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Loss-Based Estimation with Cross-Validation:
Applications to Microarray Data Analysis and

Motif Finding

Sandrine Dudoit, Mark J. van der Laan, Sunduz Keles, Annette M. Molinaro,
Sandra E. Sinisi, and Siew Leng Teng

Abstract

Current statistical inference problems in genomic data analysis involve param-
eter estimation for high-dimensional multivariate distributions, with typically un-
known and intricate correlation patterns among variables. Addressing these in-
ference questions satisfactorily requires: (i) an intensive and thorough search of
the parameter space to generate good candidate estimators, (ii) an approach for
selecting an optimal estimator among these candidates, and (iii) a method for re-
liably assessing the performance of the resulting estimator. We propose a unified
loss-based methodology for estimator construction, selection, and performance
assessment with cross-validation. In this approach, the parameter of interest is
defined as the risk minimizer for a suitable loss function and candidate estimators
are generated using this (or possibly another) loss function. Cross-validation is ap-
plied to select an optimal estimator among the candidates and to assess the overall
performance of the resulting estimator. This general estimation framework en-
compasses a number of problems which have traditionally been treated separately
in the statistical literature, including multivariate outcome prediction and density
estimation based on either uncensored or censored data. This article provides an
overview of the methodology and describes its application to two problems in ge-
nomic data analysis: the prediction of biological and clinical outcomes (possibly
censored) using microarray gene expression measures and the identification of
regulatory motifs (i.e., transcription factor binding sites) in DNA sequences.
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1 Introduction

1.1 Motivation

Our general estimation methodology was motivated by current statistical in-
ference problems in the analysis of genomic data, such as: the prediction of
biological and clinical outcomes (possibly censored) using microarray gene
expression measures, the identification of regulatory motifs (i.e., transcrip-
tion factor binding sites) in DNA sequences, and the genetic mapping of
complex traits using single nucleotide polymorphisms (SNP).

Prediction of biological and clinical outcomes using microarray
measures. Microarrays are high-throughput biological assays that can be
used to measure the abundance of nucleic acids (DNA or RNA) on a genomic
scale in different biological samples. In cancer research, for example, interest
is in relating microarray measures of gene expression to biological and clinical
outcomes in order to gain a more thorough understanding of the molecular
basis of the disease and eventually develop better diagnosis and treatment
strategies. Outcomes (phenotypes) of interest include tumor class, response
to treatment, patient survival, and can be either polychotomous or continu-
ous, censored or uncensored. Explanatory variables (genotypes), or features,
include measures of transcript (i.e., mRNA) levels or DNA copy number for
thousands of genes, treatment, epidemiological and histopathological vari-
ables. An important and immediate question is the choice of a good predic-
tor, i.e., a function of the explanatory variables that has low error (i.e., risk)
when used to predict the outcome. Should one use linear discriminant anal-
ysis, trees, support vector machines (SVMs), neural networks, or some other
approach to construct this predictor? Predictor selection includes the related
problem of variable selection, or feature selection, that is, the identification
of a subset of marker genes to be used in the predictor function. Estimator
selection problems in microarray data analysis follow the so-called “small n,
large p” paradigm: thousands of explanatory variables are measured for each
observational unit (e.g., patient), but the sample sizes available for estima-
tion purposes are comparatively small.

Identification of regulatory motifs in DNA sequences. Transcription
factors (TF) are proteins that selectively bind to DNA to regulate gene ex-
pression. Transcription factor binding sites, or regulatory motifs, are short
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DNA sequences (5–25 base pairs) in the transcription control region of genes,
i.e., in regions roughly 600–1,000 base pairs upstream of the gene start site
in lower eukaryotes such as yeast. From unaligned DNA sequence data, the
motif finding problem involves estimating motif start sites in individual se-
quences and the motif position specific weight matrix (PWM) (i.e., the distri-
bution of bases at each position in the binding site). Common approaches to
this problem are based on maximum likelihood estimation under a particular
model for the distribution of bases in the motif and background sequences
(Bailey and Elkan, 1994; Keleş et al., 2003b; Lawrence and Reilly, 1990).
Another approach involves the prediction of gene expression levels based on
sequence features, such as pentamers (and their interactions), and relies on
cross-validation to identify motifs with good predictive power for gene ex-
pression levels (Keleş et al., 2002). Both approaches entail the selection of a
good (i.e., low risk for a suitable loss function) model for transcription fac-
tor binding sites. For instance, in likelihood-based methods such as COMODE

(Keleş et al., 2003b), model selection questions concern the distribution of
bases in the motif (constraints on PWM), the distribution of bases in the
background sequences, the motif width, the number of motifs per sequence.

A dominating feature in the above and other statistical inference prob-
lems in genomic data analysis is that they involve parameter estimation for
high-dimensional multivariate distributions, with typically unknown and in-
tricate correlation patterns among variables. Accordingly, statistical models
for the data generating distribution correspond to large parameter spaces.
For instance, for the prediction of clinical outcomes using microarray mea-
sures of gene expression, the parameter space may consist of the set of all
possible linear combinations of tensor products of univariate polynomial ba-
sis functions of the explanatory variables (i.e., thousands of gene expression
measures), in order to allow for higher order interactions among these vari-
ables. Even if it were possible to minimize a suitable error measure (empirical
or cross-validated risk) over the entire parameter space, the resulting esti-
mators would be too variable and ill-defined. Instead, we approximate the
parameter space by a sequence of subspaces of increasing dimension and
generate candidate estimators for each subspace. This approach therefore
requires: (i) an intensive and thorough search of the parameter space to gen-
erate good candidate estimators; (ii) a procedure for selecting an optimal
estimator among these candidates; and (iii) a method for reliably assessing
the performance of the resulting estimator.

3
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1.2 Estimation road map

Parameter estimation problems can be formulated generally and abstractly
as follows. The data consist of realizations of random variables, X1, . . . , Xn,
from an unknown data generating distribution, FX,0. The goal is to use these
data to estimate a parameter ψ0 of the distribution FX,0, where ψ0 is de-
fined as some function of FX,0. That is, we wish to obtain an estimator,

or function of the data, ψ̂, that is close (in risk distance) to the parameter
ψ0. For example, in cancer microarray studies, Xi could consist of a pair
Xi = (Wi, Zi), measured on a patient i, where Wi is a d = 5000-dimensional
vector of microarray measures and Zi is a possibly censored survival time.
The parameter of interest ψ0 could correspond to the d×d correlation matrix
for the gene expression vector W or to the conditional expected value of the
survival time Z given the gene expression vector W .

Our general strategy for data-adaptive estimation is driven by the choice
of a loss function and relies on cross-validation for estimator selection and
performance assessment. Our proposed estimation road map, which covers
censored data situations, can be stated in terms of the following three main
steps. Section 2 elaborates on each of these steps.

1. Definition of the parameter of interest in terms of a loss function. For
the full data structure, define the parameter of interest as the minimizer
of the expected loss, or risk, for a loss function chosen to represent the
desired measure of performance (e.g., mean squared error in regression,
entropy in density estimation). In censored data situations, apply the
general estimating function methodology of van der Laan and Robins
(2002) to map the full, uncensored data loss function into an observed,
censored data loss function having the same expected value and leading
to an efficient estimator of this risk (Section 2.2).

2. Construction of candidate estimators based on a loss function. Define
a finite collection of candidate estimators for the parameter of interest
based on a sieve of increasing dimension approximating the complete
parameter space. For each element of the sieve, the candidate estimator
is chosen as the minimizer of the empirical risk based on the observed
data loss function (e.g., tree-based methods, D/S/A algorithm in Sec-
tion 2.3 with the empirical risk as the objective function).

4
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3. Cross-validation for estimator selection and performance assessment.
Use cross-validation to estimate risk based on the observed data loss
function and to select an optimal estimator among the candidates in
Step 2 (Sections 2.4 and 2.5).

Note that we use the term estimation in a broad sense, to provide a unified
treatment of multivariate prediction and density estimation based on either
uncensored or censored data. Each of these problems can be dealt with ac-
cording to the road map by the choice of a suitable loss function. A number
of common estimation procedures follow the road map in the full data situ-
ation, but depart from it when faced with the obstacle of evaluating the loss
function in the presence of censoring (e.g., classification and regression trees,
where candidates in Step 2 are obtained by recursive binary partitioning of
the covariate space). Here, we argue that one can, and should, also adhere
to the above estimation road map in censored data situations. All that is
required is to replace the full (uncensored) data loss function by an observed
(censored) data loss function with the same expected value, i.e., with the
same risk.

We note also that existing methods for Step 2 are not aggressive enough
for the types of datasets encountered in genomics. In order to account for
higher-order interactions among many variables (e.g., thousands of gene ex-
pression measures in microarray experiments), one needs to consider large
parameter spaces. However, standard approaches either only accommodate
variable main effects or are too rigid to generate a good set of candidate
estimators. For example, while regression trees allow interactions among
variables, the candidate tree estimators are generated according to a limited
set of moves, amounting to forward selection (node splitting) followed by
backward elimination (tree pruning). Instead, we recommend more aggres-
sive and flexible algorithms, such as the D/S/A algorithm of (Molinaro and
van der Laan, 2003; Sinisi and van der Laan, 2003), that at each step allow
not only node splitting, but also node collapsing and substitutions (Section
2.3).

1.3 Outline

The present article provides an overview of our general data-adaptive loss-
based estimation methodology with cross-validation and describes applica-
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tions to the analysis of genomic data. Section 2 discusses the main features of
our estimation road map, including the choice of a loss function (Step 1), the
new D/S/A algorithm for generating candidate estimators (Step 2), cross-
validation estimator selection and performance assessment (Step 3), and a
novel loss-based approach for measuring variable importance. Sections 3 and
4 describe applications of the methodology to the prediction of biological
and clinical outcomes (possibly censored) using microarray gene expression
measures and the identification of regulatory motifs in DNA sequences.

Our general framework and its theoretical foundations are established in
van der Laan and Dudoit (2003). This earlier manuscript proposes a uni-
fied cross-validation methodology for estimator construction, selection and
performance assessment, and in particular provides finite sample results and
asymptotic optimality results concerning cross-validation estimator selection
for general data generating distributions, loss functions (possibly depending
on a nuisance parameter), and estimators. These new theoretical results
have the important practical implication that cross-validation selection can
be used in intensive searches of large parameter spaces, even in finite sam-
ple situations. Special cases and applications are described in a collection
of related articles: estimator selection and performance assessment based on
uncensored data (Dudoit and van der Laan, 2003), estimator selection with
censored data (Keleş et al., 2003a), likelihood-based cross-validation (van der
Laan et al., 2003a), tree-based estimation with censored data (Molinaro et al.,
2004), D/S/A algorithm for generating candidate estimators (Molinaro and
van der Laan, 2003; Sinisi and van der Laan, 2003), supervised detection of
regulatory motifs in DNA sequences (Keleş et al., 2003b).

