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A Method to Increase the Power of Multiple
Testing Procedures Through Sample Splitting

Daniel Rubin, Sandrine Dudoit, and Mark J. van der Laan

Abstract

Consider the standard multiple testing problem where many hypotheses are to
be tested, each hypothesis is associated with a test statistic, and large test statistics
provide evidence against the null hypotheses. One proposal to provide probabilis-
tic control of Type-I errors is the use of procedures ensuring that the expected
number of false positives does not exceed a user-supplied threshold. Among such
multiple testing procedures, we derive the “most powerful” method, meaning the
test statistic cutoffs that maximize the expected number of true positives. Un-
fortunately, these optimal cutoffs depend on the true unknown data generating
distribution, so could never be used in a practical setting. We instead consider
splitting the sample so that the optimal cutoffs are estimated from a portion of the
data, and then testing on the remaining data using these estimated cutoffs. When
the null distributions for all test statistics are the same, the obvious way to control
the expected number of false positives would be to use a common cutoff for all
tests. In this work, we consider the common cutoff method as a benchmark multi-
ple testing procedure. We show that in certain circumstances the use of estimated
optimal cutoffs via sample splitting can dramatically outperform this benchmark
method, resulting in increased true discoveries, while retaining Type-I error con-
trol. This paper is an updated version of the work presented in Rubin et al. (2005),
later expanded upon by Wasserman and Roeder (2006).



1 Introduction

The ingredients for a general type of multiple testing problem are as follows.

• Data: Suppose we observe a random sample X = {Xi}n
i=1 of n i.i.d. random

variables Xi ∼ P , where P is an unknown data generating distribution, and

P ∈ P for P a statistical model.

• Null Hypotheses: We wish to use the observed data X to test M null hypotheses

{H0,m : P ∈ Pm ⊆ P}M
m=1 concerning P , where P1, ...,PM are submodels of P.

Let H0 denote the indices of the true null hypotheses, so that m ∈ H0 if and

only if hypothesis m is true, meaning P ∈ Pm, and note that H0 of course is not

a random variable and depends on the unknown data generating distribution P .

• Test Statistics: Test statistics Tm = Tm(X ) are functions of the observed data

associated with each of the M hypotheses, constructed so that large values of a

statistic provides evidence against the corresponding null hypothesis.

• Cutoffs: A multiple testing procedure is based on a vector of cutoffs (c1, ..., cM)

such that a null hypothesis is rejected when the test statistic exceeds the cutoff

value, or {Tm > cm}. In this work, we will consider the data, null hypotheses,

and test statistics to be given, and attempt to determine an appropriate cutoff

vector.

A false positive is the type of error said to occur if a test rejects when the null

hypothesis is actually true. Let

FP =
∑

m∈H0

I(Tm > cm) (1)

denote the total number of false positives, and note that this is a random variable

whose distribution depends on the unknown data generating distribution P .

Much of the multiple testing literature has concerned the control of Type-I error

measures, meaning the development of methods meant to stochastically limit the num-

ber of false positives. Two commonly used error measures are the family-wise error

(FWE) and the false discovery rate (FDR), defined as

FWE(P ) = P (FP ≥ 1) (2)
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and

FDR(P ) = EP [
FP

max(R, 1)
] (3)

where

R =
M∑

m=1

I(Tm > cm) (4)

is the total number of rejections. A multiple testing procedure would be said to control

the FWE or FDR at a user-supplied level α if FWE(P ) ≤ α or FDR(P ) ≤ α for all

P belonging to the model P.

In this paper we focus on tests controlling a different Type-I error measure, the

expected number of false positives (EFP), given by

EFP (P ) = EP [FP ] =
∑

m∈H0

P (Tm > cm). (5)

Specifically, we consider sets of tests that can control the expected number of false

positives at user defined levels α, 0 ≤ α ≤ M , so that

EFP (P ) ≤ α for all P ∈ P. (6)

There are several advantages to this error measure. Unlike the family-wise error and

false discovery rate, we note from (5) that EFP (P ) only depends on the marginal

distributions of the M test statistics. We will see that the EFP can be controlled

without assuming independence of the test statistics, as is often done with methods

built to control the FDR. Neither will it be necessary to estimate the unknown and

possibly complex test statistic dependence structure, as is done in certain resampling

schemes for multiple testing, discussed in Dudoit et al. (2004) and Pollard and van der

