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Multiple Testing. Part I. Single-Step
Procedures for Control of General Type I Error

Rates

Sandrine Dudoit, Mark J. van der Laan, and Katherine S. Pollard

Abstract

The present article proposes general single-step multiple testing procedures for
controlling Type I error rates defined as arbitrary parameters of the distribution
of the number of Type I errors, such as the generalized family-wise error rate. A
key feature of our approach is the test statistics null distribution (rather than data
generating null distribution) used to derive cut-offs (i.e., rejection regions) for
these test statistics and the resulting adjusted p-values. For general null hypothe-
ses, corresponding to submodels for the data generating distribution, we identify
an asymptotic domination condition for a null distribution under which single-
step common-quantile and common-cut-off procedures asymptotically control the
Type I error rate, for arbitrary data generating distributions, without the need for
conditions such as subset pivotality. Inspired by this general characterization of
a null distribution, we then propose as an explicit null distribution the asymp-
totic distribution of the vector of null-value shifted and scaled test statistics. In
the special case of family-wise error rate (FWER) control, our method yields the
single-step minP and maxT procedures based on minima of unadjusted p-values
and maxima of test statistics, respectively, with the important distinction in the
choice of null distribution. Single-step procedures based on consistent estimators
of the null distribution are shown to also provide asymptotic control of the Type I
error rate. A general bootstrap algorithm is supplied to conveniently obtain consis-
tent estimators of the null distribution. The special cases of t- and F-statistics are
discussed in detail. The companion articles focus on step-down multiple testing
procedures for control of the FWER (van der Laan et al., 2003a) and on augmenta-
tions of FWER-controlling methods to control error rates such as the generalized
family-wise error rate and the proportion of false positives among the rejected



hypotheses (van der Laan et al., 2003b). The proposed bootstrap multiple testing
procedures are evaluated by a simulation study and applied to gene expression
microarray data in the fourth article of the series (Pollard et al., 2004).
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1 Introduction

1.1 Motivation

DNA microarrays and other high-throughput biological assays have moti-
vated us to investigate multiple testing methods in large multivariate set-
tings, though our results apply to multiple testing in general. Current sta-
tistical inference problems in genomic data analysis are characterized by:
(i) high-dimensional multivariate distributions, with typically unknown and
intricate correlation patterns among variables; (ii) large parameter spaces;
(iii) a number of variables (hypotheses) that is much larger than the sample
size; and (iv) some non-negligible proportion of false null hypotheses, i.e.,
true positives. Multiple hypothesis testing methods are concerned with the
simultaneous test of m > 1 null hypotheses, while controlling a suitably de-
fined Type I error rate (i.e., false positive rate), such as the family-wise error
rate or the false discovery rate. General references on multiple testing in-
clude Hochberg and Tamhane (1987), Shaffer (1995), and Westfall and Young
(1993). A number of recent articles have addressed the question of multiple
testing as it relates to the identification of differentially expressed genes in
DNA microarray experiments (Dudoit et al., 2002; Efron et al., 2001; Golub
et al., 1999; Manduchi et al., 2000; Pollard and van der Laan, 2003; Reiner
et al., 2003; Tusher et al., 2001; Westfall et al., 2001; Xiao et al., 2002); a
review of multiple testing methods in the context of microarray data analysis
is given in Dudoit et al. (2003).

In multiple testing, decisions to reject the null hypotheses are based on
cut-off rules for test statistics (or their associated p-values), so that a given
Type I error rate is controlled at a specified level α. In practice, however,
the joint distribution of the test statistics is typically unknown and replaced
by an assumed null distribution in order to derive these cut-offs. Current
approaches use a data generating distribution that satisfies the complete
null hypothesis that all null hypotheses are true. Procedures based on such
a null distribution typically rely on the subset pivotality condition stated in
Westfall and Young (1993), p. 42–43, to ensure that control under a data
generating distribution satisfying the complete null hypothesis does indeed
give the desired control under the true data generating distribution. However,
the subset pivotality condition is violated in important testing problems,
since a data generating distribution satisfying the complete null hypothesis
might result in a joint distribution for the vector of test statistics that is

3

Hosted by The Berkeley Electronic Press



different from their actual distribution. In fact, in many problems, there
does not even exist a data generating null distribution that correctly specifies
the joint distribution of the test statistics corresponding to the true null
hypotheses (e.g., tests concerning correlations in Section 5.1).

Pollard and van der Laan (2003) formally define a statistical framework
for testing multiple single-parameter null hypotheses of the form H0j =
I(µ(j) ≤ µ0(j)), for one-sided tests, and H0j = I(µ(j) = µ0(j)), for two-
sided tests, where µ = (µ(j) : j = 1, . . . ,m) is an m-vector of parameters
and µ0 = (µ0(j) : j = 1, . . . ,m) are the hypothesized null-values. They
propose as null distribution the asymptotic distribution of the mean-zero
centered test statistics and prove that, with this choice of null distribution,
single-step multiple testing procedures based on common-cut-off rules for the
test statistics or the corresponding marginal p-values (common-quantile pro-
cedures) provide asymptotic control of any Type I error rate that is a function
of the distribution of the number of false positives. This general approach
does not rely on subset pivotality. Pollard and van der Laan (2003) propose
a bootstrap algorithm for estimating the null distribution and prove the im-
portant practical result that multiple testing procedures based on consistent
estimators of the null distribution (e.g., from non-parametric or model-based
bootstrap) asymptotically control the Type I error rate. These authors also
generalize the equivalence of hypothesis testing and confidence regions to the
multivariate setting, by demonstrating that their single-step multiple testing
procedures, with asymptotic control of a particular Type I error rate at level
α, are equivalent with constructing an asymptotic (1− α)–confidence region
for the parameter of interest (e.g., bootstrap-based) and rejecting the hy-
potheses for which the null-values are not included in the confidence region.

This manuscript and its companion (van der Laan et al., 2003a) are con-
cerned with the choice of null distribution for single-step and step-down mul-
tiple testing procedures that provide asymptotic control of Type I error rates
defined as arbitrary parameters of the distribution of the number of Type
I errors. Examples of such error rates include the generalized family-wise
error rate (gFWER), i.e., the probability of at least (k +1) Type I errors, for
some user-supplied integer k ≥ 0, and the family-wise error rate (FWER),
which is the gFWER in the special case k = 0. We build on the earlier work
of Pollard and van der Laan (2003) as follows: (i) general collections of null
hypotheses, corresponding to submodels for the data generating distribution,
are considered; (ii) step-down procedures are provided for asymptotic con-
trol of the FWER; (iii) adjusted p-values are derived for each of the multiple
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testing procedures. A general characterization and explicit construction are
proposed for a test statistics null distribution that provides asymptotic con-
trol of the Type I error rate under the true data generating distribution,
without the need for conditions such as subset pivotality. This null distribu-
tion is used to obtain cut-offs for the test statistics (or their corresponding
unadjusted p-values), and also to derive the resulting adjusted p-values for
single-step and step-down procedures.

1.2 Outline

The present article focuses on the choice of null distribution for single-step
procedures controlling error rates defined as arbitrary parameters of the dis-
tribution of the number of Type I errors, such as the generalized family-wise
error rate, gFWER. In the next section, we describe a general statistical
framework for multiple hypothesis testing. In particular, Section 2.6 outlines
the main features of our approach to Type I error control and the choice of
a null distribution. Section 3 proposes single-step common-quantile (Proce-
dure 1) and common-cut-off (Procedure 2) multiple testing procedures that
provide asymptotic control of the Type I error rate. A key feature of our
approach is the test statistics null distribution (rather than data generating
null distribution) used to derive cut-offs (i.e., rejection regions) for these test
statistics and the resulting adjusted p-values. For general null hypotheses,
corresponding to submodels for the data generating distribution, we iden-
tify an asymptotic domination condition for a null distribution under which
single-step common-quantile and common-cut-off procedures asymptotically
control the Type I error rate, for arbitrary data generating distributions,
without the need for conditions such as subset pivotality (Theorem 1). In-
spired by this general characterization of a null distribution, we then propose
as an explicit null distribution the asymptotic distribution of the vector of
null-value shifted and scaled test statistics (Theorem 2). In the special case
of family-wise error rate control, our approach yields the single-step minP
and single-step maxT procedures based on minima of unadjusted p-values
and maxima of test statistics, respectively (Section 3.3.3). In Section 4, pro-
cedures based on a consistent estimator of the null distribution are shown
to also provide asymptotic control of the Type I error rate (Theorems 3 and
4, Corollary 1). Resampling procedures are supplied to conveniently obtain
consistent estimators of the null distribution (bootstrap Procedures 3–5).
Section 5 focuses on two particular examples of testing problems covered
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by our framework: the test of single-parameter null hypotheses (e.g., tests
of means, correlations, regression parameters) using t-statistics and the test
of multiple-parameter hypotheses using F -statistics. Section 6 revisits the
notions of strong and weak control of a Type I error rate, and the related
condition of subset pivotality. Differences between our approach to Type I
error control and earlier approaches are highlighted.

The companion article (van der Laan et al., 2003a) considers step-down
approaches for controlling the family-wise error rate and provides procedures
based on maxima of test statistics (step-down maxT) and minima of unad-
justed p-values (step-down minP). In the third article of the series, van der
Laan et al. (2003b) propose simple augmentations of FWER-controlling pro-
cedures which control the generalized family-wise error rate and the propor-
tion of false positives among the rejected hypotheses, under general data gen-
erating distributions, with arbitrary dependence structures among variables.
The proposed methods are evaluated by a simulation study and applied to
gene expression microarray data in the fourth article of the series (Pollard
et al., 2004). Software implementing the bootstrap single-step and step-down
multiple testing procedures will be available in the R package multtest, re-
leased as part of the Bioconductor Project (www.bioconductor.org).

2 Multiple hypothesis testing framework

2.1 Basic set-up

For the remainder of the article, we adopt the following definitions for inverses
of cumulative distribution functions (c.d.f.) and survivor functions. Let
F denote a (non-decreasing and right-continuous) c.d.f. and let F̄ denote
the corresponding (non-increasing and right-continuous) survivor function,
defined as F̄ ≡ 1− F . For α ∈ [0, 1], define inverses as

F−1(α) ≡ inf{x : F (x) ≥ α} and F̄−1(α) ≡ inf{x : F̄ (x) ≤ α}. (1)

With these definitions, F̄−1(α) = F−1(1− α).

Note that we follow the convention that lower case letters denote real-
izations of random variables, e.g., x is a realization of the random variable
X.
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2.1.1 Model

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random
d-vectors, X = (X(j) : j = 1, . . . , d) ∼ P ∈ M, where the data generating
distribution P is known to be an element of a particular statistical model
M (possibly non-parametric). For example, in cancer microarray studies,
(Xi(1), . . . , Xi(g)) may denote a g-vector of gene expression measures and
(Xi(g + 1), . . . , Xi(d)) a (d− g)-vector of biological and clinical outcomes for
patient i, i = 1, . . . , n. In microarray data analysis and other current areas of
application of multiple testing methods, the dimension d, of the data vector
X, is usually much larger than the sample size n, i.e., one can have thousands
of expression measures for less than one hundred patients.

2.1.2 Parameters

We consider general parameters defined as functions of the unknown data
generating distribution P : µ = (µ(j) : j = 1, . . . ,m), where µ(j) = µj(P ) ∈
IR and typically m ≥ d. Parameters of interest include means, differences in
means, correlations, and can refer to linear models, generalized linear models,
survival models (e.g., Cox proportional hazards model), time-series models,
dose-response models, etc. For instance, in microarray data analysis, one
may be concerned with testing problems regarding the following parameters.

• Location parameters. E.g. means and medians for measuring differen-
tial expression for g genes.
µ(j) ≡ E(X(j))= mean expression level of gene j, j = 1, . . . , g, in a
particular population, X ∼ P .
µ(j) ≡ µ2(j)− µ1(j) = E(X2(j))−E(X1(j)) = difference in mean ex-
pression level for gene j, j = 1, . . . , g, in Populations 1 and 2, X1 ∼ P1,
X2 ∼ P2.

• Scale parameters. E.g. covariances and correlations.
γ(j, j′) = Cor[X(j), X(j′)] = pairwise correlation for the expression
measures of genes j and j′, j 6= j′ = 1, . . . , g, X ∼ P .

• Regression parameters. E.g. slopes, main effects, and interactions, for
measuring association of expression level X(j) of gene j, j = 1, . . . , g,
with outcomes/covariates (X(j) : j = g + 1, . . . , d), X ∼ P .
µ(j) = regression parameter for univariate Cox proportional hazards
model for survival time T = X(g + 1) given the expression measure
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X(j) of gene j.
µ(j) = interaction effect for two drugs on expression level of gene j.
µ(j) = linear combination a′β(j), e.g., contrast in ANOVA.

2.1.3 Null hypotheses

General submodel null hypotheses. In order to cover a broad class of
testing problems, we define m null hypotheses in terms of a collection of
submodels, Mj ⊆ M, j = 1, . . . ,m, for the data generating distribution P .
The m null hypotheses are defined as H0j ≡ I(P ∈Mj) and the corresponding
alternative hypotheses as H1j ≡ I(P /∈Mj). Thus, H0j is true, i.e., H0j = 1,
if P ∈Mj and false otherwise.

Let S0 = S0(P ) ≡ {j : H0j is true} = {j : P ∈ Mj} be the set of
m0 = |S0| true null hypotheses, where we note that S0 depends on the true
data generating distribution P . Let Sc

0 = Sc
0(P ) ≡ {j : H0j is false} = {j :

P /∈Mj} be the set of m1 = m−m0 false null hypotheses, i.e., true positives.
The goal of a multiple testing procedure is to accurately estimate the set S0,
and thus its complement Sc

0, while controlling probabilistically the number
of false positives at a user-supplied level α.

Single-parameter null hypotheses. A familiar special case, considered
in Section 5, is that where each null hypothesis refers to a single parameter,
µ(j) = µj(P ) ∈ IR, j = 1, . . . ,m. The parameters µ(j) could be expected
values or pairwise correlations for components of a random d-vector X ∼ P .
One distinguishes between two types of testing problems for single parame-
ters.

One-sided tests H0j = I
(
µ(j) ≤ µ0(j)

)
vs. H1j = I

(
µ(j) > µ0(j)

)
, j = 1, . . . ,m.

Two-sided tests H0j = I
(
µ(j) = µ0(j)

)
vs. H1j = I

(
µ(j) 6= µ0(j)

)
, j = 1, . . . ,m.

The hypothesized null-values, µ0(j), are frequently zero (e.g., no difference
in mean expression levels between two populations of patients).
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2.1.4 Test statistics

The decisions to reject or not the null hypotheses are based on an m-vector
of test statistics, Tn = (Tn(j) : j = 1, . . . ,m), that are functions of the data,
X1, . . . , Xn. Denote the (finite sample) joint distribution of the test statistics
Tn by Qn = Qn(P ). It is assumed that large values of Tn(j) provide evidence
against the null hypothesis H0j. For two-sided tests, one can take absolute
values of the test statistics.

As in Pollard and van der Laan (2003), for single-parameter null hypothe-
ses, H0j = I(µ(j) ≤ µ0(j)), j = 1, . . . ,m, we consider two main types of test
statistics, difference statistics, Dn(j), and t-statistics (i.e., standardized dif-
ferences), Tn(j),

Dn(j) ≡
(
Estimator− Null-value

)
=
√

n(µn(j)− µ0(j)) (2)

Tn(j) ≡ Estimator− Null-value

Standard Error
=
√

n
µn(j)− µ0(j)

σn(j)
.

Here, µn = (µn(j) : j = 1, . . . ,m) denotes an m-vector of estimators for the
parameter m-vector µ = (µ(j) : j = 1, . . . ,m) and σn/

√
n = (σn(j)/

√
n : j =

1, . . . ,m) denote the corresponding estimated standard errors. We consider
asymptotically linear estimators µn of the parameter µ, with m-dimensional
vector influence curve (IC), IC(X | P ) = (ICj(X | P ) : j = 1, . . . ,m), such
that

µn(j)− µ(j) =
1

n

n∑
i=1

ICj(Xi | P ) + oP (1/
√

n), (3)

where E[IC(X | P )] = 0 and Σ(P ) and ρ(P ), denote, respectively, the
covariance and correlation matrices of the vector IC. In addition, σ2

n(j) are
assumed to be consistent estimators of the IC variances, σ2(j) = E[IC2

j (X |
P )].

The influence curve of a given estimator can be derived as the mean-zero
centered functional derivative of the estimator (as a function of the empiri-
cal distribution Pn for the entire sample of size n), applied to the empirical
distribution based on a sample of size one (Gill, 1989; Gill et al., 1995).
As illustrated in Section 5.1, this general representation for the test statis-
tics includes standard one-sample and two-sample t-statistics, but also test
statistics for correlations and regression parameters in linear and non-linear
models. F -statistics for multiple-parameter null hypotheses are discussed in
Section 5.2.
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2.2 Multiple testing procedures

A multiple testing procedure (MTP) produces a set Sn of rejected hypotheses,
that estimates Sc

0, the set of false null hypotheses,

Sn = S(Tn, Q0, α) ≡ {j : H0j is rejected} ⊆ {1, . . . ,m}. (4)

As indicated by the long notation S(Tn, Q0, α), the set Sn (or Ŝc
0) depends on:

(i) the data, X1, . . . , Xn, through the test statistics Tn; (ii) a null distribution,
Q0, for the test statistics, used to compute cut-offs for each Tn(j) (and the
resulting adjusted p-values); and (iii) the nominal level α of the MTP, i.e.,
the desired upper bound for a suitably defined Type I error rate. Multiple
testing procedures such as those proposed in this and the companion articles,
can be represented as

Sn = S(Tn, Q0, α) = {j : Tn(j) > cj},

where cj = cj(Tn, Q0, α), j = 1, . . . ,m, are possibly random cut-offs, or
critical values, computed under the null distribution Q0 for the test statistics.