2 Methods

2.1 Model

2.1.1 Full data structure

In many applications of interest, the full data structure will simply consist
of a pair, X = (W,Z), where W = (W1, . . . ,Wd) is a d-vector of explanatory
variables (e.g., microarray expression measures for thousands of genes) and
Z is a scalar outcome (e.g., survival time, tumor class, quantitative pheno-
type). However, to cover general estimation problems, we define the full data
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structure as a stochastic process, X ≡ X̄(T ) = {X(t) = (R(t), L(t)) : 0 ≤
t ≤ T}, where T denotes either a fixed endpoint or a random survival time,
R(t) ≡ I(T ≤ t), and L(t) is a covariate process. Denote the distribution
of the full data structure X by FX,0, where FX,0 is assumed to belong to a
certain model MF , possibly non-parametric and very large. The covariate
process L(t) may contain time-dependent and time-independent covariates.
Denote the time-independent covariates by W = L(0), a d-dimensional vec-
tor, measured at baseline. For random T , let Z = log T denote the log
survival time. For fixed T , one may also be interested in monitoring Z(t),
t ∈ {t0 = 0, . . . , tm−1 = T}, an m-dimensional outcome process included in
X(t), such as T-cell counts at different timepoints.

2.1.2 Observed data structure

In the observed data world, one rarely sees all of the relevant variables in
the process X = X̄(T ) = {X(t) : 0 ≤ t ≤ T}. Rather, one observes the full
data process X(t) up to the minimum, T̃ ≡ min(T,C), of the survival time
T and a univariate censoring variable C. In a clinical setting, this missing,
or censored, survival data situation can be due to drop-out or the end of
follow-up. The observed data structure can be written as O ≡ (T̃ ,∆, X̄(T̃ )),
where ∆ is the censoring indicator, ∆ ≡ I(T ≤ C), equal to one for uncen-
sored observations and to zero for censored observations.

The random variable O for the observed data has a distribution P0 =
PFX,0,G0 , indexed by the full data distribution, FX,0, and the conditional dis-
tribution, G0(·|X), of the censoring time C given full data X. The survivor
function for the censoring mechanism is denoted by Ḡ0(c | X) ≡ Pr0(C >
c | X) and referred to as censoring survivor function. We make the standard
coarsening at random (CAR) assumption for the censoring mechanism. If
X = (W,Z), that is, X does not include time-dependent covariates, then,
under CAR, the censoring time C is conditionally independent of the sur-
vival time T given baseline covariates W . Thus, Ḡ0(c | X) = Ḡ0(c | W ) and
the censoring survivor function only depends on the observed baseline covari-
ates W . Gill et al. (1997), van der Laan and Robins (2002) (Section 1.2.3,
in particular), and Robins and Rotnitzky (1992) provide further, thorough
explanations of CAR.

7
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2.2 Loss functions (Step 1)

2.2.1 Full data loss function

Parameters. For distributions FX ∈MF , define parameters ψ ≡ Ψ(FX) in
terms of a mapping, Ψ : MF → D(S), from the modelMF into a spaceD(S),
where elements of D(S) are functions from a Euclidean space S into the real
line IR. Thus, a parameter ψ = Ψ(FX) is itself a mapping ψ : S → IR. Let
Ψ ≡ {ψ = Ψ(FX) : FX ∈ MF} denote the corresponding parameter space.
Note that the use of upper case Ψ and lower case ψ allows us to distinguish
between two types of mappings: the mapping Ψ : MF → D(S), that defines
a parameter ψ = Ψ(FX) for a particular distribution FX , and the mapping
(i.e., realization) ψ : S → IR, corresponding to this parameter. For example,
for a full data structure X = (W,Z), the space S is typically a subset of
IRd, corresponding to the explanatory variables W , and the parameter for
a distribution FX could be defined as the conditional expected value of the
response Z given W , ψ(W ) = Ψ(FX)(W ) = EFX

[Z | W ].

Estimators. Assume that we have a sample, or learning set, of n inde-
pendent and identically distributed (i.i.d.) observations, X1, . . . , Xn, from
the distribution FX,0 ∈ MF . Let Pn denote the empirical distribution of
X1, . . . , Xn, where Pn places probability 1/n on each realization Xi. Our
goal is to use the sample to estimate the parameter ψ0 ≡ Ψ(FX,0), corre-
sponding to the unknown data generating distribution FX,0. An estimator

ψ̂ ≡ Ψ̂(Pn) is simply a function of the empirical distribution Pn, that is, an
algorithm one can apply to the data X1, . . . , Xn.

Loss functions and risk. We define a full data loss function, L(X,ψ), such
that its expected value, or risk, under FX,0 is minimized at the parameter
ψ0. That is, ψ0 is such that

θ0 ≡ EFX,0
[L(X,ψ0)] =

∫
L(x, ψ0)dFX,0(x) (1)

≡ min
ψ∈Ψ

∫
L(x, ψ)dFX,0(x)

= min
ψ∈Ψ

EFX,0
[L(X,ψ)].

To simplify notation, we may use the subscript 0 to refer to parameters of
the underlying data generating distributions FX,0 (and G0 in censored data
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situations), that is, write EFX,0
[L(X,ψ)] = E0[L(X,ψ)]. Note that we do not

require uniqueness of the risk minimizer, rather, we simply assume that there
is a loss function whose risk is minimized by the parameter of interest ψ0. In
addition, depending on the parameter of interest, there could be numerous
loss functions from which to choose and one should adopt the loss function
that corresponds to the desired measure of performance for the estimation
of ψ0. Loss functions for common estimation problems are listed in Table
4. For instance, regression problems typically involve minimizing risk for the
squared error loss function (a.k.a. mean squared error), while classification
often involves minimizing risk for the indicator loss function (a.k.a. classifi-
cation error), and density estimation is concerned with minimizing risk for
the negative log-likelihood loss function (a.k.a. entropy).

Risk estimation. Since the data generating distribution FX,0 is typically
unknown, one cannot directly minimize risk as in equation (1). That is, the
conditional risk,

θ̃n ≡
∫
L(x, Ψ̂(Pn))dFX,0(x), (2)

for an estimator ψ̂ = Ψ̂(Pn), is typically unknown and needs to be estimated
from the data, i.e., using the empirical distribution Pn. A naive risk estimator
is the empirical risk, or resubstitution estimator, where the unknown FX,0 is
simply replaced by the empirical Pn

θ̂n ≡
∫
L(x, Ψ̂(Pn))dPn(x) =

1

n

n∑
i=1

L(Xi, Ψ̂(Pn)). (3)

However, it is well-known that estimator construction and selection meth-
ods aimed at optimizing the empirical risk do not produce estimators that
minimize the true unknown risk and often suffer from over-fitting, i.e., are
too data-adaptive. Instead, we turn to cross-validation to provide consistent
risk estimators for use in estimator selection and performance assessment.
As detailed in Section 2.4, the cross-validated risk estimator is obtained by
constructing estimators Ψ̂(P 0

n,Sn
) on training sets of size n(1− pn) and esti-

mating risk based on empirical distributions P 1
n,Sn

for validation sets of size
npn (in place of the unknown FX,0, as in equation (2))

θ̂n(1−p) ≡ ESn

∫
L(x, Ψ̂(P 0

n,Sn
))dP 1

n,Sn
(x). (4)

9
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In this representation, ESn indicates averaging of the validation set risks over
the different splits of the learning set into training and validation sets. Thus,
the risk definitions in equations (2), (3), and (4), differ in the choice of distri-
butions for constructing the estimator (empirical distributions Pn or P 0

n,Sn
)

and for evaluating the loss function (FX,0, Pn, or P 1
n,Sn

).

Example 1. Prediction. In univariate (in the outcome) prediction prob-
lems, the full data structure is X = (W,Z) ∼ FX,0 ∈ MF , where W is
a d-dimensional vector of explanatory variables and Z a scalar outcome.
For continuous outcomes Z, the parameter of interest is typically the condi-
tional expected value, ψ0(W ) = Ψ(FX,0)(W ) = EFX,0

[Z | W ], of the outcome
given the explanatory variables. The parameter space is Ψ = {Ψ(FX) :
Ψ(FX)(W ) = EFX

[Z | W ], FX ∈ MF} and the loss function is the squared
error loss function, L(X,ψ) = (Z − ψ(W ))2. The familiar ordinary least
squares (OLS) regression approach corresponds to minimizing the empirical
risk for the squared error loss function over linear combinations of individual
explanatory variables.

Specifically, OLS considers a reduced model, MOLS = {FX : EFX
[Z |

W ] = Wβ, β ∈ <d}, and parameter space, ΨOLS = {ψβ : ψβ(W ) = Wβ, β ∈
IRd}. The parameter of interest is ψ0, where ψ0(W ) = Ψ(FX,0)(W ) =
EFX,0

[Z | W ] = β0W and the regression coefficient β0 is such that

β0 = argmin
β

∫
L(x, ψβ)dFX,0(x) = argmin

β

∫
(z − wβ)2dFX,0(x).

The OLS estimator β̂OLS of the regression coefficient β0 minimizes the em-
pirical risk for the squared error loss function, i.e., the mean squared error
(MSE),

β̂OLS = argmin
β

∫
(z − wβ)2dPn(x) = argmin

β

n∑
i=1

(Zi −Wiβ)2,

where Pn denotes the empirical distribution for the dataX1 = (W1, Z1), . . . , Xn =
(Wn, Zn), that places probability 1/n on each realization Xi. In this article,
we consider much broader (non-parametric) models MF , that correspond to
general functions Ψ(FX) for the conditional expected values EFX

[Z | W ] and
allow, in particular, higher order interactions among explanatory variables
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(Section 2.3).

Example 2. Density estimation. Likewise, the widely used maximum
likelihood estimation (MLE) framework involves minimizing the empirical
risk for the negative log-likelihood loss function over densities ψ ∈ Ψ = {ψλ :
λ ∈ Λ}, indexed by a parameter λ ∈ Λ. For example, ψλ could represent the
density for the multivariate normal distribution N(λ, Id), with mean vector
λ and d × d identity covariance matrix Id. For full data structure X ∼ ψλ0

and loss function L(X,ψ) = − logψ(X), the parameter of interest is

λ0 = argmin
λ∈Λ

−
∫

logψλ(x)dP0(x) = argmin
λ∈Λ

−
∫

logψλ(x)ψλ0(x)dx.

(For simplicity, we define densities ψ with respect to the Lebesgue measure.
However, one could define densities more generally, with respect to some
dominating measure µ, to accommodate discrete distributions as well.) The
MLE then minimizes the negative log-likelihood function

λ̂MLE = argmin
λ∈Λ

−
∫

logψλ(x)dPn(x)

= argmin
λ∈Λ

− log
n∏
i=1

ψλ(Xi).