Laan (2004). Further, the EFP is more flexible than the family-wise error because with

a large number of tests M , procedures controlling the FWE at a level α < 1 will have

virtually no power to detect alternatives. The EFP can provide less stringent control

of the number of false positives when set to higher levels α, and can consequently lead

to a large number of rejections even when there are many hypotheses being tested

simultaneously. It is also immediate from Markov’s inequality that by controlling the

EFP at level α, we can control the tail behavior of the distribution of false positives,

because for any t > 0,

P (FP ≥ t) ≤ EP [FP ]/t ≤ α/t. (7)
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The special case of t = 1 shows that control of the EFP at level α also controls the

family-wise error at level α.

In order to bound the expected number of false positives, we will assume that the

test statistics obey a natural requirement, called the null domination condition. Sup-

pose the existence of a probability distribution P0 ∈ P, such that if a null hypothesis is

true under the data generating distribution P , the associated test statistic is stochas-

tically larger under P0 than under P . That is, let Sm(·) = P (Tm > ·) denote the

survivor function of test statistic Tm under P , and S0
m(·) = P0(Tm > ·) the correspond-

ing survivor function under P0. The null domination condition can be stated formally

as

Sm(·) ≤ S0
m(·) for all m ∈ H0. (8)

Consider a vector of test statistics cutoffs (c1, ..., cM) such that the expected number

of rejections R under P0 is controlled at level α, so that

EP0 [R] =
M∑

m=1

P0(Tm > cm) ≤ α. (9)

The null domination condition (8) then implies

EFP (P ) =
∑

m∈H0

P (Tm > cm) ≤
∑

m∈H0

P0(Tm > cm) ≤
M∑

m=1

P0(Tm > cm) ≤ α,

so that the cutoffs control EFP (P ) for any P ∈ P at the desired level as in (6).

Consequently, we will let C denote the set of cutoff vectors satisfying (9), and restrict

our study to multiple testing procedures whose cutoffs belong to this set. We note that

C could theoretically depend on the choice of P0 yielding the null domination condition.

The obvious way to choose cutoffs in C would be to use a common quantile for all test

statistics. That is, we could let cm = (S0
m)−1(α/M) and observe that EP0 [R] = α. For

a choice of P0 such that S0
m(·) does not depend on m, as could occur if all test statistics

were based on pivotal statistics and had the same null distribution, this reduces to

using a common cutoff cm = (S0)−1(α/M) for all M test statistics. In this case, we

call the procedure the common cutoff method. This method is a very natural way to

simultaneously test hypotheses while controlling the expected number of false positives,

and it is intuitively appealing to use a common cutoff for all tests with the same null

distribution, if nothing is known about differences among alternatives between tests.
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In this work, we consider the common cutoff method as a benchmark procedure, and

ask “When can we do better?”

To answer this question, it is first necessary for us to define what we mean by

“better.” Unlike univariate testing, there are many ways in which we could define the

power of a multiple testing procedure. Two extreme examples would be to define the

power as the probability of rejecting all true positives, or the probability of rejecting

at least one true positive. In this paper, we follow the approach of Storey (2005), and

Wasserman and Roeder (2006) and define the power of a set of cutoffs in C as the

expected number of true positives (TP) under the data generating distribution P , or

EP [TP ] =
∑

m/∈H0

P (Tm > cm) =
∑

m/∈H0

Sm(cm). (10)

When given data, null hypotheses, and test statistics, the only remaining ingredient

necessary to perform multiple tests is the vector of cutoffs. With the expected number

of false and true positives as measures of Type-I error and power, it is natural to

inquire about the most powerful cutoff vector that controls the EFP at level α. If it

were known, we could use it to test at a desired EFP level and optimize the expected

number of valid discoveries (true positives). Because we have restricted to cutoff vectors

in C in order to control the EFP, we formally define the optimal cutoffs as the vector

c(P ) = (c1(P ), ..., cM(P )) = max−1
c∈CEP [TP ] = max−1

c∈C

∑

m/∈H0

Sm(cm). (11)