2.3 Type I error rates

Type I and Type II errors. In any testing situation, two types of errors
can be committed: a false positive, or Type I error, is committed by rejecting
a true null hypothesis, and a false negative, or Type II error, is committed
when the test procedure fails to reject a false null hypothesis. The situation
can be summarized by Table 1 below, where the number of Type I errors is
Vn ≡ |Sn ∩ S0| and the number of Type II errors is Un ≡ |Sc

n ∩ Sc
0|. Note

that both Un and Vn depend on the unknown data generating distribution
P through S0 = S0(P ). The numbers m0 = |S0| and m1 = m −m0 of true
and false null hypotheses are unknown parameters, the number of rejected
hypotheses Rn ≡ |Sn| is an observable random variable, and m1 − Un, Un,
m0−Vn, and Vn are unobservable random variables (depending on P , through
S0(P )).

Type I error rates. Ideally, one would like to simultaneously minimize the
number Vn of Type I errors and the number Un of Type II errors. A standard
approach in the univariate setting is to prespecify an acceptable level α for
the Type I error rate and seek tests which minimize the Type II error rate,

10
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Table 1: Type I and Type II errors in multiple hypothesis testing.

Null hypotheses
not rejected rejected

true |Sc
n ∩ S0| Vn = |Sn ∩ S0| m0 = |S0|

(Type I)
Null hypotheses

false Un = |Sc
n ∩ Sc

0| |Sn ∩ Sc
0| m1 = |Sc

0|
(Type II)

|Sc
n| Rn = |Sn| m

i.e., maximize power, within the class of tests with Type I error rate at most
α. In the multiple hypothesis case, a variety of generalizations are possible
for the definition of Type I error rate (and of power). Here, we consider
error rates that are defined as functions of the distribution of the number
of Type I errors, that is, can be represented as parameters θ(FVn), where
FVn is the discrete cumulative distribution function (c.d.f.) on {0, . . . ,m} for
the number of Type I errors, Vn. Such a general representation covers the
following commonly-used Type I error rates.

• Per-comparison error rate (PCER), or expected proportion of Type I
errors among the m tests,

PCER ≡ E(Vn)/m =

∫
vdFVn(v)/m.

• Per-family error rate (PFER), or expected number of Type I errors,

PFER ≡ E(Vn) =

∫
vdFVn(v).

• Median-based per-family error rate (mPFER), or median number of
Type I errors,

mPFER ≡ Median(FVn) = F−1
Vn

(1/2).
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• Family-wise error rate (FWER), or probability of at least one Type I
error,

FWER ≡ Pr(Vn ≥ 1) = 1− FVn(0).

• Generalized family-wise error rate (gFWER), or probability of at least
(k + 1) Type I errors, k = 0, . . . ,m0 − 1,

gFWER(k) ≡ Pr(Vn ≥ k + 1) = 1− FVn(k).

When k = 0, the gFWER is the usual family-wise error rate, FWER.

For convenience, we work with normalized Type I error rates, so that θ(FVn) ∈
[0, 1]. Note that the false discovery rate (FDR) of Benjamini and Hochberg
(1995) cannot be represented as a parameter θ(FVn), because it is defined
also in terms of the distribution of Rn, the total number of rejected hypothe-
ses (including the true positives, m1 − Un = Rn − Vn). The FDR is the
expected proportion of Type I errors among the rejected hypotheses, i.e.,
FDR = E(Vn/Rn), with the convention that Vn/Rn = 0 if Rn = 0. van der
Laan et al. (2003b) provide simple augmentations of FWER-controlling pro-
cedures that control the proportion of false positives among the rejected hy-
potheses, Vn/Rn, at a user-supplied proportion q ∈ (0, 1), under general data
generating distributions P , with arbitrary dependence structures among vari-
ables. That is, for a level α ∈ (0, 1), the augmented procedures satisfy

PFP (q) ≡ Pr(Vn/Rn > q) ≤ α.

Assumptions for the mapping θ that defines the Type I error rates.
We make the following assumptions for the mapping θ : F → θ(F ), defining
a Type I error rate as a parameter corresponding to a cumulative distribution
function F on {0, . . . ,m}.
Monotonicity. Given two c.d.f.’s F1 and F2 on {0, . . . ,m},

F1 ≥ F2 =⇒ θ(F1) ≤ θ(F2). (AMI)

Uniform continuity. Given two c.d.f.’s F1 and F2 on {0, . . . ,m}, define
the distance measure d by d(F1, F2) = maxx∈{0,...,m} | F1(x) − F2(x) |. For
two sequences of c.d.f.’s, {Fn} and {Gn},

if d(Fn, Gn) → 0, as n →∞, then θ(Fn)− θ(Gn) → 0. (ACI)
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2.4 Adjusted p-values

Unadjusted p-values. Consider the test of individual null hypotheses H0j

at single test level α, i.e., such that the chance of a Type I error for each H0j is
at most α (note that in this m = 1 case, FWER, PCER, and PFER coincide).
Given a test statistic Tn(j), with marginal null distribution Q0j, the null
hypothesis H0j is rejected at single test level α, if Tn(j) > cj(Q0j, α), where
the cut-off cj(α) = cj(Q0j, α) is defined in terms of the marginal survivor
function, Q̄0j(z) = 1−Q0j(z) = PrQ0j

(Tn(j) > z), as

cj(Q0j, α) ≡ Q̄−1
0j (α) = inf{z : Q̄0j(z) ≤ α}.

For the test of single null hypothesis H0j, the unadjusted p-value (a.k.a.
marginal or raw p-value), P0n(j) = P (Tn(j), Q0j), is based only on the test
statistic Tn(j) for that hypothesis and is defined as

P0n(j) ≡ inf {α ∈ [0, 1] : Reject H0j at single test level α, given Tn(j)}(5)
= inf {α ∈ [0, 1] : cj(Q0j, α) < Tn(j)} , j = 1, . . . ,m.

That is, P0n(j) is the nominal level of the single hypothesis testing pro-
cedure at which H0j would just be rejected, given Tn(j). For continu-
ous marginal null distributions Q0j, the unadjusted p-values are given by
P0n(j) = c−1

j (Tn(j)) = Q̄0j(Tn(j)), where c−1
j is the inverse of the monotone

decreasing function α → cj(α) = cj(Q0j, α).

Adjusted p-values. The definition of p-value can be extended to multiple
testing problems as follows. Given any multiple testing procedure

Sn = S(Tn, Q0, α) = {j : Tn(j) > cj(Tn, Q0, α)},

based on cut-offs cj(α) = cj(Tn, Q0, α), the adjusted p-value, P̃0n(j) = P̃ (j, Tn, Q0),
for null hypothesis H0j, is defined as

P̃0n(j) ≡ inf {α ∈ [0, 1] : Reject H0j at MTP level α, given Tn} (6)

= inf {α ∈ [0, 1] : j ∈ S(Tn, Q0, α)}
= inf {α ∈ [0, 1] : cj(Tn, Q0, α) < Tn(j)} , j = 1, . . . ,m.

That is, P̃0n(j) is the nominal level of the entire MTP (e.g., gFWER or FDR)
at which H0j would just be rejected, given Tn. For continuous null distri-
butions Q0, P̃0n(j) = c−1

j (Tn(j)), where c−1
j is the inverse of the monotone

decreasing function α → cj(α) = cj(Tn, Q0, α).
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The particular mapping cj, defining the cut-offs cj(Tn, Q0, α), will depend
on the choice of MTP (e.g., single-step vs. stepwise, common cut-offs vs.
common-quantile cut-offs). For instance, the adjusted p-values for the clas-
sical Bonferroni procedure for FWER control are P̃0n(j) = min(mP0n(j), 1).
Adjusted p-values for general single-step common-quantile and common-cut-
off Procedures 1 and 2 are derived in Section 3.3. Dudoit et al. (2003)
provide adjusted p-values for commonly-used FWER and FDR controlling
procedures.

We now have two representations for an MTP, in terms of cut-offs, or
critical values, cj = cj(Tn, Q0, α), for the test statistics Tn(j),

S(Tn, Q0, α) = {j : Tn(j) > cj},

and in terms of adjusted p-values, P̃0n(j) = P̃ (j, Tn, Q0),

S(Tn, Q0, α) = {j : P̃0n(j) ≤ α}.

That is, hypothesis H0j is rejected at nominal Type I error rate α if P̃0n(j) ≤
α. As in the single hypothesis case, an advantage of reporting adjusted p-
values, as opposed to only rejection or not of the hypotheses, is that the
level of the test does not need to be determined in advance, that is, results
of the multiple testing procedure are provided for all α. Adjusted p-values
are convenient and flexible summaries of the strength of the evidence against
each null hypothesis, in terms of the Type I error rate for the entire MTP.
Plots of sorted adjusted p-values allow scientists to examine various false
positive rates (e.g., gFWER, FDR, or PCER) associated with different sets of
rejected hypotheses. They do not require researchers to preselect a particular
definition of Type I error rate or α-level, but rather provide them with tools
to decide on an appropriate combination of number of rejections and tolerable
false positive rate for a particular experiment and available resources.

2.5 Stepwise multiple testing procedures

One usually distinguishes among two main classes of multiple testing proce-
dures, single-step and stepwise procedures, depending on whether the cut-off
vector c = (cj : j = 1, . . . ,m) for the test statistics Tn is constant or random
(given Q0), i.e., is independent or not of these test statistics.

In single-step procedures, each hypothesis H0j is evaluated using a critical
value cj = cj(Q0, α) that is independent of the results of the tests of other
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hypotheses and is not a function of the data X1, . . . , Xn (unless these data
are used to estimate the null distribution Q0, as in Section 4).

Improvement in power, while preserving (asymptotic) Type I error rate
control, may be achieved by stepwise procedures, in which rejection of a par-
ticular hypothesis depends on the outcome of the tests of other hypotheses.
That is, the cut-offs cj = cj(Tn, Q0, α) are allowed to depend on the data,
X1, . . . , Xn, via the test statistics Tn. In step-down procedures, the hypothe-
ses corresponding to the most significant test statistics (i.e., largest absolute
test statistics or smallest unadjusted p-values) are considered successively,
with further tests depending on the outcome of earlier ones. As soon as
one fails to reject a null hypothesis, no further hypotheses are rejected. In
contrast, for step-up procedures, the hypotheses corresponding to the least
significant test statistics are considered successively, again with further tests
depending on the outcome of earlier ones. As soon as one hypothesis is re-
jected, all remaining more significant hypotheses are rejected.

Step-down and step-up analogues of the classical Bonferroni procedure are
the Holm (1979) and Hochberg (1988) procedures, respectively. In these pro-
cedures, based solely on the marginal distributions of the test statistics (i.e.,
on the unadjusted p-values only), the unadjusted p-value for the hypothesis
with the kth most significant test statistic is multiplied by (m− k + 1) ≤ m
rather than m. Let On(j) denote the indices for the ordered unadjusted
p-values P0n(j), so that P0n(On(1)) ≤ . . . ≤ P0n(On(m)). The adjusted
p-values for hypothesis H0,On(j) are

P̃0n(On(j)) = min
(
mP0n(On(j)), 1

)
[Bonferroni] (7)

P̃0n(On(j)) = max
k=1,...,j

{
min

(
(m− k + 1) P0n(On(k), 1

)}
[Holm]

P̃0n(On(j)) = min
k=j,...,m

{
min

(
(m− k + 1) P0n(On(k), 1

)}
[Hochberg].

The present article focusses on single-step procedures, while the compan-
ion article considers step-down procedures (van der Laan et al., 2003a).
Commonly-used single-step and stepwise MTPs for control of the FWER
and FDR are reviewed in Dudoit et al. (2003).
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2.6 Type I error rate control and choice of null distri-
bution

2.6.1 Type I error rate control

A multiple testing procedure Sn = S(Tn, Q0, α) is said to provide finite sam-
ple control of the Type I error rate θ(FVn) at level α ∈ (0, 1), if θ(FVn) ≤ α,
where Vn = |Sn ∩ S0| denotes the number of Type I errors. Similarly, the
MTP provides asymptotic control of the Type I error rate at level α, if
lim supn θ(FVn) ≤ α.

Note that the random variable Vn, for the number of Type I errors, is
defined by the true distribution Qn = Qn(P ) for the test statistics Tn, i.e.,
by their distribution under the true underlying data generating distribution
P . In practice, however, the distribution Qn(P ) is unknown and estimated
by a null distribution Q0, in order to derive cut-offs for each test statistic
Tn(j) (and the resulting adjusted p-values). The choice of a suitable null
distribution Q0 is crucial, in order to ensure that (finite sample or asymptotic)
control of the Type I error rate under this assumed distribution does indeed
provide the required control under the true distribution Qn(P ).

2.6.2 Sketch of proposed approach to Type I error rate control

The following discussion highlights important considerations in choosing a
null distribution Q0 and motivates our general approach to the problem of
Type I error rate control. Recall that the distribution, FVn , for the number
of Type I errors, Vn = |Sn ∩ S0| = |S(Tn, Q0, α) ∩ S0(P )|, depends on the
following: the true distribution Qn = Qn(P ) of the test statistics Tn, the
null distribution Q0 used to derive the m-vector of cut-offs cj(Tn, Q0, α) for
these test statistics, and the set S0(P ) of true null hypotheses. Type I error
control is therefore a statement about the true unknown distribution P , via
Qn(P ) and S0(P ).

When needed, we may use the following long notation for the number of
rejected hypotheses and Type I errors, respectively, when Tn ∼ Q,

R(Q0 | Q) = R(S(Tn, Q0, α) | Q) ≡ |S(Tn, Q0, α)|, (8)

V (Q0 | Q) = V (S(Tn, Q0, α) | Q) ≡ |S(Tn, Q0, α) ∩ S0(P )|.

This notation acknowledges that the distribution of the above quantities
is defined in terms of a null distribution Q0 (for deriving cut-offs) and a
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distribution Q for the test statistics Tn (here, the subset S0 is kept fixed at
the truth S0(P ) and the nominal level α of the test is also held fixed). For
a given MTP, S(Tn, Q0, α), also adopt the following short-hand notation for
the number of rejected hypotheses and Type I errors

Rn ≡ R(S(Tn, Q0, α) | Qn), R0 ≡ R(S(Tn, Q0, α) | Q0), (9)

Vn ≡ V (S(Tn, Q0, α) | Qn), V0 ≡ V (S(Tn, Q0, α) | Q0),

where Qn = Qn(P ) refers to the actual (finite sample) joint distribution of
the random m-vector of test statistics Tn, under the true data generating
distribution P , and Q0 refers to an assumed null distribution for these test
statistics. Control of Type I error rates of the form θ(FVn) can be achieved
by the following three-step approach, which provides some intuition behind
single-step Procedures 1 and 2, and the general characterization (Theorem 1)
and explicit construction (Theorem 2) of a test statistics null distribution Q0.

Three-step road map to Type I error rate control.

1. Null domination conditions for Type I error rate. For proper
control of the Type I error rate θ(FVn), for Tn ∼ Qn(P ), select a null
distribution Q0 such that

θ(FVn) ≤ θ(FV0) [finite sample control] (10)

lim sup
n→∞

θ(FVn) ≤ θ(FV0) [asymptotic control].

2. Note that the number of Type I errors is never greater than the total
number of rejected hypotheses, i.e., V0 ≤ R0, so that FV0 ≥ FR0 , and
hence, by monotonicity Assumption AMI,

θ(FV0) ≤ θ(FR0).

3. Control the parameter θ(FR0), corresponding to the observed num-
ber of rejected hypotheses R0, under the null distribution Q0, i.e.,
assuming Tn ∼ Q0,

θ(FR0) ≤ α.

Combining Steps 1–3 provides the desired control of the Type I error rate
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θ(FVn) at level α ∈ (0, 1), that is,

θ(FVn) ≤ θ(FV0) ≤ θ(FR0) ≤ α [finite sample control]

lim sup
n→∞

θ(FVn) ≤ θ(FV0) ≤ θ(FR0) ≤ α [asymptotic control].

Note that such an approach is conservative in two ways: from controlling
θ(FR0) ≥ θ(FV0) and from the null domination in Step 1. The latter step is
usually the most involved and requires a judicious choice for the null distribu-
tion Q0. This article focuses on procedures that provide asymptotic control
of the Type I error rate (i.e., such that lim supn θ(FVn) ≤ α) and provides a
general characterization (Theorem 1) and an explicit construction (Theorem
2) for a null distribution Q0 that satisfies the asymptotic null domination
condition in Step 1.