2.2.2 Observed data loss function

In the observed (censored) data world, we have a learning set of n i.i.d. ob-
servations, O1, . . . , On, from the right-censored data structure, Oi ∼ P0 =
PFX,0,G0 . Let Pn denote the empirical distribution of O1, . . . , On, where Pn
places probability 1/n on each realization Oi. The goal remains to find an
estimator for a parameter ψ0 defined in terms of the risk for a full data loss
function L(X,ψ), e.g., a predictor of the log survival time Z based on covari-
ates W . An immediate problem is that loss functions such as the quadratic
loss, L(X,ψ) = (Z−ψ(W ))2, cannot be evaluated for an observation O with
censored survival time, i.e., for which Z = log T is not observed (∆ = 0). Risk
estimators based on only uncensored observations, such as 1

n

∑
i L(Xi, ψ)∆i,

are biased for E0[L(X,ψ)] and, in particular, estimate instead the quantity
E0[L(X,ψ)Ḡ0(T |X)] which is not minimized by the parameter of interest ψ0.
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The general estimating function methodology of van der Laan and Robins
(2002) can be used to link the observed data world to the full data world.
The general solution is to replace the full (uncensored) data loss function,
L(X,ψ), by an observed (censored) data loss function, L(O,ψ | υ0), with the
same expected value, i.e., with the same risk,∫

L(o, ψ | υ0)dP0(o) =

∫
L(x, ψ)dFX,0(x). (5)

As detailed below, υ0 denotes a nuisance parameter for the data generating
distribution P0 = PFX,0,G0 . A simple observed data loss function is the inverse
probability of censoring weighted (IPCW) loss function

L(O,ψ | υ0) ≡ L(X,ψ)
∆

Ḡ0(T |X)
, (6)

where ∆ = I(T ≤ C) is the censoring indicator and υ0 = Υ(P0) denotes the
nuisance parameter corresponding to the censoring survivor function, Ḡ0,
for the censoring time C given full data X. Under the coarsening at ran-
dom (CAR) assumption, Ḡ0(T |X) = Ḡ0(T |W ) only depends on the observed
data and can be estimated, for example, using the Cox proportional hazards
model. When an estimator Ḡn is used in place of the true unknown Ḡ0,
the IPCW estimating function provides a consistent risk estimator under the
following conditions: (i) Ḡ0(T |X) > δ > 0, FX,0-a.e., for some δ > 0, and (ii)
Ḡn is a consistent estimator for Ḡ0. For an uncensored observation (∆ = 1),
the IPCW observed data loss function is simply the full data loss function
weighted by the inverse of the probability Ḡ0(T |W ) of no censoring before T ;
for a censored observation (∆ = 0), the loss function is zero. We stress that in
the absence of censoring, i.e., when Ḡ0(t|w) ≡ 1 ∀t, the IPCW observed data
loss function reduces to the full data loss function, L(O,ψ | υ0) = L(X,ψ).
This ensures that the censored and full data estimators coincide when there
is no censoring.

Example 1. Prediction. In the case of the squared error loss function used
in regression, the empirical risk based on the IPCW loss function becomes a
weighted mean squared error (MSE)∫

L(o, ψ | υ̂n)dPn(o) =
1

n

n∑
i=1

(Zi − ψ(Wi))
2 ∆i

Ḡn(Ti|Wi)
,
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where υ̂n = Υ̂(Pn) represents Ḡn, an estimator of the nuisance parameter Ḡ0

derived under the CAR assumption for the censoring mechanism.

Example 2. Density estimation. Similarly, for the negative log-likelihood
loss function used in density estimation, the empirical risk based on the
IPCW loss function is∫

L(o, ψ | υ̂n)dPn(o) = − 1

n

n∑
i=1

logψ(Xi)
∆i

Ḡn(Ti|Wi)
.

The ability to map from a full data loss function into an observed data
loss function with the same risk offers several important practical advantages.
Firstly, this allows us to directly extend full data estimation methodology to
censored data situations. This in contrast to common censored data esti-
mation approaches, such as survival trees, which bypass the risk estimation
problem for censored outcomes by altering the node splitting, tree pruning,
and performance assessment criteria in manners that are specific to censored
survival data (Molinaro et al., 2004). In general, the splitting and prun-
ing criteria seem to be chosen based on convenience for handling censored
data and do not reduce to the preferred choice for uncensored data. Most
tree-based regression and density estimation procedures rely on the negative
log-likelihood loss function, with the explicit or implicit goal of estimating the
conditional survivor function given explanatory variables, and differ mainly
in their choice of model for the observed data likelihood within nodes. This
general difficulty in evaluating risk for censored observations results in a dis-
continuity between the full and observed data worlds. Secondly, as shown
in Molinaro et al. (2004), gains in accuracy can be achieved by employing
a loss function that is specific to the parameter of interest (e.g., by using
the squared error loss function for regression rather than the negative log-
likelihood loss function typically used in survival trees). Finally, the IPCW
estimating function approach allows us to assess performance on censored
data for arbitrary loss functions. Current methods typically rely on the neg-
ative log-likelihood loss function or lead to biased risk estimators by ignoring
censored observations altogether.

13
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2.3 Generating candidate estimators based on loss func-
tion (Step 2)

Having defined the parameter of interest in Step 1, as the risk minimizer for a
particular loss function, Step 2 of the road map is concerned with generating
a sequence of candidate estimators by minimizing the empirical risk (for the
same or possibly another loss function as in Step 1) over subspaces of increas-
ing dimension approximating the complete parameter space. In general, it is
not feasible to consider all possible elements of the subspaces and one needs
an efficient search algorithm for optimizing risk over these subspaces. Tree-
structured estimators, such as CART (Breiman et al., 1984), correspond to
one such procedure, whereby candidate estimators are obtained by recursive
binary partitioning of the covariate space. However, as discussed in Molinaro
et al. (2004) and Molinaro and van der Laan (2003), trees do not provide an
exhaustive enough search of the subspaces: the candidate estimators are gen-
erated according to a limited set of moves, amounting to forward selection
(node splitting) followed by backward elimination (tree pruning). Instead, we
favor more aggressive and flexible algorithms, such as the D/S/A algorithm
of Molinaro and van der Laan (2003) and Sinisi and van der Laan (2003),
that at each step allow not only node splitting, but also node collapsing and
substitutions.

2.3.1 Parameterization of the parameter space using linear com-
binations of basis functions

Consider a full data structure of the form X = (W,Z), where W is a d-
vector of explanatory variables and Z is a possibly multivariate outcome.
Define a countable set of basis functions, {φj : j ∈ IN}, indexed by the non-
negative integers IN, such that every parameter ψ ∈ Ψ can be arbitrarily
well approximated by finite linear combinations of these basis functions (or
some known function of linear combinations of basis functions, such as the
logit function in binary classification or the exponential function in the Cox
proportional hazards model). That is, define regression functions, ψI,β, as

ψI,β(·) ≡
∑
j∈I

βjφj(·), (7)

where I ∈ I denotes a countable index set and I is a collection of subsets of
IN. For a given index set I ∈ I, the regression coefficients β = (β1, . . . , β|I|)
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are assumed to belong to BI ≡ {β : ψI,β ∈ Ψ} ⊆ IR|I|.

The choice of basis functions {φj : j ∈ IN} depends on the estimation
approach. In polynomial regression, the φj are polynomial functions of the
explanatory variables (Sinisi and van der Laan, 2003). In histogram regres-
sion (e.g., regression trees), for a given index set I ∈ I, the {φj : j ∈ I}
are indicators for sets {Sj : j ∈ I} that form a partition of the covariate
space (Molinaro et al., 2004; Molinaro and van der Laan, 2003). The ba-
sis functions φj may themselves be defined as tensor products of univariate
basis functions, e0, e1, e2, . . ., such as polynomial powers (e.g., e0(x) = 1,
e1(x) = x, e2(x) = x2,...), spline basis functions, or wavelets basis functions.
Given a d-vector ~p = (p1, . . . , pd) ∈ INd, let φ~p(W ) = ep1(W1)× . . .× epd

(Wd)
denote the tensor product of univariate basis functions identified by ~p. For
instance, for polynomial basis functions, the multivariate basis functions are
φ~p(W ) = W p1

1 . . .W pd

d .

The collection of basis functions {φj : j ∈ IN} (or {φ~p : ~p ∈ INd}, in
the tensor product representation above), provides a basis for the complete
parameter space Ψ, which can be represented by

Ψ = {ψI,β =
∑
j∈I

βjφj : β ∈ BI , I ∈ I}. (8)

One can then define a sieve, {Ψk}, of subspaces Ψk ⊆ Ψ, of increasing
dimension approximating the complete parameter space Ψ. For example,

Ψk ≡

{
ψI,β =

∑
j∈I

βjφj : β ∈ BI , I ∈ I, |I| ≤ k

}
. (9)

Our approach is to seek, for each index set size k, the estimator that min-
imizes the empirical risk over the subspace Ψk. We tackle this risk op-
timization problem in two steps: optimization over regression coefficients
β ∈ BI for a given index set I (e.g., least squares estimation as in Sec-
tion 2.3.2, for the squared error loss) and optimization over index sets I
(e.g., D/S/A algorithm in Section 2.3.3, below). One can further reduce the
number of candidates ψI,β in Ψk by imposing constraints on the basis func-
tions φj or regression coefficients βj. For instance, in polynomial regression,
one can enforce constraints on the degree of the polynomial bases, such as:∑d

j=1 I(pj 6= 0) ≤ k′ or
∑d

j=1 pj ≤ k′. The particular restrictions can be
chosen by cross-validation.
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2.3.2 Estimation of regression coefficients for a given subset of
basis functions

Given index sets I ∈ I, define I-specific subspaces

ΨI ≡ {ψI,β : β ∈ BI}. (10)

For each subspace ΨI , the regression coefficients β are estimated by mini-
mizing the empirical risk, that is,

β̂I = βI(Pn) ≡ argmin
β∈BI

∫
L(o, ψI,β | υ̂n)dPn(o) (11)

= argmin
β∈BI

n∑
i=1

L(Oi, ψI,β | υ̂n),

where υ̂n = Υ̂(Pn) is an estimator of the nuisance parameter υ0 = Υ(P0)
for the observed data loss function (Section 2.2.2). Denote the resulting I-
specific estimators by ψ̂I = Ψ̂I(Pn) ≡ ψI,βI(Pn), I ∈ I.

In the special case of the squared error loss function, with full data, ψ̂I is
simply the least squares linear regression estimator corresponding with the
variables identified by the index set I. That is,

β̂I = argmin
β∈BI

n∑
i=1

(Zi − ψI,β(Wi))
2 = argmin

β∈BI

n∑
i=1

(Zi −
∑
j∈I

βjφj(Wi))
2.