In section 2 we derive a simple analytical characterization of the optimal cutoffs c(P )

as a function of the marginal test statistic survivor functions S1(·), ..., SM(·). We then

specialize to the case where all M tests are one-sided z-tests with a standard Normal

null distribution, and a shifted Normal alternative distribution. As one might expect,

the optimal cutoffs we derive depend heavily on the true unknown data generating

distribution P , and thus could only be used by an oracle, rather than a practicing

statistician or data analyst. We attempt to overcome this difficulty in section 3, by

considering the case where the data X is built from a sample of independent and

identically distributed random variables {X1, ...,Xn}. We discuss the procedure of

using a small fraction of the data to estimate the optimal cutoffs, and the remaining

data to perform the testing under these estimated cutoffs. In section 5 we report

simulation results comparing the power of various sample splitting techniques with the

common cutoff method and the oracle power using the optimal cutoffs.
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Estimated shift alternatives can sometimes be pooled across tests to gain strength,

and the resulting sample splitting procedure can then dramatically outperform the

common cutoff technique, while retaining the user-specified EFP control. We consider

the practical utility of our sample splitting approach, and conclude that the method

could potentially be used to increase power in a variety of real-world applications.

2 Optimal Cutoffs

Below we present the main theorem of the paper, which identifies the cutoffs solving

the optimization problem in (11).

Theorem 1. In the setting of section 1, fix a level 0 < α < M −|H0| for control of the

expected number of false positives. Let S0
m(·) = P0(Tm > ·) be the survival function of

test statistic Tm under the null distribution P0 and Sm(t) = P (Tm > t) be the survival

function of Tm under the true data generating distribution P . Assume Sm(t) ≥ S0
m(t),

m /∈ H0, and the null domination condition Sm(t) ≤ S0
m(t), m ∈ H0 as in (8). Let

cm(λ) = ∞ if m ∈ H0 (meaning test m never rejects)

and cm(λ) = max−1
x Sm(x) − λS0

m(x) if m /∈ H0.

For each m /∈ H0, if x = cm(λ) is finite and S0
m and Sm are twice differentiable

with densities fm(t) ≡ − d
dt

Sm(t) and f0
m(t) ≡ − d

dt
S0

m(t), respectively, then:

−fm(x) + λf0
m(x) = 0

−f ′
m(x) + λf0′

m(x) < 0,

(12)

where f ′
m, f0′

m are the derivatives of fm, f0
m.

If R(c) and TP (c) denote the numbers of rejections and true positives incurred by

the set of tests using cutoff vector c = (c1, ..., cM), and λ > 0 solves EP0 [R(c(λ))]−α =

0, then EP [TP (c(P ))] = EP [TP (c(λ))], for c(P ) the optimal cutoff vector defined in

(11). Thus, if c(P ) is unique, then c(P ) = c(λ).

Proof. The proof of this theorem requires a generalization of the Lagrange mul-

tiplier method to handle situations in which the constrained maximization problem
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is solved by points on the edge of the parameter space (i.e. ∞ or −∞) so that the

derivative cannot be set equal to zero.

Define the function g : IRM+1 → IR by

g(c, λ) = EP [TP (c)]− λ(EP0 [R(c)]− α)

=
∑

m/∈H0

Sm(cm) − λ

(
M∑

m=1

S0
m(cm) − α

)
.

By the fact that g(·, ·) is an additive function in functions of cm it follows that c(λ) =

max−1
c g(c, λ), where cm(λ) = max−1

x {Sm(x) − λS0
m(x)} for m /∈ H0 and cm(λ) =

max−1
x (−λS0

m(x)) for m ∈ H0.

Since λ solves
∑M

m=1 S0
m(cm(λ)) − α = 0, this implies

EP [TP (c(λ))] = g(c(λ), λ) ≥ g(c(P ), λ) = EP [TP (c(P ))].

By definition of c(P ), we also have EP [TP (c(P ))] ≥ EP [TP (c(λ))]. This proves

EP [TP (c(P ))] = EP [TP (c(λ))].

If λ < 0, then cm(λ) = −∞ for m /∈ H0 which means that
∑M

m=1 S0
m(cm(λ)) =

M − |H0|. Therefore, if α < M − |H0|, then we can exclude c(λ), λ < 0, as possible

solutions. If λ > 0, then cm(λ) = ∞ for m ∈ H0, as stated in the theorem. Finally, (12)

is just applying that a finite maximum of a twice differentiable function satisfies that

the derivative at the maximum equals zero and the second derivative at the maximum

is negative. �

Because Theorem 1 is stated in a fairly abstract manner, it may enhance under-

standing to contemplate its application to the following multiple testing problem. Con-

sider real-valued parameters µm = µm(P ) estimated by µ̂m = µ̂m(X ) for 1 ≤ m ≤ M ,

and the issue of testing the null hypotheses µm = µm,0 against the alternatives that