2.6.3 Choice of null distribution and null domination conditions

The above θ-specific null domination conditions in Step 1 of the road map
hold under the following general null domination conditions for the distribu-
tion FVn , of the number of Type I errors Vn, and for the joint distribution
Qn,S0 , of the S0-specific subvector (Tn(j) : j ∈ S0) of test statistics. Thus,
under the latter two conditions, the road map provides the required (finite
sample or asymptotic) control of any Type I error rate of the form θ(FVn).

Null domination conditions for number of Type I errors. For each
x ∈ {0, . . . ,m}

FVn(x) ≥ FV0(x) [finite sample control] (11)

lim inf
n→∞

FVn(x) ≥ FV0(x) [asymptotic control],

that is, the number of Type I errors, V0, under the null distribution Q0, is
stochastically greater than the number of Type I errors, Vn, under the true
distribution Qn = Qn(P ) for the test statistics Tn. In particular, (11) holds
under the following null domination property for the joint distribution of the
test statistics (Tn(j) : j ∈ S0).

Null domination conditions for test statistics (Tn(j) : j ∈ S0). The
distribution of the S0-specific subvector (Tn(j) : j ∈ S0) for Tn ∼ Q0 equals
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or dominates the corresponding distribution for Tn ∼ Qn = Qn(P ),

Qn,S0 ≥ Q0,S0 [finite sample control] (12)

lim inf
n→∞

Qn,S0 ≥ Q0,S0 [asymptotic control].

That is, in the finite sample case,

PrQn(Tn(j) ≤ tj, j ∈ S0) ≥ PrQ0(Tn(j) ≤ tj, j ∈ S0), ∀tj ∈ IR, j ∈ S0.

For finite sample control, the null domination condition in Step 1 then fol-
lows by monotonicity Assumption AMI. For asymptotic control, one relies
also on uniform continuity Assumption ACI. Note that null domination is a
statement about the distribution of the test statistics (Tn(j) : j ∈ S0) corre-
sponding only to the true null hypotheses. More specific (i.e., less stringent)
forms of null domination can be derived for given definitions of the Type I
error rate θ(FVn) (cf. FWER control in van der Laan et al. (2003a)).

One of the main contributions of this and the companion article (van der
Laan et al., 2003a) is the general characterization (Theorem 1) and ex-
plicit construction (Theorem 2) of a proper null distribution Q0 for the test
statistics Tn. Procedures based on such a distribution provide asymptotic
control of arbitrary Type I error rates θ(FVn), for testing null hypotheses
H0j = I(P ∈ Mj), corresponding to submodels Mj ⊆ M for general data
generating distributions P (i.e., distributions P with general dependence
structures among variables). Our proposed test statistics null distribution
Q0 can be used in testing problems which cannot be handled by traditional
approaches based on a data generating null distribution P0 (e.g., tests of pa-
rameters of survival models, tests of pairwise correlations). The construction
of the null distribution Q0 in Theorem 2 is inspired by null domination con-
dition (12), for the test statistics Tn: Q0 is defined as the limit distribution
of a sequence of random variables that are stochastically greater than the
test statistics for the true null hypotheses. The resulting null distribution
therefore satisfies asymptotic null domination condition (11), for the number
of Type I errors, and also θ-specific asymptotic null domination condition
(10) in Step 1 of the road map, for any Type I error rate mapping θ(·).

2.6.4 Contrast with other approaches

As detailed in Section 6, the following two main points distinguish our
approach and that of Pollard and van der Laan (2003) from existing ap-
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proaches to Type I error rate control, such as those discussed in Hochberg
and Tamhane (1987) and Westfall and Young (1993).

Firstly, we are only concerned with control of the Type I error rate un-
der the true data generating distribution P , i.e., under the joint distribution
Qn = Qn(P ) of the test statistics Tn implied by P . The notions of weak and
strong control are therefore irrelevant to our approach. In particular, our
notion of null domination differs from that of subset pivotality (see Westfall
and Young (1993), p. 42–43) in the following senses: (i) null domination is
concerned only with the true data generating distribution P , i.e., it considers
only the subset S0(P ) of true null hypotheses and not all possible 2m sub-
sets Λ0 ⊆ {1, . . . ,m} of null hypotheses, and (ii) null domination does not
require equality of the joint distributions Q0 and Qn(P ) for the S0-specific
test statistics, but the weaker domination.

Secondly, we propose a null distribution for the test statistics (Tn ∼ Q0)
rather than a data generating null distribution (X ∼ P0). A common choice
of data generating null distribution P0 in multiple testing procedures is one
that satisfies the complete null hypothesis, HC

0 ≡
∏m

j=1 H0j =
∏m

j=1 I(P ∈
Mj), that all m null hypotheses are true, i.e., P0 ∈ ∩m

j=1Mj. The data
generating null distribution P0 then implies a null distribution Qn(P0) for the
test statistics. As discussed in Pollard and van der Laan (2003), procedures
based on Qn(P0) do not necessarily provide proper (asymptotic) control under
the true distribution P , as the assumed null distribution Qn(P0) and the true
distribution Qn(P ) for the test statistics Tn may have different limits and,
as a result, violate the required null domination condition for the Type I
error rates (equation (10), p. 17, in Step 1 of the road map). For instance,
for test statistics with Gaussian asymptotic distribution (Section 5.1), the
correlation matrices for the subvector of test statistics (Tn(j) : j ∈ S0) may
be different under the true distribution P and the assumed complete null
distribution P0: ρS0(P0) 6= ρS0(P ). In fact, in many testing problems, there
does not even exist a data generating null distribution P0 ∈ ∩m

j=1Mj that
correctly specifies a joint distribution for the test statistics such that the
required null domination condition is satisfied.

Thus, unlike current procedures which can only be applied to a limited
set of multiple testing problems, our proposed test statistics null distribu-
tion leads to single-step and step-down procedures that provide the desired
asymptotic Type I error rate control in general testing problems.
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3 Single-step procedures for control of gen-

eral Type I error rates

In this section, we propose single-step common-quantile and single-step common-
cut-off procedures for controlling general Type I error rates that are defined
as parameters θ(FVn) of the distribution of the number of Type I errors (Pro-
cedures 1 and 2, respectively). The methods are based on a null distribution
Q0 for the test statistics Tn, such as the one proposed in Theorem 2, and are a
generalization of the procedures discussed in Pollard and van der Laan (2003)
for single-parameter null hypotheses. As shown in Section 3.3.3, our general
approach includes as special cases, for control of the FWER, the single-
step minP and maxT procedures based on minima of unadjusted p-values
and maxima of test statistics, respectively (Dudoit et al., 2003; Westfall and
Young, 1993). Before discussing the details of the procedures and presenting
proofs of Type I error rate control, we first outline our proposed methods
and main results.

Given a null distribution Q0 and nominal level α, single-step common-
quantile Procedure 1 rejects null hypothesis H0j, j = 1, · · · , m, provided the
test statistic Tn(j) is greater than the δ0(α)–quantile, dj(Q0, δ0(α)), of the
marginal distribution Q0j. For control of the Type I error rate θ(FVn) at
level α, δ0(α) is chosen so that the corresponding parameter θ(FR0), for the
distribution of the observed number of rejections R0 under Q0, is bounded
by α. In the simpler common-cut-off Procedure 2, H0j is rejected if Tn(j) is
greater than a common cut-off e(Q0, α) chosen so that θ(FR0) ≤ α.

Theorem 1 proves that Procedures 1 and 2 provide asymptotic control of
the Type I error rate θ(FVn), under the following asymptotic null domination
condition concerning the joint distribution of the test statistics (Tn(j) : j ∈
S0) for the true null hypotheses (Assumption AQ0): In the limit, the number
of Type I errors, Vn, under the true distribution Qn = Qn(P ) for the test
statistics Tn, is stochastically smaller than the corresponding number of Type
I errors, V0, under the assumed null distribution Q0, i.e., lim infn FVn(x) ≥
FV0(x), ∀x ∈ {0, . . . ,m}. From uniform continuity Assumption ACI, one
can show that lim supn θ(FVn) ≤ θ(FV0). Asymptotic control of the Type I
error rate then follows as sketched in the three-step road map on p. 17. As
illustrated in Section 3.3.3, the procedure can be applied to control any error
rate that is a function of the distribution for the number of Type I errors,
Vn, including the usual FWER, PCER, and also the gFWER. The key issue
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is the choice of a suitable null distribution Q0.
Theorem 2 provides an explicit proposal for a null distribution that sat-

isfies the null domination condition of Theorem 1. This null distribution Q0

is defined as the limit distribution of the null-value shifted and scaled test
statistics: Zn(j) ≡ ν0n(j)(Tn(j) + λ0(j) − E[Tn(j)]). In this construction,
the null-values λ0(j) are such that the limit distribution of Zn is stochasti-
cally larger than that of Tn for the true null hypotheses (j ∈ S0); hence, key
Assumption AQ0 is satisfied. The ν0n(j) are chosen to prevent a degenerate
limit for the false null hypotheses (j /∈ S0).

3.1 General procedures and asymptotic control results

According to single-step Procedures 1 and 2, hypothesis H0j is rejected at
MTP level α if Tn(j) > cj, where cj = cj(Q0, α), j = 1, . . . ,m, are defined
as either common quantiles for the margins Q0j of a null distribution Q0

(Procedure 1) or common cut-offs (Procedure 2). For an m-vector of cut-
offs, c = (cj : j = 1, . . . ,m), and for Tn ∼ Q, denote the number of rejected
hypotheses and Type I errors by

R(c | Q) ≡
m∑

j=1

I(Tn(j) > cj) and V (c | Q) ≡
∑
j∈S0

I(Tn(j) > cj), (13)

respectively. For a given cut-off vector c, and as in Section 2.6, adopt the
following short-hand notation

Rn ≡ R(c | Qn), R0 ≡ R(c | Q0), (14)

Vn ≡ V (c | Qn), V0 ≡ V (c | Q0),

where Qn = Qn(P ) refers to the actual (finite sample) joint distribution of
the test statistics Tn, under the true data generating distribution P , and Q0

refers to an assumed null distribution for these test statistics.
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3.1.1 Single-step common-quantile procedure

Procedure 1. Single-step common-quantile procedure for control
of general Type I error rates θ(FVn).
Given an m-variate null distribution Q0 and δ ∈ [0, 1], define an m-vector,
d(Q0, δ) = (dj(Q0, δ) : j = 1, . . . ,m), of δ–quantiles,

dj(Q0, δ) ≡ Q−1
0j (δ) = inf {z : Q0j(z) ≥ δ} , j = 1, . . . ,m, (15)

where Q0j denote the marginal cumulative distribution functions corre-
sponding to Q0. For a test of level α ∈ (0, 1), choose δ as

δ0(α) ≡ inf{δ : θ(FR(d(Q0,δ)|Q0)) ≤ α}, (16)

where we recall that R(d(Q0, δ)|Q0) denotes the number of rejected
hypotheses for common-quantile cut-offs d(Q0, δ), under the null dis-
tribution Q0 for the test statistics Tn. The single-step common-
quantile multiple testing procedure for controlling the Type I er-
ror rate θ(FVn) at level α is defined in terms of the common-
quantile cut-offs, c(Q0, α) ≡ d(Q0, δ0(α)), by the following rule.

Reject H0j if Tn(j) > dj(Q0, δ0(α)), j = 1, . . . ,m,
that is,

S(Tn, Q0, α) ≡
{
j : Tn(j) > dj(Q0, δ0(α))

}
.

Here, FVn denotes the c.d.f. for the number of Type I errors, Vn ≡
V (d(Q0, δ0(α)) | Qn), under the true distribution Qn = Qn(P ) for the
test statistics Tn.

Theorem 1 [Asymptotic control of Type I error rate for single-step
common-quantile Procedure 1] Assume that there exists a random m-
vector Z ∼ Q0 = Q0(P ), so that, for all c = (cj : j = 1, . . . ,m) ∈ IRm and
x ∈ {0, . . . ,m}, the joint distribution Qn = Qn(P ) of the test statistics Tn

satisfies the following asymptotic null domination property with respect to Q0

lim inf
n→∞

PrQn

(∑
j∈S0

I(Tn(j) > cj) ≤ x

)
≥ PrQ0

(∑
j∈S0

I(Z(j) > cj) ≤ x

)
.

(AQ0)
In other words, the number of Type I errors, Vn, under the true distribu-
tion Qn = Qn(P ) for the test statistics Tn, is stochastically smaller in the
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limit than the corresponding number of Type I errors, V0, under the null
distribution Q0: lim infn FVn(x) ≥ FV0(x) ∀x. In addition, suppose that the
mapping θ(·) defining the Type I error rate is such that Assumptions AMI
and ACI hold. Then, single-step Procedure 1, with common-quantile cut-offs
c(Q0, α) = d(Q0, δ0(α)), provides asymptotic control of the Type I error rate
θ(FVn) at level α, that is,

lim sup
n→∞

θ(FVn) ≤ α,

where Vn denotes the number of Type I errors for Tn ∼ Qn(P )

Vn ≡ V (c(Q0, α) | Qn) =
∑
j∈S0

I(Tn(j) > cj(Q0, α)).

Note that the main null domination Assumption AQ0 (also in equation (11),
above) only concerns the joint distribution of the subvector (Tn(j) : j ∈ S0)
of test statistics for the true null hypotheses. An explicit construction for a
null distribution Q0 that satisfies Assumption AQ0 is proposed in Theorem 2,
below. As discussed in Section 4, estimation of Q0 with the non-parametric
or model-based bootstrap results in an estimator Q0n and corresponding es-
timated cut-off vector c(Q0n, α), such that lim supn θ(FV (c(Q0n,α)|Qn)) ≤ α.

Proof of Theorem 1. Since V0 ≤ R0, Q0-a.s., then FV0(x) ≥ FR0(x) ∀x.
Hence, by monotonicity Assumption AMI and by definition of the cut-offs
c(Q0, α) = d(Q0, δ0(α)), so that θ(FR0) ≤ α, we have

θ(FV0) ≤ θ(FR0) ≤ α. (17)

Rewrite FVn as

FVn = FV0 + (FVn − FV0) ≥ FV0 + min(0, FVn − FV0)

and again apply monotonicity Assumption AMI to show that

θ(FVn) ≤ θ(FV0 + min(0, FVn − FV0)).

Now, by the main null domination Assumption AQ0, lim infn FVn(x) ≥ FV0(x)
∀x, so that

lim
n→∞

(FV0(x) + min(0, FVn(x)− FV0(x))) = FV0(x) ∀x,

24

http://biostats.bepress.com/ucbbiostat/paper138



and by uniform continuity Assumption ACI,

lim sup
n→∞

θ(FVn) ≤ lim
n→∞

θ(FV0 + min(0, FVn − FV0)) = θ(FV0). (18)

Finally, combining (17) and (18), we get the desired asymptotic control of
the Type I error rate

lim sup
n→∞

θ(FVn) ≤ α.

2

3.1.2 Single-step common-cut-off procedure

Note that one can readily define a common-cut-off analogue of Procedure 1
as follows. Asymptotic control of the Type I error rate θ(FVn) by Procedure
2 also follows from the proof of Theorem 1.

Procedure 2. Single-step common-cut-off procedure for control of
general Type I error rates θ(FVn).
Given an m-variate null distribution Q0 and for a test of level α ∈ (0, 1),
define a common cut-off e(Q0, α), such that

e(Q0, α) ≡ inf{c : θ(FR((c,...,c)|Q0)) ≤ α}, (19)

where we recall that R((c, . . . , c)|Q0) denotes the number of rejected hy-
potheses for common cut-off c, under the null distribution Q0 for the test
statistics Tn. The single-step common-cut-off multiple testing procedure for
controlling the Type I error rate θ(FVn) at level α is defined in terms of the
common cut-offs, c(Q0, α) = (e(Q0, α), . . . , e(Q0, α)), by the following rule.

Reject H0j if Tn(j) > e(Q0, α), j = 1, . . . ,m,
that is,

S(Tn, Q0, α) ≡
{
j : Tn(j) > e(Q0, α)

}
.

Here, FVn denotes the c.d.f. for the number of Type I errors, Vn ≡
V ((e(Q0, α), . . . , e(Q0, α)) | Qn), under the true distribution Qn = Qn(P )
for the test statistics Tn.

3.1.3 Common-quantile vs. common-cut-off procedures

As discussed in Section 3.3.3, for control of the FWER, single-step common-
quantile Procedure 1 and common-cut-off Procedure 2 reduce to the single-
step minP and maxT procedures, based on minima of unadjusted p-values
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and maxima of test statistics, respectively (Dudoit et al., 2003; Westfall and
Young, 1993). Procedures based on common cut-offs and common quantiles
are equivalent when the test statistics Tn(j), j = 1, . . . ,m, are identically
distributed under Q0, i.e., when the marginal distributions Q0j do not de-
pend on j: in this case, the significance rankings based on test statistics
Tn(j) and p-values P0n(j) = Q̄0j(Tn(j)) coincide. In general, however, the
two types of procedures produce different results, and considerations of bal-
ance, power, and computational feasibility should dictate the choice between
the two approaches. In the case of non-identically distributed test statistics
Tn(j), not all tests are weighted equally in common-cut-off procedures and
this can lead to unbalanced adjustments (Beran, 1988; Westfall and Young,
1993; Westfall, 2003). When the null distribution Q0 is estimated by resam-
pling (e.g., bootstrap, permutation), quantile-based procedures (Procedure
1, minP procedure for FWER control) tend to be sensitive to the number of
resampling steps and to the discreteness of the estimated null distribution.
This can result in more conservative procedures than those based directly on
the test statistics (Procedure 2, maxT procedure for FWER control). Also,
quantile-based procedures require more computation, because the unadjusted
p-values P0n(j) must be estimated before one can consider their joint distri-
bution. The reader is referred to Dudoit et al. (2003), Ge et al. (2003), and
Pollard and van der Laan (2003) for further discussion of the relative merits
of common-quantile vs. common-cut-off procedures.