2.3.3 D/S/A algorithm for minimizing risk over subsets of basis
functions

We propose a new algorithm for minimizing risk over subsets of basis func-
tions, i.e., over index sets I, according to three types of moves for the ele-
ments of I: deletions, substitutions, and additions. We refer to this algorithm
as the Deletion/Substitution/Addition algorithm, or D/S/A algorithm. The
main features of this novel approach are summarized below for tensor prod-
uct basis functions ψj (e.g., tensor products of univariate polynomial basis
functions in polynomial regression). The reader is referred to Sinisi and
van der Laan (2003) for a more complete discussion and simulation studies
assessing the performance of this general search procedure. Adaptations to
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histogram regression, with indicator basis functions, are discussed in Moli-
naro and van der Laan (2003).

The D/S/A algorithm for minimizing risk over index sets I is defined in
terms of three functions, DEL(I), SUB(I), and ADD(I), which map an
index set I ∈ I of size k into sets of index sets of size k − 1, k, and k + 1,
respectively (Box 1). That is, for deletion moves,

DEL : I ∈ I → DEL(I) ⊆ I,
with |I−| = |I| − 1 for I− ∈ DEL(I).

Box 1. Deletion/Substitution/Addition moves.

Consider index sets I ⊆ INd and let I denote a collection of subsets of INd.

Deletion moves. Given an index set I ∈ I of size k = |I|, define a set
DEL(I) ⊆ I of index sets of size k − 1, by deleting individual elements of
I. This results in k possible deletion moves, i.e., |DEL(I)| = k.

Substitution moves. Given an index set I ∈ I of size k = |I|, define a
set SUB(I) ⊆ I of index sets of size k, by replacing individual elements
~p ∈ I by one of the 2d vectors created by adding or subtracting 1 to
any of the d components of ~p. That is, for each ~p ∈ I, consider moves
~p± ~uj, where ~uj denotes the unit d-vector with one in position j and zero
elsewhere, j = 1, . . . , d. This results in up to k× (2d) possible substitution
moves, i.e., |SUB(I)| = k × (2d).

Addition moves. Given an index set I ∈ I of size k = |I|, define a set
ADD(I) ⊆ I of index sets of size k + 1, by adding to I an element of
SUB(I) or one of the d unit vectors ~uj, j = 1, . . . , d. This results in up to
k × (2d) + d possible addition moves, i.e., |ADD(I)| = k × (2d) + d.

Note that, for subspaces Ψk defined in terms of restrictions other than the
size k of the index sets I (e.g., constraints on the degree of polynomial basis
functions), substitution moves ~p ± ~uj may result in inadmissible candidate
estimators. In this case, substitution moves should be replaced by swap
moves, where, for example, a number of components of ~p± ~uj are set to zero
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in order to satisfy the constraints specifying Ψk (Sinisi and van der Laan,
2003).

Next, we describe how the three basic moves of the D/S/A algorithm can
be used to generate index sets Ik(Pn), that seek to minimize the empirical
risk function, fE(I), over all index sets I of size less than or equal to k,
k = 1, . . . ,m (Box 2). For an index set I ∈ I, the empirical risk of the
I-specific estimator ψ̂I = Ψ̂I(Pn) (as defined in Section 2.3.2) is

I → fE(I) ≡
∫
L(o, ψ̂I | υ̂n)dPn(o) (12)

=
1

n

n∑
i=1

L(Oi, ψ̂I | υ̂n),

where ψ̂I = Ψ̂I(Pn) and υ̂n = Υ̂(Pn) are estimators based on the empirical
distribution Pn for the entire learning set. In the special case of the squared
error loss function, with full data, the empirical risk function is simply the
mean squared error (cf. residual sum of squares) for ψ̂I

fE(I) =
1

n

n∑
i=1

(Zi − ψ̂I(Wi))
2.

Denote the best (in terms of empirical risk) index set I of size less than
or equal to k, k = 1, . . . ,m, by

I?k(Pn) ≡ argmin
{I:|I|≤k, I∈I}

fE(I).

The D/S/A algorithm in Box 2 returns for each k, an index set Ik(Pn) that
approximates I?k(Pn). Denote the resulting estimator by ψ̂k = Ψ̂k(Pn) ≡
ψ̂Ik(Pn). Cross-validation can then be used to select the optimal index set
size k, as detailed in Section 2.4,

k(Pn) ≡ argmin
k

ESn

∫
L(o, Ψ̂k(P

0
n,Sn

) | υ̂n,S0
n
)dP 1

n,Sn
(o), (13)

where Ψ̂k(P
0
n,Sn

) and υ̂n,S0
n

= Υ̂(P 0
n,Sn

) are estimators based on the empirical
distributions P 0

n,Sn
for the training sets only. Denote the final estimator

corresponding to the index set size k̂ = k(Pn) by ψ̂ = Ψ̂(Pn) ≡ ψ̂k(Pn).
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Box 2. Deletion/Substitution/Addition algorithm for optimizing
the empirical risk function.

1. Initialization. Set I0 = ∅ and BEST (k) = ∞, k = 1, 2, . . ., where
BEST (k) represents the current lowest value of the objective function
f = fE for index sets I of size k.

2. Algorithm (*). Let k = |I0|. Find an optimal updated index
set I− of size k − 1, among all allowed deletion moves: I− ≡
argminI∈DEL(I0)f(I). If f(I−) < BEST (k − 1), then set I0 = I−,
BEST (k − 1) = f(I−), and go back to (*).

Otherwise, find an optimal updated index set I= of the same
size k as I0, among all allowed substitution moves: I= ≡
argminI∈SUB(I0)f(I). If this update improves on I0, that is, f(I=) <
f(I0), then set I0 = I=, BEST (k) = f(I=), and go back to (*).

Otherwise, find an optimal updated index set I+ of size k+ 1, among
all allowed addition moves: I+ ≡ argminI∈ADD(I0)f(I). If this up-
date improves on I0, that is, f(I+) < f(I0), then set I0 = I+ and
BEST (k + 1) = f(I+).

3. Stopping rule. Run the algorithm until the current index set size
k = |I0| is larger than a user-supplied m or until f(I+) − f(I0) < ε
for a user-specified ε > 0. Denote the last set I by Ifinal(Pn).

Note the following. Firstly, the D/S/A algorithm is such that BEST (k)
is decreasing in k, since addition moves only occur when they result in a
decrease in risk over the current index set size. Thus, the best subset of size
k is also the best subset of size less than or equal to k. Secondly, each step
of the D/S/A algorithm is linear in the dimension d of the covariate space
and in the current size k of the index set. An interesting open question is the
number of iterations for substitution moves. Finally, the D/S/A algorithm
for generating candidate estimators is completely defined by the following
choices: the loss function, the basis functions φj defining the parameteri-
zation ψβ,I of the parameter space, and the sets of deletion, substitution,
and addition moves. Consequently, the D/S/A algorithm can be adapted
straightforwardly to address a broad range of estimation problems, with dif-
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ferent objective functions.

The above approach is very similar to commonly adopted methods in the
model selection literature, whereby estimators identified by index sets of the
same size are compared in terms of their empirical risk and cross-validation
is only applied to select the size of the index sets (i.e., the size of the model).
However, unlike previously proposed model selection approaches (e.g., for-
ward/backward type algorithms), the new D/S/A algorithm performs an
extensive search of the parameter space, truly aimed at minimizing the em-
pirical risk function over all index sets of a given size.

Example 1. Prediction: D/S/A moves with polynomial basis func-
tions. Suppose we wish to predict a continuous outcome Z based on a 4-
dimensional vector of explanatory variables, W = (W1,W2,W3,W4), d = 4.
We illustrate the three main moves in the D/S/A algorithm, with basis
functions defined as tensor products of univariate polynomial basis func-
tions, φ~p(W ) = ep1(W1)× ep2(W2)× ep3(W3)× ep4(W4) = W p1

1 W p2
2 W p3

3 W p4
4 ,

~p = (p1, p2, p3, p4) ∈ IN4, where ej(x) = xj, j = 0, 1, 2, . . .. In this case, index
sets I are subsets of IN4.

Suppose the current index set in the D/S/A algorithm is I0 = {~p1, ~p2},
where ~p1 = (1, 1, 1, 0), ~p2 = (0, 1, 0, 5), and k = |I0| = 2. This index set
corresponds to basis functions φ~p1(W ) = W1W2W3 and φ~p2(W ) = W2W

5
4 .

The deletions set, DEL(I0), contains two index sets of size k = 1

DEL(I0) =
{
{~p1}, {~p2}

}
=
{
{(1, 1, 1, 0)}, {(0, 1, 0, 5)}

}
.

The substitutions set, SUB(I0), contains thirteen index sets, I= = {~p∗1, ~p∗2},
of size k = 2, where either ~p∗1 = ~p1 or ~p∗2 = ~p2 (here, the cardinality of
SUB(I0) is less than k × (2d) = 16, because moves that result in negative
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powers are not allowed, e.g., ~p2 − ~u1).

SUB(I0) =
{
{~p1 + ~u1 = (2, 1, 1, 0), ~p2 = (0, 1, 0, 5)},

{~p1 + ~u2 = (1, 2, 1, 0), ~p2 = (0, 1, 0, 5)},
{~p1 + ~u3 = (1, 1, 2, 0), ~p2 = (0, 1, 0, 5)},
{~p1 + ~u4 = (1, 1, 1, 1), ~p2 = (0, 1, 0, 5)},
{~p1 − ~u1 = (0, 1, 1, 0), ~p2 = (0, 1, 0, 5)},
{~p1 − ~u2 = (1, 0, 1, 0), ~p2 = (0, 1, 0, 5)},
{~p1 − ~u3 = (1, 1, 0, 0), ~p2 = (0, 1, 0, 5)},
{~p1 = (1, 1, 1, 0), ~p2 + ~u1 = (1, 1, 0, 5)},
{~p1 = (1, 1, 1, 0), ~p2 + ~u2 = (0, 2, 0, 5)},
{~p1 = (1, 1, 1, 0), ~p2 + ~u3 = (0, 1, 1, 5)},
{~p1 = (1, 1, 1, 0), ~p2 + ~u4 = (0, 1, 0, 6)},
{~p1 = (1, 1, 1, 0), ~p2 − ~u2 = (0, 0, 0, 5)},

{~p1 = (1, 1, 1, 0), ~p2 − ~u4 = (0, 1, 0, 4)}
}
.