µm > µm,0. When the data X are composed of n i.i.d. measurements, asymptotic nor-

mality results are available from many areas of statistics showing that for commonly

used parameters µm and estimators µ̂m,

√
n(µ̂m − µm) ∼ N(0, σ2). (13)

Such results are well known for sample moments and correlations, as well as estimated

coefficients in regression models, or maximum likelihood estimators under regularity
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conditions. For an asymptotic variance estimator σ̂2, we can write the test statistic as,

Tm ≡
√

n(µ̂m − µm,0)/σ̂ =
√

n(µ̂m − µm)/σ̂ +
√

n(µm − µm,0))/σ̂. (14)

When the parameter µm is allowed to vary with sample size n, such that (µm −µm,0) ∼
hn−1/2 and σ̂ is consistent for the asymptotic variance σ, we can obtain a nondegenerate

limiting distribution Tm ∼ N(dm, 1) under the local alternative, for dm = h/σ. Hence,

it is natural to form one-sided tests for µm by using Tm given in (14) as a test statistic.

Under the asymptotic approximation Tm ∼ N(dm, 1), the testing problem becomes

a Gaussian shift problem. We can consider testing the one sided hypothesis H0,m :

dm ≤ 0 ↔ µm ≤ µm,0 against the alternative that dm > 0 ↔ µm > µm,0. Below

we present a corollary to Theorem 1, giving the optimal cutoffs in closed form when

testing multiple shifts.

Theorem 1 teaches us that the optimal cutoffs c(P ) for one-sided testing in the

Gaussian shift problem can be solely expressed in terms of the solution of one maxi-

mization problem:

φ(d, λ) ≡ max−1
x S0(x − d) − λS0(x), (15)

where S0(·) denotes the N(0, 1) survivor function. Specifically, we have

cm(λ) = ∞ if dm ≤ 0

cm(λ) = φ(dm, λ) if dm > 0

and λ is obtained by solving

0 =
M∑

m=1

S0(cm(λ)) − α.

The univariate maximization problem (15) is handled by 1) setting the derivative equal

to zero, 2) if a solution exists, then we check if it is a maximum (i.e. second derivative

is negative) and 3) if no solution exists, then the derivative is either always positive or

always negative.

Corollary 1. Consider the setting of Theorem 1 with Sm(x) = S0(x−dm) and fm(x) =

f0(x − dm), where f0(x) = 1/
√

2π exp(−x2/2) and S0 are the respective density and

survival functions of a standard Normal distribution, m = 1, . . . ,M .

Define

g(d, λ) =

{
log(λ)+0.5d2

d
if d > 0

∞ if d ≤ 0.
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We have that EP [TP (c(P ))] = EP [TP (c(λ))], where 1) cm(λ) = g(dm, λ) and 2) λ > 0

is the unique solution of
∑M

m=1 S0(cm(λ)) − α = 0.

Proof. We apply Theorem 1. Thus cm = ∞ if dm ≤ 0. We need to find cm(λ) =

max−1
x {S0(x−dm)−λS0(x)} for m /∈ H0. Setting the derivative of {S0(x−dm)−λS0(x)}

equal to zero yields that cm(λ) = g(dm, λ) for m /∈ H0. In addition, at this solution we

have that the second derivatives d2

dc2m
{S0(cm − dm)− λS0(cm)} = −dmf0(cm − dm) < 0

for m /∈ H0 are strictly negative if and only if dm > 0. Thus cm(λ) is indeed the wished

unique maximum. Now, the application of Theorem 1 yields the proof of the first result

about c(λ). �

One intuitive implication of this corollary is that when all alternatives are thought

to be some common value, the optimal cutoffs are in fact equal to the common cutoffs.

However, when it is believed that there are differences among alternatives across tests,

an essential complication limiting the applicability of Theorem 1 to practical problems

is that the shifts dm would be unknown before performing the testing, and in fact

knowledge of these shifts would eliminate the need of testing in the first place. We

attempt to partially rectify this difficulty in the following section.

Note that Theorem 1 can also be applied to form optimal cutoffs when using as test

statistics |Tm|, which would correspond to the two-sided test of H0,m : dm = 0 ↔ µm =

µm,0 against the alternative that dm 6= 0 ↔ µm 6= µm,0. However, we have omitted

these results to focus on the one-sided problem for illustrative purposes.