3.2 Explicit proposal for the test statistics null distri-
bution

One can make the following explicit proposal for the null distribution Q0

used to derive cut-offs in Procedures 1 and 2.

Theorem 2 [General construction for null distribution Q0] Suppose
there exists known m-vectors λ0 ∈ IRm and τ0 ∈ IR+m of null-values, so that

lim sup
n→∞

E[Tn(j)] ≤ λ0(j) and (20)

lim sup
n→∞

V ar[Tn(j)] ≤ τ0(j), for j ∈ S0.

Let

ν0n(j) ≡

√
min

(
1,

τ0(j)

V ar[Tn(j)]

)
(21)
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and define an m-vector Zn by

Zn(j) ≡ ν0n(j)
(
Tn(j) + λ0(j)− E[Tn(j)]

)
, j = 1, . . . ,m. (22)

Suppose that

Zn
L⇒ Z ∼ Q0(P ). (23)

Then, for this choice of null distribution Q0 = Q0(P ), and for all c = (cj :
j = 1, . . . ,m) ∈ IRm and x ∈ {0, . . . ,m},

lim inf
n→∞

PrQn

(∑
j∈S0

I(Tn(j) > cj) ≤ x

)
≥ PrQ0

(∑
j∈S0

I(Z(j) > cj) ≤ x

)
,

so that asymptotic null domination Assumption AQ0 in Theorem 1 holds.

The asymptotic distribution Q0 = Q0(P ), of the null-value shifted and
scaled test statistics Zn, generalizes the null distribution of Pollard and
van der Laan (2003) for single-parameter null hypotheses. In the later case,
the null distribution Q0 turns out to be a Gaussian distribution with mean
vector zero (Section 5.1). The purpose of the null-values λ0(j) is to generate
test statistics (Zn(j) : j ∈ S0) that are stochastically larger in the limit than
the original test statistics (Tn(j) : j ∈ S0), thereby resulting in a distribution
Q0 that satisfies key Assumption AQ0 of asymptotic null domination for the
number of Type I errors. In contrast, the use of the scaling factors τ0(j) in
the construction of Zn is not needed for proving control of the Type I error
rate. The purpose of τ0(j) is to avoid having a degenerate asymptotic null
distribution and infinite cut-offs for the true positives (j /∈ S0), an impor-
tant property for power considerations. This scaling is needed in particular
for F -statistics which have asymptotically infinite means and variances un-
der non-local alternative hypotheses (Section 5.2). Note that the null-values
λ0(j) and τ0(j) only depend on the marginal distributions of the test statistics
Tn(j) under the true null hypotheses and are generally known from univariate
testing. For example, as discussed in Section 5, λ0(j) ≡ 0 and τ0(j) ≡ 1 for
t-statistics, and λ0(j) ≡ 1 and τ0(j) ≡ 2/(K − 1) for F -statistics comparing
K population means under the assumption of constant variances in the dif-
ferent populations. The null-values λ0(j) and τ0(j) can possibly depend on
the unknown data generating distribution P , as is the case for F -statistics
for unequal population variances. In such a situation, one can replace the
parameters λ0(j) and τ0(j) by consistent estimators thereof.
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In practice, one can estimate the null distribution Q0 and the resulting
single-step cut-offs using bootstrap Procedures 3–5, as discussed in detail in
Section 4. For B bootstrap samples, one has an m×B matrix of test statis-
tics, T =

(
T b

n(j)
)
, with rows corresponding to the m hypotheses and columns

to the B bootstrap samples. The expected values, E[Tn(j)], and variances,
V ar[Tn(j)], are estimated by simply taking row means and variances of the
matrix T. The matrix of test statistics T can then be row-shifted and scaled
using the supplied null-values λ0(j) and τ0(j), to produce an m× B matrix
Z =

(
Zb

n(j)
)
. The null distribution Q0 is estimated by the empirical distri-

bution of the columns of matrix Z.

Proof of Theorem 2. Define an intermediate random vector (Z̃n(j) : j ∈
S0), for the true null hypotheses, by

Z̃n(j) ≡ Tn(j) + max(0, λ0(j)− E[Tn(j)]), j ∈ S0.

Then, Tn(j) ≤ Z̃n(j). In addition, since lim supn E[Tn(j)] ≤ λ0(j) and
lim supn V ar[Tn(j)] ≤ τ0(j) for j ∈ S0 (and thus limn ν0n(j) = 1), it follows
that (Z̃n(j) : j ∈ S0) and (Zn(j) : j ∈ S0) have the same limit distribution

(Z̃n(j) : j ∈ S0)
L⇒ (Z(j) : j ∈ S0) ∼ Q0,S0 .

Thus,

lim inf
n→∞

Pr

(∑
j∈S0

I(Tn(j) > cj) ≤ x

)
≥ lim inf

n→∞
Pr

(∑
j∈S0

I(Z̃n(j) > cj) ≤ x

)

= Pr

(∑
j∈S0

I(Z(j) > cj) ≤ x

)
.

2

3.3 Adjusted p-values

Rather than simply reporting rejection or not of a subset of null hypotheses
at a prespecified level α, one can report adjusted p-values for single-step
Procedures 1 and 2, computed under the assumed null distribution Q0 for
the test statistics Tn. While the definition of adjusted p-value in equation (6)
of Section 2.4 holds for general null distributions, in this section, we consider
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for simplicity a null distribution Q0 with continuous and strictly monotone
marginal c.d.f.’s, Q0j, and survivor functions, Q̄0j = 1 − Q0j, j = 1, . . . ,m.
We first provide adjusted p-values for general Type I error rates θ(FVn).
Adjusted p-values for commonly-used MTPs can be shown to correspond to
particular choices for the Type I error rate mapping θ(·). Explicit formulae
for adjusted p-values for PCER- and gFWER-controlling MTPs are given in
Sections 3.3.2 and 3.3.3, respectively.

3.3.1 General Type I error rates

Result 1 [Adjusted p-values for common-quantile Procedure 1] The
adjusted p-values for single-step common-quantile Procedure 1, based on a
null distribution Q0 with continuous and strictly monotone marginal distri-
butions, are given by

P̃0n(j) = θ(FR(d(Q0,1−P0n(j))|Q0)) (24)

where P0n(j) = Q̄0j(Tn(j)) = 1−Q0j(Tn(j)), j = 1, . . . ,m.

Here, P0n(j) is the unadjusted p-value for hypothesis H0j under Q0 and the
common-quantile cut-offs are

dh(Q0, 1− P0n(j)) = Q−1
0h (1− P0n(j)) = Q̄−1

0h (P0n(j)) = Q̄−1
0h (Q̄0j(Tn(j))).

(25)
In particular, for h = j, dj(Q0, 1 − P0n(j)) = Tn(j). Procedure 1 for con-
trolling the Type I error rate θ(FVn) at level α can then be stated equivalently
as

S(Tn, Q0, α) =
{
j : P̃0n(j) ≤ α

}
.

Proof of Result 1. The common-quantile cut-offs in Procedure 1 can be
represented as

dj(Q0, δ0(α)) = Q−1
0j (δ0(α)) = Q−1

0j (θ−1
0 (α)),
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where θ−1
0 is the inverse of the monotone decreasing function δ → θ0(δ) ≡

θ(FR(d(Q0,δ)|Q0)), that is, θ−1
0 (α) = inf{δ : θ0(δ) ≤ α}. Then,

P̃0n(j) = inf{α ∈ [0, 1] : dj(Q0, δ0(α)) < Tn(j)}
= inf{α ∈ [0, 1] : Q−1

0j (θ−1
0 (α)) < Tn(j)}

= inf{α ∈ [0, 1] : θ−1
0 (α) ≤ Q0j(Tn(j))}

= inf{α ∈ [0, 1] : α ≥ θ0(Q0j(Tn(j)))}
= θ0(Q0j(Tn(j)))

= θ0(1− P0n(j))

= θ(FR(d(Q0,1−P0n(j))|Q0)).

2

Result 2 [Adjusted p-values for common-cut-off Procedure 2] The
adjusted p-values for single-step common-cut-off Procedure 2, based on a null
distribution Q0 with continuous and strictly monotone marginal distributions,
are given by

P̃0n(j) = θ(FR((Tn(j),...,Tn(j))|Q0)), j = 1, . . . ,m. (26)

The proof of this result is similar to that for common-quantile adjusted p-
values in Result 1 and is therefore omitted.

3.3.2 Application to control of the PCER

Result 3 [Adjusted p-values for common-quantile Procedure 1 for
PCER control] For control of the PCER, the adjusted p-values for single-
step common-quantile Procedure 1, based on a null distribution Q0 with con-
tinuous and strictly monotone marginal distributions, reduce to the unad-
justed p-values

P̃0n(j) = P0n(j) = Q̄0j(Tn(j)), j = 1, . . . ,m. (27)

30

http://biostats.bepress.com/ucbbiostat/paper138



Proof of Result 3. Let Z ∼ Q0 and consider the Type I error rate mapping
θ(F ) =

∫
xdF (x)/m. Then,

P̃0n(j) = θ(FR(d(Q0,1−P0n(j))|Q0))

=
1

m

m∑
h=1

PrQ0

(
Z(h) > Q̄−1

0h (P0n(j))
)

=
1

m

m∑
h=1

Q̄0h

(
Q̄−1

0h (P0n(j))
)

= P0n(j).

2

Result 4 [Adjusted p-values for common-cut-off Procedure 2 for
PCER control] For control of the PCER, the adjusted p-values for single-
step common-cut-off Procedure 2, based on a null distribution Q0 with con-
tinuous and strictly monotone marginal distributions, are given by

P̃0n(j) =
1

m

m∑
h=1

Q̄0h

(
Tn(j)

)
, j = 1, . . . ,m. (28)

Proof of Result 4. Let Z ∼ Q0 and consider the Type I error rate mapping
θ(F ) =

∫
xdF (x)/m. Then,

P̃0n(j) = θ(FR((Tn(j),...,Tn(j))|Q0))

=
1

m

m∑
h=1

PrQ0

(
Z(h) > Tn(j)

)
=

1

m

m∑
h=1

Q̄0h

(
Tn(j)

)
.

2

3.3.3 Application to control of the gFWER

Result 5 [Adjusted p-values for common-quantile Procedure 1 for
gFWER control] For control of the gFWER, the adjusted p-values for
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single-step common-quantile Procedure 1, based on a null distribution Q0

with continuous and strictly monotone marginal distributions, are given by

P̃0n(j) = PrQ0 (P ◦
0 (k + 1) ≤ P0n(j)) , j = 1, . . . ,m. (29)

Here, P0(j) ≡ Q̄0j(Z(j)) denote unadjusted p-values under the test statistics
null distribution Q0, i.e., for Z(j) ∼ Q0j, and P ◦

0 (j) denote the corresponding
ordered unadjusted p-values, so that P ◦

0 (1) ≤ . . . ≤ P ◦
0 (m).

Proof of Result 5. Let Z ∼ Q0 and consider the Type I error rate mapping
θ(F ) = 1− F (k). Then,

P̃0n(j) = θ(FR(d(Q0,1−P0n(j))|Q0))

= PrQ0

(
m∑

h=1

I
(
Z(h) > dh(Q0, 1− P0n(j))

)
> k

)

= PrQ0

(
m∑

h=1

I
(
Q̄0h(Z(h)) ≤ Q̄0h(Q̄

−1
0h (P0n(j)))

)
> k

)

= PrQ0

(
m∑

h=1

I
(
P0(h) ≤ P0n(j)

)
> k

)
= PrQ0 (P ◦

0 (k + 1) ≤ P0n(j)) .

2

Procedure 1 for control of the gFWER is thus based on the distribution,
under Q0, of the (k+1)st ordered unadjusted p-value, P ◦

0 (k+1), and (1−δ0(α))
is chosen as the α–quantile of the distribution of P ◦

0 (k+1). In the special case
of FWER control (k = 0), the procedure is based on the distribution of the
minimum of the m unadjusted p-values, i.e., on P ◦

0 (1) = minj∈{1,...,m} P0(j).
Thus, for FWER control, the single-step minP procedure discussed in Du-
doit et al. (2003) and Westfall and Young (1993) corresponds to Procedure 1
with (1− δ0(α)) chosen as the α–quantile of the distribution of the minimum
marginal p-value P ◦

0 (1).

Consider the special case where the random vector Z ∼ Q0 has in-
dependent components Z(j), with continuous marginal distributions Q0j,
j = 1, . . . m. Then, P0(j) = Q̄0j(Z(j)) are independent U(0, 1) random
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variables and the (k + 1)st ordered unadjusted p-value P ◦
0 (k + 1) has a

Beta(k + 1, m − k) distribution. Thus, in this independence situation, the
single-step procedure for control of the gFWER is very simple and is based
only on the marginal null distributions, Q0j. Adjusted p-values are

P̃0n(j) =
Γ(m + 1)

Γ(k + 1)Γ(m− k)

∫ P0n(j)

0

zk(1− z)m−k−1dz, (30)

where Γ(i) = (i−1)! for a positive integer i. In particular, for FWER control
(k = 0), the adjusted p-values for Procedure 1 reduce to the single-step Šidák
adjusted p-values (Dudoit et al., 2003)

P̃0n(j) = 1− (1− P0n(j))m . (31)

Result 6 [Adjusted p-values for common-cut-off Procedure 2 for
gFWER control] For control of the gFWER, the adjusted p-values for
single-step common-cut-off Procedure 2, based on a null distribution Q0 with
continuous and strictly monotone marginal distributions, are given by

P̃0n(j) = PrQ0 (Z◦(k + 1) > Tn(j)) , j = 1, . . . ,m, (32)

where Z◦(j) denotes the jth ordered component of Z = (Z(j) : j = 1, . . . ,m) ∼
Q0, so that Z◦(1) ≥ . . . ≥ Z◦(m).

Proof of Result 6. Again, let Z ∼ Q0 and consider the Type I error rate
mapping θ(F ) = 1− F (k). Then,

P̃0n(j) = θ(FR((Tn(j),...,Tn(j))|Q0))

= PrQ0

(
m∑

h=1

I
(
Z(h) > Tn(j)

)
> k

)
= PrQ0 (Z◦(k + 1) > Tn(j)) .

2

Thus, for control of the gFWER at level α, the common cut-off in Pro-
cedure 2 is chosen as the (1−α)–quantile of the distribution of the (k + 1)st
ordered component Z◦(k+1) of Z ∼ Q0. In the special case of FWER control
(k = 0), the procedure is based on the maximum of the m variables Z(j),
i.e., on Z◦(1) = maxj∈{1,...,m} Z(j). Thus, for FWER control, the single-step
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maxT procedure discussed in Dudoit et al. (2003) and Westfall and Young
(1993) corresponds to Procedure 2 with common cut-off chosen as the (1−α)–
quantile of the distribution of the maximum Z◦(1).

Control of gFWER via control of FWER. Finally, we note that one
can control the gFWER using simple modifications of Procedures 1 and 2 for
control of the FWER. The main idea is to follow the FWER-controlling pro-
cedure exactly until the first non-rejection and then reject the null hypotheses
specified by this procedure as well as the k hypotheses corresponding to the
next k most significant test statistics (i.e., the k hypotheses with the next k
smallest adjusted p-values). Such an approach to gFWER control is appeal-
ing, because it only requires working with the FWER and it guarantees at
least k rejected hypotheses. More details and formal results are provided in
van der Laan et al. (2003b).

4 Bootstrap-based single-step procedures for

control of general Type I error rates

In practice, since the data generating distribution P is unknown, then so is
the null distribution Q0 = Q0(P ) defined in Theorem 2. Estimation of Q0

is then needed, especially to deal with the unknown dependence structure
among the test statistics. Estimators Q0n of the null distribution can be
obtained according to the following three main approaches.

• Bootstrap null distribution. As detailed in Section 4.2, non-parametric
or model-based bootstrap procedures provide a very general approach
for obtaining consistent estimators of the null distribution Q0(P ) pro-
posed in Theorem 2.