The additions set, ADD(I0), contains 13+4 = 17 index sets, I+ = {~p1, ~p2, ~p3},
of size k = 3, where ~p3 is either one of the thirteen new 4-vectors introduced
in the above substitutions set SUB(I0) or one of the four unit vectors ~uj,
j = 1, . . . , 4. For instance, one of the seventeen index sets I+ ∈ ADD(I0)
is I+ = {~p1 = (1, 1, 1, 0), ~p2 = (0, 1, 0, 5), ~p3 = ~p2 + ~u3 = (0, 1, 1, 5)}. This
set corresponds to the three basis functions φ~p1(W ) = W1W2W3, φ~p2(W ) =
W2W

5
4 , and φ~p3(W ) = W2W3W

5
4 , and hence, to the following candidate pre-

dictor for the outcome Z: ψI+,β(W ) = β1W1W2W3 +β2W2W
5
4 +β3W2W3W

5
4 .

2.4 Cross-validation for estimator selection (Step 3)

2.4.1 The estimator selection problem

Search procedures, such as the D/S/A algorithm for optimizing the empirical
risk function fE(I) over same size index sets I, can be used to construct a
sequence of candidate estimators, ψ̂k = Ψ̂k(Pn) ∈ Ψ, k ∈ {1, . . . , Kn}, for the
parameter ψ0. The next step is to select an optimal estimator among these
candidates. Specifically, the estimator selection problem involves choosing a
data-adaptive selector k̂ = k(Pn), so that the risk distance, or risk difference,
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dn(ψ̂k̂, ψ0), between the estimator ψ̂k̂ and the parameter ψ0, converges to zero
at an asymptotically optimal rate. Here,

dn(ψ̂k, ψ0) ≡
∫ {

L(x, ψ̂k)− L(x, ψ0)
}
dFX,0(x) (14)

(full data loss function)

=

∫ {
L(o, ψ̂k | υ0)− L(o, ψ0 | υ0)

}
dP0(o)

(observed data loss function).

Ideally, one would like to choose k̂ as the optimal benchmark selector, k̃n,
which minimizes the risk distance dn(ψ̂k, ψ0), that is,

k̃n ≡ argmin
k∈{1,...,Kn}

dn(ψ̂k, ψ0) = argmin
k∈{1,...,Kn}

θ̃n(k), (15)

where θ̃n(k) is the conditional risk for the candidate estimator ψ̂k = Ψ̂k(Pn)

θ̃n(k) ≡
∫
L(x, ψ̂k)dFX,0(x) =

∫
L(o, ψ̂k | υ0)dP0(o). (16)

However, the risk distance dn(ψ̂k, ψ0), and hence the optimal benchmark se-
lector k̃n, depend on the unknown data generating distribution P0. Thus, in
practice, the selection problem involves estimating the conditional risk θ̃n(k)
for each candidate estimator ψ̂k ∈ Ψ, k ∈ {1, . . . , Kn}, and seeking k that
minimizes this risk estimator. Cross-validation is a general approach for risk
estimation and estimator selection.

Example 1. Prediction. For the squared error loss function, L(X,ψ) =
(Z − ψ(W ))2, the risk difference simplifies to

dn(ψ̂k, ψ0) =

∫ (
ψ̂k(w)− ψ0(w)

)2

dFW,0(w),

that is, a squared bias term for ψ̂k as an estimator of ψ0.

Example 2. Density estimation. For the negative log-likelihood loss
function, the risk difference is the Kullback-Leibler divergence, or relative
entropy, between densities ψ̂k and ψ0

dn(ψ̂k, ψ0) = −
∫

log

(
ψ̂k(x)

ψ0(x)

)
ψ0(x)dx.
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2.4.2 Cross-validation

The main idea in cross-validation (CV) is to divide the available learning set
into two sets: a training set and a validation set. Observations in the training
set are used to compute (or train) the estimator(s) and the validation set is
used to assess the performance of (or validate) this estimator(s) in terms of
a loss function.

To derive a general representation for cross-validation, we introduce a
binary random n-vector, or split vector, Sn ∈ {0, 1}n, independent of the
empirical distribution Pn. A realization of Sn = (Sn,1, . . . , Sn,n) defines a
particular split of the learning set of n observations into a training set and a
validation set,

Sn,i ≡
{

0, if ith observation is in training set,
1, if ith observation is in validation set.

The particular distribution of the split vector Sn defines the type of cross-
validation procedure. This representation covers many types of CV pro-
cedures, including leave-one-out cross-validation (LOOCV), V -fold cross-
validation, Monte-Carlo cross-validation, and bootstrap-based cross-validation
(van der Laan and Dudoit, 2003). Let P 0

n,Sn
and P 1

n,Sn
denote the empiri-

cal distributions of the training and validation sets, respectively, and let
p = pn = n1/n be the proportion of observations in the validation set, where
n1 =

∑n
i=1 I(Sn,i = 1).

Given a candidate estimator ψ̂k = Ψ̂k(Pn), the cross-validation risk esti-
mator of the conditional risk θ̃n(k), using the full data loss function, is

θ̂n(1−p)(k) ≡ ESn

∫
L(x, Ψ̂k(P

0
n,Sn

)︸ ︷︷ ︸
Training

) dP 1
n,Sn

(x)︸ ︷︷ ︸
Validation

(17)

= ESn

1

n1

∑
{i:Sn,i=1}

L(Xi, Ψ̂k(P
0
n,Sn

)).

In censored data problems, the cross-validation risk estimator of θ̃n(k), based
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on the IPCW loss function, is given by

θ̂n(1−p)(k) ≡ ESn

∫
L(o, Ψ̂k(P

0
n,Sn

) | υ̂0
n,Sn︸ ︷︷ ︸

Training

) dP 1
n,Sn

(o)︸ ︷︷ ︸
Validation

(18)

= ESn

1

n1

∑
{i:Sn,i=1}

L(Xi, Ψ̂k(P
0
n,Sn

))
∆i

Ḡ0
n,Sn

(Ti | Wi)
.

Here, Ψ̂k(P
0
n,Sn

) and υ̂n,S0
n

= Υ̂(P 0
n,Sn

) denote, respectively, estimators for the
parameter of interest ψ0 and the loss function nuisance parameter υ0 (Ḡ0 for
the IPCW loss function), using only the training set. The cross-validation
selector k̂ = k(Pn) is chosen so that, among all Kn candidate estimators, Ψ̂k̂

has the best performance on the validation sets

k̂ ≡ argmin
k∈{1,...,Kn}

θ̂n(1−p)(k). (19)

Example 1. Prediction. For the squared error loss function, L(X,ψ) =
(Z − ψ(W ))2, the cross-validation selector is

k̂ = argmin
k∈{1,...,Kn}

ESn

∑
{i:Sn,i=1}

(Zi − Ψ̂k(P
0
n,Sn

)(Wi))
2.

For regression problems with censored outcomes, the cross-validation selector
based on the IPCW squared error loss function is given by

k̂ = argmin
k∈{1,...,Kn}

ESn

∑
{i:Sn,i=1}

(Zi − Ψ̂k(P
0
n,Sn

)(Wi))
2 ∆i

Ḡ0
n,Sn

(Ti | Wi)
,

where Ḡ0
n,Sn

is an estimator of the censoring survivor function based only on
the training set.

Example 2. Density estimation. For the negative log-likelihood loss
function, L(X,ψ) = − logψ(X), the cross-validation selector is given by

k̂ = argmin
k∈{1,...,Kn}

−ESn

∑
{i:Sn,i=1}

log Ψ̂k(P
0
n,Sn

)(Xi).

For density estimation problems with censored outcomes, the cross-validation
selector based on the IPCW loss function is given by

k̂ = argmin
k∈{1,...,Kn}

−ESn

∑
{i:Sn,i=1}

log Ψ̂k(P
0
n,Sn

)(Xi)
∆i

Ḡ0
n,Sn

(Ti | Wi)
,
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where Ḡ0
n,Sn

is an estimator of the censoring survivor function based only on
the training set.

2.4.3 Asymptotic optimality of cross-validation selection

A selector k̂ = k(Pn) is said to be asymptotically equivalent with the optimal
benchmark k̃n if the ratio of risk distances

dn(ψ̂k̂, ψ0)

dn(ψ̂k̃n
, ψ0)

−→ 1 in probability as n→∞.

In particular, then k̂ is asymptotically optimal.

van der Laan and Dudoit (2003) derive finite sample and asymptotic
optimality results concerning the cross-validation selector for general data
generating distributions, loss functions (possibly depending on a nuisance
parameter, υ0, as in the IPCW loss function), and estimators. The asymp-
totic optimality result states that the cross-validation selector, k̂, performs
asymptotically as well as the optimal benchmark selector, k̃n, based on the
unknown data generating distribution P0, provided that, as n→∞: (i) the
proportion of observations in the validation set pn → 0 and (ii) log(Kn)/npn
and

∫
(Ḡn − Ḡ0)

2(t | x)dFX,0(x) both converge to zero faster than the rate

at which the estimator ψ̂k̃n
converges to the parameter ψ0 in risk distance,

i.e., faster than dn(ψ̂k̃n
, ψ0) → 0 (see van der Laan and Dudoit (2003) for

full statements and proofs of the results). These new theoretical results have
the important practical implication that, even finite sample situations, one
can use cross-validation to engage in an intensive search of a large parameter
space.

2.5 Cross-validation for performance assessment (Step
3)

2.5.1 Honest cross-validation

It is important to note that risk estimators from cross-validation relate only
to the aspects of estimation that were cross-validated. Hence, it is essen-
tial to perform cross-validation on the entire estimation, or training, process,
including feature selection and other choices, such as the number of neigh-
bors k in nearest neighbor classification (k-NN) and the kernel in support
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vector machines (SVM). Otherwise, risk estimators can be severely biased
downward, i.e., overly optimistic. Cross-validation has been widely-used in
genomic data analysis, to compare estimators and for overall estimator per-
formance assessment. For instance, in cancer microarray studies, estimates of
classification error (i.e., risk for the indicator loss function) are often reported
to support statements such as “Clinical outcome X for cancer Y can be pre-
dicted accurately based on microarray gene expression measures.” However,
it is common practice in these studies to screen genes and fine-tune predictor
parameters (e.g., number of neighbors in k-NN, kernel in SVMs) using the
entire learning set and then perform cross-validation only on the final por-
tion of the predictor building process. The resulting error rates are therefore
biased downward and give an overly optimistic view of the predictive power
of microarray expression measures.

2.5.2 Nested cross-validation

Suppose that an estimator ψ̂ = Ψ̂(Pn), of the parameter ψ0, has been selected
as described above by cross-validation on a learning set of n observations.
The overall performance of this ’final’ estimator now needs to be assessed
based on an independent test set. A double, or nested, cross-validation study
can be performed, in which the learning set is obtained from a partition of a
complete dataset of n? observations into a learning set and a test set. Let Pn?

denote the empirical distribution of the complete dataset of n? observations.
The CV risk estimator of the overall performance of the selected estimator
is given by

ES?
n

∫
L(o, Ψ̂(P 0

n?,S?
n
) | υ̂0

n?,S?
n
)dP 1

n?,S?
n
(o),

where S?n refers to binary split vectors for the entire dataset of n? observations
and P 0

n?,S?
n

corresponds to the empirical distribution Pn of a learning set of n
observations. Note that the entire estimation procedure (i.e., all three steps
in the road map) is now applied to each learning set, i.e., each P 0

n?,S?
n
.

