) = g10(O)g20(O) only
assuming CAR (i.e., (15). That is, one subtracts from the inverse prob-
ability of missingness weighted estimating function its projection on the
sub-Hilbert space of functions of O with conditional mean zero, given X∗,
within the Hilbert space L2

0(P0) of functions of the observed data struc-
ture O with mean zero and finite variance, endowed with inner product
〈f1, f2〉P0 ≡ E0f1(O)f2(O) being the covariance operator.
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The closed form projection is presented in van der Laan and Robins (2002)
(e.g. Theorem 1.2), and is given by:

Dh,SRA(O | g, QL, Q0) ≡ ∑K
j=0 Eg,QL

(Dh,IPTW (O | β(QL), g, Q0) | Ā(j), Z̄(j), L̄(j))
−Eg,QL

(Dh,IPTW (O | β(QL), g, Q0) | Ā(j − 1), Z̄(j − 1), L̄(j)),

where the latter j-specific term can also be represented as the conditional
expectation of the first term over A(j), Z(j) w.r.t. g0(A(j), Z(j) | Ā(j −
1), Z̄(j − 1), X∗). Here QL represents a parameter value for QL0, and β(QL)
is the parameter value β(P ) under a distribution P of O with density QL(O)∗
g0(O | X∗).

Thus, the double robust estimating functions can be represented as

Dh,DR(O | β, g,QL, Q0) = Dh,IPTW (O | β, g, Q0)−Dh,SRA(O | g, QL, Q0).

This class of estimating functions represents all estimating functions in
the sense that {Dh,DR(· | β0, g0, QL0, Q0) : h} ⊂ L2

0(P0) contains the or-
thogonal complement of the nuisance tangent space at P0 of β0 in model
M∗(CAR). This follows from Theorem 1.3 in van der Laan and Robins
(2002) and the established property (24) of the IPCW-estimating functions.
As a consequence, this class of double robust estimating functions includes
the optimal estimating function Dhopt,DR which equals the efficient influence
curve at its true parameter values, and, as a consequence, estimation of hopt

according to a guessed submodel, and using the corresponding double robust
IPCW estimating equation resuls in a locally efficient double robust IPCW
estimator of β0. However, this is beyond the scope of this article.

As predicted by the general estimating function theory (Section 1.6,
van der Laan and Robins (2002)), this estimating function is double robust
w.r.t. the pair of nuisance parameters (g0, QL0).

Result 2 Consider the class of double robust IPCW estimating functions:

{(O, β, g, QL) → Dh,DR(O | β, g, QL, Q0) : h} .

If (23) holds at g, then for any index h

EDh,DR(O | β0, g, QL, Q0) = 0 if either g = g0 or QL = QL0. (25)

This is proved in van der Laan and Robins (2002) (Section 1.6). That is,
this estimating function for β0, which is indexed by two nuisance parameters,
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is unbiased if the ETA (23) holds at the possibly misspecified missingness-
mechanism g, and one the two nuisance parameters g0 = pA,Z|X∗ , QL0 is
correctly specified as well. In practice, the requirement that the ETA (23)
holds at g translates into using an estimator of g0 which satisfies the ETA
(23) (which can always be arranged).

Double robust IPCW-estimators.

Let hn, gn, QLn be estimators of h∗, g0, QL0. The corresponding DR-IPCW-
estimator of β0 is now defined as the solution βn,DR of the estimating equation
in β:

0 =
n∑

i=1

Dhn(Oi | β, gn, QLn, Q0).

If the weight function Q0 in the definition of β0 is unknown, then one replaces
Q0 by an estimator Q0n.

Implementation: If m(· | β) is linear in β, then this estimating equa-
tion is just a linear system of equations in β, and can thus be solved in closed
form. For non-linear parameterizations β → m(· | β), this estimator can be
computed with the Newton-Raphson algorithm, and a standard line search
correction guaranteeing that at each step the Euclidean norm of the estimat-
ing equation decreases (to zero). In this case one can use βn,IPTW as initial
estimator. For more details, we refer to van der Laan and Robins (2002)
(pages 118-119).

The likelihood-based estimator.

Consider the identifiability result (18) for DE(a,W ) = E(
∑

z Q0(z | W )(Yaz−
Y0z) | W ) given by:

DE(a,W ) =
∫

z
{E(Yaz | W )− E(Y0z | W )}Q0(z | W ). (26)

The fact that E0(DE(a,W ) | V ) = m(a, V | β0) suggests 1) to estimate
E(Yaz | W ) − E(Y0z | W ) according to a marginal structural model, 2) to
obtain a fitted D̂E(a,W ) by plugging in this estimator in (26), and 3) to
regress the vector (DE(a,Wi) : a), on V according to the repeated measured
regression model E(D̂E(a,W ) | V ) = m(a, V | β).
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Alternative methods for obtaining such a substitution type estimator of
DE(a,W ) are discussed in detail in van der Laan and Petersen (2004), and
are therefore not repeated here.

Statistical Inference.

The statistical inference can be presented in precisely the same manner as in
Section 4.
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