• Test statistics specific null distribution. For the test of single-parameter
null hypotheses with t-statistics, the null distribution Q0 = Q0(P ) is
the m-variate Gaussian distribution N(0, ρ(P )), where ρ(P ) is the cor-
relation matrix of the vector influence curve, IC(X | P ) = (ICj(X |
P ) : j = 1, . . . ,m), for an asymptotically linear estimator µn of the
parameter vector µ (see Sections 2.1.4 and 5.1 for details). In this case,
one can estimate Q0 by Q0n = N(0, ρn), using a consistent estima-
tor ρn of the correlation matrix ρ(P ), such as the correlation matrix
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corresponding to the m×m estimated IC covariance matrix

Σn ≡
1

n

n∑
i=1

ICn(Xi)ICT
n (Xi),

where ICn(X) = (ICjn(X) : j = 1, . . . ,m) is an estimator of the
m-vector influence curve IC(X | P ). For simple parameters such as
means, the influence curves can be derived straightforwardly. For exam-
ple, for estimation of the mean vector µ = E[X], for a random m-vector
X ∼ P , the influence curves are ICj(X | P ) = X(j) − µ(j), and the
corresponding estimated influence curves are ICjn(X) = X(j)−µn(j),
where µn(j) = X̄n(j) is the empirical mean for the jth component of
the m-vector X, j = 1, . . . ,m. Then, ρn is simply the sample cor-
relation matrix. Influence curves for estimators of correlations and
regression parameters are given in Section 5.1. In cases where the in-
fluence curves are not readily available, ρ(P ) can be estimated with
the bootstrap (Section 5.1.2). For the test of multiple-parameter null
hypotheses using F -statistics (Section 5.2), a null distribution Q0 can
be defined as a simple quadratic function of K independent Gaussian
m-vectors, Yk ∼ N(0, Σk), k = 1, . . . , K. An estimator Q0n of the
null distribution Q0 can be obtained by estimating each population co-
variance matrix Σk by the corresponding sample covariance matrix or
using the bootstrap. An advantage of the test statistics specific estima-
tion approach is that it yields a continuous null distribution and hence
does not suffer from the discreteness of the bootstrap null distribution
mentioned above.

• Data generating null distribution. In certain testing problems, one may
define a test statistics null distribution, Qn(P0), in terms of a data
generating distribution P0 that satisfies the complete null hypothe-
sis HC

0 =
∏m

j=1 H0j. Such a null distribution may be estimated by
Q0n = Qn(P0n), where, for example, P0n is a permutation- or bootstrap-
based estimator of P0. However, as discussed in Pollard and van der
Laan (2003), this approach can fail in important testing problems, as
the true distribution Qn(P ) and the assumed null distribution Qn(P0n)
may have different limits (or correlation matrices in the case of Gaus-
sian asymptotic distributions) and, as a result, violate the required
asymptotic null domination condition on the Type I error rates (equa-
tion (10), p. 17).
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In this section, we consider analogues of Procedures 1 and 2, based on a
consistent estimator Q0n of a null distribution Q0, such as the distribution
Q0 = Q0(P ) defined in Theorem 2. In such multiple testing procedures, the
estimator Q0n is used in place of Q0, to estimate the cut-offs for the test
statistics and the resulting adjusted p-values.

4.1 Asymptotic control for consistent estimator of the
null distribution

Theorem 3 [Consistency of single-step common-quantile cut-offs in
Procedure 1] Let Q0 be a specified m-variate null distribution and let Q0n

converge weakly to Q0. Assume that Q0 is absolutely continuous with respect
to the Lebesgue measure on IRm, with uniformly bounded density, and that
each marginal distribution Q0j has continuous Lebesgue density f0j with in-
terval support, that is, {z : f0j(z) > 0} = (aj, bj), where aj and bj are allowed
to equal −∞ and ∞, respectively. For an arbitrary m-variate distribution Q
and constant δ ∈ [0, 1], define δ–quantiles for the marginal distributions Qj

by
dj(Q, δ) ≡ Q−1

j (δ) = inf{z : Qj(z) ≥ δ}, j = 1, . . . ,m,

and let d(Q, δ) = (dj(Q, δ) : j = 1, . . . ,m) denote the corresponding quantile
m-vector. Define a non-increasing function

δ → GQ(δ) ≡ θ
(
FR(d(Q,δ)|Q)

)
,

where

R(d(Q, δ) | Q) ≡
m∑

j=1

I(Z(j) > dj(Q, δ))

is the number of rejected hypotheses for Z ∼ Q. For a fixed level α ∈ (0, 1),
define

δ(Q) ≡ G−1
Q (α) = inf

{
δ : θ

(
FR(d(Q,δ)|Q)

)
≤ α

}
.

In particular, for the null distribution Q0, assume that δ(Q0) ∈ (0, 1) and that
the function GQ0(δ) is continuous and has a positive derivative at δ(Q0) =
G−1

Q0
(α). Then, one has the following consistency results for the common

quantiles.

As n →∞, δ(Q0n)− δ(Q0) → 0 and

dj(Q0n, δ(Q0n))− dj(Q0, δ(Q0)) → 0, ∀ j = 1, . . . ,m.
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Proof of Theorem 3. In what follows, we adopt the short-hand notation
G0(δ) ≡ GQ0(δ), G0n(δ) ≡ GQ0n(δ), δ0 ≡ δ(Q0), and δ0n ≡ δ(Q0n). We begin
by establishing the following five facts.

Fact 1. For each j = 1, . . . ,m, Q−1
0j is uniformly continuous on any interval

[a, b] ⊂ (0, 1).
That is, if xn− yn → 0 for sequences {xn} and {yn} ∈ [a, b], then Q−1

0j (xn)−
Q−1

0j (yn) → 0. This fact follows from the assumption that each marginal
distribution Q0j has continuous Lebesgue density f0j with interval support,
that is, {z : f0j(z) > 0} = (aj, bj), where aj and bj are allowed to equal −∞
and ∞, respectively.

Fact 2. For each j = 1, . . . ,m, as n →∞, Q0n,j −Q0j converges uniformly
to zero over the support (aj, bj) of Q0j.
By the weak convergence of Q0n to Q0, we have that Q0n,j converges point-
wise to Q0j at each continuity point of Q0j. Since pointwise convergence
of monotone functions to a continuous monotone function implies uniform
convergence, it follows that Q0n,j −Q0j converges uniformly to zero.

Fact 3. For each j = 1, . . . ,m, Q−1
0n,j − Q−1

0j converges uniformly to zero

over any interval contained in (0, 1), that is, ∀ ε > 0, supδ∈[ε,1−ε] | Q−1
0n,j(δ)−

Q−1
0j (δ) |→ 0, as n →∞.

This statement follows from the facts that: (i) for an m-variate distribution
Q, the quantile mapping Qj → Q−1

j (δ), for each margin Qj, is continuous

w.r.t. to the supremum norm convergence at a Q0j at which f0j(Q
−1
0j (δ)) > 0;

(ii) pointwise convergence of monotone functions Q−1
0n,j to a continuous mono-

tone function Q−1
0j at each point δ implies uniform convergence; and (iii) Fact

2.

Fact 4. Consider c.d.f.’s Fn and F such that Fn − F converges uniformly
to zero and F−1 is uniformly continuous on an interval [a, b] ⊂ (0, 1). For a
sequence {xn} ∈ IR, suppose there is an integer N > 0, such that xn ∈ [a, b]
and FF−1

n (xn) ∈ [a, b], ∀n > N . Then F−1
n (xn) − F−1(x) = F−1(xn) −

F−1(x) + o(1).
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This fourth fact follows from the expansion

F−1
n (xn)− F−1(x) = {F−1

n (xn)− F−1(xn)}+ {F−1(xn)− F−1(x)}
= {F−1FF−1

n (xn)− F−1FnF
−1
n (xn)}+ {F−1(xn)− F−1(x)}.

The first term converges to zero, by uniform convergence of Fn − F to zero,
uniform continuity of F−1 on [a, b], and the fact that xn and FF−1

n (xn) ∈
[a, b], ∀n > N .

In order to apply Fact 4 with F = Q0j, Fn = Q0n,j, x = δ0, and xn = δ0n, we
need to prove the following Fact 5.

Fact 5. Suppose that δ0n → δ0. Then, there is an interval [a, b] ⊂ (0, 1) and
integer N0 > 0, such that, for all n > N0, δ0n ∈ [a, b] and Q0j(Q

−1
0n,j(δ0n)) ∈

[a, b].
The first statement follows from convergence of δ0n to δ0 and by the assump-
tion that δ0 ∈ (0, 1). Thus, there exist ε > 0 and an integer N(ε) > 0,
such that ε < δ0n < 1 − ε, ∀n > N(ε). By monotonicity of Q−1

0n,j, we have

Q−1
0n,j(ε) ≤ Q−1

0n,j(δ0n) ≤ Q−1
0n,j(1− ε), ∀n > N(ε). Next, by weak convergence

of Q0n,j to Q0j, ∀ ε′ > 0, ∃N(ε′), such that

Q−1
0j (ε)− ε′ ≤ Q−1

0n,j(δ0n) ≤ Q−1
0j (1− ε) + ε′, ∀n > max(N(ε), N(ε′)).

Hence, by monotonicity of Q0j

Q0j(Q
−1
0j (ε)−ε′) ≤ Q0j(Q

−1
0n,j(δ0n)) ≤ Q0j(Q

−1
0j (1−ε)+ε′), ∀n > max(N(ε), N(ε′)).

Finally, by continuity of Q0j and letting ε′ ↓ 0, there is an interval [a, b] ⊂
(0, 1) and an integer N0 > 0, such that, as required, Q0j(Q

−1
0n,j(δ0n)) ∈ [a, b],

for n > N0.

Convergence of (δ0n−δ0) to zero. In order to apply Facts 1 – 5 to establish
consistency of the single-step common-quantile cut-offs, the main task is to
prove that (δ0n−δ0) converges to zero. Consider the functions G0(δ) = GQ0(δ)
and G0n(δ) = GQ0n(δ), and note that δ0n − δ0 = G−1

0n (α) − G−1
0 (α). By

monotonicity Assumption AMI on the mapping θ(·), then G0n and G0 are
monotone decreasing functions in δ. Also, for any m-variate distribution
Q, R(d(Q, δ) | Q) ≤ m, thus G0n and G0 are uniformly bounded above by
θ(∆{m}), where ∆{m} denotes the c.d.f. with unit mass at the singleton {m}.
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Under the assumption that G0 has a positive derivative at δ0 = G−1
0 (α), it

follows that G−1
0n (α)−G−1

0 (α) converges to zero provided G0n−G0 converges
uniformly to zero. Since pointwise convergence of monotone functions to
a continuous monotone function implies uniform convergence, it suffices to
show that (G0n − G0)(δ) converges to zero at any given δ ∈ (0, 1). By
uniform continuity Assumption ACI on the mapping θ(·), the latter holds
if the number of rejections, R(d(Q0n, δ) | Q0n), under Q0n, converges in
distribution to the corresponding quantity, R(d(Q0, δ) | Q0), under Q0. We
have

R(d(Q0n, δ) | Q0n) = R(d(Q0n, δ) | Q0n)−R(d(Q0, δ) | Q0n)

+ R(d(Q0, δ) | Q0n).

Let Zn ∼ Q0n and Z ∼ Q0, and denote the third term with f(Zn) ≡∑m
j=1 I(Zn(j) > dj(Q0, δ)). Since f is continuous Q0-a.s., by the Contin-

uous Mapping Theorem, we have that f(Zn) converges in distribution to
f(Z) =

∑m
j=1 I(Z(j) > dj(Q0, δ)) = R(d(Q0, δ) | Q0). Thus, it remains to

prove that the difference R(d(Q0n, δ) | Q0n)−R(d(Q0, δ) | Q0n) converges to
zero a.s., that is, limn PrQ0n(R(d(Q0n, δ) | Q0n) 6= R(d(Q0, δ) | Q0n)) = 0.
For a fixed δ ∈ (0, 1), use the following short-hand notation for the common
quantiles, c0(j) = dj(Q0, δ) = Q−1

0j (δ) and c0n(j) = dj(Q0n, δ) = Q−1
0n,j(δ),

and note that, from Fact 3, c0n(j) − c0(j) → 0, as n → ∞, ∀ j = 1, . . . ,m.
Define subsets An ⊆ IRm by

An ≡

{
z ∈ IRm :

∣∣∣∣∣
m∑

j=1

I(z(j) > c0n(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}
.

Then, R(d(Q0n, δ) | Q0n) 6= R(d(Q0, δ) | Q0n) if and only if Zn ∈ An. By
absolute continuity of Q0 w.r.t. the Lebesgue measure on IRm, with uniformly
bounded density, we have that Q0(A(ε)) → 0 as ε → 0, for subsets A(ε) ⊆
IRm defined as in Lemma 1, below. Thus, it follows from this Lemma that
limn Q0n(An) = 0, that is, as required,

lim
n→∞

Q0n(An) = lim
n→∞

PrQ0n(Zn ∈ An)

= lim
n→∞

PrQ0n (R(d(Q0n, δ) | Q0n) 6= R(d(Q0, δ) | Q0n)) = 0.

Convergence of (dj(Q0n, δ0n)− dj(Q0, δ0)) to zero. We are now in a posi-
tion to apply Facts 1 – 5 to establish consistency of the single-step common-
quantile cut-offs, i.e., convergence of dj(Q0n, δ0n) − dj(Q0, δ0) to zero. The
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assumptions of Fact 4, with F = Q0j, Fn = Q0n,j, x = δ0, and xn = δ0n, are
satisfied from Facts 2, 1, and 5, respectively. Thus,

dj(Q0n, δ0n)− dj(Q0, δ0) = Q−1
0n,j(δ0n)−Q−1

0j (δ0)

= Q−1
0j (δ0n)−Q−1

0j (δ0) + o(1).

By continuity of Q−1
0j (Fact 1) and convergence of δ0n − δ0 to zero, it follows

that Q−1
0j (δ0n)−Q−1

0j (δ0) converges to zero.
2

Lemma 1 Consider a sequence of m-vectors {c0n} ∈ IRm, with limit c0 ∈
IRm, i.e., c0n(j) → c0(j), as n → ∞, ∀ j = 1, . . . ,m. Define subsets An ⊆
IRm by

An ≡

{
z ∈ IRm :

∣∣∣∣∣
m∑

j=1

I(z(j) > c0n(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}

and for ε > 0 define

A(ε) ≡

{
z ∈ IRm : sup

{c:||c−c0||<ε}

∣∣∣∣∣
m∑

j=1

I(z(j) > c(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}
.

Let Q0 be a specified m-variate distribution and let Q0n converge weakly to
Q0. Further assume that there exists a sequence {εk} ↓ 0, such that A(εk) are
continuity sets of Q0 (i.e., the boundary sets ∂A(εk) have mass zero under Q0,
Q0(∂A(εk)) = 0) and such that limk Q0(A(εk)) = 0. Then, limn Q0n(An) = 0.

Proof of Lemma 1. By the definition of weak convergence (van der Vaart
and Wellner, 1996), for each continuity set A(εk) ⊆ IRm, Q0n(A(εk)) −
Q0(A(εk)) → 0, as n →∞. Thus, for all k and all ε > 0, there exists an in-
teger N(k, ε) > 0, such that Q0n(A(εk)) ≤ Q0(A(εk)) + ε, for all n > N(k, ε).
Next, by convergence of c0n to c0, ∀ k, there exists an integer N(k) > 0, such
that, for all n > N(k), An ⊆ A(εk) and hence Q0n(An) ≤ Q0n(A(εk)). Thus,
for all k and all ε > 0,

Q0n(An) ≤ Q0n(A(εk)) ≤ Q0(A(εk)) + ε, ∀n > max(N(k), N(k, ε)).

But limk Q0(A(εk)) = 0, hence, as required, limn Q0n(An) = 0.
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2

An (simpler) analogue of Theorem 3 can be obtained for consistency of
the single-step common cut-offs in Procedure 2.

Theorem 4 [Consistency of single-step common cut-offs in Proce-
dure 2] Let Q0 be a specified m-variate null distribution and let Q0n con-
verge weakly to Q0. For an arbitrary m-variate distribution Q, define a non-
increasing function

c → GQ(c) ≡ θ
(
FR((c,...,c)|Q)

)
,

where R((c, . . . , c) | Q) ≡
∑m

j=1 I(Z(j) > c) is the number of rejected hy-
potheses for Z ∼ Q. For a fixed level α ∈ (0, 1), define common cut-offs

e(Q) ≡ G−1
Q (α) = inf

{
c : θ

(
FR((c,...,c)|Q)

)
≤ α

}
.

In particular, for the null distribution Q0, assume that the function GQ0(c)
is continuous and has a positive derivative at e(Q0) = G−1

Q0
(α). Then, one

has the following consistency results for the common cut-offs

e(Q0n)− e(Q0) → 0, as n →∞.

Proof of Theorem 4. First note that e0n − e0 = G−1
0n (α)−G−1

0 (α), where
we use the short-hand notation G0(δ) = GQ0(δ) and G0n(δ) = GQ0n(δ),
and e0 = e(Q0) and e0n = e(Q0n). Convergence of e0n − e0 to zero, fol-
lows from the first part of the proof that δ0n − δ0 → 0 in Theorem 3. One
simply needs to show that (G0n − G0)(c) converges to zero at any given c.
This follows by noting that: (i) from the Continuous Mapping Theorem, the
number of rejections, R((c, . . . , c) | Q0n), under Q0n, converges in distribu-
tion to the corresponding quantity, R((c, . . . , c) | Q0), under Q0, and (ii)
by uniform continuity Assumption ACI on the mapping θ(·) and fact (i),
(G0n −G0)(c) = θ(FR((c,...,c)|Q0n))− θ(FR((c,...,c)|Q0)) converges to zero.