2.5.3 Risk confidence intervals

The risk estimators from cross-validation are statistics, i.e., they are func-
tions of the empirical distribution Pn, and thus vary from sample to sample.
It is therefore natural to study the sampling distribution of these statistics
and derive confidence intervals for the risk they are estimating. Dudoit and
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van der Laan (2003) prove that cross-validated risk estimators are consistent
and asymptotically linear for the risk based on the true underlying distri-
bution, and use these results to derive confidence intervals for the unknown
risk. An approximate asymptotic (1 − α)100% confidence interval for the
conditional risk θ̃n, defined in equation (2), is given by

θ̂n(1−p) ± z1−α/2
σ̂n√
n
, (20)

where

σ̂2
n ≡

∫
(IC(x | Pn))2dPn(x),

IC(x | Pn) ≡ L(x, Ψ̂(Pn))−
∫
L(x, Ψ̂(Pn))dPn(x),

and Φ(zα/2) = 1−α/2 for the standard normal cumulative distribution func-
tion Φ(·).

2.6 Loss-based variable importance

A common and practical question in prediction problems is to assess the im-
portance of a variable (or set of variables) in terms of its predictive ability
for an outcome of interest. For instance, in microarray experiments, one is
interested in determining how important each gene (or set of genes) is for the
prediction of a particular biological or clinical outcome. Measures of variable
importance can then assist in the identification of a subset of marker genes
for the outcome.

We propose to define variable importance in terms of a loss function (Teng
et al., 2003). Consider a full data structure X = (W,Z) ∼ FX , where W is a
d-dimensional vector of explanatory variables and Z is an outcome of inter-
est. Let J ⊆ {1, . . . , d} and J̄ refer to a subset of explanatory variables and
its complement, respectively. Denote the reduced data structure, based on
only the explanatory variables indexed by J , using X(J) = (W (J), Z), where
W (J) = (Wj : j ∈ J), and the corresponding distribution by FX(J). Consider
J-specific parameter spaces, Ψ(J) ≡ {ΨJ(FX) = Ψ(FX(J)) : FX ∈ MF},
where given a subset J ⊆ {1, . . . , d} and distribution FX ∈ MF , the pa-
rameters ΨJ(FX) = Ψ(FX(J)) are well-defined analogs of the full param-
eter Ψ(FX). For instance, one can extend the |J |-dimensional distribu-
tions FX(J) to d-dimensional distributions, that are degenerate for W (J̄),
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i.e., assign mass one to some constant value for W (J̄). When such ex-
tended distributions belong to the model MF , then Ψ(J) ⊆ Ψ. For ex-
ample, in regression problems, the parameters of interest are conditional
expected values of the outcome given sets of explanatory variables, i.e.,
Ψ(FX(J))(W ) = EFX

[Z | W (J)]. Given a loss function L(X,ψ), such as
the squared error loss, L(X,ψ) = (Z − ψ(W ))2, one can then define the J-
specific parameters, ψJ0 = Ψ(FX(J),0), as the risk minimizers over Ψ(J), that
is, ∫

L(x, ψJ0)dFX,0(x) ≡ min
ψ∈Ψ(J)

∫
L(x, ψ)dFX,0(x). (21)

In particular, the full parameter ψ0 = Ψ(FX,0) corresponds to J = {1, . . . , d}.

The variable importance parameter, γJ0 = ΓJ(FX,0), for the set of vari-
ables indexed by J , can now be defined as the difference between the risk for
the J̄-specific parameter ψJ̄0, defined without the variables indexed by J , and
the risk for the parameter ψ0, based on all d explanatory variables. That is,

γJ0 ≡
∫
{L(x, ψJ̄0)− L(x, ψ0)}dFX,0(x). (22)

Note that in most applications, Ψ(J̄) ⊆ Ψ, so that the importance param-
eters γJ0 are non-negative. Thus γJ0 measures the increase in risk (error)
resulting from omitting explanatory variables W (J) = (Wj : j ∈ J) from
the estimation process. We stress that this general definition of variable im-
portance applies to sets of variables and therefore allows examination of not
only variable main effects (i.e., individual j ∈ {1, . . . , d}), but also higher or-
der interactions among variables. In particular, in the context of microarray
experiments, this general definition can be used to assess the importance of
gene clusters in terms of their predictive power for an outcome of interest. In
addition, in high-dimensional problems, one could consider variable impor-
tance measures for orthogonal transformations of the explanatory variables
(e.g., from singular value decomposition).

The variable importance parameters can be estimated using variable im-
portance statistics, γ̂J = Γ̂J(Pn), that are functions of the empirical distribu-
tion Pn, using either the empirical risk or the cross-validated risk. For the
empirical risk

γ̂J ≡
∫
{L(x, ψ̂J̄)− L(x, ψ̂)}dPn(x), (23)
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where the ψ̂J = Ψ̂J(Pn) are estimators of the J-specific parameters based on
the empirical distribution Pn, and ψ̂ corresponds to J = {1, . . . , d}.

Example 1. Prediction. The full parameter is ψ0(W ) = E0[Z | W ] and
the J-specific parameters are conditional expected values of the outcome Z
given explanatory variables W (J),

ψJ0(W ) = E0[Z | W (J)]

= E0[E0[Z | W ] | W (J)]

= E0[ψ0(W ) | W (J)].

The variable importance parameters, defined in terms of the squared error
loss function, are

γJ0 =

∫
{(z − ψJ̄0(w))2 − (z − ψ0(w))2}dFX,0(x)

= E0[(ψ0(W )− ψJ̄0(W ))2]

= E0[V ar0[Z | W (J̄)]]− E0[V ar0[Z | W ]].

In the special case of linear conditional expectations, i.e., ψ0(W ) =
∑d

j=1 βj0Wj,
then

ψJ̄0(W ) =
∑
j∈J̄

βj0Wj +
∑
j∈J

βj0E0[Wj | W (J̄)],

thus

γJ0 = E0

[(∑
j∈J

βj0(Wj − E0[Wj | W (J̄)])
)2
]

=
∑
j∈J

β2
j0E0[V ar0[Wj | W (J̄)]]

+ 2
∑

j,j′∈J, j<j′
βj0βj′0E0[Cov0[Wj,Wj′ | W (J̄)]]

=
∑
j∈J

β2
j0V ar0[Wj] (for independent Wj’s)

+ 2
∑

j,j′∈J, j<j′
βj0βj′0Cov0[Wj,Wj′ ].
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For single variables, i.e., J = {j}, the importance parameter is simply

γ{j}0 = β2
j0E0[V ar0[Wj | W (J̄)]]

and reduces to γ{j}0 = β2
j0V ar0[Wj] for independent explanatory variables.

3 Prediction of survival in microarray exper-

iments

To evaluate our proposed loss-based estimation methodology and demon-
strate its application to tree-structured estimation with censored data, we
present the following results from a simulation study and analysis of breast
cancer survival and CGH copy number data. Preliminary simulation results
for a new D/S/A algorithm for histogram regression are also provided in this
section. More detailed results and discussion can be found in Molinaro et al.
(2004) and Molinaro and van der Laan (2003).

3.1 Simulation study: survival trees

The proposed survival tree approach based on the IPCW loss function was
compared to that of LeBlanc and Crowley (1992), which is implemented as a
default for censored data in the R rpart function (Therneau and Atkinson,
1997). The loss function for the survival trees of LeBlanc and Crowley (1992)
is based on the observed data negative log-likelihood for a Cox proportional
hazards model with the same baseline hazard for each node. Trees based on
the IPCW loss function can be grown using the rpart function, by setting
the method argument to “anova” and by providing the IPCW weights for
individual observations through the weights argument. The censoring sur-
vivor function, Ḡ0, used in the IPCW loss function, is estimated separately
for each training set. In what follows, Method 1 and Method 2 refer, re-
spectively, to the survival trees of LeBlanc and Crowley (1992) and to trees
grown using the proposed IPCW loss function. The two approaches differ
in the choice of loss function for splitting and pruning and thus lead to two
different partitions of the covariate space, i.e., to different assignments of ob-
servations to terminal nodes. Given such a final partition, we then consider
two survival estimation methods for the terminal nodes: the IPCW mean
survival time and the Kaplan-Meier (KM) median survival time. These two
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types of estimators correspond to full data parameters defined in terms of
the squared and absolute error loss functions, respectively. The two differ-
ent loss functions and the two different within-node estimation methods thus
produce four different predictors of survival (namely, Method 1 with IPCW
mean, Method 1 with KM median, Method 2 with IPCW mean, Method 2
with KM median), which were compared by simulation as described below.

The following model was considered for the full data structure: Z ≡
log T = W 2 + ε, where W and ε are independent random variables with W ∼
U(0, 1), ε ∼ N(0, σ2), and σ = 0.25. Thus, E0[Z|W ] = Median0[Z|W ] = W 2

and the conditional survivor function is given by S0(z | W ) = Pr0(Z ≥ z |
W ) = 1−Φ((z−W 2)/σ), where Φ(·) denotes the standard normal cumulative
distribution function. Censoring times C were simulated using mixtures of
three uniform distributions. The censoring survivor function, Ḡ0, used in the
IPCW loss function, was estimated separately for each training set, by fitting
a Cox proportional hazards model to the survival time T and covariate W .

One hundred simulated learning sets were generated from an observed
data distribution with 20% censoring, for sample sizes n = 250, 600, 1250,
and 6000. Risk estimates, based on test sets of size N = 5000 generated from
the full data distribution, were computed for each of the four predictors, us-
ing the L2 loss function for the IPCW within-node mean estimation method
and the L1 loss function for the KM median estimation method. Within each
sample size, the four test set risk estimates were averaged over the B = 100
repetitions. Method 1 and Method 2 were compared by forming the ratio of
Method 2’s average risk to that of Method 1, separately for each of the two
within-node estimation methods.

Ratios of average test set risk are displayed in Table 1 for both the KM
median and IPCW mean estimation methods; ratios less than one correspond
to improved accuracy for Method 2, i.e., for trees based on the new IPCW
loss function. The results illustrate the impact on accuracy of the choice of
loss function used for node splitting and tree pruning. As expected, when
the parameter of interest is the conditional mean survival, the risk is smaller
for partitions generated by Method 2 (“IPCW Mean” column). The IPCW
loss function also corresponds to lower risk when interest is in estimating the
median survival. The difference in risk decreases with increasing sample size.