3 Sample Splitting Approach

While the optimal cutoffs of Corollary 1 could not be used without special knowledge,

improvements in power relative to the common cutoff procedure are possible in some

circumstances when the observed data X consists of a series of i.i.d. measurements

Xi ∼ P . Our basic approach will be to split the observations into two parts, use one

part for performing the tests, and the other part for estimating the optimal cutoffs

associated with these tests. To ease exposition, we will focus for the remainder of this

section on the problem of one-sided testing for means. However, it is straightforward

to apply our sample splitting approaches to the general testing situations described in

(13) and (14), and two-sided tests present no essential difficulties.
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For X = {X1, ...,Xn} a sample of n i.i.d. realizations, suppose that Xi is the random

vector Xi = (Xi,1, ...,Xi,M), where we can think of Xi,m as representing a measurement

of covariate m on subject i. Suppose all M “covariates” have been standardized to

have unit variance, and let µm denote E[Xi,m]. We consider the problem of testing

the null hypotheses H0,m : µm ≤ 0 against the alternatives that µm > 0. For instance,

one could imagine that Xi,m = Yi,m − Zi,m for Y and Z representing measurements on

matched treatment and control subjects, and an interest in performing multiple paired

t-tests to search for the set of covariates having elevated means in the treatment group.

We we will let X̄m denote the sample mean for covariate m, and use as test statistics

Tm ≡
√

nX̄m. The asymptotic approximation that Tm ∼ N(dm, 1) for dm =
√

nµm

is justified by the Central Limit Theorem, so that the multiple testing problem can

be reduced to the Gaussian shift problem as discussed in the previous section. The

shifts dm, and consequently the optimal cutoffs of Corollary 1, thus depend on the true

unknown covariate means µm.

3.1 Failure of the Naive Plug-in Method

A simple idea for approximating the optimal cutoff procedure would be to use the

usual test statistics Tm =
√

nX̄m, but estimate the shifts dm =
√

nµm with the plug-

in estimators d̂m =
√

nX̄m = Tm, and then use the optimal cutoffs as defined in

Corollary 1 under these estimated shifts. Unfortunately, algebraic manipulation yields

that hypothesis m is then rejected when

{Tm > log(λ)d̂−1
m +

1

2
d̂m, d̂m > 0} = {Tm > log(λ)T−1

m +
1

2
Tm, Tm > 0}

= {T 2
m > 2 log(λ), Tm > 0}

= {Tm >
√

max(2 log(λ), 0)}.

Therefore, each of the M tests would have a common rejection region, and choosing λ

to control the expected number of false positives reduces this plug-in technique exactly

to the common cutoff procedure.

3.2 Sample Splitting

Rather than using all n random variables in the sample to estimate the shift alter-

natives, we can implement a nontrivial procedure by using only a “held-out” set of

9
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observations. Consider splitting the n observations X = {X1, ...,Xn} into two samples

of sizes n1 and n2, and letting X̄m,1 and X̄m,2 denote the sample means for covariate m

built from the two respective groups. The test statistics built from the second sample

are then Tm,2 ≡
√

n2X̄m,2, with limiting distribution Tm,2 ∼ N(dm, 1) for dm =
√

n2µm.

One sample splitting technique that attempts to gain power relative to the common

cutoff method is to estimate these shifts with d̂m =
√

n2X̄m,1. The estimated shifts

remain unbiased for the true shift alternatives, but now become independent of the

test statistics Tm,2. The idea is then to estimate the optimal cutoffs (for tests Tm,2) as

in Corollary 1, by using the d̂m as surrogates for the shifts dm. The procedure reduces

to rejecting hypothesis m when for an appropriate choice of λ,

{Tm,2 > log(λ)d̂−1
m +

1

2
d̂m, d̂m > 0}. (16)

Note that the cutoff for Tm,2 in (16) is monotone in λ, and hence increasing the tun-

ing parameter λ corresponds to decreasing the allowed Type-I error, measured by the

expected number of false positives. For S0(·) the standard Normal survivor function,

choosing λ to solve

M∑

m=1

I(d̂m > 0)S0(log(λ)d̂−1
m +

1

2
d̂m) = α (17)

controls the EFP of the overall procedure at level α. To see this, let λ? be the value

solving (17), and recall that the sample splitting ensures d̂m ⊥ Tm,2. Observe that

when m ∈ H0 ↔ dm ≤ 0 and Tm,2 ∼ N(dm, 1), we have the null domination condition

that P (Tm,2 > t) ≤ S0(t) for all t. Letting P0 denote the distribution on the observed

data such that Tm,2 ∼ N(0, 1) for all m, it immediately follows from conditioning on

the d̂m values that,
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EP [FP ] ≤ EP0 [FP ]