2

Having established consistency of the cut-offs for common-quantile and
common-cut-off Procedures 1 and 2, based on a consistent estimator Q0n

of the null distribution Q0, the following corollary proves consistency of the
resulting Type I error rates.
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Corollary 1 [Consistency of Type I error rate for single-step common-
quantile and common-cut-off Procedures 1 and 2] Let Q0 be a specified
m-variate null distribution and let Q0n converge weakly to Q0. Denote the
number of Type I errors for Procedure 1 (or Procedure 2) based on the null
distribution Q0 and its approximation Q0n by

V (c0n | Qn) =
∑
j∈S0

I
(
Tn(j) > c0n(j)

)
and V (c0 | Qn) =

∑
j∈S0

I
(
Tn(j) > c0(j)

)
,

respectively, where Tn ∼ Qn = Qn(P ). For Procedure 1, the common-quantile
cut-offs c0(j) = cj(Q0, α) = dj(Q0, δ0) and c0n(j) = cj(Q0n, α) = dj(Q0n, δ0n)
are defined as in Theorem 3. For Procedure 2, the common cut-offs c0(j) =
cj(Q0, α) = e(Q0) and c0n(j) = cj(Q0n, α) = e(Q0n) are defined as in The-
orem 4. Assume that the conditions of Theorem 3 (or Theorem 4) hold, so
that c0n(j) − c0(j) → 0, as n → ∞, for each j = 1, . . . ,m. Further assume
that the joint distribution Qn(P ) of the test statistics Tn is such that

Qn(AS0(ε)) = PrQn(Tn ∈ AS0(ε)) → 0, as ε ↓ 0, (33)

where subsets AS0(ε) ⊆ IRm are defined as

AS0(ε) ≡

{
z ∈ IRm : sup

{c:||c−c0||<ε}

∣∣∣∣∣∑
j∈S0

I(z(j) > c(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}
.

Then,
lim

n→∞
PrQn(V (c0n | Qn) 6= V (c0 | Qn)) = 0,

so that asymptotic control of the Type I error rate θ(FV (c0|Qn)), as in Theo-
rem 1, for Procedure 1 (or Procedure 2) based on cut-offs c(Q0, α), implies
asymptotic control of the corresponding Type I error rate θ(FV (c0n|Qn)), for
Procedure 1 (or Procedure 2) based on estimated cut-offs c(Q0n, α). That is,
lim supn θ(FV (c0n|Qn)) ≤ α follows from lim supn θ(FV (c0|Qn)) ≤ α.

Proof of Corollary 1. Define subsets AS0,n ⊆ IRm by

AS0,n ≡

{
z ∈ IRm :

∣∣∣∣∣∑
j∈S0

I(z(j) > c0n(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}
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and note that

PrQn(V (c0n | Qn) 6= V (c0 | Qn)) = PrQn(Tn ∈ AS0,n) = Qn(AS0,n).

From Theorem 3 (Theorem 4), the cut-offs for Procedure 1 (Procedure 2) are
such that c0n(j)−c0(j) → 0, as n →∞, ∀ j = 1, . . . ,m. Thus, for each ε > 0,
there is an integer N(ε) > 0, such that AS0,n ⊆ AS0(ε) and hence Qn(AS0,n) ≤
Qn(AS0(ε)), for each n > N(ε). By assumption, limε↓0 Qn(AS0(ε)) = 0,
thus PrQn(V (c0n | Qn) 6= V (c0 | Qn)) = Qn(AS0,n) → 0, as n → ∞, i.e.,
V (c0n | Qn) − V (c0 | Qn) converges to zero. Hence, by uniform continuity
Assumption ACI for the mapping θ(·), θ(FV (c0n|Qn))−θ(FV (c0|Qn)) → 0. Thus,
asymptotic control of the Type I error rate θ(FV (c0n|Qn)) follows from asymp-
totic control of the Type I error rate θ(FV (c0|Qn)), as established in Theorem 1.

2

The next lemma can be applied to prove asymptotic Type I error control
for Procedures 1 and 2, based on a consistent estimator Q0n of the null dis-
tribution Q0 = Q0(P ) defined in Theorem 2, without requiring assumption
(33) of Corollary 1. In this special case, one can define Q̃n as the distribu-
tion of the intermediate random vectors Z̃n used in the proof of Theorem
2. Under the assumptions of Theorems 3 and 4, the estimated single-step
cut-offs c0n = c(Q0n, α) converge to c0 = c(Q0, α). The lemma then shows
that lim supn θ(FV (c0n|Qn)) ≤ θ(FV (c0|Q0)).

Lemma 2 Consider a sequence of m-vectors {c0n} ∈ IRm, with limit c0 ∈
IRm, i.e., c0n(j) → c0(j), as n → ∞, ∀ j = 1, . . . ,m. Let Q0 be an m-
variate distribution that satisfies the continuity set assumption of Lemma 1,
and suppose that Q̃n is an m-variate distribution that converges weakly to Q0

and that dominates a third m-variate distribution Qn on the set S0 of true
null hypotheses, i.e., such that Qn,S0 ≥ Q̃n,S0. Then,

lim sup
n→∞

θ(FV (c0n|Qn)) ≤ θ(FV (c0|Q0)).

Proof of Lemma 2. Define subsets AS0,n ⊆ IRm by

AS0,n ≡

{
z ∈ IRm :

∣∣∣∣∣∑
j∈S0

I(z(j) > c0n(j))− I(z(j) > c0(j))

∣∣∣∣∣ > 0

}
.
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By the domination of Qn by Q̃n and monotonicity Assumption AMI for
the Type I error rate mapping θ(·), it follows that, for all n, θ(FV (c0n|Qn)) ≤
θ(FV (c0n|Q̃n)). From Lemma 1, PrQ̃n

(V (c0n | Q̃n) 6= V (c0 | Q̃n)) = Q̃n(AS0,n) →
0. Thus, by uniform continuity Assumption ACI for the mapping θ(·), we
have θ(FV (c0n|Q̃n)) − θ(FV (c0|Q̃n)) → 0. Also, by weak convergence of Q̃n to
Q0, θ(FV (c0|Q̃n))− θ(FV (c0|Q0)) → 0. Hence,

lim sup
n→∞

θ(FV (c0n|Qn)) ≤ lim sup
n→∞

θ(FV (c0n|Q̃n)) = θ(FV (c0|Q0)).

2

Note that, for an estimator Q0n of the null distribution Q0, the consistency
results in Theorems 3 and 4 and Corollary 1 are conditional on the empirical
distribution for an infinite sequence X∞ = (X1, X2, . . .) ∼ P∞. That is, the

results apply for every X∞ ∼ P∞ for which Q0n
L⇒ Q0. Consequently, if

Q0n
L⇒ Q0, P∞-a.s., then the above consistency results hold P∞-a.s. Under

regularity conditions, bootstrap estimators Q0n of the null distribution Q0

are consistent, in the sense that Q0n converges weakly to Q0, conditional
on the empirical distribution Pn (van der Vaart and Wellner, 1996). Thus,
under such regularity conditions, the consistency results in Theorems 3 and
4 and Corollary 1 hold P∞-a.s. for bootstrap-based analogues of Procedures
1 and 2.

4.2 Bootstrap estimation of the null distribution

The null distribution Q0 = Q0(P ) of Theorem 2 can be estimated with the
non-parametric or model-based bootstrap. Let P ?

n denote an estimator of the
true data generating distribution P . For the non-parametric bootstrap, P ?

n is
simply the empirical distribution Pn, that is, samples of size n are drawn at
random with replacement from the observed X1, . . . , Xn. For the model-based
bootstrap, P ?

n is based on a model M for the data generating distribution P ,
such as the family of m-variate Gaussian distributions.

A bootstrap sample consists of n i.i.d. realizations, X#
1 , . . . , X#

n , of a
random variable X# ∼ P ?

n . Denote the m-vector of test statistics computed
from such a bootstrap sample by T#

n = (T#
n (j) : j = 1, . . . ,m). The null

distribution Q0 proposed in Theorem 2 can be estimated by the distribution
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of the null-value shifted and scaled bootstrap statistics

Z#
n (j) ≡

√
min

(
1,

τ0(j)

V arP ?
n
[Tn

#(j)]

)(
T#

n (j) + λ0(j)− EP ?
n
[Tn

#(j)]
)
. (34)

In practice, one can only approximate the distribution of Z#
n = (Z#

n (j) : j =
1, . . . ,m) by an empirical distribution over B bootstrap samples drawn from
P ?

n , as described next in Procedure 3.

Procedure 3. Bootstrap estimation of null distribution Q0.

1. Generate B bootstrap samples, (Xb
1, . . . , X

b
n), b = 1, . . . , B. For the

bth sample, the Xb
i , i = 1, . . . , n, are n i.i.d. realizations of a random

variable X# ∼ P ?
n .

2. For each bootstrap sample, compute an m-vector of test statistics,
T b

n = (T b
n(j) : j = 1, . . . ,m), which can be arranged in an m × B

matrix, T =
(
T b

n(j)
)
, with rows corresponding to the m hypotheses

and columns to the B bootstrap samples.

3. Compute row means and variances of the matrix T, to yield estimates
of E[Tn(j)] and V ar[Tn(j)], j = 1, . . . ,m.

4. Obtain an m × B matrix, Z =
(
Zb

n(j)
)
, of null-value shifted and

scaled bootstrap statistics Zb
n(j), as in Theorem 2, by row-shifting

and scaling the matrix T using the bootstrap estimates of E[Tn(j)]
and V ar[Tn(j)] and the user-supplied null-values λ0(j) and τ0(j).

5. The bootstrap estimate Q0n of the null distribution Q0 from Theorem
2 is the empirical distribution of the columns Zb

n of matrix Z.
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Procedure 4. Bootstrap estimation of common quantiles for Pro-
cedure 1 for gFWER control.

0. Apply Procedure 3 to generate an m × B matrix, Z =
(
Zb

n(j)
)
, of

null-value shifted and scaled bootstrap statistics Zb
n(j). The boot-

strap estimate Q0n of the null distribution Q0 from Theorem 2 is the
empirical distribution of the columns Zb

n of matrix Z.

1. For Procedure 1, the bootstrap common-quantile cut-offs are simply
the row quantiles of the matrix Z. That is, dj(Q0n, δ) is the δ–quantile
of the B-vector (Zb

n(j) : b = 1, . . . , B) of bootstrap statistics for H0j

dj(Q0n, δ) ≡ inf

{
z :

1

B

B∑
b=1

I(Zb
n(j) ≤ z) ≥ δ

}
, j = 1, . . . ,m.

2. For a test with nominal level α ∈ (0, 1), δ is chosen as

δ0n(α) ≡ inf{δ : θ(FR(d(Q0n,δ)|Q0n)) ≤ α}.

That is, δ0n(α) corresponds to the smallest cut-offs d(Q0n, δ) such that
the value of the mapping θ(·), applied to the distribution of the num-
ber of rejections R(d(Q0n, δ) | Q0n), under the bootstrap distribution
Q0n, is at most α.

In the case of gFWER control, and for a (limit) null distribution Q0

with continuous and strictly monotone marginal distributions, (1 −
δ0n(α)) is the α–quantile of the bootstrap estimate of the distribution
of the (k+1)st ordered unadjusted p-value (Section 3.3.3). Specifically,
δ0n(α) is obtained as follows.

(a) Compute an m × B matrix, P =
(
P b

n(j)
)
, of bootstrap unad-

justed p-values, by row-ranking the matrix Z, i.e., by replacing
each Zb

n(j) by its rank over the B bootstrap samples, where 1
corresponds to the largest value of Zb

n(j) and B the smallest.

(b) For each column of the matrix P, compute the (k +1)st smallest
p-value, P ◦ b

n (k+1). For FWER control (k = 0), simply compute
column minima.

(c) The estimate (1 − δ0n(α)) is the α–quantile of the B-vector
(P ◦ b

n (k + 1) : b = 1, . . . , B).
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Procedure 5. Bootstrap estimation of common cut-offs for
Procedure 2 for gFWER control.

0. Apply Procedure 3 to generate an m × B matrix, Z =
(
Zb

n(j)
)
, of

null-value shifted and scaled bootstrap statistics Zb
n(j). The boot-

strap estimate Q0n of the null distribution Q0 from Theorem 2 is the
empirical distribution of the columns Zb

n of matrix Z.

1. In the case of gFWER control, and for a (limit) null distribution
Q0 with continuous and strictly monotone marginal distributions,
the bootstrap common cut-off cj(Q0n, α) = e(Q0n, α) is equal to the
(1 − α)–quantile of the bootstrap estimate of the distribution of the
(k + 1)st ordered component of Z ∼ Q0 (Section 3.3.3). Specifically,
e(Q0n, α) is obtained as follows.

(a) For each column of the matrix Z, compute the (k + 1)st largest
statistic Z◦ b

n (k+1). For FWER control (k = 0), simply compute
column maxima.

(b) The estimated common cut-off e(Q0n, α) is the (1− α)–quantile
of the B-vector (Z◦ b

n (k + 1) : b = 1, . . . , B).

5 Examples

5.1 t-statistics for single-parameter hypotheses

In this section, we consider testing m one-sided single-parameter null hy-
potheses of the form H0j = I(µ(j) ≤ µ0(j)), against alternative hypotheses
H1j = I(µ(j) > µ0(j)), where µ(j) = µj(P ) is a real-valued parameter,
j = 1, . . . ,m. As in Section 2.1.4, consider t-statistics

Tn(j) ≡
√

n
µn(j)− µ0(j)

σn(j)
, (35)

where µn = (µn(j) : j = 1, . . . ,m) is an asymptotically linear estimator of the
parameter m-vector µ = (µ(j) : j = 1, . . . ,m), with m-dimensional vector
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influence curve, IC(X | P ) = (ICj(X | P ) : j = 1, . . . ,m), such that

µn(j)− µ(j) =
1

n

n∑
i=1

ICj(Xi | P ) + oP (1/
√

n), (36)

and σ2
n(j) is a consistent estimator of σ2(j) ≡ E[IC2

j (X | P )], j = 1, . . . ,m.
Large values of Tn(j) provide evidence against H0j = I(µ(j) ≤ µ0(j)). Two-
sided tests of H0j = I(µ(j) = µ0(j)) against alternatives H1j = I(µ(j) 6=
µ0(j)) can be handled similarly, by taking absolute values of the test statistics
Tn(j). Next, we propose a null distribution Q∗

0, that provides asymptotic
control of Type I error rates of the form θ(FVn), when used in Procedures 1
and 2.

5.1.1 Null distribution

Theorem 5 The test statistics Tn = (Tn(j) : j = 1, . . . ,m) satisfy asymp-
totic null domination Assumption AQ0 of Theorem 1, where the null distri-
bution Q∗

0 = Q∗
0(P ) is the m-variate Gaussian distribution N(0, ρ(P )) and

ρ(P ) is the correlation matrix of the vector influence curve IC(X | P ). Thus,
by Theorem 1, single-step Procedures 1 and 2, based on Tn and the null dis-
tribution Q∗

0, provide asymptotic control of general Type I error rates θ(FVn),
for the test of single-parameter null hypotheses of the form H0j = I(µ(j) ≤
µ0(j)), against alternative hypotheses H1j = I(µ(j) > µ0(j)), j = 1, . . . ,m.

Proof of Theorem 5. We verify Assumption AQ0 of Theorem 1 for the test
statistics Tn of equation (35) and the null distribution N(0, ρ(P )). Firstly,
note that the Tn(j) can be rewritten as

Tn(j) =
√

n
µn(j)− µ(j)

σn(j)
+
√

n
σ(j)

σn(j)

µ(j)− µ0(j)

σ(j)
(37)

= Z∗
n(j) +

σ(j)

σn(j)
dn(j), j = 1, . . . ,m,

in terms of deterministic shifts, dn(j) ≡
√

nµ(j)−µ0(j)
σ(j)

, and standardized statis-

tics, Z∗
n(j) ≡

√
nµn(j)−µ(j)

σn(j)
. By condition (36), the Central Limit Theorem,

and Slutsky’s Theorem, we have that

Z∗
n

L⇒ Z∗ ∼ Q∗
0(P ) ≡ N(0, ρ(P )),
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where ρ(P ) is the correlation matrix of the vector influence curve IC(X | P ).
For j ∈ S0, dn(j) ≤ 0, so that Tn(j) ≤ Z∗

n(j). Thus, for all c = (cj : j =
1, . . . ,m) ∈ IRm and x ∈ {0, . . . ,m},

lim inf
n→∞

Pr

(∑
j∈S0

I(Tn(j) > cj) ≤ x

)

≥ lim inf
n→∞

Pr

(∑
j∈S0

I(Z∗
n(j) > cj) ≤ x

)

= Pr

(∑
j∈S0

I(Z∗(j) > cj) ≤ x

)
,

and the main Assumption AQ0 is satisfied by using Q∗
0. 2

Comparison to general proposal from Theorem 2. The above the-
orem involves a null distribution Q∗

0 that was derived specifically in terms
of the t-statistics in equations (35) and (36). It turns out that, under mild
regularity conditions, this null distribution Q∗

0 corresponds to the general
proposal Q0 in Theorem 2, with null-values λ0(j) ≡ 0 and τ0(j) ≡ 1. To
see this, consider the simple known variance case, σn(j) ≡ σ(j). Then,
E[Tn(j)] = dn(j), V ar[Tn(j)] = 1, and Cov[Tn] = Cor[Tn] = ρ(P ). Hence,
Tn(j) = Z∗

n(j) + E[Tn(j)]. The null distribution Q∗
0 of Theorem 5 is the

asymptotic distribution of the m-vector Z∗
n, that is, the N(0, ρ(P )) distribu-

tion. For null-values λ0(j) ≡ 0 and τ0(j) ≡ 1, and in the known variance
case, the m-vector Zn defining the general null distribution Q0 in Theorem
2 reduces to Z∗

n. Hence, Q0(P ) = Q∗
0(P ) = N(0, ρ(P )).