31

Hosted by The Berkeley Electronic Press



Table 1: Simulation study: survival trees. Comparison of survival trees grown
with Method 1 (rpart’s default) and Method 2 (proposed IPCW loss func-
tion). Ratios of average risk for Method 2 to Method 1 are displayed for
the KM median and IPCW mean within-node estimation methods for four
sample sizes, n. Individual entries of the table are ratios of average test set
risk (1/B)

∑B
b=1

∫
L(x, Ψ̂(P b

n))dP
b
N(x), where Ψ̂ refers to one of the four sur-

vival predictors, P b
n and P b

N denote, respectively, the learning set and test set
empirical distributions in the bth simulation, N = 5000, B = 100. For the
KM median within-node estimation method (column 2), L is the absolute
error loss, and for the IPCW mean within-node estimation method (column
3), L is the squared error loss.

Sample Ratios of average risk
size, n KM Median IPCW Mean
250 0.9422 0.8838
600 0.9524 0.9062
1250 0.9629 0.9244
6000 0.9767 0.9533
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3.2 Breast cancer survival and CGH copy number data
analysis

Our censored regression tree method was also applied to a dataset from a
comparative genomic hybridization (CGH) study of breast cancer patients.
Data were collected on 152 patients, all with initial occurrences of breast
cancer; 52 subsequently recurred. Time to event (in years) was defined as
time to recurrence. Patients with no recurrence at the time of death or of
final follow-up are censored. Explanatory variables include epidemiological
variables (e.g., age at diagnosis, race), histopathological variables (e.g., tu-
mor stage, grade), and DNA copy number measures from a CGH microarray
with 2254 bacterial artificial chromosomes (BACs).

The 152 observations were split at random into a learning set and a test
set of 128 and 24 (i.e., five sixths and one sixth) observations, respectively,
while retaining the appropriate level of censoring. Trees were grown using the
learning set and their overall performance assessed on the test set. Five-fold
cross-validation of the learning set was used to select the ’best’ tree (again,
retaining the appropriate level of censoring). The censoring survivor func-
tion, Ḡ0, used in the IPCW loss function, was estimated separately for each
of the five training sets in the cross-validation, by fitting a Cox proportional
hazards model to the epidemiological and histopathological variables. The
full learning set tree is shown in Figure 1, with filled circles for the two-split
subtree. Each terminal node is described by the IPCW mean log survival
time (in years) and the number of observations. The legend in the bottom
left corner indicates the chromosomal location of each BAC. The first two
splits are based on BACs that fall in chromosomal regions known to contain
genes related to breast cancer (personal communication with Joe Gray and
Fred Waldman).

This preliminary analysis illustrates limitations of single trees based on
microarray measures: they typically involve a very small number of splits and
therefore only provided limited biological insight. Improved prediction accu-
racy and more information on chromosomal regions related to breast cancer
survival may be obtained from aggregation methods such as bagging and
boosting and the use of loss-based variable importance measures as proposed
in Section 2.6. In addition, we are exploring more aggressive procedures,
based on the D/S/A algorithm, that include “OR” statements in addition
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BAC 294 < 0.02

BAC 1226 -0.16

4.328

n  = 37 

n  = 17 

2.944

2.742

3.14 3.743

n  = 19 

n  = 19 n  = 36 

BAC 529 -.01

Chromosomal

Location

BAC 294 3q26

BAC 1226 10q22

BAC 529 5q11

BAC 542 5q21

BAC 542 < -0.12

Figure 1: Breast cancer survival and CGH copy number data analysis. Sur-
vival tree built from the learning set of 128 patients, using the IPCW squared
error loss function. Each terminal node is described by the IPCW mean log
survival time (in years) and the number of observations.

to the “AND” statements of tree estimators (Molinaro and van der Laan,
2003).

3.3 Simulation study: D/S/A algorithm for histogram
regression

We report the following preliminary results from a simulation study compar-
ing a new D/S/A algorithm for histogram regression (i.e., as in Section 2.3,
using indicator basis functions) to standard regression trees. We consider the
following (full data) model: Z ≡ W 2 + ε, where W and ε are independent
random variables with W ∼ N(0, 1), ε ∼ N(0, σ2), and σ = 0.25. The pa-
rameter of interest is ψ0(W ) = E0[Z|W ] = W 2 and the loss function is the
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squared error loss. One hundred simulated learning sets were generated from
the above distribution, for sample sizes n = 250, 500, and 1000. Regression
trees were grown using the R rpart function, selecting tree size using five-
fold cross-validation, with the 1-SE rule and without the 1-SE rule (Breiman
et al., 1984; Therneau and Atkinson, 1997). The D/S/A algorithm of Moli-
naro and van der Laan (2003), with indicator basis functions, was applied to
generate a sequence of candidate estimators (i.e., partitions of the real line)
and five-fold cross-validation was used to select the optimal number of sets
in the partition.

Risk estimates, based on test sets of size N = 1000 were computed for
each of the three predictors, using the squared error loss function. Summary
statistics over the B = 100 simulations are displayed in Table 2 for the test
set risks and the partition sizes (i.e., number of indicator basis functions for
final predictor).

These preliminary results demonstrate that significant gains in accuracy
can be achieved, even in univariate situations, by selecting partitions using
the D/S/A algorithm rather than standard tree methods. We anticipate
even greater gains in accuracy from the D/S/A algorithm in multivariate
situations. In addition, the results raise questions regarding the benefits
of the widely-used 1-SE rule. In our simple example, where the parameter
ψ0(W ) = E0[Z | W ] = W 2 is a quadratic function of the explanatory variable
W , the D/S/A algorithm is able to exploit the symmetry of the parameter ψ0,
while the more rigid tree algorithms cannot recognize this symmetry. Trees
built without the 1-SE rule (i.e., tree0SE for which tree size is obtained by
minimizing the cross-validated risk) result in roughly twice as many sets in
the final partition compared to the D/S/A algorithm.

4 Supervised detection of regulatory motifs

in DNA sequences

4.1 COMODE

Keleş et al. (2003b) recently developed a likelihood-based method, called
COMODE (Constrained Motif Detection), for the supervised detection of tran-
scription factor binding sites, i.e., regulatory motifs. This new approach was
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Table 2: Simulation study: D/S/A algorithm for histogram regression. Test
set risk (mean squared error) for histogram regression with D/S/A algorithm
(DSA), regression trees with 1-SE rule (tree1SE), and regression trees without
1-SE rule (tree0SE). The following summary statistics are reported for each
prediction method and each sample size n, over B = 100 simulations: risk
average (Risk Avg.), risk standard deviation (Risk SD), average partition
size (Avg. Size), and average risk over average DSA risk (Ratio).

n Method Risk Avg. Risk SD Avg. Size Ratio
DSA 0.26125 0.09384 7.44 1

250 tree1SE 0.45305 0.14195 5.69 .577
tree0SE 0.35172 0.09927 14.45 .743

DSA 0.18935 0.07318 9.95 1
500 tree1SE 0.27216 0.08574 9.55 .696

tree0SE 0.22187 0.07544 21.26 .853
DSA 0.14080 0.04016 12.06 1

1000 tree1SE 0.18489 0.05206 13.02 .762
tree0SE 0.15403 0.04916 28.44 .914
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motivated by recent articles in the biological literature that suggest a direct
relationship between the structural footprint of a protein on DNA and the
information content profile of its position specific weight matrix and further
indicate that transcription factors with similar structures bind to sites with
similar information content profiles (Mirny and Gelfand, 2002). COMODE su-
pervises the search for transcription factor binding sites using information
derived from structural characteristics of protein-DNA interactions. Specific
structural constraints on the motifs are enforced as constraints on the in-
formation content profile and/or individual entries of their position specific
weight matrix.

Recall that the distribution of the four DNA bases in a motif can be
represented by a position specific weight matrix (PWM), with rows corre-
sponding to nucleotides {A,C,G,T} and columns to positions in the motif.

Let
−→
P w = (pw1, pw2, pw3, pw4) denote the distribution of bases at position w

of the motif, i.e., column w of the PWM, where the nucleotides {A,C,G,T}
are recoded as {1, 2, 3, 4}. The information content (IC) of the PWM at
position w is then given by

IC(w) = 2 +
4∑
j=1

pwj log2 pwj = 2− Entropy(w) ∈ [0, 2]. (24)

The information content profile of a PWM is a measure of a binding site’s
tolerance for substitution: high IC, low tolerance. The IC achieves its maxi-
mum when pwj = 1 for some base j and its minimum when all four bases are
equally likely, i.e., pwj = 1/4 for all j, j = 1, 2, 3, 4.

In COMODE, the widely used two component multinomial mixture model
(Bailey and Elkan, 1994; Lawrence and Reilly, 1990) is extended to a con-
strained multinomial mixture model, by imposing constraints on the informa-
tion content profile or on specific parameters of the motif PWM. The flexible
framework of COMODE allows a wide variety of constraints. Examples of sim-
ple constraints include palindromicity, gap inclusion, control of the number
of nucleotide repeats. Complex constraints include parametric modeling of
the whole information content profile. Estimation of motif start site, entries
of the PWM , and other model parameters is performed by constrained max-
imum likelihood estimation.
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As in unconstrained motif detection methods, many model selection issues
arise also with COMODE, regarding, for example, the motif width, the num-
ber of motifs per sequence, and the distribution of bases in the background
sequence. Additional model selection issues, specific to the supervised frame-
work, concern the type of constraints to be applied to the information content
profile or to specific parameters of the motif PWM. When there is limited
or no information on the structural properties of the protein-DNA interac-
tion, our estimation road map for motif detection includes applying various
types of constraints to the motif PWM and selecting the model that provides
the best fit by cross-validation. Since COMODE relies on maximum likelihood
estimation, it is natural to perform model selection using likelihood-based
cross-validation, i.e., using the negative log-likelihood loss function (van der
Laan et al., 2003a). We present below some results from the simulation
studies and the data analysis performed by Keleş et al. (2003b).

4.2 Simulation study

Simulation studies were implemented to assess the performance of likelihood-
based cross-validation for selecting among various binding site models, that
correspond to different information content profiles for the PWM (Keleş
et al., 2003b) or to different motif widths (van der Laan et al., 2003b).

4.2.1 Likelihood-based cross-validation for motif information con-
tent profile selection

B = 100 datasets, each comprising n = 30 sequences of length L = 100,
were generated using an i.i.d. background model with multinomial base
probabilities Pr(A) = 0.3, Pr(C) = 0.2, Pr(G) = 0.2, Pr(T) = 0.3. An
instance of a weak motif of width W = 13 was inserted in a varying percent-
age (F = 100%, 75%, 50%, 25%) of the sequences. The information content
profile of the motif PWM satisfies the following piecewise linear constraint

IC(w; θ∗1, θ
∗
2) = θ∗1 + |w − w∗| tan θ∗2, w = 1, . . . ,W,

where the motif width is W = 13, the parameter w∗ is set to the motif center,
w∗ = 7, and (θ∗1, θ

∗
2) are unknown parameters to be estimated. The sequence

logo of the motif PWM is given in Figure 2. As apparent from this logo
(y-axis represents the total information content, with range [0, 2]), the values
chosen for θ∗1 and θ∗2 give low overall information content, that is, correspond
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to a binding site with weak signal.