≤ EP0 [R]

=
M∑

m=1

EP0 [I(d̂m > 0)I(Tm,2 > log(λ?)d̂−1
m +

1

2
d̂m)]

= EP0 [
M∑

m=1

I(d̂m > 0)P0(Tm,2 > log(λ?)d̂−1
m +

1

2
d̂m|d̂m)]

= EP0 [

M∑

m=1

I(d̂m > 0)S0(log(λ?)d̂−1
m +

1

2
d̂m)]

≤ EP0 [α] = α. (18)

Wasserman and Roeder (2006) have suggested splitting the dataset, again estimat-

ing the shifts with d̂m =
√

n2X̄m,1 and estimating the optimal cutoffs as in (16), but

instead using the full data statistic Tm =
√

nX̄m for testing. Because of the decom-

position Tm = ad̂m + bTm,2 for a = n1/
√

nn2 and b =
√

n2/n, their procedure rejects

hypothesis m on the event

{Tm > log(λ)d̂−1
m +

1

2
d̂m, d̂m > 0}

= {ad̂m + bTm,2 > log(λ)d̂−1
m +

1

2
d̂m, d̂m > 0}

= {Tm,2 >
log(λ)d̂−1

m + 1
2
d̂m − ad̂m

b
, d̂m > 0} (19)

for an appropriate choice of λ. It can be verified as in (18) that the procedure controls

the expected number of false positives at level α when choosing λ to solve

M∑

m=1

I(d̂m > 0)S0(log(λ)d̂−1
m b−1 +

1

2
d̂mb−1 − ad̂mb−1) = α. (20)

Observe that the cutoff
log(λ)d̂−1

m + 1
2
d̂m−ad̂m

b
is a function of d̂m. Thus, as with using

the rejection region of (16), this procedure can also be interpreted as an attempt to

use Tm,2 for testing after constructing cutoffs based upon {d̂m}M
m=1. Wasserman and

Roeder have concluded that using the full data test statistic Tm instead of Tm,2 can

increase power, although our simulation results in section 4 do not necessarily replicate

this result. For future denotation in this work, we will refer to the procedures using

the rejection regions of (16) and (19) as the EOC1 and EOC2 procedures (estimated

optimal cutoffs methods 1 and 2).
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3.3 Prior Information and Pooled Alternatives

Another approach to the testing problem, which is not always as impractical as it first

appears, is to guess the shifts dm =
√

nµm from prior information, and then estimate

the optimal cutoffs of the form c(λ) = log(λ)d−1
m + 1

2
dm. Here λ can be chosen to control

the Type-I constraint as in (18), and it is important to stress that poor guessed shifts

do not compromise the expected number of false positives. Preliminary results of ours

suggest that using guessed optimal cutoffs can yield a more powerful procedure than

using common cutoffs, even if the cutoffs are not guessed accurately, so long as the

ordering is roughly correct. In addition, Wasserman and Roeder (2006) have reported

theoretical robustness results for procedures equivalent to guessing optimal cutoffs.

More generally, prior information can be combined with sample splitting to increase

the power of testing procedures. Suppose that withheld data is used to estimate shifts

{d̂m}M
m=1 as in section 3.2, and consider the following scenarios where one could pool

shift estimates across different tests.

1. The tests are ordered so that it is thought m → µm is a smooth function of the

test index. This could easily occur in practice if data was collected across time or

at different spatial locations, test results were desired at every time or location,

and one guessed that the µm varied smoothly in time or space. In this case, the

estimated shift alternatives could possibly be made more accurate by smoothing

the d̂m as a function of the index m.

2. It could be guessed that the µm obeyed a certain approximate ordering. In this

case, one could use isotonic regression on the {m, d̂m}M
m=1 pairs in an attempt to

improve accuracy.