5.1.2 Estimation of the null distribution

One can exploit the specific form of the t-statistics defined by equations
(35) and (36) to derive a consistent estimator of the null distribution Q∗

0 =
N(0, ρ(P )) as follows.

When the m-vector influence curve IC(X | P ) = (ICj(X | P ) : j =
1, . . . ,m) for the estimator µn is available (e.g., tests of means and corre-
lations below), one can estimate Q∗

0 by the m-variate Gaussian distribution
Q∗

0n = N(0, ρn), where ρn is the correlation matrix corresponding to the
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m×m estimated IC covariance matrix,

Σn ≡
1

n

n∑
i=1

ICn(Xi)ICT
n (Xi), (38)

and ICn(X) = (ICjn(X) : j = 1, . . . ,m) is an estimator of IC(X | P ).
In cases where the influence curve is not readily available, ρ(P ) can

be estimated with the bootstrap as follows. For each bootstrap sample,
X#

1 , . . . , X#
n ∼ P ?

n , compute the estimator µ#
n . A bootstrap estimator of the

correlation matrix ρ(P ) is given by the covariance matrix ρn = CovP ?
n
[Zn

#]
of the standardized statistics Z#

n

Z#
n (j) ≡

√
n

(µ#
n (j)− EP ?

n
[µn

#(j)])√
V arP ?

n
[µn

#(j)]
, j = 1, . . . ,m. (39)

The estimated null distribution is then given by Q∗
0n = N(0, ρn). A bootstrap

estimator of the null distribution Q∗
0 is also provided by the joint distribution

of the standardized statistics Z#
n . Note that, when an estimator of the IC is

available, using the bootstrap to estimate ρ(P ) does not necessarily pay off
over direct estimation based on the sample. When the correlation matrix is
sparse, shrinkage estimation methods may be beneficial.

Alternately, a consistent estimator of the null distribution Q0 can be
obtained using bootstrap Procedure 3 of Section 4, which follows the general
construction of Theorem 2, with null-values λ0(j) ≡ 0 and τ0(j) ≡ 1. As
mentioned at the beginning of Section 4, above, one of the main advantages
of a parametric estimator Q∗

0n = N(0, ρn), is that it is continuous and hence
does not suffer from the discreteness of non-parametric bootstrap estimators.
Similar issues arise for the F -statistics discussed in Section 5.2.

5.1.3 Example: Tests of means

A familiar testing problem, that falls within the single-parameter hypoth-
esis testing framework, is that where X1, . . . , Xn are n i.i.d. random d-
vectors, X ∼ P , and the parameter of interest is the mean vector µ =
µ(P ) = E[X] = (µ(j) : j = 1, . . . , d), where µ(j) = µj(P ) ≡ E[X(j)].
The m = d null hypotheses, H0j = I(µ(j) ≤ µ0(j)), then refer to indi-
vidual components of the mean vector µ and the test statistics Tn(j) are
the usual one-sample t-statistics, where µn(j) = X̄n(j) = 1

n

∑
i Xi(j) and

σ2
n(j) = 1

n

∑
i(Xi(j) − X̄n(j))2 are empirical means and variances for the
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d components, respectively. In this simple case, the components of the m-
vector influence curve are ICj(X | P ) = X(j)−µ(j) and can be estimated by
ICjn(X) = X(j)−X̄n(j). Thus, a consistent estimator of Q∗

0 is the m-variate
Gaussian distribution, N(0, ρn), where ρn is the m × m sample correlation
matrix.

5.1.4 Example: Tests of correlations

Another common testing problem covered by this framework is that where
the parameter of interest is the d×d correlation matrix for a random d-vector
X ∼ P : Γ = Γ(P ) = (γjk(P ) : j, k = 1, . . . , d), where γ(j, k) = γjk(P ) ≡
Cor[X(j), X(k)]. Suppose we are interested in testing the m = d(d − 1)/2
null hypotheses that the d components of X are uncorrelated, that is, null
hypotheses H0,jk = I(γ(j, k) = 0), j = 1, . . . , d, k = j + 1, . . . , d. Common
test statistics for this problem are Tn(j, k) ≡

√
nγn(j, k), where γn(j, k) are

the sample correlations. As discussed in Westfall and Young (1993), Example
2.2, p. 43, subset pivotality fails for this testing problem. To see this, consider
the simple case where d = 3 and assume that H0,12 and H0,13 are true, so that
γ(1, 2) = γ(1, 3) = 0. Then, the joint distribution of (Tn(1, 2), Tn(1, 3)) is
asymptotically normal with mean vector zero, variance one, and correlation
γ(2, 3), and thus depends on the truth or falsity of the third hypothesis H0,23.
In other words, the covariance matrix of the vector influence curve for the
sample correlations is not the same under the true P as it is under a null
distribution P0 for which γ(j, k) ≡ 0, ∀j 6= k. Tests of correlations thus
provide an example where standard procedures based on subset pivotality
fail, while procedures based on the t-statistics specific null distribution from
Theorem 5 or the general construction from Theorem 2 achieve the desired
Type I error control.

The influence curves for the sample correlations γn(j, k) can be obtained
by applying the Delta-method to the function f(η(j, k)) defined as follows

γ(j, k) = f(η(j, k)) ≡ µ(j, k)− µ(j)µ(k)√
µ(j, j)− µ2(j)

√
µ(k, k)− µ2(k)

,

where η(j, k) = ηjk(P ) is the 5× 1 parameter vector
η(j, k) ≡ [µ(j), µ(k), µ(j, j), µ(k, k), µ(j, k)]T , µ(j) = µj(P ) ≡ E[X(j)], and
µ(j, k) = µjk(P ) ≡ E[X(j)X(k)], j, k = 1, . . . , d. Let f ′(η) denote the 1× 5
gradient vector of f(η). Then,

γn(j, k)− γ(j, k) = f ′(η(j, k))[ηn(j, k)− η(j, k)] + oP (1/
√

n),
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where ηn(j, k) = [µn(j), µn(k), µn(j, j), µn(k, k), µn(j, k)]T is a 5×1 estimator
of η(j, k) based on the sample moments. Hence, the influence curve for the
estimator γn(j, k) is

ICjk(X | P ) = f ′(η(j, k))(η1(j, k)− η(j, k))

= f ′(η(j, k))
[
X(j), X(k), X2(j), X2(k), X(j)X(k)

]T
−f ′(η(j, k))

[
µ(j), µ(k), µ(j, j), µ(k, k), µ(j, k)

]T
.

5.1.5 Example: Tests of regression parameters

Suppose X1, . . . , Xn are n i.i.d. random (m+1)-vectors, with X = (X(1), . . . , X(m), Y ) ∼
P , and consider the following model for the conditional expected value of the
outcome Y given individual explanatory variables X(j)

E[Y | X(j)] = g(X(j) | β(j)), j = 1, . . . ,m, (40)

where β(j) = (β0(j), β1(j)) are the regression coefficients for variable X(j).
The parameter vector of interest is the m-vector of slope parameters, β1 =
(β1(j) : j = 1, . . . ,m), and we wish to test the m null hypotheses H0j =
I(β1(j) = 0), j = 1, . . . ,m. One can estimate the regression parameters β(j)
for each variable X(j) using the method of least squares, that is, by seeking

β(j) that minimizes the sum of squared residuals,
∑

i

(
Yi− g(Xi(j) | β(j))

)2
.

The least squares estimator, βn(j) = (β0n(j), β1n(j)), is obtained by solving
the following equation for β

0 =
∂

∂β

n∑
i=1

(
Yi − g(Xi(j) | β)

)2

,

that is, 0 =
1

n

n∑
i=1

(
∂

∂β
g(Xi(j) | β)

)(
Yi − g(Xi(j) | β)

)
.

Under regularity conditions, one can show that

βn(j)−β(j) =
1

n

n∑
i=1

c−1(β(j))

(
∂

∂β
g(Xi(j) | β)

)∣∣∣∣
β=β(j)

(
Yi−g(Xi(j) | β(j))

)
+oP (1/

√
n),

where

c(β) ≡ E

 (
∂

∂β0
g(X(j) | β)

)2 (
∂

∂β0
g(X(j) | β)

)(
∂

∂β1
g(X(j) | β)

)
(

∂
∂β0

g(X(j) | β)
)(

∂
∂β1

g(X(j) | β)
) (

∂
∂β1

g(X(j) | β)
)2

 .
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Let ICj(X | P ) = ICj(X | β(j)) =
(
ICj0(X | β(j)), ICj1(X | β(j))

)
denote

the two-dimensional vector influence curve for the least squares estimator
βn(j) of the regression parameters corresponding to variable X(j). From the
above expansion

ICj(X | β(j)) = c−1(β(j))

(
∂

∂β
g(X(j) | β)

)∣∣∣∣
β=β(j)

(
Y − g(X(j) | β(j))

)
.

(41)
The m-dimensional vector influence curve for the least squares estimators,
β1n = (β1n(j) : j = 1, . . . ,m), of the m slope parameters is

IC(X | P ) = (ICj1(X | β(j)) : j = 1, . . . ,m).

The covariance matrix of the vector influence curve IC(X | P ) is

Σ(P ) = E
[
IC(X | P )ICT (X | P )

]
and can be estimated as discussed in Section 5.1.2, using the sample covari-
ance matrix based on an estimator ICn(X) of the vector influence curve.

E.g. Linear regression. A common model for a continuous outcome Y is
the linear model

E[Y | X(j)] = g(X(j) | β(j)) = β0(j) + β1(j)X(j), j = 1, . . . ,m.

In this case, the influence curves are given by

ICj(X | β(j)) =
1

V ar[X(j)]

[
E[X2(j)] −E[X(j)]
−E[X(j)] 1

] [
1

X(j)

](
Y−β0(j)−β1(j)X(j)

)
.

E.g. Logistic regression. For a binary outcome Y ∈ {0, 1}, the logistic
model is

Pr(Y = 1 | X(j)) = g(X(j) | β(j)) =
exp(β0(j) + β1(j)X(j))

1 + exp(β0(j) + β1(j)X(j))
, j = 1, . . . ,m.

Here,(
∂

∂β
g(X(j) | β)

)∣∣∣∣
β=β(j)

=
exp(β0(j) + β1(j)X(j))(

1 + exp(β0(j) + β1(j)X(j))
)2

[
1

X(j)

]
,

and the influence curves can be derived by substituting for ∂
∂β

g(X(j) | β) in

equation (41), above.
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5.2 F -statistics for multiple-parameter hypotheses

Consider random m-vectors Xk ∼ Pk, from K different populations with
data generating distributions Pk, k = 1, . . . , K. Denote the mean vector and
covariance matrix in population k by µk ≡ E[Xk] and Σk ≡ Cov[Xk], respec-
tively. We are interested in testing the m null hypotheses, H0j = I(µ1(j) =
µ2(j) = . . . = µK(j)), that the jth component of the mean vectors is con-
stant across populations, j = 1, . . . ,m. Suppose we observe i.i.d. samples,
Xk,1, . . . , Xk,nk

, of size nk from population k, k = 1, . . . , K. Let n ≡
∑

k nk

denote the total sample size and δk,n ≡ nk/n the proportion of observations
from population k in the sample, where it is assumed that ∀k, δk,n → δk > 0
as n →∞.

As test statistics one can use the well-known F -statistics

Tn(j) ≡ 1/(K − 1)
∑K

k=1 nk(X̄k,nk
(j)− X̄n(j))2

1/(n−K)
∑K

k=1

∑nk

i=1(Xk,i(j)− X̄k,nk
(j))2

, j = 1, . . . ,m,

(42)
where X̄k,nk

denotes the sample mean vector for population k and X̄n =∑
k δk,nX̄k,nk

denotes the overall mean vector. Next, we propose an F -specific
null distribution Q∗

0 that provides asymptotic control of Type I error rates
of the form θ(FVn) when used in Procedures 1 and 2.

5.2.1 Null distribution

Theorem 6 The F -statistics Tn = (Tn(j) : j = 1, . . . ,m) satisfy asymptotic
null domination Assumption AQ0 in Theorem 1, where the null distribution
Q∗

0 = Q∗
0(P ) is the joint distribution of a random m-vector Z∗ = (Z∗(j) :

j = 1, . . . ,m), of quadratic forms Z∗(j), defined as

Z∗(j) ≡ 1

(K − 1)
∑K

k=1 δkσ2
k(j)

 K∑
k=1

(1− δk)Y
2
k (j)−

K∑
k=1

K∑
l=1

k 6=l

√
δkδlYk(j)Yl(j)

 ,

(43)
in terms of K independent Gaussian m-vectors Yk = (Yk(j) : j = 1, . . . ,m) ∼
N(0, Σk). In matrix form,

Z∗(j) = Y T (j)A(j)Y (j), j = 1, . . . ,m, (44)
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where the Y (j) are K-vectors, Y (j) = (Yk(j) : k = 1, . . . , K), and A(j) is a
symmetric K ×K matrix with entries

Akl(j) ≡
1

(K − 1)
∑K

k=1 δkσ2
k(j)

{
(1− δk), if k = l,

−
√

δkδl, if k 6= l.
(45)

Thus, by Theorem 1, single-step Procedures 1 and 2, based on F -statistics
Tn and the null distribution Q∗

0, provide asymptotic control of general Type I
error rates θ(FVn), for the test of multiple-parameter null hypotheses H0j =
I(µ1(j) = µ2(j) = . . . = µK(j)), j = 1, . . . ,m.

In addition, the quadratic forms Z∗(j) have means and variances given
by

E[Z∗(j)] =
1

(K − 1)
∑K

k=1 δkσ2
k(j)

K∑
k=1

(1− δk)σ
2
k(j), (46)

V ar[Z∗(j)] =
2

(K − 1)2(
∑K

k=1 δkσ2
k(j))

2

(( K∑
k=1

(1− 2δk)σ
4
k(j)

)
+
( K∑

k=1

δkσ
2
k(j)

)2)
.

In the special case of constant population variances, σ2
k(j) ≡ σ2(j), then

E[Z∗(j)] = 1, V ar[Z∗(j)] = 2/(K−1), and the quadratic forms (K−1)Z∗(j)
have marginal χ2(K − 1) distributions.

Proof of Theorem 6. Firstly, note that the denominators of the F -statistics
can be written as

Dn(j) =
n

n−K

∑
k

δk,nσ
2
k,nk

(j), j = 1, . . . ,m, (47)

where σ2
k,nk

(j) are consistent estimators of the population variances σ2
k(j),

i.e., of the diagonal elements of covariance matrices Σk, k = 1, . . . , K. Thus,
as n →∞,

Dn(j)
P→ D(j) =

∑
k

δkσ
2
k(j), j = 1, . . . ,m. (48)
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The numerators of the F -statistics Tn(j) can be rewritten as quadratic forms

Nn(j) =
1

K − 1

∑
k

(
(1− δk,n)Yk,nk

(j)−
∑
l 6=k

√
δk,nδl,nYl,nl

(j)

)2

=
1

K − 1

(∑
k

(1− δk,n)Y 2
k,nk

(j)−
∑∑

k 6=l

√
δk,nδl,nYk,nk

(j)Yl,nl
(j)

)
,

where Yk,nk
= (Yk,nk

(j) : j = 1, . . . ,m) are K independent m-vectors defined
by Yk,nk

(j) ≡ √
nk(X̄k,nk

(j) − µ̄(j)) and µ̄(j) =
∑

k δkµk(j), k = 1, . . . , K.
Thus, the F -statistics Tn = (Tn(j) : j = 1, . . . ,m) can be approximated by a
random m-vector Z∗

n = (Z∗
n(j) : j = 1, . . . m) of quadratic forms

Tn(j) ≈ Nn(j)

D(j)

≈ 1

(K − 1)
∑

k δkσ2
k(j)

(∑
k

(1− δk)Y
2
k,nk

(j)−
∑∑

k 6=l

√
δkδlYk,nk

(j)Yl,nl
(j)

)
≡ Z∗

n(j), j = 1, . . . ,m, (49)

that is, by a simple quadratic function f(Y1,n1 , . . . , YK,nK
) = (fj(Y1,n1 , . . . , YK,nK

) :
j = 1, . . . ,m) of the m-vectors Yk,nk

, k = 1, . . . , K. By the Central Limit

Theorem, (Yk,nk
(j) : j ∈ S0)

L⇒ (Yk(j) : j ∈ S0), where the Yk = (Yk(j) : j =
1, . . . ,m) are independent m-vectors with Yk ∼ N(0, Σk), k = 1, . . . , K. For
j /∈ S0, Yk,nk

(j) =
√

nk(X̄k,nk
(j) − µk(j)) +

√
nk(µk(j) − µ̄(j)) converges to

either +∞ or −∞ for some k. Applying the Continuous Mapping Theorem
to the function (fj(Y1,n1 , . . . , YK,nK

) : j ∈ S0) proves that (Tn(j) : j ∈ S0)
converges in distribution to (Z∗(j) : j ∈ S0), where Z∗ = f(Y1, . . . , YK)
and the Yk are independent m-vectors with Yk ∼ N(0, Σk), k = 1, . . . , K.
That is, the limit distribution of (Tn(j) : j ∈ S0) is directly implied by the
multivariate Gaussian distributions N(0, Σk), where Σk denotes the m ×m
covariance matrix of the data generating distribution Pk for the kth popula-
tion, k = 1, . . . , K.