Four different types of constraints for the motif information content profile
were supplied to COMODE.

• Profile model 0: Unconstrained IC profile, as in the unconstrained
multinomial mixture model of Bailey and Elkan (1994) and Lawrence
and Reilly (1990).

• Profile model I: Piecewise linear (∨-shaped) IC profile satisfying

IC(w; θ1, θ2) = θ1 + |w − w∗| tan θ2,

where θ1 and θ2 are additional parameters that need to be estimated.

• Profile model II: Ordered IC profile, such that the middle positions
of the motif have lowest information content

IC(1) ≥ IC(2) ≥ · · · ≥ IC(w∗)

IC(w∗) ≤ IC(w∗ + 1) ≤ · · · ≤ IC(W ).

Note that this type of profile does not require estimation of additional
parameters.

• Profile model III: Piecewise linear (∧-shaped) IC profile satisfying

IC(w; θ1, θ2) = θ1 − |w − w∗| tan θ2,

where θ1 and θ2 are additional parameters that need to be estimated.

Note that Profile II roughly matches the true IC profile (Profile I), while
Profile III is the mirror image of Profile I and is thus misspecified.

COMODE was used to perform constrained maximum likelihood estimation
of the motif PWM and start sites (as well as additional parameters θ1 and
θ2, for profiles I and III), under the above four models for the information
content profile of the PWM. In this simulation study, the correct motif width
W and center w∗ were provided to COMODE, however, in practice these can
also be selected with likelihood-based cross-validation. A sensitivity measure
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was computed as follows for each profile model in each of the B simulated
datasets

ŝenskb =
|Kb ∩ K̂k

b |
|Kb|

,

whereKb = {set of true motif sites in simulated dataset b} and K̂k
b = {set of predicted motif sites in simulated dataset b for model k},

k = 0, I, II, III, b = 1, . . . , B. Figure 3 displays boxplots of these sensitivity
measures, for four different values of F , the percentage of motif occurrences
per sequence. At F = 100%, COMODE with either Profile I or II is performing
dramatically better than an unconstrained motif search (Profile 0), which
indicates that even though the motif signal is weak, incorporating knowledge
about the information content profile (i.e., supervising the search) helps to
discriminate it from the background. COMODE with Profiles I and II remains
superior to COMODE with Profile 0 as the percentage F of motif occurrences
per sequence decreases. Moreover, COMODE has similar performance with ei-
ther Profile I or II, suggesting robustness of this motif detection approach to
different profiles in the same high-low-high profile class. All four models,
except that corresponding to Profile III, resulted in high specificity (between
0.92 and 0.95), i.e., did not predict sites on sequences that did not have a
motif occurrence. As expected, COMODE with Profile III performs the worst
since it searches for a motif with IC profile that is a mirror image of the true
IC profile.

Two-fold likelihood-based cross-validation was also applied to select among
the four binding site models corresponding to the four types of IC profiles.
The numbers of times each profile model was selected out of B = 100 simu-
lations, with F = 100%, are as follows: Profile 0: 0, Profile I: 61, Profile II:
39, Profile III: 0. We first note that cross-validation successfully discards the
misspecified Profile model III. Profile 0 is unconstrained and has the flexi-
bility to match the true profile. However, since the signal for the binding
site is weak (i.e., low overall information content), the unconstrained model
is inferior when compared to models with Profiles I and II that match the
true information content profile.

4.2.2 Likelihood-based cross-validation for motif width selection

B = 200 datasets, each comprising n = 20, 100 sequences of length L = 600,
were generated using an i.i.d. background model. A motif of width W = 10
was inserted in each of the sequences. Motif start sites and PWM were
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Figure 2: Weak motif. Sequence logo for a PWM with low overall information
content.

estimated using COMODE with no constraints on the PWM, for motif widths
W ranging from 6 to 15 base-pairs. Two-fold (p = 0.5) and five-fold (p =
0.2) likelihood-based cross-validation procedures were used to select motif
width. The results are summarized in Table 3. We note that likelihood-
based cross-validation was generally successful at identifying the correct motif
width of 10, with, as expected, a better performance for the larger sample
size. Over-fitting was not an issue, in the sense that cross-validation did
not tend to select wider motifs than the truth. In addition, two-fold cross-
validation performed well compared the more computer intensive five-fold
cross-validation.

4.3 S. cerevisiae sequence data analysis

As described in detail in Keleş et al. (2003b), COMODE was applied to genome-
wide binding sequence data from the yeast Saccharomyces cerevisiae. Likelihood-
based cross-validation was used for model selection purposes. Here, we only
report results for the transcription factor BAS1. A total of 19 upstream re-
gions were identified as bound by BAS1 by Lee et al. (2002). The binding
site of BAS1 is expected to be 5–6 base-pairs-wide, with a main conserved
region. This structural information was translated into a constraint on the
information content profile of the motif PWM, by forcing the IC at each
position to be greater than a threshold. The threshold and motif width were
determined by two-fold likelihood-based cross-validation. Specifically, the
following constraints were enforced on the BAS1 motif PWM: IC(w) ≥ θ, for
w ∈ {1, · · · ,W}, with W ∈ {5, . . . , 18} and θ ∈ {0.6, 1.2, 1.8}. This corre-
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Table 3: COMODE. Likelihood-based cross-validation for motif width selection.
Number of simulations (out of B = 200) each motif width W was selected,
for sample sizes n = 20, 100 and using two- and five-fold CV. The true motif
width is 10.

n = 20 n = 100
2-fold 5-fold 2-fold 5-fold

6 0 20 0 22
7 24 42 0 10
8 40 10 15 14
9 11 17 3 3

W 10 121 98 147 142
11 0 10 35 9
12 0 3 0 0
13 0 0 0 0
14 0 0 0 0
15 1 0 0 0

sponds to 14×3 models to be compared by likelihood-based cross-validation.
The sequence logo of the PWM obtained by COMODE is displayed in Figure
4. This sequence logo matches that for the true consensus site reported for
BAS1 (Daignan-Fornier and Fink, 1992) and is only one base wider than the
truth. Results for transcription factors ARO80 and SWI5 are given in Keleş
et al. (2003b)
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Figure 3: COMODE. Likelihood-based cross-validation for motif information
content profile selection. Boxplots of sensitivity measures for four different
PWM information content profile models.
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Figure 4: COMODE. S. cerevisiae sequence data analysis. Sequence logo for
the BAS1 PWM. The consensus sequence for BAS1 reported in Daignan-
Fornier and Fink (1992) is TGACTC. The sequence logo was obtained us-
ing software available at http://genio.informatik.uni-stuttgart.de/

GENIO/logo/logo.cgi.

44

http://biostats.bepress.com/ucbbiostat/paper137

 http://genio.informatik.uni-stuttgart.de/GENIO/logo /logo.cgi.
 http://genio.informatik.uni-stuttgart.de/GENIO/logo /logo.cgi.


T
ab

le
4:

L
os

s
fu

n
ct

io
n
s.

E
x
am

p
le

s
of

fu
ll

d
at

a
lo

ss
fu

n
ct

io
n
s,
L

(X
,ψ

),
fo

r
d
iff

er
en

t
es

ti
m

at
io

n
p
ro

b
le

m
s.

C
en

so
re

d
d
at

a
lo

ss
fu

n
ct

io
n
s,
L

(O
,ψ

|υ
0
),

ca
n

b
e

ob
ta

in
ed

b
y

ap
p
ly

in
g

th
e

IP
C

W
m

ap
p
in

g
to

th
e

fu
ll

d
at

a
lo

ss
fu

n
ct

io
n
s
L

(X
,ψ

):
L

(O
,ψ

|υ
0
)
≡
L

(X
,ψ

)
∆

Ḡ
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S. Keleş, M. J. van der Laan, and M. B. Eisen. Identification of regulatory
elements using a feature selection method. Bioinformatics, 18:1167–1175,
2002.

C. E. Lawrence and A. A. Reilly. An expectation maximization (em) al-
gorithm for the identification and characterization of common sites in un-
aligned biopolymer sequences. Proteins: Structure, Function and Genetics,
7:41–51, 1990.

M. LeBlanc and J. Crowley. Relative risk trees for censored survival data.
Biometrics, 48:411–425, 1992.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K.
Gerber, N. M. Hannett, C. R. Harbison, C. M. Thompso n, Simon I.,
Zeitlinger J., E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J.
Wyrick, J. Tagne, Volkert T. L., E. Fr aenkel, Gifford D. K., and R. A.
Young. Transcriptional regulatory networks in Saccharomyces cerevisiae .
Science, 298:799–804, 2002.

L. A. Mirny and M. S. Gelfand. Structural analysis of conserved base pairs in
protein-DNA comple xes. Nucleic Acids Research, 30(7):1704–1711, 2002.

A. M. Molinaro, S. Dudoit, and M. J. van der Laan. Tree-based multivariate
regression and density estimation with right-censored data. Journal of
Multivariate Analysis, 2004. (Accepted).

A. M. Molinaro and M. J. van der Laan. A Deletion/Substitution/Addition
algorithm for partitioning the covariate space in prediction. Technical
report, Division of Biostatistics, UC Berkeley, 2003. (In preparation).

J. Robins and A. Rotnitzky. Recovery of information and adjustment for
dependent censoring using surrogate markers, chapter AIDS Epidemiology,
Methodological issues. Bikhauser, 1992.

47

Hosted by The Berkeley Electronic Press

www.bepress.com/ucbbiostat/paper124/


S. Sinisi and M. J. van der Laan. A general Deletion/Substitution/Addition
algorithm in prediction. Technical report, Division of Biostatistics, UC
Berkeley, 2003. (In preparation).

S. L. Teng, S. Dudoit, and M. J. van der Laan. Loss-based measures of
variable importance. Technical report, Division of Biostatistics, University
of California, Berkeley, 2003. (In preparation).

T. Therneau and E. Atkinson. An introduction to recursive partitioning
using the rpart routine. Technical Report 61, Section of Biostatistics,
Mayo Clinic, Rochester, 1997.

M. J. van der Laan and S. Dudoit. Unified cross-validation methods for
selection among estimators: Finite sample results, asymptotic optimality,
and applications. Technical Report 130, Division of Biostatistics, Univer-
sity of California, Berkeley, 2003. URL www.bepress.com/ucbbiostat/

paper130/.

M. J. van der Laan, S. Dudoit, and S. Keleş. Asymptotic optimality of
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