3. One could imagine that the µm only realized a small number of values across the

M covariates, if it were thought the covariates were clustered into a small number

of unknown groups, and measurements in each group were highly correlated. It

might then be possible to apply clustering techniques to the covariates, or even

the {d̂m}M
m=1 values themselves, and pool estimated shifts within each cluster.

After enhancing shift estimates through pooling, we would then implement the

estimated optimal cutoff procedures of (16) and (19) exactly as before. As with simply
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guessing shifts, pooling withheld-data estimated shifts based on unfounded assumptions

will not mar the EFP Type-I error rate.

4 Simulations

We compared the power of the sample splitting methods of (16) and (19) introduced in

the previous section with that of the common cutoff method and unattainable optimal

cutoff method of section 2. Each simulated dataset X consisted of n = 100 i.i.d.

observations, where each observation was a vector of measurements for M = 1000

simulated covariates. We performed 1000 tests of the null hypothesis that covariate m

had mean µm ≤ 0 against the alternative µm > 0, as discussed previously. All testing

was performed to control the expected number of false positives at level α = 0.05,

which by (7) also controlled the family-wise error at this standard level. The first

9950 hypotheses were true nulls, with the covariates having mean zero. The final 50

hypotheses were false nulls, with the covariate mean being set to a common value µ

that we varied as a simulation parameter. We considered µ between 0.2 and 0.6, in

increments of 0.05. These choices covered the range of values over which the probability

of a true positive rejection with common cutoffs varied from roughly zero to roughly

one. Each entry of the n × M = 100 × 1000 data matrix X was simulated from an

independent Gaussian distribution with variance one.

For each choice of shift µ we performed 1000 simulations. In each simulation,

we implemented the common cutoff method and optimal cutoff procedure (which de-

pended on knowledge of the alternatives). In addition, we implemented both the

EOC1 and EOC2 sample splitting procedures of section 3.2, holding out a propor-

tion p of the n = 100 samples to estimate the alternatives. We examined values of

p ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
From the estimated shifts (d̂1, ..., d̂M) formed in the EOC1 and EOC2 sample split-

ting procedures, we also implemented a smoothed EOC1 cutoff method. For this tech-

nique, we assumed that the 1000 hypotheses were ordered in such a manner that

m → dm was a smooth function of m. Recall that the ordering was such that the final

50 covariates had mean µ while the others had mean zero, so this was in fact a step

function. Of course, such an assumption would be unwarranted in most multiple testing

applications, but we considered this procedure because it demonstrated the gains one
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could incur by pooling shift estimates across tests if special knowledge was available.

We then used the smooth.spline() function in R to estimate the alternative shifts

by the fitted values of the smoothed “data” {m, d̂m}1000
m=1, and used these estimated

alternative shifts to estimate the optimal cutoffs.

Hence, for each of the nine choices of shift µ (and six choices of hold-out proportion

p for sample splitting techniques), we performed 1000 simulations computing the mul-

tiple testing results for five procedures (common cutoffs, oracle cutoffs, EOC1 sample

splitting, EOC2 sample splitting, smoothed cutoff sample splitting). In this paper we

have been defining the power of a set of tests through EP [TP ], the expected num-

ber of true positives. When reporting simulation results we used the scaled version
EP [TP ]

Number of true positives
= EP [TP ]

50
for simplicity, which corresponded in our example to the

probability that a true positive was rejected. The power of the common cutoff proce-

dure was calculated analytically. For the remaining four multiple testing procedures,

we estimated this scaled power for each choice of µ and p by computing the proportion

of true positives rejected across all 1000 simulations.

The results are displayed in figures 1−6. We can clearly see that the optimal cutoff

method provides the most power, and any other result would immediately raise a red

flag. For these simulations, the optimal cutoff power substantially exceeded that of

the common cutoffs, giving credence to the hope that a large gain over the benchmark

standard (common cutoffs) could be possible if the optimal cutoffs could be guessed or

estimated accurately. It is apparent that both the EOC1 and EOC2 sample splitting

procedures are less powerful than using common cutoffs for all choices of simulation

parameters. It seems that both of these sample splitting procedures degrade as the

hold-out proportion p grows, with the degradation being more rapid for the EOC2

cutoffs. The EOC1 and EOC2 power track each other closely for small values of p,

with the EOC2 procedure being slightly more powerful for p ≤ 0.2. Wasserman and

Roeder (2006) have reported similar simulations in which the EOC2 cutoffs outperform

the EOC1 cutoffs for p = 1/2, although both methods are outperformed by the common