Therefore, the F -statistics Tn satisfy Assumption AQ0 of Theorem 1,
where the null distribution Q∗

0 = Q∗
0(P ) is the joint distribution of the ran-

dom m-vector Z∗ = (Z∗(j) : j = 1, . . . ,m) of quadratic forms Z∗(j) =
fj(Y1, . . . , YK), defined in terms of K independent Gaussian m-vectors, Yk ∼
N(0, Σk), k = 1, . . . , K.
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The moments of Z∗(j) are obtained from standard results on quadratic
forms (Theorem 1, p. 55, and Corollary 1.3, p. 57, in Searle (1971)). In the
special case of constant variances across populations, Diag(Σk) ≡ Diag(Σ),
the matrices (K−1)A(j)Cov[Y (j)] are idempotent, and hence, the quadratic
forms (K − 1)Z∗(j) have marginal χ2(K − 1) distributions (Theorem 2, p.
57, in Searle (1971)).

2

The above theorem involves a null distribution Q∗
0 that was derived specif-

ically in terms of the F -statistics Tn in equation (42). In this case, (Tn(j) :

j ∈ S0)
L⇒ Q∗

0,S0
, but for j /∈ S0, Tn(j) → ∞. Key Assumption AQ0 in

Theorem 1 is nonetheless satisfied, as it only concerns test statistics corre-
sponding to the true null hypotheses (i.e., j ∈ S0). Convergence to Q∗

0 is not
needed for the false null hypotheses. Note that the distribution Q∗

0 is en-
tirely determined by the covariance matrices Σk and proportions δk (via the
matrices A(j) and the N(0, Σk) distribution for the Yk), thus the main task
is to estimate these quantities from the sample. Properties of the marginal
distributions Q∗

0j follow from standard univariate results on quadratic forms.
The main contribution of the theorem is that it provides a null distribution
Q∗

0 resulting in multiple testing procedures that take into account the joint
distribution of the test statistics, i.e., the correlation structure of the null
distribution Q∗

0 is implied by the correlation structure of the data generating
distributions Pk, via Σk in the definition of the quadratic forms.

Gaussian distributions with constant population variances. In the
special case when the Xk have Gaussian distributions with common covari-
ance matrix Σ, i.e., Xk ∼ N(µk, Σ), the test statistics have marginal F -
distributions (Section 2.4, Searle (1971)): Tn(j) ∼ F (ν1, ν2, λn(j)), with de-
grees of freedom ν1 = K − 1 and ν2 = n−K, and non-centrality parameters

λn(j) =
1

σ2(j)

∑
k

nk(µk(j)− µ̄(j))2, µ̄(j) =
∑

k

δkµk(j). (50)

For the true null hypotheses, i.e., for j ∈ S0, λn(j) ≡ 0. For the false null
hypotheses (corresponding to non-local alternatives), i.e., for j /∈ S0, the
non-centrality parameters λn(j) → ∞ as n → ∞. In addition, as n → ∞,
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ν2 →∞. The means and variances of the F -statistics are given by

E[Tn(j)] =
(ν1 + λn(j))ν2

ν1(ν2 − 2)
→

{
1, if j ∈ S0

∞, if j /∈ S0

(51)

and

V ar[Tn(j)] =
2ν2

2(ν
2
1 + (2λn(j) + ν2 − 2)ν1 + λn(j)(λn(j) + 2ν2 − 4))

ν2
1(ν2 − 4)(ν2 − 2)2

→

{
2/(K − 1), if j ∈ S0

∞, if j /∈ S0.
(52)

Also, (K − 1)Tn(j)
L⇒ χ2(K − 1, λn(j)).

Comparison to general proposal from Theorem 2. Instead of the
F -specific distribution Q∗

0 from Theorem 6, one could use the general con-
struction in Theorem 2, whereby the null distribution Q0 is defined as the
limit distribution of

Zn(j) ≡

√
min

(
1,

τ0(j)

V ar[Tn(j)]

)(
Tn(j)+λ0(j)−E[Tn(j)]

)
, j = 1, . . . ,m.

Here, the null-values λ0(j) and τ0(j) are based on the means and variances of
the asymptotic distribution of the test statistics Tn for the true null hypothe-
ses, i.e., on E[Z∗(j)] and V ar[Z∗(j)], given in equation (46) of Theorem 6.
In the special case of constant variances, σ2

k(j) ≡ σ2(j), the null-values are
independent of the unknown data generating distributions Pk: λ0(j) ≡ 1 and
τ0(j) ≡ 2/(K − 1). Otherwise, one needs to estimate δk and σ2

k(j) from the
sample in order to use equation (46). Note that scaling the test statistics Tn

is important in the construction of Zn, as the F -statistics for non-local alter-
native hypotheses converge to infinity. Without the scaling, one could have
asymptotically infinite cut-offs and hence no power against the alternatives.

The F -specific null distribution Q∗
0 and the general null distribution Q0

from Theorem 2 are the same for the true null hypotheses (j ∈ S0), but may
differ for the false null hypotheses. Thus, in choosing between Q∗

0 and Q0,
the main issue is power at local alternatives (for non-local alternatives, the
asymptotic power is one for both distributions).
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5.2.2 Estimation of the null distribution

A consistent estimator of the general null distribution Q0 of Theorem 2 can
be obtained using bootstrap Procedure 3 of Section 4, with null-values λ0(j)
and τ0(j) based on equation (46) of Theorem 6. Unless the variances σ2

k(j)
are constant across populations, this involves estimating Diag(Σk) and δk by
their empirical counterparts.

Alternately, one can exploit specific properties of F -statistics to derive
a consistent estimator of the null distribution Q∗

0 of Theorem 6. In this
approach, the samples Xk,1, . . . , Xk,nk

, k = 1, . . . , K, are used to derive esti-
mators Σk,nk

and δk,n = nk/n, of the population covariance matrices Σk and
proportions δk, respectively. The null distribution Q∗

0 is then estimated sim-
ply by the distribution of the m-vector of quadratic forms, defined in terms
of independent m-vectors Yk ∼ N(0, Σk,nk

), using the sample analogue of
equation (43). Note that unlike the general bootstrap estimator from Proce-
dure 3, for the null distribution of Theorem 2, this F -specific estimator has
the advantage of being continuous.

A third, F -specific bootstrap-based approach involves resampling the cen-
tered observations, Xk,i − X̄k,nk

, and defining the null distribution as the
bootstrap distribution of the resulting F -statistics. In this method, the null
distribution of the test statistics is based on a data generating null distribu-
tion. The last two approaches provide consistent estimators of the same null
distribution Q∗

0 described in Theorem 6.

6 Strong control, weak control, and subset

pivotality

The multiple testing procedures proposed in this article are concerned with
controlling a specified Type I error rate under only one distribution, namely,
the true underlying data generating distribution P , i.e., the joint distribution
Qn = Qn(P ) of the test statistics Tn implied by P . With such an approach,
the notions of strong and weak control of a Type I error rate therefore become
irrelevant. In this section, we attempt nonetheless to formalize these concepts
and the associated property of subset pivotality, and discuss how they relate
to the approach introduced in Section 2.6.
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6.1 Strong and weak control of a Type I error rate

As discussed in Hochberg and Tamhane (1987), p. 3, and Westfall and Young
(1993), p. 9–10, the multiple testing literature commonly distinguishes be-
tween weak and strong control of a Type I error rate. Weak control refers to
control of the Type I error rate under a data generating distribution P0 that
satisfies the complete null hypothesis, HC

0 =
∏m

j=1 H0j =
∏m

j=1 I(P ∈ Mj),
that all m null hypotheses are true, i.e., under a distribution P0 ∈ ∩m

j=1Mj.
In contrast, strong control, as defined in Westfall and Young (1993), con-
siders all possible subsets Λ0 ⊆ {1, . . . ,m} of null hypotheses and refers to
control of the Type I error rate under distributions satisfying any of these 2m

subsets of null hypotheses. In particular, strong control implies weak control
for Λ0 = {1, . . . ,m}. As detailed below, the definitions of weak and strong
control implicitly assume a mapping, Λ0 → PΛ0 , from subsets Λ0 of null hy-
potheses to data generating distributions, PΛ0 ∈ ∩j∈Λ0Mj, satisfying these
null hypotheses. While strong control does consider the subset S0 = S0(P ) of
true null hypotheses corresponding to the true data generating distribution
P , control under P is not guaranteed, unless the mapping Λ0 → PΛ0 results
in PS0 = P .

We note that in much of the multiple testing literature, Type I error rates
are defined loosely as probabilities given subsets of null hypotheses, rather
than as probabilities under distributions satisfying subsets of null hypotheses.
For example, for control of the family-wise error rate, Westfall and Young
(1993), p. 9, define FWEP as the family-wise error rate “... computed under
the partial null hypothesis (meaning that some subcollection of nulls, say
Hj1 , . . . , Hjt , is true)” and provide the following definition in equation (1.2)

FWEP = Pr(Reject at least one Hi, i = j1, . . . , jt | Hj1 , . . . , Hjt are true).

As discussed in Pollard and van der Laan (2003), such a quantity is not well-
defined, because Type I error rates are parameters of a distribution for the
number of Type I errors (and possibly the total number of rejected hypothe-
ses, as for the FDR) and can only be defined meaningfully with respect to
such a distribution. A more precise definition would be that FWEP is the
Type I error rate under a distribution PΛ0 , defined to satisfy a certain subset
Λ0 = {j1, . . . , jt} of null hypotheses, i.e., for a data generating distribution
PΛ0 ∈ ∩j∈Λ0Mj. This immediately raises the issue of how to map from a
subset Λ0 of null hypotheses to a well-defined data generating distribution
PΛ0 ∈ ∩j∈Λ0Mj. Except in very simple situations (e.g., for null hypothe-
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ses concerning the mean vector of a multivariate Gaussian data generating
distribution), each subset Λ0 of null hypotheses corresponds to a family of
possible distributions. One approach is to define the distribution PΛ0 as a
projection of the true underlying data generating distribution P onto the
submodel ∩j∈Λ0Mj, selecting, for example, the distribution with smallest
Kullback-Leibler divergence with the true P . That is,

PΛ0 = Π(P | ∩j∈Λ0Mj) = argmaxP ′∈∩j∈Λ0
Mj

∫
log

(
dP ′(x)

dµ(x)

)
dP (x),

for a dominating measure µ. Another possibility is to select the distribution
PΛ0 on the conservative boundary of the submodel ∩j∈Λ0Mj. The reader is
referred to Pollard and van der Laan (2003) for a discussion of multivariate
null distributions and proposals for specifying such joint distributions based
on projections of the data generating distribution P onto submodels satis-
fying the null hypotheses. However, as discussed by these authors, in many
testing problems of interest, one simply cannot identify a data generating
null distribution P0 ∈ ∩m

j=1Mj that provides asymptotic (or finite sample)
control of the Type I error rate under the true distribution P . In such cases,
the assumed null distribution Qn,S0(P0) and the true distribution Qn,S0(P )
for the S0-specific subvector (Tn(j) : j ∈ S0) of test statistics have different
limits, that violate the null domination condition for the Type I error rate,
i.e., that result in lim supn θ(FVn) ≥ θ(FV0) = α. Instead, as in the present
article for the test of single-parameter null hypotheses using t-statistics (Sec-
tion 5.1), Pollard and van der Laan (2003) recommend using a test statistics
null distribution Q0, such as the Kullback-Leibler projection of Qn = Qn(P )
onto the space of multivariate Gaussian distributions with mean vector zero.
The latter corresponds with the limit distribution Q∗

0(P ) = N(0, ρ(P )) in
Theorem 5.

As in Section 2.3, consider now a multiple testing procedure based on
test statistics Tn and null distribution Q0. For a level α test, denote the set
of rejected hypotheses by Sn = S(Tn, Q0, α) ⊆ {1, . . . ,m}. The number of
Type I errors under a data generating distribution PΛ0 ∈ ∩j∈Λ0Mj is given
by

Vn(Λ0) ≡ V (Q0 | Qn(PΛ0)) =| S(Tn, Q0, α) ∩ Λ0 |,

where Qn(PΛ0) denotes the joint distribution of the test statistics Tn implied
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by the data generating distribution PΛ0 . For single-step Procedures 1 and 2,

Vn(Λ0) = V (Q0 | Qn(PΛ0)) =
∑
j∈Λ0

I(Tn(j) > cj(Q0, α)),

where c(Q0, α) = (cj(Q0, α) : j = 1, . . . ,m) are cut-offs for the test statistics
derived under the null distribution Q0. Strong control of the Type I error
rate at level α would require that

max
Λ0⊆{1,...,m}

θ(FVn(Λ0)) ≤ α [finite sample strong control](53)

lim sup
n→∞

max
Λ0⊆{1,...,m}

θ(FVn(Λ0)) ≤ α [asymptotic strong control],

where, as defined above, PΛ0 is a data generating distribution satisfying the
subset of null hypotheses Λ0, that is, PΛ0 ∈ ∩j∈Λ0Mj. Thus strong control
involves considering 2m distributions, each of them corresponding to a subset
Λ0 of null hypotheses. Note also that this definition of strong control is
completely dependent on the definition of the mapping Λ0 → PΛ0 . Weak
control corresponds to Λ0 = {1, . . . ,m} and P0 = P{1,...,m}. Control under
the true underlying distribution P does not necessarily follow from strong
control, unless the mapping Λ0 → PΛ0 results in PS0 = P for Λ0 = S0. In
other words, control under the true P could fail under strong control, when
an improper mapping for PS0 is used. In contrast, as discussed in Section
2.6, the methodology proposed in this series of articles is only concerned with
control under the true P , i.e., for asymptotic control we focus on procedures
that satisfy

lim sup
n→∞

θ(FVn) ≤ α,

where Vn = Vn(S0) = V (Q0 | Qn(P )).

6.2 Subset pivotality

In practice, it is not feasible to consider all 2m possible subsets of true null
hypotheses and current single-step or stepwise multiple testing procedures are
typically based on cut-offs derived under a data generating distribution P0

that satisfies the complete null hypothesis, HC
0 =

∏m
j=1 H0j. Strong control,

and in particular control under the truth, is then claimed to follow from weak
control under conditions such as subset pivotality. As stated in Condition 2.1,
p. 42, in Westfall and Young (1993), “The distribution of P has the subset
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pivotality property if the joint distribution of the subvector {Pi : i ∈ K}
is identical under the restrictions ∩i∈KH0i and HC

0 , for all subsets K =
{i1, . . . , ij} of true null hypotheses.” In our notation, K is a subset Λ0 ⊆
{1, . . . ,m} and P refers to the vector (P0n(j) : j = 1, . . . ,m) of unadjusted
p-values (Section 3.3).

As for the definitions of weak and strong control, the definition of sub-
set pivotality implicitly assumes a mapping, Λ0 → PΛ0 , from subsets Λ0 of
null hypotheses to data generating distributions, PΛ0 ∈ ∩j∈Λ0Mj, satisfying
these null hypotheses. The (finite sample) subset pivotality condition for test
statistics can be restated as follows, in terms of distributions PΛ0 , for subsets
Λ0 of null hypotheses,

Qn,Λ0(P0) = Qn,Λ0(PΛ0), ∀Λ0 ⊆ {1, . . . ,m}. (54)

Note that the subset pivotality condition considers all 2m possible subsets Λ0

of {1, . . . ,m}, and not simply the subset Λ0 = S0(P ) corresponding to the
true underlying data generating distribution P . In this sense, when PS0 = P ,
the condition is stronger than needed, since it is only of interest to control
Type I error rates under the true P , that is, the only relevant condition is
Qn,S0(P0) = Qn,S0(P ) for Λ0 = S0. In general, however, subset pivotality may
not guarantee control under the true P , if an improper mapping Λ0 → PΛ0

is used, so that PS0 6= P . Finally, as discussed in Section 2.6, subset pivotal-
ity (equation (54)) differs from our finite sample null domination condition
(equation (12)) which: (i) only considers the subset Λ0 = S0(P ); (ii) does
not require the test statistics null distribution Q0 to be defined in terms of
a data generating null distribution P0, as Qn(P0); and (iii) does not require
equality of distributions, but the weaker domination: Q0,S0 ≤ Qn,S0(P ).

Software

Software implementing the bootstrap single-step and step-down multiple
testing procedures will be available in the R package multtest, released
as part of the Bioconductor Project (www.bioconductor.org).
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