cutoff procedure, whose power can be computed analytically and compared with their

results. Most interesting to us are the results for the smoothed cutoffs, because this

sample splitting technique is actually more powerful than the benchmark common

cutoffs for small p. For p ≤ 0.1, the power of this procedure was not significantly less

than that the optimal cutoff procedure.
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Figure 1: The power of various multiple testing methods is shown. The shift µ is
reported on the x-axis. The y-axis represents EP [TP ]/50, or the probability that a true
positive is rejected, which was common across all true positives in the simulations. Each
line represents the power of a multiple testing method as a function of the shift. Lines
labeled 1, 2, 3, 4, 5 denote the powers of the common cutoff method, optimal cutoff
method (only available to an oracle), EOC1 sample splitting cutoffs, EOC2 sample
splitting cutoffs, and the smoothed EOC1 sample splitting cutoffs. Here p = 0.05 is
the proportion of the data split to estimate the optimal cutoffs for the sample splitting
procedures. The other five figures are based on different choices of p.
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Figure 2: p = 0.1. 1 = common cutoff, 2 = oracle cutoffs, 3 = EOC1 sample splitting
cutoffs, 4 = EOC2 sample splitting cutoffs, 5 = smoothed EOC1 sample splitting
cutoffs
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Figure 3: p = 0.2. 1 = common cutoff, 2 = oracle cutoffs, 3 = EOC1 sample splitting
cutoffs, 4 = EOC2 sample splitting cutoffs, 5 = smoothed EOC1 sample splitting
cutoffs
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Figure 4: p = 0.3. 1 = common cutoff, 2 = oracle cutoffs, 3 = EOC1 sample splitting
cutoffs, 4 = EOC2 sample splitting cutoffs, 5 = smoothed EOC1 sample splitting
cutoffs
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Figure 5: p = 0.4. 1 = common cutoff, 2 = oracle cutoffs, 3 = EOC1 sample splitting
cutoffs, 4 = EOC2 sample splitting cutoffs, 5 = smoothed EOC1 sample splitting
cutoffs
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Figure 6: p = 0.5. 1 = common cutoff, 2 = oracle cutoffs, 3 = EOC1 sample splitting
cutoffs, 4 = EOC2 sample splitting cutoffs, 5 = smoothed EOC1 sample splitting
cutoffs

5 Discussion

The optimal cutoffs introduced in section 2 could only be used by an oracle, and

provide more expected true positives than could any practical method controlling the

expected number of false positives below a nominal level. Ideally, one might hope to

use an adaptive procedure that could estimate the optimal cutoffs, and reasonably

approximate their optimal power for a wide range of P ∈ P. One would posit that

such a method would be more powerful than the nonadaptive common cutoff against

broad classes of alternatives.

Discouragingly, we do not believe in the existence of such an adaptive procedure that

would be more generally applicable and powerful than the common cutoff technique,

and could be used as a default multiple testing procedure. The simulation results

of section 4 demonstrate that straightforward sample splitting approximations to the

optimal cutoff method in fact can be much less powerful than the common cutoff

procedure, even in extremely simple testing scenarios. The general problem with any

sample splitting technique is that withholding a moderately sized proportion p of the
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data for optimal cutoff estimation can drastically reduce the power of tests built from

the remaining data. Knowledge or approximate knowledge of the optimal cutoffs for

these tests built from n(1 − p) samples does not compensate for the power reduction

due to the sample size decrease.

An essential rejoinder to this pessimistic outlook is that sample splitting procedures

can considerably improve upon the common cutoff technique when alternatives are

accurately estimated using only a small proportion of withheld data, such as when

p = 0.1. For this to be possible, it may be necessary for estimated alternatives to

somehow be pooled across hypotheses. Such an approach clearly would not be possible

in all multiple testing situations, but as mentioned in section 3, could be applicable if

alternative estimates are available from previous experiments or a meta-analysis, the

hypotheses can be indexed so that the alternatives are thought to be ordered, the shift

alternatives are thought to be an unknown smooth function of the hypothesis index,

or if it is thought that the alternatives are clustered into groups. Our intuition is

that guessing or accurately pooling estimated alternatives can be done in a variety of

scientific contexts. We view the contribution of this work as the development of a set

of tools that allow one to apply prior beliefs to a small amount of withheld data, in a

fashion that can potentially yield an increased number of valid discoveries.
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